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Abstract

Various papers have presented folk theorem results for repeated games with private monitoring that

rely on belief-free equilibria. I show that these equilibria are not robust against small perturbations

in the behavior of potential opponents. Specifically, I show that (1) essentially none of the belief-free

equilibria is evolutionarily stable, (2) most of them are not neutrally stable, and (3) in games with two

actions that admit a strict equilibrium, such as the Prisoner’s Dilemma, the belief-free equilibria fail to

satisfy even a very mild stability refinement.

JEL Classification: C73, D82. Keywords: Belief-free equilibrium, evolutionary stability, private

monitoring, repeated Prisoner’s Dilemma, communication.

1 Introduction

The theory of repeated games provides a formal framework to explore the possibility of cooperation in long-

term relationships, such as collusion between firms. The various folk theorem results (e.g., Fudenberg and

Maskin, 1986; Abreu, Pearce, and Stacchetti, 1990) have established that efficiency can be achieved under

fairly general conditions when players observe commonly shared information about past action profiles.

In many real-life situations players privately observe imperfect signals about past actions. For example,

each firm in a cartel privately observes its own sales, =which contain imperfect information about secret price

cuts that its competitors offer to some of their customers. Formal analysis of private monitoring began with

the pioneering work of Sekiguchi (1997). Since then, several papers have presented various folk theorem

results that have shown that efficiency can be achieved also with private monitoring (see Kandori, 2002;

Mailath and Samuelson, 2006, for surveys of this literature).

The most commonly used equilibrium in the literature on private monitoring is the belief-free equilibrium

in which the continuation strategy of each player is a best reply to his opponent’s strategy at every private

history. These equilibria are called “belief-free” because a player’s belief about his opponent’s history is not

needed to compute a best reply. Piccione (2002) and Ely and Välimäki (2002) present folk theorem results

for the repeated Prisoner’s Dilemma using belief-free equilibria under the assumptions that the monitoring

technology is almost perfect and the players are sufficiently patient. Ely, Hörner, and Olszewski (2005),

∗Email: yuval.heller@economics.ox.ac.uk. A previous version of this manuscript was called “Instability of Equilibria with
Private Monitoring”. I would like to express our deep gratitude to Mehmet Ekmekci, Peter Eso, Michihiro Kandori, Erik Mohlin,
Satoru Takahashi, Jorgen Weibull, Yuichi Yamamoto, the associate editor and the referees, for many useful comments.
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Miyagawa, Miyahara, and Sekiguchi (2008), and Yamamoto (2009, 2014) extend the folk theorem results

that rely on belief-free equilibria to general repeated games and to costly observability. Kandori and Obara

(2006) study a setup of imperfect public monitoring and show that belief-free private strategies can improve

the efficiency relative to the maximal efficiency obtained by public strategies. Takahashi (2010) applies the

belief-free equilibria to obtain folk theorem results for repeated games in which the players are randomly

matched with a new opponent at each round.

The results of the present paper show that belief-free equilibria are not robust against small perturbations

in the behavior of potential opponents, and that this instability is extreme in games with two actions that

admit a strict equilibrium, such as the Prisoner’s Dilemma.

Instability of Belief-free Equilibria in General Games One of the leading justifications for using

Nash equilibrium to predict behavior is its interpretation as a stable convention in a population of potential

players. Suppose that individuals in a large population are repeatedly drawn to play a game, and that

initially all individuals play the strategy s∗ but occasionally a small group of agents may experiment with a

different strategy s′. If this induces the experimenting agents to gain more than the incumbents, then the

population will move away from s∗ toward s′. Thus, strategy s∗ is evolutionarily (neutrally) stable (Maynard-

Smith and Price, 1973) if (1) it is a best reply to itself (i.e., it is a symmetric Nash equilibrium),1 and (2) it

achieves a strictly (weakly) higher payoff against any other best-reply strategy s′: u (s∗, s′) > u (s′, s′). One

example of an evolutionarily stable strategy in the repeated Prisoner’s Dilemma is the strategy of always

defecting regardless of the history.

A belief-free equilibrium is trivial if it induces the play of a Nash equilibrium at all periods. My first

result shows that only trivial belief-free equilibria may satisfy evolutionary stability. My second result

characterizes a mild sufficient condition for a belief-free equilibrium to be neutrally unstable. In particular,

if the underlying game admits an action profile that is a strict equilibrium, and the belief-free equilibrium

plays this action profile with probability strictly between zero and one at some period, then the belief-free

equilibrium is not neutrally stable. The intuition of these results is as follows. As observed by Ely, Hörner,

and Olszewski (2005, Section 2.1) at each period t, the set of optimal actions in a belief-free equilibrium is

independent of the private history. This implies that mutants who play a symmetric Nash equilibrium in an

auxiliary game in which players are allowed to choose only from the set of optimal actions weakly outperform

the incumbents (and strictly outperform the incumbents if this set includes a strict equilibrium).

Strong Instability in 2 × 2 Games with Strict Equilibria The existing notions of stability, namely,

evolutionary and neutral stability, are arguably too-strong refinements, as demonstrated in the rock-paper-

scissors game (see Section 2.3) that admits a unique Nash equilibrium that is not neutrally stable, but that

is a plausible prediction for the long-run average behavior in the population (see, e.g., Benaïm, Hofbauer,

and Hopkins, 2009). Motivated by this, I present a novel, and much weaker, notion of stability. I say that

a strategy s is vulnerable to strategy s′, if: (1) strategy s′ is a best reply to s, and (2) strategy s′ achieves

a strictly higher payoff against itself: u (s′, s′) > u (s, s′). I say that a symmetric Nash equilibrium s∗ is

weakly stable if there does not exist a finite sequence of strategies (s1, ..., sK), such that: (1) strategy s∗ is

1To simplify the exposition I focus in most of the paper on symmetric equilibria in symmetric games, and I extend the
analysis to asymmetric equilibria and asymmetric games in Section 4.
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vulnerable to s1, (2) each strategy sk is vulnerable to sk+1, and (3) strategy sK is evolutionarily stable.2

The definition implies that any symmetric game admits a weakly stable strategy, and that if s∗ is not

weakly stable, then it is not a plausible prediction of long-run behavior. This is because as soon as a small

group of agents experiments with playing s1, the population diverges to s1. If this is followed by an invasion

of small groups of agents who play s2, then the population diverges to s2, and after a finite number of such

sequential invasions, the population diverges to sK , and it will remain in sK in the long run (due to sK being

evolutionarily stable).3 A simple example of a non-weakly stable equilibrium is the mixed equilibrium in a

coordination game, for which every small perturbation takes the population to one of the pure equilibria.

My next result focuses on games with two actions that admit a strict equilibrium (such as the Prisoner’s

Dilemma), and shows that only trivial belief-free equilibria satisfy the mild refinement of weak stability.

The intuition for the Prisoner’s Dilemma is that any belief-free equilibrium is vulnerable to a deterministic

strategy s′ in which the players defect at each period in which defection is an optimal action with respect to

the belief-free equilibrium, and this strategy s′ is vulnerable to the evolutionarily stable strategy of always

defecting.

Next, I focus on the repeated Prisoner’s Dilemma and show that also among all the non-belief-free

equilibria in the existing literature on private monitoring, only defection satisfies the mild refinement of

weak stability.4 In particular, I show that (1) always defecting is the unique belief-free review-strategy

equilibria (Matsushima, 2004; Yamamoto, 2007; Deb, 2012; Yamamoto, 2012) that satisfies weak stability,

and (2) none of the “belief-based” equilibria of Bhaskar and Obara (2002) is weakly stable.

1.1 Related Literature and Contribution

Conditionally Correlated Signals A few papers in the literature yield stable cooperation if the private

signals are sufficiently correlated conditional on the action profile. Mailath and Morris (2002, 2006), Hörner

and Olszewski (2009), and Mailath and Olszewski (2011) show that when the private signals are almost

perfectly correlated conditional on the action profile (i.e., when there is almost public monitoring), then any

sequential equilibrium of the nearby public monitoring game with bounded memory remains an equilibrium

also with almost public monitoring. Some of these equilibria are evolutionarily stable, and, in particular,

cooperation can be the outcome of an evolutionarily stable strategy.

Kandori (2011) presents the notion of weakly belief-free equilibria, in which the strategy of each player is

a best reply to any private history of the opponent up to the actions of the previous round. Unlike standard

belief-free equilibria, players need to form the correct beliefs about the signal obtained by the opponent

in the previous round. Kandori (2011) demonstrates that if there is sufficient correlation between private

signals (conditional on the action profile), then the game admits a strict weakly belief-based equilibrium

that yields substantial cooperation. The strictness of the equilibrium implies that it satisfies the refinement

of evolutionary stability. In the discussion paper version of his paper Kandori (2009) points out that the

2Remark 2 discusses the relation between weak stability and the structurally similar notion of “robustness against indirect
invasions” of Van Veelen (2012).

3I assume that these experimentations are infrequent enough such that strategies that are outperformed following the entry
of a group of experimenting agents become sufficiently rare before a new group of agents starts experimenting with a different
behavior.

4Except equilibria that rely on sufficient correlation between private signals of different players (Mailath and Morris, 2002,
2006; Kandori, 2011), and equilibria that rely on communication between players at each round of the game (Compte, 1998;
Kandori and Matsushima, 1998; Obara, 2009), as discussed in Section 1.1.
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specific non-trivial belief-free equilibria in the existing literature are not evolutionarily stable in the repeated

Prisoner’s Dilemma. The present paper substantially strengthens Kandori’s observation in at least two

important ways: (1) I show that any non-trivial belief-free equilibrium of any underlying game is not

evolutionarily stable (and under mild assumptions, it is also not neutrally stable), and (2) I show that when

the underlying game is the Prisoner’s Dilemma (or, more broadly, any underlying game with two actions

and a strict equilibrium), then the belief-free equilibria fail to satisfy a very mild refinement of stability (i.e.,

the belief-free equilibria violate weak stability, rather than only violating evolutionary stability).

Communication and Conditionally Independent Signals Compte (1998), Kandori and Matsushima

(1998), and Obara (2009) present folk theorem results that rely on (noiseless) communication between the

players at each stage of the repeated game. The players use this communication to publicly report (possibly

with some delay) the private signals they obtain. These equilibria are constructed such that the players have

strict incentives while playing, and such that they are always indifferent between reporting the truth and

lying regardless of the reporting strategy of the opponent. One can show that this property implies that

these equilibria are neutrally stable, and hence also weakly stable.5

The present paper shows that all the mechanisms in the existing literature can yield only defection as the

outcome of a weakly stable equilibrium in the repeated Prisoner’s Dilemma with conditionally independent

imperfect monitoring. I leave for future research the open question whether any new mechanism may yield

cooperation as a stable outcome with conditionally independent private monitoring. This open question

has interesting implications for antitrust laws. If the answer to this question is negative, then it would

suggest that communication between players is critical to obtain collusive behavior whenever the private

imperfect monitoring between the firms is such that the conditional correlation between the private signals

is sufficiently low.6,7

One promising direction toward the solution of this open question might rely on the methods developed

in Heller and Mohlin (2015) for the related setup of random matching and partial observation of the partner’s

past behavior. In that setup, Heller and Mohlin (2015) characterize conditions under which only defection

is stable, and construct novel mechanisms to sustain stable cooperative equilibria whenever these conditions

are not satisfied.

Robustness Sugaya and Takahashi (2013) show that “generically” only belief-free equilibria are robust to

small perturbations in the monitoring structure. Our main result shows that belief-free equilibria (except for

defection) are not robust to small perturbations in the behavior of the potential opponents. Taken together,

5The argument for neutral stability is sketched as follows. Having strict incentives while playing implies that any best-reply
strategy must induce the same play on the equilibrium path, and differ from the incumbent strategy only by sending false
reports. The fact that players are always indifferent between reporting the truth and lying implies that any such best-reply
strategy yields the same payoff as the incumbent strategy (both when the opponent is an incumbent as well as when he is a
mutant that follows a best-reply strategy).

6This empirical prediction can be tested experimentally by comparing how subjects play the repeated Prisoner’s Dilemma
with private monitoring and conditionally independent signals with and without the ability to communicate by exchanging
“cheap talk” messages. Matsushima, Tanaka, and Toyama (2013) experimentally study this setup without communication, and
their findings suggest that the subjects’ behavior is substantially different than the predictions of the belief-free equilibria (in
particular, subjects retaliate more severely when monitoring is more accurate). I am not aware of any experiment that studies
this setup with communication.

7See also the recent related result of Awaya and Krishna (2015), which deals with sequential equilibria of oligopolies under
some plausible private monitoring structures, and shows that cheap talk communication allows one to achieve a higher level of
collusion relative to the maximal level that one can achieve without communication.
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the two results suggest that defection is the unique equilibrium outcome of the repeated Prisoner’s Dilemma

that is robust to both kinds of perturbations.8

Structure The model is described in Section 2. Section 3 presents the results for symmetric games.

Sections 4 extends the analysis to asymmetric games.

2 Model

2.1 Games with Private Monitoring

I analyze a two-player δ-discounted repeated game with private monitoring. I use the index i ∈ {1, 2} to refer

to one of the players, and −i to refer to the opponent. Each player i has a finite action set Ai and a finite

set of signals Σi. An action profile is an element of A1 × A2. I use ∆W to represent the set of probability

distributions over a finite set W . Let ∆Ai and ∆A1 × ∆A2 represent respectively the set of mixed actions

for player i and mixed action profiles. For each player i let πi : A1 × A2 → Rn denote the payoff function,

which is extended to mixed actions in the standard (linear) way.

For each possible action profile (a1, a2) ∈ A1 ×A2, the monitoring distribution m (·|a1, a2) specifies a joint

probability distribution over the set of signal profiles Σ1 × Σ2. When action profile a is played and signal

profile (σ1, σ2) is realized, each player i privately observes his corresponding signal σi. Letting ũi (ai, σi)

denote the payoff to player i from action ai and signal σi, I can represent stage payoffs as a function of mixed

action profiles alone:

ui (α1, α2) =
∑

(a1,a2)∈A1×A2

∑

σi∈Σi

α1 (a1) · α2 (a2) · mi (σi|a1, a2) · ũ (ai, σi) .

To simplify the presentation of the results, I assume that the monitoring structure has full support, i.e.,

that each signal profile is observed with positive probability after each action profile. Formally:9

Assumption 1. The monitoring structure has full support: m (σ1, σ2|a1, a2) > 0 for each action profile

(a1, a2) ∈ A1 × A2 and each signal profile (σ1, σ2) ∈ Σ1 × Σ2.

One example of a monitoring structure with full support is the conditionally independent ǫ-perfect moni-

toring in which each player privately observes his opponent’s last action with probability 1 − ǫ and observes

the opposite action with the remaining probability ǫ.

A t-length (private) history for player i is a sequence that includes the action played by the player and

the observed signal in each of the previous t rounds of the game. Let Ht
i := (Ai × Σi)

t denote the set of all

such histories for player i. Each player’s initial history is the null history, denoted by φ. A pair of t-length

8Matsushima (1991) presents a related result by showing that defection is the unique pure equilibrium in the repeated
Prisoner’s Dilemma in which signals are conditionally independent and Nash equilibria are restricted to being independent
of payoff-irrelevant private histories. As demonstrated by the “belief-based” equilibria of Bhaskar and Obara (2002), the
uniqueness result does not hold for mixed equilibria (the mixed “belief-based” equilibria achieve cooperation even though the
behavior of the players is independent of payoff-irrelevant private histories, and signals may be conditionally independent).

9The results can be adapted to a setup in which the monitoring structure does not have full support. The adaptation
requires changing two definitions (and related minor adaptations to the proofs): (1) extending the set of of trivial belief-free
equilibria in Definition 2, such that it relates only to histories that occur with positive probability, and (2) refining Definition 5
of weak stability by allowing the strategy s′ to be neutrally stable, rather than evolutionarily stable (because if the monitoring
structure does not have full support, then no strategy is evolutionarily stable).
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histories (or history for short) is denoted by ht. Let Ht denote the set of all t-length histories, H = ∪tH
t

the set of all histories, and Hi = ∪tH
t
i the set of all private histories for i.

2.2 Belief-free Equilibria

A repeated-game (behavior) strategy for player i is a mapping si : Hi → ∆ (Ai). For history ht
i , let

si|ht
i

denote the continuation strategy derived from si following history ht
i. Specifically, if hiĥi denotes the

concatenation of the two histories hi and ĥi, then si|ht
i

is the strategy defined by si|ht
i

(

ĥi

)

= si

(

hiĥi

)

.

Given a strategy profile −→s = (s1, s2), let Bi

(−→s |ht
−i

)

denote the set of continuation strategies for i that are

best replies to s−i|ht
−i

.

Definition 1 (Ely, Hörner, and Olszewski 2005). A strategy profile −→s ∗ = (s∗

1, s∗

2) is belief-free if for every

ht, s∗

i |ht
i

∈ Bi

(−→s ∗|ht
−i

)

for i ∈ {1, 2}.

The condition characterizing a belief-free strategy profile is stronger than that characterizing a sequential

equilibrium. In a sequential equilibrium, a player’s continuation strategy is the player’s best reply given his

belief about his opponent’s continuation strategy, that is, given a unique probability distribution over the

opponent’s private histories. In a belief-free strategy profile, a player’s continuation strategy is his best reply

to his opponent’s continuation strategy at every private history. In other words, a sequential equilibrium is

a belief-free strategy profile if it has the property that a player’s continuation strategy is still the player’s

best reply when he secretly learns about his opponent’s private history.

A simple kind of of a belief-free equilibrium, is a strategy profile in which the players play a Nash

equilibrium of the underlying game at all periods, and this equilibrium is independent of the history of play.

I call such belief-free equilibria trivial. Formally, let NE ((A1, A2) , (u1, u2)) denote the set of Nash equilibria

of the underlying game.

Definition 2. A belief-free equilibrium (s1, s2) is trivial if for every two histories ht, h̃t of length t:

(

si

(

ht
i

)

, s−i

(

ht
−i

))

=
(

si

(

h̃t
i

)

, s−i

(

h̃t
−i

))

∈ NE ((A1, A2) , (u1, u2)) .

2.3 Evolutionary Stability in Symmetric Games

In what follows, I study evolutionary stability in symmetric games (which are played within a single popu-

lation). Section 4 extends the analysis to asymmetric games. In the setup of symmetric games I will omit

the index i: A := A1 = A2, ũ := ũ1 = ũ2, u := u1 = u2, and m := m1 = m2. I will say that a strategy s

is a symmetric Nash (belief-free) equilibrium if the symmetric strategy profile (s, s) is a Nash (belief-free)

equilibrium.

I present a refinement of a symmetric Nash equilibrium that requires robustness to a small group of agents

who experiment with a different behavior (see, Weibull, 1995, for an introductory textbook). Suppose that

individuals in a large population are repeatedly drawn to play a two-person symmetric game, and that there

is an underlying dynamic process of social learning in which more successful strategies (which induce higher

average payoffs) become more frequent. Suppose that initially all individuals play the equilibrium strategy

s∗. Now consider a small group of agents (called, mutants) who play a different strategy s′. If s′ is not a best

reply to s∗, then if the mutants are sufficiently rare they will be outperformed. If s′ is a best reply to s∗,
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then the relative success of the incumbents and the mutants depends only on the average payoff they achieve

when matched against a mutant opponent. If the incumbents achieve a higher payoff when matched against

the mutants, then the mutants are outperformed. Otherwise, the mutants outperform the incumbents, and

their strategy gradually takes over the population.

The formal definition is as follows. Let U (s, s′) denote the expected discounted payoff to a player

following strategy s and facing an opponent who plays strategy s′.

Definition 3 (Maynard-Smith and Price, 1973; Maynard-Smith, 1982). A symmetric Nash equilibrium s∗

is neutrally (evolutionarily) stable if U (s∗, s′) ≥ U (s′, s′) (U (s∗, s′) > U (s′, s′)) for each strategy s∗ 6= s′ ∈

B (s∗).

Note that any strict symmetric equilibrium is evolutionarily stable. The key difference between evolu-

tionary and neutral stability is whether the mutants are allowed to obtain the same payoff as incumbents. As

a result neutrally stable strategies (which are not evolutionary stable) may be vulnerable to a random drift

of the population away from the initial state. The existing literature typically uses evolutionary stability as

the strongest notion of stability, and neutral stability as the weakest notion (and it studies various notions

in between, such as evolutionarily stable sets; see Thomas, 1985).

One may argue that neutral stability is still “too strong” a refinement because: (1) some games do not

admit any neutrally stable strategies, and (2) some equilibria that are not neutrally stable are plausible

predictions of the time-average behavior in the game. This is demonstrated in the rock-paper-scissors game

in Table 1 (left side). The unique symmetric equilibrium is
(

1

3
, 1

3
, 1

3

)

, which is not neutrally stable (because

R ∈ B
(

1

3
, 1

3
, 1

3

)

and U
((

1

3
, 1

3
, 1

3

)

, R
)

= − 1

3
< U (R, R) = 0. One can show that although

(

1

3
, 1

3
, 1

3

)

is not

neutrally stable, still, under mild assumptions on the dynamics, the time average of the aggregate play

converges to
(

1

3
, 1

3
, 1

3

)

(Benaïm, Hofbauer, and Hopkins, 2009).

Table 1: Examples of Symmetric Games

R P S

R 0
0

−2
1

1
−2

P 1
−2

0
0

−2
1

S −2
1

1
−2

0
0

Rock-Paper-Scissors.

a b

a 1
1

0
0

b 0
0

1
1

Coordination Game

c d

c 1
1

l
1+g

d 1+g
l

0
0

Prisoner’s Dilemma (g > 0 > l)

Hawk-Dove Game (g, l > 0)

This motivates me to present a much weaker stability refinement that focuses only on vulnerability to

mutant strategies that are evolutionarily stable. Strategy s∗ is vulnerable to strategy s′ if strategy s′ can

take over a population that initially plays s∗. Formally:

Definition 4. Strategy s∗ is vulnerable to strategy s′ if s′ ∈ B (s∗) and U (s∗, s′) < U (s′, s′) .

Observe that a neutrally stable strategy is not vulnerable to any other strategy.

Remark 1. All the results in this paper remain the same if one weakens the definition of vulnerability à la

Swinkels (1992), and requires s′ to be an “equilibrium entrant,” i.e., a best reply to the post-entry population

for any sufficiently small ǫ > 0: s′ ∈ B ((1 − ǫ) · s∗ + ǫ · s′).
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A symmetric Nash equilibrium s∗ is weakly stable if if there does not exist a finite sequence of strategies

that starts at s∗, ends in an evolutionarily stable strategy, and each of whose strategies is vulnerable to its

successor. Formally:

Definition 5. A symmetric Nash equilibrium s∗ is weakly stable if there does not exist a finite non-empty

sequence of strategies
(

s1, ..., sK
)

such that: (1) strategy s∗ is vulnerable to s1, (2) for each 1 ≤ k < K

strategy sk is vulnerable to sk+1, and (3) strategy sK is evolutionarily stable.

Observe that:

1. Any neutrally stable strategy is weakly stable.

2. Any game admits a weakly stable strategy.

3. If strategy s∗ is not weakly stable, then it is not a plausible prediction of long-run behavior in the

population. Even if the population initially plays s∗, then as soon as a small group of agents experiments

with playing s̃, the population diverges to s̃. If this is followed by another small group of agents who

play s′, then the population will converge to s′, and will remain there in the long run. Note that our

argument relies on the assumption that these experimentations are infrequent enough that strategies

that are outperformed following the entry of a group of experimenting agents become sufficiently rare

before a new group of agents starts experimenting with a different behavior.

4. The notion of weak stability is able to strictly refine Nash equilibrium only if the game admits an

evolutionarily stable strategy.

Remark 2. Definition 5 is structurally similar to Van Veelen’s (2012) notion of robustness against indirect

invasions. A strategy s∗ is robust against indirect invasions if there does not exist a sequence of strategies

(s1, ..., sn) , such that s∗ is weakly vulnerable to s1 (i.e., s1 ∈ B (s∗) and U (s∗, s1) ≤ U (s1, s1)), each sk

is weakly vulnerable to sk+1, and sK−1 is (strictly) vulnerable to sK . Note that Van Veelen’s notion of

robustness refines neutral stability (i.e., it is between evolutionary stability and neutral stability), while

weak stability weakens neutral stability (i.e., weak stability is between neutral stability and a symmetric

Nash equilibrium).

Remark 3. Definition 5 allows vulnerability to an evolutionarily stable strategy through an arbitrary number

of sequential invasions (denoted by K). Almost all the results in this paper rely on at most two sequential

invasions (i.e., K = 2). The only exception is the case of the one-sided Prisoner’s Dilemma in Proposition

5, which requires three steps (i.e., K = 3). Moreover, if we focus on the existing belief-free equilibria for the

repeated Prisoner’s Dilemma in the literature (e.g., Ely and Välimäki, 2002; Piccione, 2002), then most of

them are directly vulnerable to an invasion by players who always defect (i.e., K = 1).

3 Results for Symmetric Games

Ely, Hörner, and Olszewski (2005) characterize the set of belief-free equilibrium payoffs, and show that such

strategies support a large set of payoffs. In what follows, I show that non-trivial belief-free equilibria are

unstable in general games, and “extremely” unstable in games with two actions and strict equilibria.
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3.1 Instability in General Symmetric Games

My first result shows that any evolutionarily stable belief-free equilibrium must be trivial (i.e., it induces

the play of Nash equilibria of the underlying game at all periods)

The sketch of the proof is as follows. As observed by Ely, Hörner, and Olszewski (2005, Section 2.1) at

each period t, the set of optimal actions is independent of the private history. This implies that mutants who

play a symmetric Nash equilibrium in an auxiliary game in which players are only allowed to choose from

the set of optimal actions weakly outperform the incumbents. If the belief-free equilibrium is non-trivial,

then the mutants’ play differs from the incumbents’ play, which implies that the belief-free equilibrium is

not evolutionarily stable.

Proposition 1. Let s∗be a symmetric belief-free equilibrium that is also evolutionarily stable. Then s∗ is

trivial.

Proof. A continuation strategy zi is a belief-free sequential best reply to s∗ starting from period t if

zi|h
t̃
i∈Bi(s

∗|ht̃
−i) ∀t̃≥t and ht̃ ∈ H t̃;

the set of belief-free sequential best-replies beginning from period t is denoted by Bt
i (s∗). Let

At
i =

{

a ∈ A|∃zi ∈ Bt
i (s∗), ∃ht

i such that zi

(

ht
i

)

(ai) > 0
}

;

denote the set of actions in the support of some belief-free sequential best reply starting from period t. As

observed by Ely, Hörner, and Olszewski (2005, Section 2.1), ∃ht
i can be replaced with ∀ht

i, because if zi is a

belief-free sequential best reply to s−i and every continuation strategy zi|h
t
i gets replaced with the strategy

zi|h̃
t
i for a given h̃t

i, then the strategy zi so obtained is also a belief-free sequential best reply to s−i. Note

that the symmetry of the profile (s∗, s∗) implies that At := At
i = At

j . Following Ely, Hörner, and Olszewski

(2005), I call At the regime at period t.

For each period t, let αt ∈ ∆ (At) be a symmetric Nash equilibrium in the symmetric game (At, u) in

which players are restricted to choose actions only in At ⊆ A. Let s′ be the strategy in which each player

plays the mixed action αt at each period t. The definition of the regimes (At)t implies that a mutant

player who follows strategy s′ best-replies to an incumbent who follows s∗, i.e., U (s′, s∗) = U (s∗, s∗). The

definition of αt implies that a mutant achieves a weakly higher payoff relative to the incumbents when facing

another mutant: U (s′, s′) ≥ U (s∗, s′). This implies that s∗ can be evolutionarily stable only if s′ = s∗,

which implies that s∗ is trivial.

As evolutionary stability is a strong refinement, it is desirable to show that non-trivial belief-free equilibria

also fail to satisfy weaker notions of stability. In what follows I present a mild restriction on the belief-free

equilibrium, which implies that it cannot satisfy neutral stability. Given a belief-free symmetric equilibrium

s∗, let γt = γt (s∗) ∈ ∆ (At) be the marginal distribution of actions played by each player at period t. I show

that if there exists a mixed action βt0 ∈ ∆ (At0) at some period t0 such that u (γt0 (s∗) , βt0) < u (βt0 , βt0),

then the belief-free equilibrium is not neutrally stable. Formally:

Proposition 2. Let s∗be a symmetric belief-free equilibrium. Assume that there exists period t0 and mixed

action βt0 ∈ ∆ (At0) such that u (γt0 (s∗) , βt0) < u (βt0 , βt0). Then s∗is not neutrally stable.

9



Proof. Let the mutant strategy s′ be defined as follows:

s′
(

ht
i

)

=



















s∗ (ht
i) t < t0

βt0 t = t0

αt t > t0,

where αt ∈ ∆ (At) is a symmetric Nash equilibrium in the game (At, u), as defined in the previous proof. The

definition of s′ immediately implies by a similar argument to the previous proof that U (s′, s∗) = U (s∗, s∗)

and U (s′, s′) > U (s∗, s′), which implies that s∗ is not neutrally stable.

Proposition 2 has a simple corollary when the underlying game admits a symmetric strict equilibrium

(â, â). If there exists any period at which action â is played with a probability strictly between zero and

one, then the belief-free equilibrium is not neutrally stable. Formally:

Corollary 1. Let s∗be a symmetric belief-free equilibrium. Let â ∈ A be a strict symmetric equilibrium

of the underlying game. Assume that there exists period t0 such that 0 < γt0
(s∗) (â) < 1. Then s∗ is not

neutrally stable.

Proof. The result is immediate from the previous proof when taking βt0 ≡ â.

3.2 Strong Instability for 2 × 2 Games that Admit Symmetric Strict Equilibria

The Prisoner’s Dilemma (as described in Table 1) is an important application of belief-free equilibria. In

particular, Piccione (2002) and Ely and Välimäki (2002) show a folk theorem result, which relies on belief-

free equilibria, for the symmetric Prisoner’s Dilemma game with almost perfect monitoring technology and

sufficiently patient players. In this section I show that only trivial belief-free equilibria satisfy the mild

refinement of weak stability in 2 × 2 symmetric games that admit a symmetric strict equilibrium. In

particular, the symmetric Prisoner’s Dilemma game admits a unique weakly stable belief-free equilibrium in

which both players defect at all periods.

Proposition 3. Assume that the symmetric underlying game has two actions A = {c, d}, and that one of

these actions, d, is a symmetric strict equilibrium. Let s∗be a symmetric belief-free equilibrium. If s∗ is

weakly stable, then it is trivial.

Proof. Assume first that γt (s∗) is pure at all periods t. This implies that s∗ induces a deterministic play

that is independent of the observed signals. Thus a player’s best reply coincides with his myopic best reply,

which implies that the pure action profile played at each period must be an equilibrium of the underlying

game (i.e., s∗ is trivial).

Otherwise, there exists time t such that: (1) both actions are best replies (At = {c, d}), and (2) there is

a private history ht
i after which player i cooperates with positive probability, i.e., ∃ht

i s.t. s∗

i (ht
i) (C) > 0.

Let s′ be the pure strategy that plays d at all periods except in those in which c is the unique best reply to

s∗:

s′
(

ht
i

)

=







c At
i = {c}

d otherwise.

10



The definition of s′ implies that s′ is a best reply to s∗, and that U (s∗, s′) < U (s′, s′) (because at any period

in which s′ and s∗ do not coincide, strategy s′ plays the unique best reply to itself, namely, action d). If c

is also a symmetric strict equilibrium of the underlying game, then s′ is evolutionarily stable. Otherwise,

let sd ≡ d be the strategy that always plays action d. The fact that only action d is a symmetric strict

equilibrium implies that action d is weakly dominant, strategy sd is a best reply to s′, U (sd, sd) > U (s′, sd),

and strategy sd is evolutionarily stable. This implies that s∗ is not weakly stable.

3.3 Strong Instability of Other Equilibria in the Repeated Prisoner’s Dilemma

Proposition 3 shows that non-trivial belief-free equilibria do not satisfy weak stability in the repeated Pris-

oner’s Dilemma. In this subsection I extend this result to two other kinds of equilibria in the literature on

private monitoring: belief-free review-strategy equilibria and belief-based equilibria.

Instability of Belief-free Review-strategy Equilibria. Matsushima (2004), Yamamoto (2007, 2012),

and Deb (2012) use the notion of a belief-free review-strategy equilibrium (also called block equilibrium) in

which (1) the infinite horizon is regarded as a sequence of review phases such that each player chooses

a constant action throughout a review phase, and (2) at the beginning of each review phase, a player’s

continuation strategy is a best reply regardless of the history. A simple adaptation of the proof of Proposition

3 show that defection is the unique weakly stable symmetric belief-free review-strategy equilibrium.10

The adaptation of the proof is done as follows. Let s∗ be a symmetric belief-free review-strategy equilib-

rium. Let (tl)
∞

l=1
be the increasing sequence of starting times for the review phases. Let Al

i ⊆ {c, d} denote

the set of actions in the support of some sequential best reply that begins from period tl and plays the same

action up to the end of the l-th review phase. Let s′ be the deterministic strategy that always defects except

in review phases in which Al
i = {c}. An analogous argument to the proof of Proposition 3 shows that s∗ is

vulnerable to s′, and s′ is vulnerable to sd.

Instability of Belief-based Equilibria Bhaskar and Obara (2002) (extending Sekiguchi, 1997) present a

folk theorem result for the repeated Prisoner’s Dilemma that does not rely on belief-free equilibria. Instead,

the best reply of each player depends on his belief about the private history of the opponent (“belief-based

equilibria”). In what follows, I show that these equilibria are not weakly stable.

Bhaskar and Obara (2002) consider a symmetric signaling structure with two signals Σi = {C, D},

where C (resp., D) is more likely when the opponent plays c (resp., d). Given any action profile, there

is a probability of ǫ > 0 that exactly one player receives a wrong signal, and a probability of ξ > 0 that

both players receive wrong signals. Bhaskar and Obara present for each 0 < x < 1 a symmetric sequential

equilibrium sx that yields a payoff of at least x whenever ǫ and ξ are sufficiently small. This construction

is the key element in their folk theorem result. In what follows I sketch this equilibrium sx, and then show

that it is not weakly stable.

Let sT be the trigger strategy: cooperate as long as all observed signals are C-s, and defect in the

remaining game if signal D is ever observed. The strategy sx divides the entire game into disjoint subgames

(say, into n subgames, where subgame k includes the rounds that are equal to k modulo n), and the play in

10Similarly, one can further adapt the proof to show the instability of Sugaya’s (2015) equilibria, in which each review phase
is divided into several sub-phases, and players may switch their action at the beginning of each sub-phase.
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each subgame is independent of the other subgames. Each player mixes at the first round of each subgame:

he plays sT (trigger strategy) with probability π and plays sd (always defect) with the remaining probability.

Bhaskar and Obara show that there exist a division into subgames and a mixing probability π such that

(1) the expected discounted symmetric payoff of the game is at least x, and (2) strategy sx is a sequential

equilibrium.11

Claim 1. The symmetric sequential equilibrium sx is not weakly stable.

Sketch of Proof. The fact that sx mixes between sd and sT at the beginning of each subgame, implies that

sd is a best reply to sx. Recall that sd is evolutionarily stable and the unique best reply to itself. These

observations immediately imply that sx is not weakly stable.

4 Analysis of Asymmetric Games

The previous section analyzed stability of equilibria in symmetric games. In this section I show that all

of the instability results hold also for the case of asymmetric games. In addition, in this setup I am able

to extend the strong instability result also for the Hawk-Dove game (which admits an asymmetric strict

equilibrium).

4.1 Evolutionary Stability in Asymmetric Games

In this subsection I adapt the notions of stability to asymmetric games (or symmetric games, in which a

player is able to condition on his play on his role, i.e., being Player 1 or Player 2).

A Nash equilibrium is evolutionarily stable if the incumbents achieve a higher payoff against any mutants

who best-reply to the incumbents.

Definition 6 (Taylor, 1979; Weibull, 1995, Chapter 5.1). A Nash equilibrium (s∗

1
, s∗

2
) is neutrally (evolu-

tionarily) stable if U1 (s∗

1
, s′

2
) + U2 (s′

1
, s∗

2
) ≥ U1 (s′

1
, s′

2
) + U2 (s′

1
, s′

2
) (U1 (s∗

1
, s′

2
) + U2 (s′

1
, s∗

2
) > U1 (s′

1
, s′

2
) +

U2 (s′

1
, s′

2
)) for each strategy profile (s′

1
, s′

2
) 6= (s∗

1
, s∗

2
) satisfying s′

1
∈ B (s∗

2
) and s′

2
∈ B (s∗

1
).

In what follows I adapt the notion of weak stability to the setup of asymmetric games. Strategy profile

(s∗

1
, s∗

2
) is vulnerable to strategy profile (s′

1
, s′

2
) if the latter can take over a population that initially plays

(s∗

1
, s∗

2
). Formally:

Definition 7. Strategy profile(s∗

1
, s∗

2
) is vulnerable to strategy profile (s′

1
, s′

2
) if for each player i, Ui

(

s∗

i , s∗

−i

)

≤

Ui

(

s′

i, s∗

−i

)

, and, in addition, U1 (s∗

1
, s′

2
) + U2 (s′

1
, s∗

2
) < U1 (s′

1
, s′

2
) + U2 (s′

1
, s′

2
).12

A Nash equilibrium is weakly stable if there does not exist a sequence of strategy profiles, starting with

this equilibrium and ending with an evolutionarily stable strategy profile, such that each profile in the

sequence is vulnerable to its successor. Formally:

11As observed by Bhaskar (2000) and Bhaskar, Mailath, and Morris (2008), these belief-based equilibria can be purified à
la Harsanyi (1973) in a simple way (while this is not the case for belief-free equilibria). Nevertheless, I show they still do not
satisfy weak stability.

12For asymmetric games we do not require each s′

i
to be a best reply to s∗

−i
. The reason for this is demonstrated in a one-shot

coordination game (see Table 1), in which initially s∗

1
= a and s∗

2
= b. A plausible way for a population to diverge from this

unstable (and non-equilibrium) initial state, is by having the players in one of the populations change their action. However, a
requirement that each s′

i
would be a best reply to s∗ rules out this plausible change.
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Definition 8. A Nash equilibrium (s∗

1, s∗

2) is weakly stable if if there does not exist a finite non-empty

sequence of strategy profiles
(

~s1, ..., ~sK
)

such that: (1) strategy profile (s∗

1, s∗

2) is vulnerable to
(

s1
1, s1

2

)

, (2)

for each 1 ≤ k < K, strategy profile
(

sk
1 , sk

2

)

is vulnerable to
(

sk+1
1 , sk+1

2

)

, and (3) strategy profile
(

sK
1 , sK

2

)

is evolutionarily stable.

4.2 Results for General Asymmetric Games

It is well known (see, Weibull 1995, Chapter 5.1, and the citations therein) that a strategy profile is evolu-

tionarily stable if and only if it is a strict equilibrium. This immediately implies that only trivial belief-free

equilibria may be evolutionarily stable in this setup.

Fact 1. Let (s∗

1, s∗

2) be a belief-free equilibrium that is also evolutionarily stable. Then (s∗

1, s∗

2) is a trivial

equilibrium.

Next, we adapt Proposition 2 to this setup, and show that a mild restriction on the belief-free equilibrium

implies that it cannot be neutrally stable.

Proposition 4. Let (s∗

1, s∗

2) be a belief-free equilibrium. Assume that there exists period t0, and mixed

actions βt0
1 ∈ ∆

(

A1
t0

)

and βt0
2 ∈ ∆

(

A2
t0

)

, such that

u1

(

γt0
1 (s∗

1, s∗

2) , βt0
2

)

+ u2

(

βt0
1 , γt0

2 (s∗

1, s∗

2)
)

< u1

(

βt0
1 , βt0

2

)

+ u2

(

βt0
1 , βt0

2

)

.

Then (s∗

1, s∗

2) is not neutrally stable.

Proof. For each period t, let αt
1 ∈ ∆ (At

1) , αt
2 ∈ ∆ (At

2) be a Nash equilibrium in the game ((At
1, At

2) , (u1, u2))

in which each player is restricted to choose only actions from the regime at period t. Let the mutant strategy

profile (s′

1, s′

2) be defined as follows:

s′

i

(

ht
i

)

=



















s∗

i (ht
i) t < t0

βt0
i t = t0

αt
i t > t0,

The definition of s′ immediately implies that s′

1 ∈ B (s∗

2), s′

2 ∈ B (s∗

1), and U1 (s∗

1, s′

2) + U2 (s′

1, s∗

2) <

U1 (s′

1, s′

2) + U2 (s′

1, s′

2), which implies that s∗ is not neutrally stable.

Proposition 4 has a simple corollary when the underlying game admits a strict equilibrium (â1, â2). If

there is any period at which the action profile (â1, â2) is played with probability strictly between zero and

one, then the belief-free equilibrium is not neutrally stable. Formally:

Corollary 2. Let (s∗

1, s∗

2) be a belief-free equilibrium. Let (â1, â2) ∈ A1 × A2 be a strict equilibrium of the

underlying game. Assume that there exists period t0 such that 0 < γt0
i (s∗

i ) (âi) < 1 and 0 < γt0
i

(

s∗

−i

)

(â−i) ≤

1. Then (s∗

1, s∗

2) is not neutrally stable.

Proof. The result is immediate from the previous proof when taking
(

βt0
1 , βt0

2

)

≡ (â1, â2).
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4.3 Strong Instability for 2 × 2 Games that Admit Strict Equilibria

The final result shows that only trivial belief-free equilibria satisfy the mild refinement of weak stability in

any 2 × 2 game that admits a strict equilibrium (i.e., any 2 × 2 generic game except a matching-pennies-like

game that admits only a totally mixed equilibrium). Observe, that in contrast to the setup of symmetric

games, the result also applies to Hawk-Dove games (see Table 1).

Proposition 5. Assume that the underlying game has two actions for each player Ai = {ci, di}, and that

(d1, d2) is a strict equilibrium of the underlying game. Further assume a mild condition of generic payoffs:

for each player i, ui (di, c−i) 6= ui (ci, c−i) . Let (s∗

1, s∗

2) be a belief-free equilibrium. If (s∗

1, s∗

2) is weakly stable,

then it is a trivial equilibrium.

Proof. Assume first that γt

î
(s∗

1, s∗

2) is pure at all periods t for player î. This implies that strategy s∗

î
induces

a deterministic play that is independent of the observed signals. This implies that the best-reply function of

player s∗

−î
coincides with his myopic best reply, which implies due to the mild condition of generic payoffs

that γt

−î
(s∗

1, s∗

2) is also pure at all periods. This implies that the strategy profile induces both players to

follow a deterministic play that is independent of the observed signal, and that this deterministic play must

be an equilibrium of the underlying game (i.e., (s∗

1, s∗

2) is trivial).

Otherwise, for each player i there exists a period t̂i such that 0 < γ t̂i

i (s∗

1, s∗

2) (di) < 1. We complete the

proof by studying two (exhaustive and mutually exclusive) cases, and showing in both cases that (s∗

1, s∗

2) is

not weakly stable.

Case I: (c1, c2) is also a strict equilibrium (i.e., the underlying game is a coordination game).13 We

define the profile (s′

1, s′

2) as follows. For each period t, if the regime is a singleton for both players, the

mutant strategies coincide with the incumbent strategies, i.e., if |At
1| = |At

2| = 1 then s′

i (ht
i) = s∗

i (ht
i)

for each history of length t. Otherwise (i.e., if one of the regimes is not a singleton), there exists a strict

equilibrium in the regime, and the mutant strategies play this strict equilibrium; i.e., for each history of

length t
(

s′

i (ht
i) , s′

−i

(

ht
−i

))

= (ci, d−i) ∈ At
i × At

−i. It is immediate that the profile (s∗

1, s∗

2) is vulnerable to

(s′

1, s′

2). If the pure profile (s′

1, s′

2) plays a strict equilibrium at all periods then it is evolutionarily stable.

Otherwise, let s′′

1 be a strategy that plays at all periods the myopic best reply to the pure strategy s′

2, and

let s′′

2 ≡ s′
2. It is immediate that (s′

1, s′

2) is vulnerable to (s′′

1 , s′′

2), and that (s′′

1 , s′′

2) is evolutionarily stable.

Case II: dî is a strictly dominant action for player î. We define the profile (s′

1, s′

2) as follows. For each

period t, each player chooses a pure action independent of both the history of play and the observed signal:

1. For each player i, if the regime is a singleton (|At
i| = 1 ), then i plays the unique action in At

i.

2. If At

î
= {cî, dî}, then player î plays dî.

3. If At

−î
=

{

c
−î, d

−î

}

and At

î
= {cî}, then player −î plays the myopic best reply to cî.

4. If At

−î
=

{

c
−î, d

−î

}

and At

î
6= {cî}, then player −î plays d

−î.

It is immediate that the profile (s∗

1, s∗

2) is vulnerable to (s′

1, s′

2). If (s′

1, s′

2) ≡ (d1, d2) then it is evolutionarily

stable. Otherwise:

13Hawk-Dove games (Table 1) belong to the this class of coordination games in the setup of asymmetric games (or symmetric
games in which a player may condition his play on his role as Player 1 or Player 2).
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1. If s′

î
6≡ dî, then let s′′

î
≡ dî and s′′

−î
≡ s′

−î
. It is immediate that (s′

1, s′

2) is vulnerable to (s′′

1 , s′′

2).

If (s′′

1 , s′′

2) ≡ (d1, d2), then it is evolutionarily stable. Otherwise, let (s′′′

1 , s′′′

2 ) ≡ (d1, d2), and it is

immediate that (s′′

1 , s′′

2) is vulnerable to (s′′′

1 , s′′′

2 ), and that (s′′′

1 , s′′′

2 ) is evolutionarily stable.14

2. If s′

î
≡ dî and s′

−î
6≡ d

−î, then let (s′′

1 , s′′

2) ≡ (d1, d2), and it is immediate that (s′

1, s′

2) is vulnerable to

(s′′

1 , s′′

2) and that (s′′

1 , s′′

2) is evolutionarily stable.
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