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 Abstract 

This paper considers first-order autoregressive panel model which is a simple model for 

dynamic panel data (DPD) models. The generalized method of moments (GMM) gives 

efficient estimators for these models. This efficiency is affected by the choice of the weighting 

matrix which has been used in GMM estimation. The non-optimal weighting matrices have 

been used in the conventional GMM estimators. This led to a loss of efficiency. Therefore, we 

present new GMM estimators based on optimal or suboptimal weighting matrices.  Monte 

Carlo study indicates that the bias and efficiency of the new estimators are more reliable than 

the conventional estimators.  

Keywords: Dynamic panel data; Generalized method of moments; Kantorovich inequality upper 

bound; Monte Carlo simulation; Optimal and suboptimal weighting matrices.  

1. Introduction 

In econometrics literature, the panel data refers to the pooling of observations on a 

cross-section of households, countries, firms, etc. over several time periods. Panel data is now 

widely used to estimate dynamic econometric models.
1
 Its advantage over cross-section data 

in this context is obvious: we cannot estimate dynamic models from observations at a single 

point in time, and it is rare for single cross section surveys to provide sufficient information 

about earlier time periods for dynamic relationships to be investigated. Its advantages over 

aggregate time series data include the possibility that underlying microeconomic dynamics 

may be obscured by aggregation biases, and the scope that panel data offers to investigate 

heterogeneity in adjustment dynamics between different types of individuals, household, or 

firms.  

The DPD models offer great flexibility to empirical researchers. Many economic 

phenomena are dynamic in nature. DPD models allow researchers to control for unobserved 

heterogeneity in adjustment dynamics between different individual units and thereby provide 

improved insights in such models.  

                                                           
1
 See, e.g., Bond (2002), Baltagi (2013), and Hsiao (2014). 
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When dynamic models are estimated using panel data, the usual least squares methods 

lead to inconsistent estimates of the parameters of the models when the time dimension ( ) is 

short regardless of the cross sectional dimension ( ). This inconsistency stems from the fact 

that the disturbance terms are correlated with the lagged endogenous variable. Moreover, 

under large   fixed   asymptotic, Nickell (1981) showed that the standard maximum 

likelihood estimator suffers from an incidental parameter problem leading to inconsistency.
2
 

This has led to an interest in likelihood-based methods that correct for this problem. Some of 

these methods are based on modifications of the profile likelihood, such as Lancaster (2002) 

and Dhaene and Jochmans (2012). Other methods start from the likelihood function of the 

first differences, such as Hsiao et al. (2002), Binder et al. (2005) and Hayakawa and Pesaran 

(2014). 

The literature has focused on GMM
3
 estimators applied to first differences, such as 

Anderson and Hsiao (1982), Holtz-Eakin et al. (1988), and Arellano and Bond (1991). 

However, the standard GMM estimator obtained after first differencing has been found to 

suffer from substantial finite sample bias, especially when the instruments are weak and the 

number of moments is large relative to the cross section sample size.
4
 

This low precision of GMM is also evident in more general contexts. To improve the 

small sample properties of GMM estimators, a number of alternative estimators have been 

suggested, including, level and system GMM estimators which presented by Arellano and 

Bover (1995). These estimators are based on use many instrumental variables to improve the 

efficiency of GMM estimator.
5
 However, these estimators still biased and need to further 

improvement. Hayakawa (2007) examined the asymptotic bias of GMM estimators and 

proposed new estimators with less bias. Recently, Han and Phillips (2010) developed efficient 

GMM estimators based on alternative moment conditions arising from the model in first 

differences.  

The main objective of this paper is improving the efficiency of GMM estimators. To 

achieve this objective, we proposed new approach to improve the efficiency of GMM 

estimators. Our approach based on finding and using the optimal weighting matrices to obtain 

more efficient estimators.  

This paper is organized as follows. Section 2 provides the model and reviews the 

conventional level and system GMM estimators. Section 3 presents the new GMM estimators. 

In Section 4, we consider the efficiency gain for the new estimators against using the identity 

matrix as an initial weight matrix. While in Section 5, Monte Carlo simulation comparison the 
performance of various level and system GMM estimators will be introduced. Finally, Section 

6 offers the concluding remarks.  

  

                                                           
2
 This problem appears when the number of parameters increasing with the sample size. For more details, see 

Nickell (1981).   
3
 Blundell et al. (2001), Roodman (2009), and Bun and Sarafidis (2014) provide excellent summaries of the 

GMM methodology in DPD models. 
4
 See Alonso-Borrego and Arellano (1999) and Han et al. (2014). 

5
 See, e. g., Ahn and Schmidt (1995) and Roodman (2009). 
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2. The model and GMM estimators  

The first-order autoregressive panel model is a simple case of DPD models, and it is 

defined as the following:                   ;    | |   ;         ;         .
 

(1)
 

Under the following assumptions: 

(i)    are i.i.d across individuals with   (  )   ,    (  )     . 

(ii)     are i.i.d across time and individuals and independent of    and     with   (   )   ,    (   )     . 

(iii) The initial observations satisfy               for        , where                 ∑              and independent of   . 
Assumptions (i) and (ii) are the same as in Blundell and Bond (1998), while assumption 

(iii) has been developed by Alvarez and Arellano (2003). 

Stacking equation (1) over time, we obtain              ;              
 

(2)
 

where    (         )        (            )     (         ) . 
Given these assumptions, we get three types of GMM estimators. These include first-

difference GMM (DIF) estimator, level GMM (LEV) estimator, and system GMM (SYS) 

estimator. Blundell and Bond (1998) showed that when   is close to unity and/or         

increases the DIF estimator has weak instruments problem, i.e., the instruments matrix which 

been used in the estimation become invalid. As well as, Abonazel (2014) proved that the 

conventional weighting matrix which has been used in DIF estimator, when the errors that are 

homoscedastic and that are not serially correlated, is the optimal weighting matrix for this 

estimator, but this is not the case for LEV and SYS estimators. So, we will not adjust DIF 

estimator by a new weighting matrix because it will not improve the efficiency of the 

estimation. Therefore, we focus on the LEV and SYS estimators to improve the efficiency of 

these estimators. In the following, we briefly review the conventional LEV and SYS 

estimators with the initials weighting matrices. 

2.1. Level GMM estimator 

In model (2), the individual effect (  ) caused a severe correlation between the lagged 

endogenous variable (     ) and the error term (  ). To eliminate this effect, Arellano and 

Bover (1995) suggested a method to eliminate the individual effect from instrumental 

variables. They considered the level model (2) and then showed that the instrumental 

variables matrix        (                   ) which is not contains individual effect 

and satisfied the orthogonal conditions  (     )   . 

Using these conditions, Arellano and Bover’s (1995) one-step LEV estimator is 

calculated as: 
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 ̂   (             )              ,
 

(3)
 

where      (                )    (          )    (         )   and  

   (  ∑      
   +   

 
(4) 

2.2. System GMM estimator 

Arellano and Bover (1995) proposed a system GMM estimator in which the moment 

conditions of the first-difference GMM and level GMM are used jointly to avoid weak 

instruments and improved the efficiency of the estimator. The moment conditions used in 

constructing the SYS estimator are given by  (      )   ,
 

(5)
 

where,     (        )  and     is a {2(T - 2) × [(T - 2) (T +1)/2]} block diagonal matrix given 

by 

   (        *;   with    (                                         , 
 

(6)
 

Using (5), the one-step SYS estimator is calculated as:  ̂   (                )                , (7)
 

where      [(               )   (               )]     ,(         )   (         )-      (         )   and    .  ∑             /     with      (         *,
 

(8)
 

where   is a (T – 2)×(T – 1) first-difference operator matrix: 

  (                       ,.
 

(9)
 

Even though, the SYS estimator is more efficient than LEV estimator.  However, the 

SYS estimator does not always work well; Bun and Kiviet (2006) showed that the bias of SYS 

estimator becomes large when the autoregressive parameter is close to unity and/or when the 

ratio of the variance of the individual effect to that of the error term departs from unity. 
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3. New GMM estimators 

We present the new GMM estimators; depending on the optimal weighting matrix for 

LEV estimator and suboptimal weighting matrix for SYS estimator through the use of these 

matrices as new weighting matrices in GMM estimation, and then we get new GMM 

estimators. The new GMM estimators are more efficient than the conventional GMM (LEV 

and SYS) estimators.  

In level GMM estimation, Youssef et al. (2014a) showed that    is an optimal 

weighting matrix only in the case of      , i.e., no individual effects case, and they 

presented an optimal weighting matrix for LEV estimator, in the general case, as: 

    .  ∑              /      with                     
 

(10)
 

where           and      is a (   )    vector of ones. 

Note that the use of the weighting matrix     can be described as inducing cross-

sectional heterogeneity through  , and also can be explained as partially adopting a procedure 

of generalized least squares to the level estimation. So, using    , instead of   , certainly 

improve the efficiency of LEV estimator. So, we present the optimal LEV estimator 

depending on the optimal weighting matrix,    , as given in (10). The optimal level GMM 

(OLEV) estimator is given by  ̂    (              )               .
 

(11)
 

In system GMM estimation, we use      again in the weighting matrix to improve the 

efficiency for SYS estimator as follows:     .  ∑             /  
,   with     (          *. (12)

  

So, we present the suboptimal system GMM (SSYS) estimator
6
 depending on the 

suboptimal weighting matrix (   ):  ̂    (              )               .
 

(13)
 

In general, an asymptotically efficient estimator can be obtained through the two-step 

procedure in the standard GMM estimation. In the first step, an initial positive semidefinite 

weighting matrix is used to obtain consistent estimates of the parameters. Given these, a 

weighting matrix can be constructed and used for asymptotically efficient two-step estimates. 

It is well known
7
 that the two-step estimated standard errors have a small-sample downward 

bias in dynamic panel data setting, and one-step estimates with robust standard errors are 

often preferred. We briefly summarize the two-step procedure as: at first, we use the 

suggested weighting matrix to get the one-step estimation, and then used the residuals from 

                                                           
6
 Kiviet (2007) proposed a similar estimator using an optimal weighting matrix based on the particular values of  ,    , and      

7
 See, e.g., Arellano and Bond (1991) and Windmeijer (2005). 
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one-step estimation as a weighting matrix to get the two-step estimation. For example, we can 

get the two-step estimation of  ̂    by using the following weighting matrix: 

 ( )   (  ∑    ̂   ̂       
   +    (14)

 

where  ̂   are the fitted residuals from  ̂   . 

To achieve more efficiency for all GMM estimators, we suggest using the three-step 

estimation that can obtain by replacing the residuals from the two-step estimation into the 

weighting matrix. Applying this approach to the SSYS estimator, we can get the three-step 

estimation of  ̂    by using the following weighting matrix: 

 ( )   (  ∑    ̂    ̂        
   +    (15)

 

where  ̂    are the fitted residuals from the two-step estimation of  ̂   . 

In practice, the variance ratio,  , is unknown. So, we use the suggested estimates by 

Jung and Kwon (2007) for     and     as:
8
   ̂   ∑   ̂     ̂       (   )      ̂   ∑ , ̃    ̃  (  ̃     ̃   )-     (   )  

 
(16)

 

where   ̂  are the residuals from one-step DIF estimator, while  ̃  and   ̃  are residuals from 

first-difference and level equations in one-step SYS estimator, respectively. 

Note that if    , we get           then        and       . Therefrom the 

proposed GMM (OLEV and SSYS) estimators are equivalent to the conventional GMM (LEV 

and SYS) estimators. This means that the advantages from OLEV and SSYS estimators are 

increasing when    is increasing. 
 

4. Efficiency gains 

Generally, using the moment conditions, the GMM estimator 
9
  ̂ for   minimizes 

[  ∑  ( ) 
   ]   [  ∑  ( ) 

   ] 
 

(17)
 

with respect to  , where    is a positive semidefinite weighting matrix which 

satisfies            , with  a positive definite matrix. Regularity conditions are in 

place such that           ∑   ( )      * ( )+ and  

                                                           
8
 See Abonazel (2014) and Youssef et al. (2014b). 

9
 See Hansen (1982) and Ogaki (1993). In this section, the same notation as in Liu and Neudecker (1997) is used. 
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 √ ∑  (  ) 
     (   ) 

 
(18)

 

Let  ( )   (   ( )   ) and     (  ), then √ ( ̂    ) has a limiting normal 

distribution, √ ( ̂    )   (    ), where 

   (      )          (      )   
 

(19)
 

It is clear from the expression of the asymptotic variance matrix   , in (19), that the 

efficiency of the GMM estimator is affected by the choice of the weighting matrix   .An 

optimal choice is a weighting matrix for which      . The asymptotic variance covariance 

matrix is then given by (        )  . For any other  , the GMM estimator is less efficient 

as: 

(        )   (      )          (      )   
 

(20)
 

To assess the potential loss in efficiency from using this initial weighting matrix, the 

following expression for the upper bound of the efficiency loss has been derived by Liu and 

Neudecker (1997) on the basis of the Kantorovich inequality (KI): 

(      )          (      )   (     )      (        )    (21) 

and the upper bound of KI is      (     )      , where     ;         are the eigenvalues 

of the     matrix   . By increasing     , more loss of efficiency will be occurred.  

We use      as a measure for the efficiency gains of the new GMM estimators. Since 

OLEV is the optimal estimator for level GMM estimation, according to Youssef et al. 

(2014a). So, we can conclude that the      value for OLEV is one. This means that the 

OLEV estimator achieves the maximum degree of the efficiency. But in system GMM 

estimation, Windmeijer (2000) showed that the optimal weighting matrix for SYS estimator 

has only been obtained in case of    . Therefore, we present SSYS estimator to suit the 

different cases for  . Also, we measure the efficiency gains from use SSYS especially in cases    .  

For simplicity, let us assume that     and using the moment conditions in (5), then 

we get there are two over-identifying moment conditions:  ,   (          )-   ;  ,    (        )-   , 

and   matrix is given by: 
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  ∑               

       [      (   )    (   )    (       )   ]  
where        (   )         . Firstly, in case of the conventional weighting matrix for the SYS 

estimator (  ), we get 

      [          (    )      (   )        ]  
where      (          ∑             *  

, then the upper bound is:  

    (   )  (        )    [ (       )     (   ) (   )]   (22) 

Secondly, in case of the suboptimal weighting matrix for the SSYS estimator (   ), we get 

       [   
        (    ) (   )      (   ) (       )(   ) ]   

   
where       (          ∑             *  

, then the upper bound is:  

    (    )  [    (   )   ] (   )   [ (       )     (   ) (   )]   (23) 

Since   value must be nonnegative. So, always     (    )      (   ). This means 

that the SSYS estimator is more efficient than     estimator when    . But if    , the 

efficiency of SSYS and SYS estimators are equal, i.e.,     (    )      (   ) in this 

case. So, the efficiency gains from use SSYS estimator is increasing when    is increasing. 
 

Figure 1 presents the efficiency bounds (    (   ) and     (    )) for system 

GMM estimation for various values of   and   and when    .  Figure 1 shows that the     (   ) value is increasing when   and   are increasing, but it is more influenced by  . In 

contrast, the     (    ) value is not affected much by increase   and  . So, we can say, in 

general, that the SSYS estimator is more efficient than SYS estimator. 

To study the effect of time dimension on the efficiency of system GMM estimators, let 

us assume that    , then we calculate the efficiency bounds again for SYS and SSYS 

estimators. Briefly and without mention to the calculations details, we summarize the values 

of the efficiency bounds in case of     in Figure 2. Generally, this Figure shows that the 
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values of      (   ) and     (    ) are increased because of increasing  . Nevertheless, 

the     (    ) values still less than the     (   ) values when all values of   and  . This 

means that SSYS estimator is still more efficient than SYS estimator even if the time 

dimension is increasing.  

5. The simulation study 

We make Mote Carlo simulation to illustrate the moderate and large samples 

performance of the conventional (LEV and SYS) and new GMM (OLEV and SSYS) 

estimators in different situations of      and  . We use R language to create our program to 

set up Monte Carlo simulation and this program is available if requested.  

5.1. Design of the simulation 

Monte Carlo experiments were carried out based on the following data generating 

process:                    ,
 

(24)
 

To perform the simulation under the assumptions (i) to (iii), the model in (24) was 

generated as follows: 

1. The individual effects,   , were generated as independent normally distributed random 

variables, with mean zero and variance    , and is independent across  .  
2. The disturbances,    , were generated as independent normally distributed random 

variables, with mean zero and variance    , and is independent across   and  ,    and     such that they are independent of each other.  

3. We generate the initial conditions     as              , where       (      ), 

independent of both    and     with the variance      chosen to satisfy covariance 

stationarity.  

4. The variance ratio,  , is characterized by       ⁄ , this means that the variance ratio  

depends on     and    . To determine the values for  , we must choose different pairs 

of     and     as: (       )  (        ) (         ) (       ) (        )    (        ). 
These suggested values indicate three levels for  , the first level is when    , while 

the second level is when    , and the third level when    .  

5. The values of   were chosen to be 150, 400, and 600 to represent moderate and large 

samples for the number of individuals. 

6. The values of   were chosen to be 4 and 8 to represent different size for the time 

dimension.  

7. The values of   were chosen to be 0.25 and 0.85 to represent different values for the 

autoregressive parameter. 

8. For all experiments we ran 1000 replications and all the results of all separate 

experiments are obtained by precisely the same series of random numbers. 
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To compare the moderate and large samples performance, the four different GMM 

estimation procedures are considered according to their weighting matrix; specifically LEV, 

OLEV, SYS, and SSYS estimators. To raise the efficiency of the comparison between these 

estimators, we calculate three (from one-step to three-step) estimates for each estimator, and 

we refer to these estimates as “step 1”, “step 2”, and “step 3” in simulation tables. Moreover, 

we calculate the bias and root mean squared error (RMSE) for each estimator. The bias and 

RMSE for a Monte Carlo experiment are calculated by            ∑ ( ̂   )       ;      √       ∑ ( ̂   )        ,
 

where   is the true value for        parameter in (24), and  ̂  is the estimated value for   in the 

trial number  . 
5.2. The simulation results   

The results are given in Tables 1 to 5. Specifically, Tables 1 and 2 present the bias and 

RMSE of conventional and new GMM estimators in cases of    0.5 and 1, respectively. 

While in case of     (5, 10, and 25) are presented in Tables 3 to 5, respectively. In our 

simulation study, the main factors which effect on the bias and RMSE values for all GMM 

estimators are   ,  ,  , and  . From Tables 1 to 5, we can summarize these effects for all 

estimators (conventional and new) in following points: 

 As   increases the bias increases and RMSE increases. 

 As   increases the bias increases and RMSE decreases. 

 As   increases the bias decreases and RMSE decreases. 

 As   increases the bias increases and RMSE increases. 

Table 1 indicates that, in case of   close to zero, the bias and RMSE of OLEV and 

SSYS estimators are approximately equivalent to the bias and RMSE of LEV and SYS 

estimators, respectively. Therefore, we don't get a significant advantage from use the 

suggested weighting matrices (    and    ) in this case. 
 

Tables 2 to 5 indicate that, in case of    , the bias and RMSE of all estimators 

(conventional and new) are increased with increasing by  . While the bias and RMSE of 

OLEV and SSYS estimators show a much slower increase whenever   increased. 

Consequently, we conclude that OLEV and SSYS estimators are more efficient than the LEV 

and SYS estimators especially when    .
 

In general, the all estimators in “step 2” are smaller in bias and RMSE than “step 1”. 

While in “step 3”, the bias and RMSE of all estimators are the smallest if     only. 

Moreover, the bias and RMSE of OLEV (step 3) are approximately equivalent to the bias and 

RMSE of OLEV (step 2) in all simulation situations. 

From Tables 3 to 5, we can note that, in case of    , the bias of SSYS (step 3) is the 

smallest in most situations except the case of   and   are small (i.e., ρ = 0.25, T = 4). In this 

case, the OLEV (step 2 or step 3) estimator is the smallest in bias. However, the RMSE of 

SSYS (step 2 or step 3) is the smallest in all situations.  
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Since, the OLEV and SSYS estimators based on the variance ratio estimation,  ̂   ̂   ̂  ⁄ . So, we use the Monte Carlo simulation again to illustrate the performance of  ̂ in 

different cases of sample size (N = 50, 100) and different values of the variance ratio (   0, 

0.5, 1, 5, 10, and 25). We summarize the simulation result in Figure 3. We can note that in 

cases of    0, 0.5, and 1 the bias of  ̂ close to zero, while in the case of increasing   

(specifically when    5) the bias of  ̂,      ( ̂)   ̂   , increases significantly, especially 

when   increases (close to one). So, the advantage of the OLEV and SSYS estimators 

decrease as   grows to unity because a high   leads to an unreliable estimate of  . However, 

still the OLEV and SSYS estimators are the smallest in bias and RMSE.  

6. Conclusion  

The LEV and SYS estimators for DPD models are efficient estimators.  This efficiency 

is affected by the choice of the weighting matrix. Our Monte Carlo results indicate that the 

LEV and SYS estimators are vulnerable to an increase in  . One of the most distinguishing 

features in these experiments was that biases and RMSE increase with   in most cases. So, we 

proposed the new weighting matrices which included the   ratio to improve the efficient of 

LEV and SYS estimators. And then we get the new estimators (OLEV and SSYS). 

By using the KI, we show that the OLEV and SSYS estimators are more efficient than 

LEV and SYS estimators, respectively. Moreover, the potential efficiency gain for OLEV and 

SSYS estimators becomes large when   increases. This is also confirmed by our simulation 

study. Since, the bias and RMSE of SSYS are smaller, in most situations, than the bias and 

RMSE of OLEV especially when    . Consequently, we conclude that the SSYS estimator 

will provide useful parameter estimates for the practitioner.  
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Figure 1: Kantorovich inequality efficiency bounds for SYS and SSYS estimators when � = 	� 

 

 

 

Figure 2: Kantorovich inequality efficiency bounds for SYS and SSYS estimators when � = 	� 
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Figure 3: Monte Carlo simulation results of Bias (��) as a function of ρ and T when N = 50 and 100 
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Table 1: Bias and RMSE for conventional and new GMM estimators when r = 0.25/0.5 = 0.5 

 
LEV OLEV SYS SSYS 

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 

N = 150                  

ρ = 0.25, T = 4 0.0042 0.0036 0.0037 0.0024 -0.0006 -0.0007 0.0003 0.0054 0.0065 -0.0030 0.0045 0.0063 

 0.1076 0.1079 0.1081 0.1078 0.1082 0.1082 0.0946 0.0886 0.0898 0.0951 0.0887 0.0898 

ρ = 0.25, T = 8 0.0086 0.0081 0.0081 0.0051 -0.0022 -0.0023 -0.0026 0.0005 0.0016 -0.0048 -0.0001 0.0014 

 0.0565 0.0577 0.0580 0.0560 0.0567 0.0568 0.0482 0.0449 0.0467 0.0486 0.0450 0.0467 

ρ = 0.85, T = 4 0.0096 0.0070 0.0069 0.0073 0.0037 0.0040 -0.0006 -0.0060 -0.0144 -0.0167 -0.0129 -0.0182 

 0.1424 0.1441 0.1442 0.1442 0.1452 0.1449 0.1165 0.1179 0.1307 0.1402 0.1278 0.1355 

ρ = 0.85, T = 8 0.0352 0.0314 0.0310 0.0302 0.0205 0.0202 0.0143 0.0065 0.0022 0.0029 -0.0003 -0.0021 

 0.0660 0.0665 0.0667 0.0661 0.0659 0.0656 0.0596 0.0547 0.0588 0.0673 0.0593 0.0615 

N = 400               

ρ = 0.25, T = 4 0.0034 0.0032 0.0032 0.0028 0.0016 0.0016 0.0020 0.0034 0.0035 0.0008 0.0032 0.0034 

 0.0644 0.0646 0.0646 0.0644 0.0645 0.0645 0.0626 0.0530 0.0531 0.0581 0.0530 0.0531 

ρ = 0.25, T = 8 0.0049 0.0043 0.0042 0.0034 0.0001 0.0001 0.0010 0.0022 0.0025 0.0001 0.0021 0.0025 

 0.0344 0.0345 0.0345 0.0342 0.0344 0.0344 0.0358 0.0260 0.0262 0.0293 0.0259 0.0262 

ρ = 0.85, T = 4 0.0028 0.0022 0.0022 0.0021 0.0006 0.0007 -0.0020 -0.0064 -0.0094 -0.0082 -0.0080 -0.0101 

 0.0685 0.0690 0.0691 0.0690 0.0695 0.0695 0.0724 0.0669 0.0713 0.0797 0.0686 0.0717 

ρ = 0.85, T = 8 0.0146 0.0118 0.0117 0.0119 0.0065 0.0064 0.0051 -0.0003 -0.0020 -0.0004 -0.0022 -0.0028 

 0.0393 0.0393 0.0393 0.0394 0.0389 0.0388 0.0410 0.0337 0.0347 0.0407 0.0338 0.0347 

N = 600               

ρ = 0.25, T = 4 0.0018 0.0017 0.0017 0.0013 0.0004 0.0004 -0.0003 0.0014 0.0015 -0.0013 0.0013 0.0015 

 0.0536 0.0537 0.0537 0.0537 0.0537 0.0537 0.0479 0.0449 0.0450 0.0480 0.0449 0.0450 

ρ = 0.25, T = 8 0.0027 0.0022 0.0022 0.0016 -0.0006 -0.0006 0.0000 0.0007 0.0009 -0.0006 0.0006 0.0009 

 0.0276 0.0278 0.0278 0.0274 0.0278 0.0278 0.0240 0.0207 0.0208 0.0240 0.0207 0.0208 

ρ = 0.85, T = 4 0.0025 0.0020 0.0020 0.0020 0.0008 0.0009 -0.0004 -0.0049 -0.0065 -0.0046 -0.0058 -0.0069 

 0.0538 0.0539 0.0539 0.0542 0.0545 0.0544 0.0562 0.0516 0.0535 0.0625 0.0531 0.0543 

ρ = 0.85, T = 8 0.0134 0.0115 0.0114 0.0115 0.0075 0.0075 0.0070 0.0007 -0.0005 0.0033 -0.0003 -0.0009 

 0.0337 0.0336 0.0336 0.0336 0.0333 0.0333 0.0329 0.0254 0.0263 0.0343 0.0259 0.0265 

RMSE values are written in italics under the bias values which are written in bold 
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Table 2: Bias and RMSE for conventional and new GMM estimators when r = 0.25/0.25 = 1 

 
LEV OLEV SYS SSYS 

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 

N = 150                  

ρ = 0.25, T = 4 0.0068 0.0023 0.0020 0.0018 -0.0041 -0.0042 0.0043 0.0078 0.0079 -0.0021 0.0056 0.0073 

 0.1200 0.1225 0.1228 0.1212 0.1227 0.1227 0.1023 0.0921 0.0926 0.1033 0.0922 0.0926 

ρ = 0.25, T = 8 0.0222 0.0154 0.0147 0.0122 0.0005 0.0004 0.0053 0.0046 0.0048 -0.0013 0.0025 0.0041 

 0.0642 0.0637 0.0638 0.0611 0.0604 0.0604 0.0506 0.0455 0.0472 0.0503 0.0453 0.0472 

ρ = 0.85, T = 4 0.0564 0.0542 0.0541 0.0536 0.0518 0.0522 0.0403 0.0342 0.0202 0.0221 0.0239 0.0155 

 0.3378 0.3368 0.3371 0.3405 0.3337 0.3336 0.1487 0.1433 0.1654 0.1710 0.1526 0.1677 

ρ = 0.85, T = 8 0.0685 0.0637 0.0631 0.0623 0.0549 0.0544 0.0421 0.0336 0.0274 0.0248 0.0212 0.0180 

 0.0901 0.0900 0.0902 0.0890 0.0890 0.0886 0.0715 0.0668 0.0704 0.0770 0.0706 0.0733 

N = 400               

ρ = 0.25, T = 4 0.0028 0.0017 0.0016 0.0009 -0.0008 -0.0008 0.0020 0.0042 0.0037 -0.0003 0.0035 0.0036 

 0.0766 0.0773 0.0774 0.0769 0.0773 0.0772 0.0656 0.0575 0.0574 0.0649 0.0574 0.0574 

ρ = 0.25, T = 8 0.0087 0.0059 0.0058 0.0050 0.0009 0.0008 0.0019 0.0008 0.0008 -0.0005 0.0005 0.0008 

 0.0373 0.0365 0.0365 0.0361 0.0356 0.0356 0.0314 0.0256 0.0258 0.0311 0.0256 0.0258 

ρ = 0.85, T = 4 0.0162 0.0140 0.0139 0.0135 0.0116 0.0118 0.0045 0.0020 -0.0092 -0.0082 -0.0053 -0.0124 

 0.2163 0.2218 0.2218 0.2219 0.2222 0.2221 0.1041 0.0922 0.1069 0.1168 0.1027 0.1087 

ρ = 0.85, T = 8 0.0381 0.0334 0.0330 0.0331 0.0274 0.0272 0.0250 0.0150 0.0101 0.0142 0.0095 0.0070 

 0.0582 0.0575 0.0575 0.0572 0.0559 0.0558 0.0503 0.0424 0.0442 0.0526 0.0436 0.0449 

N = 600               

ρ = 0.25, T = 4 0.0010 0.0002 0.0002 -0.0003 -0.0015 -0.0015 0.0007 0.0028 0.0025 -0.0007 0.0024 0.0025 

 0.0594 0.0599 0.0599 0.0596 0.0598 0.0598 0.0504 0.0447 0.0448 0.0502 0.0447 0.0448 

ρ = 0.25, T = 8 0.0067 0.0046 0.0045 0.0042 0.0013 0.0012 0.0024 0.0010 0.0011 0.0008 0.0009 0.0010 

 0.0301 0.0297 0.0297 0.0293 0.0293 0.0293 0.0251 0.0203 0.0204 0.0248 0.0202 0.0204 

ρ = 0.85, T = 4 0.0066 0.0044 0.0045 0.0047 0.0024 0.0027 0.0005 -0.0002 -0.0088 -0.0092 -0.0043 -0.0101 

 0.0995 0.1014 0.1014 0.1008 0.1012 0.1012 0.0879 0.0723 0.0811 0.0995 0.0760 0.0825 

ρ = 0.85, T = 8 0.0302 0.0262 0.0260 0.0261 0.0217 0.0216 0.0203 0.0110 0.0070 0.0117 0.0074 0.0053 

 0.0481 0.0472 0.0472 0.0473 0.0457 0.0456 0.0426 0.0348 0.0357 0.0441 0.0355 0.0360 

RMSE values are written in italics under the bias values which are written in bold 
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Table 3: Bias and RMSE for conventional and new GMM estimators when r = 2.5/0.5 = 5 

 
LEV OLEV SYS SSYS 

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 

N = 150                  

ρ = 0.25, T = 4 0.0226 -0.0007 -0.0024 -0.0055 -0.0125 -0.0124 0.0358 0.0394 0.0330 0.0193 0.0279 0.0279 

 0.2306 0.2394 0.2394 0.2355 0.2361 0.2361 0.1634 0.1277 0.1245 0.1427 0.1214 0.1212 

ρ = 0.25, T = 8 0.0881 0.0361 0.0290 0.0277 0.0097 0.0096 0.0486 0.0240 0.0138 0.0055 0.0052 0.0052 

 0.1226 0.0890 0.0854 0.0824 0.0762 0.0761 0.0819 0.0571 0.0529 0.0593 0.0483 0.0495 

ρ = 0.85, T = 4 0.1216 0.1204 0.1205 0.1207 0.1195 0.1199 0.1113 0.1037 0.0898 0.0775 0.0809 0.0752 

 0.2133 0.2126 0.2129 0.2149 0.2114 0.2117 0.1582 0.1763 0.2128 0.1570 0.1700 0.2043 

ρ = 0.85, T = 8 0.1162 0.1121 0.1113 0.1118 0.1068 0.1064 0.1045 0.0959 0.0897 0.0922 0.0852 0.0801 

 0.1225 0.1203 0.1200 0.1200 0.1169 0.1167 0.1114 0.1060 0.1047 0.1083 0.1037 0.1029 

N = 400             

ρ = 0.25, T = 4 0.0143 0.0033 0.0029 0.0024 -0.0009 -0.0009 0.0165 0.0157 0.0120 0.0092 0.0113 0.0110 

 0.1179 0.1190 0.1190 0.1180 0.1181 0.1181 0.1016 0.0716 0.0697 0.0921 0.0702 0.0694 

ρ = 0.25, T = 8 0.0373 0.0115 0.0100 0.0100 0.0029 0.0029 0.0194 0.0045 0.0018 0.0004 0.0007 0.0009 

 0.0634 0.0488 0.0483 0.0476 0.0461 0.0461 0.0437 0.0279 0.0276 0.0352 0.0271 0.0275 

ρ = 0.85, T = 4 0.0631 0.0601 0.0602 0.0606 0.0590 0.0595 0.0586 0.0531 0.0394 0.0382 0.0419 0.0310 

 0.1764 0.1799 0.1800 0.1803 0.1801 0.1803 0.1401 0.1319 0.1521 0.1393 0.1333 0.1516 

ρ = 0.85, T = 8 0.0841 0.0755 0.0743 0.0751 0.0686 0.0681 0.0751 0.0635 0.0556 0.0580 0.0502 0.0446 

 0.0908 0.0849 0.0841 0.0848 0.0796 0.0792 0.0827 0.0740 0.0716 0.0748 0.0686 0.0682 

N = 600             

ρ = 0.25, T = 4 0.0112 0.0030 0.0028 0.0027 0.0003 0.0004 0.0122 0.0098 0.0076 0.0062 0.0071 0.0071 

 0.1000 0.1012 0.1011 0.1005 0.1003 0.1003 0.0867 0.0572 0.0552 0.0785 0.0561 0.0550 

ρ = 0.25, T = 8 0.0246 0.0070 0.0063 0.0062 0.0018 0.0018 0.0133 0.0027 0.0014 0.0011 0.0010 0.0011 

 0.0483 0.0390 0.0387 0.0383 0.0373 0.0373 0.0347 0.0216 0.0214 0.0289 0.0212 0.0214 

ρ = 0.85, T = 4 0.0446 0.0402 0.0400 0.0410 0.0389 0.0390 0.0367 0.0253 0.0131 0.0140 0.0172 0.0096 

 0.1473 0.1548 0.1546 0.1548 0.1545 0.1544 0.1111 0.1052 0.1235 0.1281 0.1110 0.1253 

ρ = 0.85, T = 8 0.0687 0.0584 0.0572 0.0580 0.0517 0.0514 0.0607 0.0489 0.0410 0.0414 0.0347 0.0299 

 0.0763 0.0689 0.0681 0.0690 0.0635 0.0631 0.0694 0.0602 0.0578 0.0614 0.0552 0.0549 

RMSE values are written in italics under the bias values which are written in bold 
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Table 4: Bias and RMSE for conventional and new GMM estimators when r = 2.5/0.25 = 10 

 
LEV OLEV SYS SSYS 

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 

N = 150                  

ρ = 0.25, T = 4 0.0862 0.0349 0.0299 0.0306 0.0174 0.0178 0.0950 0.0845 0.0709 0.0499 0.0524 0.0512 

 0.3183 0.3325 0.3308 0.3254 0.3257 0.3259 0.2149 0.1721 0.1656 0.1728 0.1517 0.1548 

ρ = 0.25, T = 8 0.1568 0.0629 0.0464 0.0457 0.0230 0.0231 0.0957 0.0538 0.0319 0.0096 0.0066 0.0051 

 0.1884 0.1167 0.1057 0.1013 0.0902 0.0902 0.1254 0.0863 0.0692 0.0631 0.0506 0.0501 

ρ = 0.85, T = 4 0.1365 0.1366 0.1364 0.1363 0.1364 0.1366 0.1310 0.1249 0.1259 0.1082 0.1079 0.1103 

 0.1678 0.1707 0.1706 0.1698 0.1708 0.1709 0.1577 0.1694 0.2006 0.1673 0.1729 0.2066 

ρ = 0.85, T = 8 0.1373 0.1360 0.1357 0.1359 0.1345 0.1343 0.1304 0.1271 0.1244 0.1243 0.1216 0.1194 

 0.1404 0.1396 0.1394 0.1395 0.1386 0.1385 0.1336 0.1318 0.1316 0.1308 0.1295 0.1296 

N = 400             

ρ = 0.25, T = 4 0.0266 0.0028 0.0017 0.0009 -0.0027 -0.0027 0.0309 0.0261 0.0197 0.0147 0.0155 0.0159 

 0.1704 0.1710 0.1708 0.1704 0.1691 0.1691 0.1380 0.0877 0.0820 0.1088 0.0800 0.0790 

ρ = 0.25, T = 8 0.0674 0.0189 0.0160 0.0166 0.0093 0.0093 0.0388 0.0106 0.0038 0.0016 0.0010 0.0010 

 0.0915 0.0586 0.0574 0.0569 0.0546 0.0546 0.0599 0.0308 0.0277 0.0367 0.0267 0.0270 

ρ = 0.85, T = 4 0.1118 0.1105 0.1103 0.1109 0.1099 0.1100 0.1059 0.1004 0.0959 0.0796 0.0830 0.0865 

 0.1743 0.1756 0.1754 0.1757 0.1755 0.1754 0.1545 0.1632 0.1977 0.1615 0.1684 0.1949 

ρ = 0.85, T = 8 0.1165 0.1120 0.1115 0.1123 0.1101 0.1099 0.1094 0.1015 0.0962 0.0973 0.0917 0.0872 

 0.1210 0.1178 0.1175 0.1182 0.1166 0.1164 0.1142 0.1090 0.1068 0.1088 0.1046 0.1037 

N = 600             

ρ = 0.25, T = 4 0.0200 0.0040 0.0035 0.0029 0.0006 0.0006 0.0228 0.0173 0.0125 0.0130 0.0108 0.0105 

 0.1341 0.1330 0.1328 0.1322 0.1317 0.1317 0.1114 0.0636 0.0583 0.0888 0.0591 0.0569 

ρ = 0.25, T = 8 0.0500 0.0122 0.0106 0.0108 0.0057 0.0057 0.0291 0.0059 0.0019 0.0014 0.0007 0.0007 

 0.0722 0.0475 0.0469 0.0466 0.0453 0.0453 0.0477 0.0226 0.0209 0.0299 0.0205 0.0206 

ρ = 0.85, T = 4 0.0902 0.0883 0.0884 0.0882 0.0880 0.0880 0.0931 0.0884 0.0738 0.0715 0.0718 0.0643 

 0.2068 0.2155 0.2156 0.2171 0.2156 0.2155 0.1465 0.1407 0.1608 0.1411 0.1395 0.1767 

ρ = 0.85, T = 8 0.1080 0.1028 0.1022 0.1026 0.1004 0.1002 0.1008 0.0924 0.0862 0.0871 0.0810 0.0763 

 0.1131 0.1097 0.1093 0.1095 0.1078 0.1076 0.1060 0.1006 0.0986 0.0989 0.0954 0.0946 

RMSE values are written in italics under the bias values which are written in bold 
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Table 5: Bias and RMSE for conventional and new GMM estimators when r = 12.5/0.5 = 25 

 
LEV OLEV SYS SSYS 

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 

N = 150                  

ρ = 0.25, T = 4 0.1804 0.1040 0.0986 0.0970 0.0857 0.0863 0.1951 0.1815 0.1566 0.1141 0.1136 0.1071 

 0.7134 0.7851 0.7888 0.7847 0.7888 0.7891 0.3216 0.2896 0.2784 0.2469 0.2466 0.2470 

ρ = 0.25, T = 8 0.2838 0.1321 0.0941 0.0918 0.0603 0.0604 0.1977 0.1480 0.1124 0.0280 0.0227 0.0188 

 0.3119 0.1890 0.1560 0.1489 0.1249 0.1249 0.2252 0.1832 0.1554 0.0753 0.0639 0.0623 

ρ = 0.85, T = 4 0.1545 0.1526 0.1525 0.1538 0.1527 0.1528 0.1335 0.1313 0.1217 0.1081 0.1111 0.1152 

 0.4956 0.4570 0.4570 0.4938 0.4578 0.4578 0.1704 0.1647 0.1851 0.1830 0.1855 0.1884 

ρ = 0.85, T = 8 0.1427 0.1416 0.1414 0.1416 0.1404 0.1403 0.1395 0.1373 0.1357 0.1365 0.1345 0.1330 

 0.1440 0.1433 0.1432 0.1433 0.1423 0.1423 0.1409 0.1393 0.1388 0.1387 0.1374 0.1370 

N = 400             

ρ = 0.25, T = 4 0.0625 0.0066 0.0038 0.0044 -0.0009 -0.0009 0.0731 0.0596 0.0463 0.0339 0.0283 0.0260 

 0.2738 0.2859 0.2849 0.2819 0.2824 0.2824 0.2023 0.1432 0.1326 0.1375 0.1108 0.1144 

ρ = 0.25, T = 8 0.1467 0.0373 0.0283 0.0293 0.0201 0.0202 0.0943 0.0412 0.0194 0.0048 0.0020 0.0011 

 0.1734 0.0867 0.0816 0.0813 0.0771 0.0771 0.1161 0.0650 0.0450 0.0395 0.0291 0.0290 

ρ = 0.85, T = 4 0.1259 0.1247 0.1247 0.1251 0.1241 0.1243 0.1235 0.1187 0.1143 0.1003 0.1038 0.1026 

 0.1596 0.1627 0.1627 0.1625 0.1624 0.1624 0.1537 0.1543 0.1835 0.1533 0.1610 0.1804 

ρ = 0.85, T = 8 0.1282 0.1239 0.1232 0.1240 0.1213 0.1211 0.1239 0.1196 0.1167 0.1141 0.1109 0.1084 

 0.1306 0.1274 0.1269 0.1276 0.1253 0.1251 0.1265 0.1234 0.1222 0.1206 0.1188 0.1183 

N = 600             

ρ = 0.25, T = 4 0.0532 0.0144 0.0131 0.0120 0.0100 0.0100 0.0594 0.0421 0.0334 0.0298 0.0225 0.0229 

 0.2124 0.2173 0.2169 0.2168 0.2154 0.2154 0.1658 0.1089 0.1010 0.1097 0.0867 0.0909 

ρ = 0.25, T = 8 0.1078 0.0234 0.0191 0.0202 0.0140 0.0140 0.0678 0.0216 0.0078 0.0028 0.0007 0.0003 

 0.1322 0.0673 0.0653 0.0647 0.0627 0.0627 0.0870 0.0399 0.0277 0.0316 0.0223 0.0225 

ρ = 0.85, T = 4 0.1176 0.1164 0.1164 0.1164 0.1161 0.1161 0.1133 0.1097 0.0983 0.0947 0.0956 0.0907 

 0.1767 0.1844 0.1845 0.1829 0.1844 0.1844 0.1486 0.1583 0.1813 0.1453 0.1456 0.1626 

ρ = 0.85, T = 8 0.1229 0.1174 0.1166 0.1175 0.1144 0.1142 0.1182 0.1139 0.1106 0.1061 0.1033 0.1008 

 0.1259 0.1219 0.1213 0.1219 0.1194 0.1192 0.1212 0.1184 0.1169 0.1134 0.1121 0.1116 

RMSE values are written in italics under the bias values which are written in bold  
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