Multivector strategy vs quantum strategy by Apple Inc

Ledenyov, Dimitri O. and Ledenyov, Viktor O.

James Cook University, Townsville, Australia

23 December 2015

Online at https://mpra.ub.uni-muenchen.de/68730/
MPRA Paper No. 68730, posted 10 Jan 2016 08:08 UTC
Multivector strategy vs quantum strategy by Apple Inc

Dimitri O. Ledenyov and Viktor O. Ledenyov

Abstract – We propose that the quantum strategy can be considered as a most effective winning virtuous organizational strategy, allowing the board of directors to build a prosperous organization with the optimal business model in the economies of the scale and scopes at the time of the great opportunities and unexpected challenges by the globalization. We provide a concise definition on the quantum strategy: The organizational strategy, which can be derived with the use of the quantum strategy search algorithm by the interlocking interconnecting directors in the board of directors in the modern organization at the time of the global integration. We demonstrate that the quantum strategy search algorithm applies the quantum logic (the probabilistic logic) on the top of the inductive, deductive and abductive logics (the value based logics), aiming to create the most effective optimal winning virtuous organizational strategy by the interlocking interconnecting directors in the board of directors in the modern organization in the information century. We highlight the main existing differences between the multivector strategy (the multiple different strategies implementation at the selected time period) and the quantum strategy (the most effective optimal winning virtuous organizational strategy implementation at the selected time period), considering the real-life case study on the strategy formulation and execution by the interlocking interconnecting directors in the board of directors in the Apple Inc. We express a research opinion that the quantum strategy can be clearly defined/distinguished in line with the generally accepted scientific definitions/meanings/principles in the quantum mechanics science. We think that the prosperous organizations will create and implement the quantum strategies to increase their valuations and outperform the competitors in the economies of the scales and scopes at the time of globalization.

JEL code: C0, G21, G24, G30, G34, L1, L4, M2 .

PACS numbers: 89.65.Gh, 89.65.-s, 89.75.Fb .

Keywords multivector strategy, quantum strategy, winning virtuous strategy, strategy creation and implementation, strategy selection logics, strategy decision making, strategy optimization problem, most effective strategy search, quantum/inductive/deductive/abductive logics, board of directors composition, board of directors chairman, interlocking directors networks, boards of directors seats accumulation number, centrality, Freeman degree, Betweenness, information flows measurements, destructive coordination, information absorption, theory of firm, microeconomics, Schrodinger wave function, quantum mechanics, econophysics, Apple Inc.
Introduction

Indeed, the quantum strategy theory as a research subject of considerable scientific interest attracts an increasing research attention by the academicians and practitioners in the business administration science and in the microeconomics science around the World in Ledenyov D O, Ledenyov V O (2015n). Thus, let us explain that the quantum strategy represents an organizational strategy, which can be derived with the use of the quantum strategy search algorithm by the interlocking interconnecting directors in the board of directors in the modern organization at the time of the global integration. The quantum strategy search algorithm
applies the quantum logic (the probabilistic logic) on the top of the inductive, deductive and abductive logics (the value based logics), aiming to create the most effective optimal winning virtuous organizational strategy by the interlocking interconnecting directors in the board of directors in the modern organization in an information century in Ledenyov D O, Ledenyov V O (2015n).

In this research article, we would like to be focused on the theory of the quantum strategy creation and execution in Ledenyov D O, Ledenyov V O (2015n) by the interlocking interconnecting directors in the boards of directors in the modern organizations in the modern economies of the scales and scopes in the time of constant introduction of the market-creating innovations, sustaining innovations and efficiency innovations on a global scale in Christensen, Raynor, McDonald (December 2015), Christensen, Denning (December 2015), Rodin (2015), Dobbs, Woetzel, Flanders (2015), Barber (2015), considering the Apple Inc real life business case study as an example. A real-life business case study represents one of possible research approaches to understand an essence of the quantum strategy theory in the business administration science / the microeconomics science. Heracleous (2013) conducted an interesting research on the quantum strategy at Apple Inc, in which it was suggested that the Apple Inc has already created and executed its quantum strategy. In this connection, we would like to highlight the main existing differences between the multivector strategy (the multiple different strategies implementation at the selected time period) and the true quantum strategy (the most effective optimal winning virtuous organizational strategy implementation at the selected time period), considering the highlighted real-life business case study on the strategy formulation and execution by the interlocking interconnecting directors in the board of directors in the Apple Inc in Heracleous (2013).

It makes sense to say that, presently, the leading scientists from a number of well established/funded research institutions/universities make everything possible to find an answer on the challenging question: How can the interlocking interconnecting directors create and implement the quantum strategy, which is considered as a most effective winning virtuous organizational strategy, allowing the board of directors to build a prosperous organization with the optimal business model in the economies of the scale and scopes at the time of the great opportunities and unexpected challenges by the globalization? There is no simple answer on this particular question. We hope that our research will greatly improve the quantum strategy theory, which was proposed for the first time in Ledenyov D O, Ledenyov V O (2015n), and move the frontiers of the business administration science / the microeconomics science forward. Therefore, completing a short insightful introduction, let us begin a more detailed insightful
discussion on the comparative analysis of the multivector strategy vs. the quantum strategy by Apple Inc, presenting our original research thoughts on the subject of scientific interest in this research article.

Multivector strategy vs quantum strategy by Apple Inc

The board of directors in the Apple Inc could be mathematically represented as a two dimensions matrix in Ledenyov D O, Ledenyov V O (2015b, n):

\[
\text{Board of Directors} = \begin{bmatrix}
d_{1,1} & d_{1,2} & d_{1,j} \\
d_{2,1} & d_{2,2} & d_{2,j} \\
d_{i,1} & d_{i,2} & d_{i,j}
\end{bmatrix},
\]

where \(d_{ij}\) is the position of a director’s seat in the matrix.

The change of the composition of the board of directors in the Apple Inc over the time could be mathematically described as an integer in Santella, Drago, Polo (November 11 2007), Ledenyov D O, Ledenyov V O (2015b, n):

\[
\text{board}_{i,j} = \text{board}_{i,j-1} + \int_{t}^{t+1} (en-ex)dt,
\]

where

\[
en(t) = \frac{d}{dt} en \cdot t = en,
\]

\[
ex(t) = \frac{d}{dt} ex \cdot t = ex,
\]

\(en(t)\) is the number of directors entrants at time \(t\),

\(ex(t)\) is the number of directors exits at time \(t\),

\(\text{board}_{i,j}\) is the board of directors size at time \(t\),

\(c\) is the company,

\(i\) is the director.

Let us begin our detailed insightful discussion and conduct a comparative analysis on the multivector strategy vs. the quantum strategy by Apple Inc, using the recently published research article in Heracleous (2013) and the knowledge base in Ledenyov D O, Ledenyov V O (2015b, n). We would like to provide the below citations and to consider the research ideas on the quantum strategy, focusing on the following research topics in Heracleous (2013) and discussing them in details:
1. the research statements on the electron in the quantum mechanics / the quantum physics; and

2. the research statements on the quantum strategy in the business administration science / the microeconomics science.

3. the concluding scientific remarks on the subject of interest.

Heracleous (2013) writes: “Conversely, conventional wisdom holds that a company competing on innovation, outstanding design, or service excellence will not be able to reach intense levels of efficiency, since these capabilities are costly to develop and maintain. Apple, however, has achieved both — what might be seen as the holy grail of strategy — and it is worth asking how. The answer can help us gain insight into the trickiest of strategies to execute, and one that most companies do not even try to achieve. This strategy, if successfully executed, represents a shift of the iso-value curve to the right in any industry it is employed in, not just movement along the curve where most competitors are positioned. I call this Quantum Strategy, after the idea that at the quantum level of reality, the same electron can be at two places at the same time, and two different electrons can occupy the very same physical space. Both seem to be logical and natural impossibilities, but nevertheless do occur. An understanding of Quantum Strategy offers important lessons for executives. In particular, we can understand the principles are involved in breaking the trade-offs that are conventionally assumed to constrain strategic choices and to lock firms in single generic strategies.”

As we can see, Heracleous (2013) made the following two meaningless mistaken statements, related to the quantum physics science:

1. “the same electron can be at two places at the same time, and

2. two different electrons can occupy the very same physical space.”

observation stage, the transition stage and the final observation stage in the quantum mechanics science / the quantum physics science, hence:

1. In the transition stage, the single electron can be in a superposition state, in which the single electron cannot be characterized by the certain physical parameters in the time – space domain. However, the electron can be accurately characterized by the momentum, spin and other parameters in the final measurement state only;

2. In the final observation stage, the two different electrons can occupy the very same physical space, if they have the different spins only.

Speaking about the strategies by Apple Inc in Heracleous (2013), it is difficult to understand: How can the innovation strategy by Apple Inc and the efficiency strategy by Apple Inc in the strategies superposition state in Heracleous (2013) relate to the superposition state by the single electron in the quantum mechanics/the quantum physics in Blokhintsev (2004)? We can hypothetically suppose that the innovation strategy and the degradation strategy can exist in the strategies superposition state in the quantum econophysics science. Also, we can hypothetically suppose that the efficient strategy and the inefficient strategy can exist in the strategies superposition state in the quantum econophysics science. However, it makes no sense to state that the two absolutely unrelated strategies (the innovation strategy by Apple Inc and the efficiency strategy by Apple Inc) in Heracleous (2013) can create a superposition state in the quantum econophysics science.

Heracleous (2013) states: “Apple has achieved its outstanding performance through effectively implementing an unconventional strategy: differentiation through innovation (along various dimensions that include serial, strategic and incremental innovation) with simultaneous intense levels of efficiency, leading to the lowest costs in its peer group. Conventional wisdom holds that such strategies would be impossible to achieve in a long-term, sustainable timeframe, because they entail mutually contradictory investments and organizational processes. … Apple has accomplished the Quantum Strategy within the same organizational setup, skillfully integrating elements of strategy that most other companies would consider distinct; and achieved long term competitive success in the process. … Quantum strategy has enabled Apple to achieve super-normal profits in hyper-competitive industries with thin margins.”

In our opinion, the fact that the Apples Inc successfully created and executed the differentiation through innovation strategy on one side, and the cost leadership strategy / the efficiency strategy on other side at the same time in Heracleous (2013) does not mean the Apples Inc successfully created and executed the quantum strategy. The conclusion on the quantum
strategy by Apples Inc in Heracleous (2013), which is derived, going from the comparative analogy between:

1. the fact on the successful creation and execution of both the differentiation through innovation strategy and the cost leadership strategy / the efficiency strategy by Apple Inc at the same time; and

2. the fact on that the two different electrons can occupy the very same physical space at the same time;

is dubious and mistaken from the scientific point of view, because the above mentioned comparison is made between:

1. the two unrelated different business strategies on one side; and

2. the two similar quantum objects with distinctive parameters (the two electrons with the different spins) on other side.

In other words, the following scientific question may arise: What are the main criteria for the quantum strategy definition/characterization in the econophysics science in Heracleous (2013)? As we explained early: “In the final observation stage, the two different electrons can occupy the very same physical space, if they have the different spins only.”

Heracleous (2013) expresses the following research opinion: “Porter’s classic strategies have shaped strategic thinking for decades, and Porter’s ideas have consistently been recognized as among the most influential in business. Most companies have employed the differentiation, cost leadership or niche strategies as a first approximation to their strategic thinking. The belief has been, as Porter had argued, that it is impossible to achieve the sustained, true combination of cost leadership and differentiation because of the inherent conflict that occur if a firm tried to do so. At the time Porter developed and popularized these ideas (later 1970s/early 1980s), this proposition was both reasonable and valid. Since then, however, things have changed. … Apple is a master of Quantum Strategy, which is both unconventional as well as extremely difficult to implement. The company has accomplished serial innovation and outstanding design in terms of its offerings and its business model as well as simultaneous cost leadership, having become more efficient than the traditional cost leader, Dell.”

Analyzing the above research outcomes in Heracleous (2013), we think that the Porter’s research ideas in Porter (1980, 1998; 1985), Miller, Friesen (1986a, b), Miller (1988) mostly relate to the case of the small and medium size firms (the startups) with the limited available resources. The creation and implementation of the multivector strategy (the multiple strategies) by the startups at the same time cannot be achieved successfully in view of the existing obvious limitations as far as the financial/human/technological resources is concerned. In the case of
Apple Inc, we have a different story, because the Apple Inc is one of the biggest multinational corporations with the approximate firm’s market valuation of US$700bn as of December, 2014 in Ive, Foulkes (March 6, 2015).

Therefore, thinking about the expressed misleading research opinion on the Apple Inc in Heracleous (2013), we would like to say that the modern firm such as Apple Inc can efficiently create and implement the multivector strategy (the multiple corporate strategies) at the same time, including:

1. the R&D strategy;
2. the manufacturing strategy;
3. the efficiency/cost leadership strategy;
4. the logistics strategy;
5. the sales strategy;
6. the marketing strategy;
7. the financial strategy;
8. the public relationships strategy.

An important fact is that the formulation and implementation of the winning virtuous R&D strategy would lead to the superior product/service design by the modern firm, which could create a huge competitive advantage for the particular firm in relation to other firms in the corresponding goods/services market at the time of globalization. The existing differences in the R&D strategies between the competing firms define the winners and the losers in most of the cases. Here, let us explain that the implementations of all the strategies, including the R&D strategy, the manufacturing strategy, the logistics strategy, the sales strategy, the marketing strategy, the financial strategy and the public relationships strategy are normally well optimized among all other key competitors so that the mentioned strategies implementation efficiency levels among all the competing firms in the corresponding markets are pretty much similar.

In other words, the interlinking interlocking directors in the board of directors in the prosperous organizations such as the Apple Inc create and implement the unique R&D strategies, which result in the design of the new products/services/ecosystems for the potential customers in the corresponding markets. Let us note that the Apple’s winning virtuous R&D strategy has been successfully created and implemented together with the manufacturing strategy, logistics strategy, sales strategy, marketing strategy, financial strategy, public relationships strategy, etc at the same time. We have to emphasis that the other less successful competing firms have been unable to create and implement their winning virtuous R&D
strategies, however they had all the necessary capabilities to realize/implement all other strategies at the same time quite efficiently.

Let us sum up all the research statements by saying that the unique winning virtuous R&D strategy creation and implementation by the Apple Inc is a key differentiating factor, which allows the modern firm like the Apple Inc to win the competition with other firms at the selected industries at the same time.

The creation and implementation of the multiple strategies by the modern firm at the same time period can be regarded as a certain type of the multivector strategy creation and execution, but not the quantum strategy creation and execution. The modern firm wins a fierce competition with other competing firms due to its unique winning virtuous R&D strategy creation and implementation mainly, assuming that the other competing firms can efficiently implement the multiple business strategies in the selected time frame.

Let us compare the authors’ research statements in this article with the research findings in Heracleous (2013):

1. We propose that the unique winning virtuous R&D strategy (the differentiation through innovation strategy) by Apples Inc, comparing to other R&D strategies by the competing companies, mainly creates the Apples Inc competitive advantage in the digital creative economies of the scales and scopes at the selected time periods.

2. From other side, Heracleous (2013) thinks that the successful creation and execution of both the R&D strategy (the differentiation through innovation strategy) and the cost leadership strategy / the efficiency strategy within the firm such as Apple Inc results in the Apples Inc competitive advantage appearance. Heracleous (2013) misses the fact that it is necessary to compare the R&D strategies between the various corporations, because, in most cases, the corporations can create and implement all the business strategies quite efficiently.

Once again, we must understand the following fact that the successful R&D strategy creation and implementation is able to result in the competitive advantage origination mostly, because all the modern global corporations in the high tech industries are very efficient in the implementation of their business strategies (see the above list of strategies). Let us support our research statements by the citation on the unique winning virtuous R&D strategy by Apple Inc in Ive, Foulkes (March 6, 2015): “[Apple’s] Hardware and software seem designed together in such a way that one cannot quite tell where the machine ends and the operating system begins. As a commercial strategy [the R&D strategy] it is undeniable brilliant, quickly enveloping users in a world they do not want to leave. But it is the clairvoyant ingenuity of it all that makes me marvel.”
Making the innovative research on the multivector strategy vs. the quantum strategy at Apple Inc, we would like to provide a research comment that it is necessary to remember that the scientific term “quantum” in the quantum mechanics science / the quantum physics science has both its clear scientific definition and its certain scientific meaning; hence, we think that it would be beneficial for Heracleous (2013) to clearly understand the scientific terminology in the quantum mechanics science / the quantum physics science, avoiding the use of the word: “quantum” in the inappropriate cases in the published research article in Heracleous (2013).

the case of the creation and implementation of the multivector strategy by the Apple Inc at the selected time period. The multivector strategy is well studied in the frames of the fundamental strategy theory in the business administration science / the microeconomics science.

Quantum strategy creation and implementation by Apple Inc

The quantum strategy as a new research topic in the business administration science / the microeconomics science has been introduced for the first time in Ledenyov D O, Ledenyov V O (2015n).

Speaking about the quantum mechanics / the quantum physics in Ledenyov D O, Ledenyov V O (2015n), it is necessary to explain a few interesting scientific facts that the Copenhagen interpretation of the quantum mechanics science considers a quantum phenomenon as a process, which takes place from the initial condition through the transitory state to the final condition. The evolving understanding of the quantum mechanics led to the new theoretical discoveries, particularly, to the introduction of the Schrödinger wave function, which can accurately probabilistically characterize the quantum system, using the probability distributions in Schrödinger (1926). One of the interesting facts is that the probabilities distribution depends

Khanna, Montgomery, Porter, Rivkin, Rukstad, Wells, Yoffie (2005), Porter, Kramer (2006),
Sadler (2003), Roney (2004), Ireland, Hoskisson, Hitt (2006), Besanko, Shanley, Dranove
both to get an increased business valuation (a return premium) and to make a positive social
impact in the local community and society in the frames of the socially responsible investment
(SRI) process that integrates social, environmental, and ethical considerations into the
investment decision making in the real sector of economy in Waddock, Graves, (1994), Arora,
McWilliams, Siegel, Wright (2006), Scholtens (2006), Cespa, Cestone (2007), Cumming,
Renneboog, Horst, Zhang (2008), Arjalies (2010), Crifo, Mottis (2010), Morrell, Clark (2010),

Let us take a minute and refresh the scientific meanings of the inductive, deductive,
abductive logics in Wikipedia (2015) and the newly introduced quantum logic (the probability
logic) in Ledenyov D O, Ledenyov V O (2015n):

1. Inductive logic – the logic of what is operative — reasons from the specific to the
general. Induction allows inferring a entails b from multiple instantiations of a and b at the same
time.

2. Deductive logic – the logic of what must be — reasons from the general to the
specific. Deduction allows deriving b as a consequence of a. In other words, deduction is the
process of deriving the consequences of what is assumed.

3. Abductive logic – the logic of what could possibly be true – reasons through
successive approximation. Abduction allows inferring a as an explanation of b, because of this,
abduction allows the precondition a to be inferred from the consequence b.

4. Quantum logic (Probability logic) – the logic of what may occur – reasons
through computing of events probabilities distributions. Quantum logic allows a and b to be
realized, depending on a and b events probabilities distributions equal to square of
Schrödinger’s wave function.

We would like to illustrate the distinctions between the quantum logic (the probability
logic) and the inductive, deductive and abductive logics (the value based logic, the binary logic),
making a citation with the detailed explanation in Ledenyov D O, Ledenyov V O (2015n):
1. “We can illustrate the probability logic, by using the quantum mechanics and by saying that the probability that the Schrödinger cat may be alive or dead (the two possible choices) in the superposition state in the observable closed box is 50% until the moment of the measurement in Schrödinger (1935). In other words, the interlocking interconnecting director in the board of directors in the organization must consider the probabilities distribution of the various events, related to the particular business matter / situation, before the moment of the creation of the quantum business strategy.

2. We can describe the value based logic by referring to the inductive, deductive and abductive logics and by showing that it operates with / converges to the values: Yes and/or No, hence it has some similarity with the binary logic: 1 and/or 0. It means that, the interlocking interconnecting director in the board of directors in the organization must inductively / deductively / abductively come to the conclusion: Yes and/or No, related to the particular business matter / situation, before the moment of the creation of the usual business strategy.”

Going from the suggested scientific ideas framework, we can also demonstrate an essence of the quantum logic (the probability logic), using a practical example of the quantum random number generator on the magnetic flux qubits chipset in Ledenyov V O, Ledenyov O P, Ledenyov D O (2002) in analogy with the the Schrödinger wave function / Schrödinger cat representation in Schrödinger (1935). For example, the special entanglement of the qubits, with the probability of 50% that any particular qubit exists in a superposition state of being 0 and being 1, can be achieved in the quantum random number generator on the magnetic flux qubits chipset in Ledenyov V O, Ledenyov O P, Ledenyov D O (2002).

In the business administration science / the microeconomics science, we would like to make a few empirical research comments, explaining that the practical creation and implementation of the Quantum Strategy Creation Algorithm can be realized by the interlocking interconnecting directors in the board of directors in the modern organization at the time of the global integration/disintegration in agreement with the use of the following greatly simplified strategic actions scheme in Ledenyov D O, Ledenyov V O (2015n):

1. the interlocking interconnecting director absorbs the information of interest on the particular business events/processes/ecosystems,

2. the interlocking interconnecting director applies the creative imperative integrative intelligent conceptual co-lateral adaptive logarithmic thinking process to analyze the particular business events/processes/ecosystems,

3. the interlocking interconnecting director uses the inductive, deductive and abductive logics (the value based logic, the binary logic) to come to a certain logical conclusion
on the desirable corporate strategy of the choice during the strategic choice structuring process in Ledenyov D O, Ledenyov V O (2015b),

4. the interlocking interconnecting director applies the quantum logic (the probability logic) to evaluate the corporate strategy of the choice, with the ultimate purpose to create the quantum strategy or to disregard the corporate strategy of the choice during the strategic choice structuring process, and then

5. the interlocking interconnecting directors in the board of directors implement the quantum strategy in the digital creative economies of the scales and scopes at the selected time period.

Going from the true meaning of the quantum strategy in Ledenyov D O, Ledenyov V O (2015n), we can assume that the Apple Inc had been able to create and implement its quantum strategy, primarily based on the quantum leap in the innovative design and advanced technology applications, to outperform the competitors in the global markets of the wireless computing devices, the laptop computers, the electronic timepieces and the operating systems at the certain time periods, however we propose to clearly distinguish the multivector strategy by Apply Inc (the mistakenly treated/labeled as the quantum strategy in Heracleous (2013)) from the true quantum strategy by Apply Inc in Ledenyov D O, Ledenyov V O (2015n).

Looking forward, in our opinion, the main question to understand is: Will the interlinking interlocking directors in the board of directors in the Apple Inc be able to sustain a fierce competition from the competitors and continue to maintain its competitive advantage in the time of globalization?

Answering the challenging question, we think that the interlinking interlocking directors in the board of directors in the Apple Inc must continue to create and implement its constantly updated/improved quantum strategy, aiming to design the new wireless computing devices, laptop computers, electronic timepieces, operating systems and having an ultimate goal to satisfy the customers’ experiences and to increase the Apple Inc market valuation on its way to the prosperity in the digital creative economies of the scales and scopes in the selected time period.

Finalizing all our research statements, let us say that the authors’ general strategic vision is that the interlinking interlocking directors in the boards of directors in the complex organizations will greatly benefit by creating and by implementing the quantum strategies, pursuing the ultimate goal to build the prosperous organizations in the digital creative economies of the scales and scopes at the time of the disruptive changes and opportunities by the globalization.
Conclusion

In an information century, the leading scientifically/technologically advanced states create the quantum devices/technologies development roadmaps, trying to predict/outline/evaluate the future progress in the quantum devices/technologies in the economies of the scales and scopes for the years to come. The progress in the quantum devices/technologies development depends on the state of matters in the natural sciences (the physics, chemistry, mathematics sciences) as well as the hi-tech industries (the electronics, computer, materials processing industries) in the economies of the scales and scopes presently. The examples of the quantum devices/technologies in the natural sciences/the hi-tech industries are the designs of the thermonuclear and nuclear reactors, the high power gas lasers, the low power semiconductor heterostructures lasers, the quantum random number generators on the magnetic flux qubits chipsets, the quantum random number generators on the laser noise, the superconducting quantum interference devices, the photonic processors, the quantum processors, the single electron transistors, the semiconductor heterostructures transistors, the quantum cryptography optical devices/networks, etc in Ledenyov D O, Ledenyov V O (2015a).

In an age of the quantum disruption, the most progressive scientifically/technologically advanced states continue to invest heavily in the innovative research programs on the quantum technologies/principles application in the social sciences with the aim to improve/optimize the existing scientific theories / the management practices in the economics/finance/business administration/state governance. The examples of the quantum principles application in the social sciences are the creations of the quantum macroeconomics theory, the quantum microeconomics theory, the quantum theory of firm, the foreign currencies exchange indices quantum forecast theories with the use of the wave function, the quantum money, the quantum strategies, etc in Ledenyov D O, Ledenyov V O (2015h, i, j, k, l m, n).

In this connection, the innovative research on the application of the scientific principles in the quantum mechanics science / the quantum econophysics science with the purpose to understand and to accurately characterize the business strategies by the interlocking interconnecting directors in the board of directors in the modern firms looks very attractive from the scientific point of view in Ledenyov D O, Ledenyov V O (2015b, n).

In this research article, we proposed that the quantum strategy can be considered as a most effective winning virtuous organizational strategy, allowing the board of directors to build a prosperous organization with the optimal business model in the economies of the scale and scopes at the time of the great opportunities and unexpected challenges by the globalization.
We provided a concise definition on the quantum strategy: The organizational strategy, which can be derived with the use of the quantum strategy search algorithm by the interlocking interconnecting directors in the board of directors in the modern organization at the time of the increasing global integration.

We demonstrated that the quantum strategy search algorithm applies the quantum logic (the probabilistic logic) on the top of the inductive, deductive and abductive logics (the value based logics), aiming to create the most effective optimal winning virtuous organizational strategy by the interlocking interconnecting directors in the board of directors in the modern organization in the information century. We compared the quantum strategy search algorithm with the modern strategy search algorithm, showing the characteristic distinctions in the used logics.

We highlighted the main existing differences between the multivector strategy (the multiple different strategies implementation at the selected time period) and the quantum strategy (the most effective optimal winning virtuous organizational strategy implementation at the selected time period), considering the real-life case study on the strategy formulation and execution by the interlocking interconnecting directors in the board of directors in the Apple Inc.

We expressed a research opinion that the quantum strategy in the business administration science / the microeconomics science can be clearly defined / distinguished in line with the generally accepted scientific definitions / meanings / principles in the quantum mechanics science.

We think that the interlinking interlocking directors in the boards of directors in the prosperous organizations will continue to create and implement the quantum strategies to increase the firms’ market valuations and outperform the competitors in the digital creative economies of the scales and scopes at the time of globalization.

Going from our present research stand point, we believe that the better understanding on the quantum mechanics / quantum physics / quantum chemistry by the scientists will continue to progress rapidly, creating a necessary knowledge base for the groundbreaking inventions towards the new quantum device technologies in the natural sciences as well as the new quantum theories / the quantum methods / the quantum principles in the social sciences.

Acknowledgement

The important scientific ideas on the probability theory in Bunyakovsky (1846), Chebyshev (1846, 1936), Markov (1908, 1912, 1971) made a significant influence on the
authors’ scientific vision formation, leading to a generation of our original theoretical thoughts on the probability logic and its possible application in the quantum strategy theory in the business administration science / the microeconomics science/ the econophysics science. The authors acknowledge the multiple scientific discussions on the econophysics, the quantum mechanics and the quantum physics with Oleg P. Ledenyov in Kharkiv, Ukraine in 1988 – 2016. The first author appreciates many hours of the research polemics on the quantum effects in the superconducting electronics with Janina E. Mazierska at James Cook University in Townsville, Australia in 2000 - 2016. The first author thanks Michael Lancaster for an opportunity to make an invited speech on the memory chipset on the quantum knots of the magnetic vortices at the Marconi seminar at University of Birmingham in the UK in 1999. The second author appreciates the useful scientific discussions on the quantum effects in the superconducting quantum interference device (SQUID) with Jesper Mygind at Technical University of Denmark in Lyngby, Denmark and Copenhagen, Denmark in 1995, 1996-1997. The second author would like to make a comment that the Niels Bohr’s visit to Kharkiv, Ukraine in 1933 led to a serious progress in the nuclear physics and the subsequent creation of the econophysics science; and the second author’s visits to Roskilde, Denmark / Lyngby, Denmark / Copenhagen, Denmark in 1995, 1996-1997 resulted in the new theories formulation in the modern econophysics science among other things. The second author expresses his warmest gratitude for a kind invitation to present an invited scientific talk on the measurement of the magnetic flux qubit by the SQUID at the scientific seminar, organized by Peter Kes at Leiden University in The Netherlands in 1998. The second author expresses his kind gratitude to Fernando Scornick-Gerstein for the multiple thoughtful discussions on the economic strategies, the financial strategies, and the taxation theory by Henry George at Royal Automobile Club in London, UK in 1996. The second author thanks for a wonderful opportunity to conduct an important exchange by the research opinions on the fundamental theory of strategy / the applied theory of strategy during our numerous private discussions / special private meetings with Roger L. Martin at University of Toronto and at the Empire Club of Canada, Economics Club of Toronto, Canadian Club, National Club in Toronto, Canada in 1998 - 1999 and in 2005 - 2006. The chairman of the board of directors in Apple Inc as well as the interlinking interlocking reputable directors in the board of directors in Apple Inc are acknowledged for both their kind interest / strong support of our advanced academic research and their willingness to give the authors’ a necessary access to the corporate performance statistics data / to cooperate with the authors during all the stages of the innovative research article writing/editing process in 2015. The authors would like to explain that the quantum strategy represents a new research subject for a big number of the leading research
institutions and universities, hence we sincerely acknowledge an enormous interest to our innovative research on the quantum strategy from the side of the Michael Porter’s Strategy Institute at Harvard University in Cambridge in the USA.

*E-mails: dimitri.ledenyov@my.jcu.edu.au,
ledenyov@univer.kharkov.ua.
References:

Economics Science, Finance Science, Economic History Science:

7. Menger C 1871 Principles of Economics (Grundsätze der Volkswirtschaftslehre) Ludwig von Mises Institute Auburn Alabama USA

8. Bagehot W 1873, 1897 Lombard Street: A description of the money market Charles Scribner's Sons New York USA.

10. von Böhm-Bawerk E 1884, 1889, 1921 Capital and interest: History and critique of interest theories, positive theory of capital, further essays on capital and interest Austria; 1890 Macmillan and Co Smart W A (translator) London UK

15. Schumpeter J A 1911; 1939, 1961 Theorie der wirtschaftlichen entwicklung; The theory of economic development: An inquiry into profits, capital, credit, interest and the business cycle Redvers Opie (translator) OUP New York USA.
19. Slutsky E E 1915 Sulla teoria del bilancio del consumatore *Giornale degli economisti e rivista di statistica* 51 no 1 pp 1 – 26 Italy.
21. von Mises L 1912 The theory of money and credit *Ludwig von Mises Institute* Auburn Alabama USA
27. Ellis H, Metzler L (editors) 1949 Readings in the theory of international trade *Blakiston* Philadelphia USA.
28. Friedman M (editor) 1953 Essays in positive economics *Chicago University Press* Chicago USA.

41. Scornick-Gerstein F May, 1996 Private communications on economics strategies by the European governments, the financial strategies by European governments, and the land value taxation theory by Henry George Royal Automobile Club London UK.

50. Juglar Economic Cycle in Macroeconomics:

Kondratiev Economic Cycle in Macroeconomics:
53. Tugan-Baranovsky M 1894 Industrial crises in contemporary England: Their causes and influences on the life of the people St Petersburg/Moscow Russian Federation.
54. Kondratieff N D 1922 The world economy and its trends during and after war Regional branch of state publishing house Vologda Russian Federation.
56. Kondratieff N D 1925 The big cycles of conjuncture The problems of conjuncture 1 (1) pp 28 – 79.
60. Kondratieff N D 1984 The Long wave cycle Richardson & Snyder New York USA.
64. Kowal L 1973 The market and business cycle theories of M I Tugan-Baranovsky Revista Internazionale di Scienze Economiche e Commercial vol 20 part 4 Padova Italy.
73. Van Duijn J J 1981 Fluctuations in innovations over time Futures 13(4) pp 264 – 275.
74. Van Duijn J J 1983 The long wave in economic life Allen and Unwin Boston MA USA.
78. Tinbergen J 1981 Kondratiev cycles and so-called long waves: The early research Futures 13 (4) pp 258 – 263.
83. Wallerstein I 1984 Economic cycles and socialist policies Futures 16 (6) pp 579 – 585.

87. Freeman C, Louçã F 2001 As time goes by: From the industrial revolutions to the information revolution Oxford University Press Oxford UK.

88. Goldstein J 1988 Long cycles: Prosperity and war in the modern age Yale University Press New Haven CT USA.

90. Berry B J L 1991 Long wave rhythms in economic development and political behavior Johns Hopkins University Press Baltimore MD USA.

94. Tylecote A 1992 The long wave in the world economy Routledge London UK.

100. Perez C 2002 Technological revolutions and financial capital – The dynamics of bubbles and golden ages *Edward Elgar* Cheltenhem UK.

Kitchin Economic Cycle in Macroeconomics:

Kuznets Economic Cycle in Macroeconomics:

110. Kuznets S 1924 Economic system of Dr. Schumpeter *M. Sc. Thesis under Prof. Wesley Clair Mitchell* Columbia University NY USA.

111. Kuznets S 1930 Secular movements in production and prices *Ph. D. Thesis under Prof. Wesley Clair Mitchell* Columbia University NY USA.
112. Kuznets S 1930 Secular movements in production and prices. Their nature and their bearing upon cyclical fluctuations *Houghton Mifflin* Boston USA.

118. Kuznets S 1968 Toward a theory of economic growth, with reflections on the economic growth of modern nations.

119. Kuznets S 1971 Economic growth of nations: Total output and production structure.

Accurate Characterization of Properties of Economic Cycles in Macroeconomics:

158. Sussmuth B 2003 Business cycles in the contemporary World Springer Berlin Heidelberg Germany.
159. Hirooka M 2006 Innovation dynamism and economic growth: A nonlinear perspective Edward Elgar Cheltenham UK Northampton MA USA.

164. Jourdon Ph 2008 La monnaie unique Europeenne et son lien au developpement economique et social coordonne: une analyse cliometrique Thèse Universite Montpellier France.

173. Uechi L, Akutsu T 2012 Conservation laws and symmetries in competitive systems
 Progress of Theoretical Physics Supplement no 194 pp 210 – 222.

174. Central Banking Newsdesk 2013 Swiss board member supports counter-cyclical capital
 buffer
 http://www.centralbanking.com/central-banking/speech/2203857/swiss-board-member-
supportscountercyclical-capital-buffer.

175. Union Bank of Switzerland 2013 UBS outlook Switzerland
 http://www.ubs.com/global/en/wealth_management/wealth_management_research/ubs_outlo-
 ok_ch.html.

176. Da Costa 2015 Weak first-quarter growth due to seasonal issues after all, SF Fed says
 The Wall Street Journal New York USA.

177. Federal Reserve Bank of St Louis 2015 US Federal Reserve Economic Data (FRED)
 Federal Reserve Bank of St Louis
 http://research.stlouisfed.org/fred

178. Desai M, King St, Goodhart Ch 2015 Hubris: why economists failed to predict the crisis
 and how to avoid the next one *Public Lecture on 27.05.2015* London School of Economics
 and Political Science London UK
 http://media.rawvoice.com/lse_publiclecturesandevents/richmedia.lse.ac.uk/publiclecturesan-
devents/20150527_1830_hubris.mp4.

179. Desai M 2015 Do we need a new macroeconomics? *Public Lecture on 09.07.2015*
 London School of Economics and Political Science London UK (the presentation was made
 after the publication of an initial version of our research article at the MPRA and SSRN)
 http://media.rawvoice.com/lse_publiclecturesandevents/richmedia.lse.ac.uk/publiclecturesan-
devents/20150709_1830_needNewMacroeconomics.mp3.

180. Wall Street Journal 2015a Economic forecasting survey US GDP (quarterly) for 5 years
 (28.06.2015) Wall Street Journal New York USA
 http://projects.wsj.com/econforecast/#ind=gdp&r=20

181. Wall Street Journal 2015b Economic forecasting survey US GDP (quarterly) for 7 years
 (28.06.2015) Wall Street Journal New York USA
 http://projects.wsj.com/econforecast/#ind=gdp&r=28

182. Wikipedia (English) 2015c Business cycle *Wikipedia* California USA

Firm Theory Science, Business Administration Science:
183. Babbage Ch 1832 On the economy of machinery and manufacturers Charles Knight 13 Pall Mall East London UK.

189. Ohlin B 1933 Interregional and international trade Harvard University Press Cambridge Massachusetts USA.

208. Stigler G 1968 The organization of industry Richard Irwin Inc Homewood USA.

238. Perrow C 1986 Complex organizations Random House New York USA.

Board of Directors Science, Interlocking Directors Networks Science, Firms Networks Science, Social Networks Science:

250. Brandeis L D 1933 Other people’s money-and how the bankers use it *Jacket Library* Washington National Home Library Foundation USA.

255. Hopkins T K 1964 The exercise of influence in small groups *Bedminster Press* Totawa New Jersey USA.

260. Harary F 1969 Graph theory *Addison-Wesley* Reading MA USA.

263. Mace M L 1971 Directors: Myths and reality *Harvard University Press* Cambridge Massachusetts USA.

283. Tukey J W 1977 Exploratory data analysis Addison-Wesley USA.

285. Freeman L 1979b Visualizing social networks School of Social Sciences University of California Irvine California USA.
directorates involving American manufacturing Administrative Science Quarterly 25
pp 557 – 582.
289. Burt R S 1997 The contingent value of social capital Administrative Science Quarterly 42
291. Radcliff R 1980 Banks and corporate lending: An analysis of the impact of the internal
structure of the capitalist class on the lending behavior of banks American Sociological
Review 45 pp 553 – 570.
292. Boje D M, Whetten D A 1981 Effects of organizational strategies and constraints on
centrality and attributions of influence in interorganizational networks Administrative
293. Mintz B, Schwartz M 1981 Interlocking directorates and interest group formation
294. Mintz B, Schwartz M 1985 The power structure of American business University of
Chicago Press Chicago Illinois USA.
measures Administrative Science Quarterly 26 pp 475 – 489.
Beverly Hills California USA.
297. Stearns L B, Mizruchi M S 1986 Broken-tie reconstitution and the functions of
interorganizational interlocks: A reexamination Administrative Science Quarterly 31
pp 522 – 538.
298. Mizruchi M S, Schwartz M (editors) 1987 Intercorporate relations: The structural
analysis of business Cambridge University Press Cambridge UK.
299. Mizruchi M S, Stearns L B 1988 A longitudinal study of the formation of interlocking
300. Mizruchi M S 1992 The structure of corporate political action Harvard University Press
Cambridge USA.
301. Mizruchi M S, Stearns L B 1994 A longitudinal study of borrowing by large American
corporations Administrative Science Quarterly 39 pp 118 – 140.

306. Barnes J A 1983 Graph theory in network analysis Social Networks vol 5 pp 235 – 244.

312. American Bar Association 1984 Section on Antitrust Law Monograph 10 Interlocking Directorates under Section 8 of Clayton Act. Task force on interlocking directorates Washington USA.

313. American Bar Association 2011 Interlocking directorates Handbook on Section 8 of the Clayton Act Washington USA.

317. Useem M 1984 The inner circle Oxford University Press New York USA.

361. Demb A, Neubauer F F 1992 The corporate board: Confronting the paradoxes Oxford University Press NY USA.

391. Krackhardt D 1994 Graph theoretical dimensions of informal organizations in Computational organization theory Carley K M, Prietula M J (editors) *Lawrence Erlbaum Ass Hillsdale USA.*

421. Park S, Rozeff M 1996 The role of outside shareholders, outside boards, and management entrenchment in CEO selection *Working Paper* SUNY Buffalo NY USA.

426. Williamson O E 1996 The mechanisms of governance *Oxford University Press* New York USA.

444. Miller G T March 26 1997 Interlocking directorates and the antitrust laws *Colorado Lawyer* 53.

448. Collin S-O 1998 Why are these islands of conscious power found in the ocean of ownership? Institutional, governance hypotheses explaining the existence of business groups in Sweden *Journal of Management Studies* 35 pp 719 – 746.

481. Borgatti S P 2002 Basic social network concepts AoM PDW Denver CO USA.
488. Davies A 1999 A strategic approach to corporate governance *Gower* Cambridge UK.
494. Maman D 2001 The organizational connection: Social capital, the career expansion of directors of business groups in Israel *Social Science Research* 30 pp 578 – 605.

507. Miwa Y, Ramseyer M 2000 The value of prominent directors: Lessons in corporate governance from transition Japan *University of Tokyo, Harvard University* Japan, USA.

511. Ferri G, Masciandaro D, Messori M 2001 Corporate governance, board turnover and performance: The case of local banks in Italy *Paolo Baffi Centre Working Paper no 01-150* Italy.

distribution and their applications Physical Review 64 pp 1 – 18.
p 167.
economics 2nd edition Blume L E, Durlauf S N (editors) Palgrave Macmillan Basingstoke
UK.
521. Okazaki T, Yokoyama K October 2001 Measuring the extent and implications of director
interlocking in the pre-war Japanese banking industry Discussion Paper CIRJE-F-138
University of Tokyo Japan pp 1 – 47.
522. Postma Th, van Ees H 2001 On the functions of supervisory boards in the Netherlands
Department of Strategic Management Faculty of Management and Organization University
523. Snijders T A B 2001 The statistical evaluation of social network dynamics Sociological
Methodology 31 (1) p 361.
525. Tomka B 2001 Interlocking directorates between banks and industrial companies in
Hungary at the beginning of the twentieth century Business History 43 (1) pp 25 – 42.
526. Watts A 2001 A dynamic model of network formation Games and Economic Behavior 34
pp 331 – 341.
527. Bainbridge S M 2002 Why a board? Group decision making in corporate governance
528. Becht M, Bolton P, Roell A October 2002 Corporate governance and control
529. Bianchi M, Bianco M, Enriques L 2002 Pyramidal groups and the separation between
ownership and control in Italy in The control of corporate Europe Becht M, Barca F (editors)
Oxford Scholarship Online Monographs Oxford UK.
delle imprese in Italia Il Mulino Bologna Italy.
531. Bianchi M, Bianco M 2006 Italian corporate governance in the last 15 years: From
Governance Institute.
532. Carver J 2002 Corporate boards that create value: Governing company performance from
the boardroom Jossey-Bass USA.

568. Stablein R, Cleland P, Mackie B, Reid D 2004 New Zealand exchange limited (nzx) boards and directors: It is a small world after all Working Paper.

572. Charan R 2005 Boards that deliver: Advancing corporate governance from compliance to competitive advantage Jossey-Bass USA.

574. Hanneman R A, Riddle M 2005 Introduction to social network methods University of California Riverside California USA http://faculty.ucr.edu/~hanneman/.

580. Aguilera R V 2006 National state differences and patterns of directorship interlocks: A comparative study of Italy and Spain MIT USA

582. Batagelj V, Mrvar A 2006 Pajek University of Ljubljana.

http://mpra.ub.uni-muenchen.de/4420/.

588. Farina V 2008 Banks' centrality in corporate interlock networks: Evidences in Italy Sefemeq Department University of Rome “Tor Vergata” Italy MPRA Paper no 11698 Munich University Germany pp 1 – 31 http://mpra.ub.uni-muenchen.de/11698/.

590. Chhaochharia V, Grinstein Y 2006b Executive compensation and board structure Working Paper Cornell University USA.
604. Prinz E 2006 Corporate governance and the uncertain role of interlocking directorates
605. Silva F, Majluf N, Paredes R D 2006 Family ties, interlocking directorates, performance
of business groups in emerging countries: The case of Chile Journal of Business Research 59
pp 315 – 321.
606. Soon Moon Kang May 23 2006 Equi-centrality and network centralization: A micro-
macro linkage Netsci Conference.
607. Welch J, Welch S 2006 The boardroom bunker The Welch way on Business Week
Business Week USA
http://www.businessweek.com/mediacenter/podcasts/welchway/welchway_12_17_06.htm .
pp 217 – 250.
609. Adams R B, Hermalin B E, Weisbach M S 2010 The role of boards of directors in
corporate governance: A conceptual framework and survey Journal of Economic Literature
Boringhieri Torino Italy.
611. Enriques L, Volpin M Winter 2007 Corporate governance reforms in continental Europe
612. Gerber B M 2007 Enabling interlock benefits while preventing anticompetitive harm:
Toward an optimal definition of competitors under section 8 of the Clayton Act Yale Journal
on Regulation vol 24 I p 107.
613. Ibarra H 2007 What you know or who you know? INSEAD Knowledge-casts INSEAD
France.
UK
www.ft.com/cms/s/e5406470-860a-11dc-b00e-0000779fd2ac.html .
615. Ledenyov V O 2007b Think like a leader The Globe and Mail Toronto Canada
http://www.reportonbusiness.com/servlet/story/RTGAM.20071121.wmartindiscuss1128/BNS
Story/Business/home/?pageRequested=2 .
616. Malloy Chr 2007 Social networks Public Lecture London School of Economics and
Political Science London UK.
617. Murray A S 2007 Revolt in the boardroom: The new rules of power in corporate America
Collins USA.

624. Santella P, Drago C, Polo A, Gagliardi E 2009 A comparison among the director networks in the main listed companies in France, Germany, Italy, and the United Kingdom MPRA Paper no 16397 Munich University Germany pp 1 – 19 http://mpra.ub.uni-muenchen.de/16397/.

630. Vermeulen Fr 2008 How companies can get lucky and succeed *Public Lecture* London School of Economics and Political Science London UK.

632. Tutelman H 2008 The balance point: New ways business owners can use boards *Famille Press* USA.

649. Schifeling T, Mizruchi M S August 27 - 28 2012 The decline of the American corporate network 1960-2010 Corporate Networks in the 20th century Conference University of Lausanne USA.

654. Wikipedia January 15 2015 Board of directors USA

http://mpra.ub.uni-muenchen.de/61681/,

http://mpra.ub.uni-muenchen.de/68404/,

Strategy Science, Strategic Governance Science, Management Science:

664. Andrews K R 1971a The concept of corporate strategy Richard D Irwin Homewood USA.
models and economics Taylor T H (editor) *North-Holland Publishing Company* Amsterdam The Netherlands.

65

696. Porter M E 2001b The technological dimension of competitive strategy *in* Research on technological innovation, management and policy vol 7 Burgelman R A, Chesbrough H (editors) *JAI Press* Greenwich CT USA.

706. Yelle L E 1979 The learning curve: Historical review and comprehensive survey
Decision Sciences 10 (2) pp 302 – 328.

group membership and organizational performance Academy of Management Journal 27 (3)
pp 467 – 488.

708. Schwenk C R 1984 Cognitive simplification processes in strategic decision making

710. Palepu K G 1985 Diversification strategy, profit performance and the entropy measure
Strategic Management Journal 6 pp 239 – 255.

711. Barney J B 1986 Strategic factor markets: Expectations, luck, and business strategy
Management Science 32 (10) pp 1231 – 1241.

712. Barney J B 1991 Firm resources and sustained competitive advantage Journal of
Management 17 (1) pp 99 – 120.

empirical examination with American data, Part I: Testing Porter Organization Studies 7
pp 37 – 55.

empirical examination with American data, Part II: Performance implications Organization

715. Miller D 1988 Relating Porter’s business strategies to environment and structure:

Management vol 13 no 2 p 211.

717. Hill C W L, Snell S A 1988 External control, corporate strategy, and firm performance in
research intensive industries Strategic Management Journal 9 pp 577 – 590.

718. Baysinger B D, Hoskisson R E 1989 Diversification strategy and R&D intensity in large

McGraw-Hill Singapore; Sage Beverly Hills California USA.

and innovation Administrative Science Quarterly 35 pp 128 – 152.
734. McKiernan P 1997 Strategy past, strategy futures *Long range planning* vol 30 no 5 p 792.
739. Moldoveanu M, Martin R L 2001 Agency theory and the design of efficient governance mechanisms *Joint Committee on Corporate Governance Meeting* Rotman School of Management University of Toronto Ontario Canada pp 1 – 57.

740. Martin R L 2004 Strategic choice structuring: A set of good choices positions a firm for competitive advantage *Rotman School of Management* University of Toronto Canada pp 1 – 14

748. Laffont J-J, Tirole J 1999 Competition in telecommunications *MIT Press* USA.

753. Drejer A 2002 Strategic management and core competencies 1st edition *Quorum Books* Westport Connecticut USA.

754. Sadler P 2003 Strategic management 1st edition *Kogan Page* Sterling VA USA.

765. Murphy T, Galunic Ch 2007 Leading in the age of talent wars INSEAD Leader-casts INSEAD France.

771. Sull D 2008 An iterative approach to the strategy Public Lecture London School of Economics and Political Science London UK.
http://www.lse.ac.uk/collections/LSEPublicLecturesAndEvents/events/2008/20080819t1316z001.htm
http://richmedia.lse.ac.uk/publicLecturesAndEvents/20081013_1830_japansGrandStrategy.mp3
774. Chamberlain G P 2010 Understanding strategy Create Space Charleston South Carolina USA.
777. Ive J, Foulkes N March 6 2015 The man behind the Apple watch How to Spend It Financial Times London UK
http://mpra.ub.uni-muenchen.de/61681/,
http://mpra.ub.uni-muenchen.de/68404/,

Disruptive Innovation in Technology, Economics and Finances:

796. Christensen C M April 1999c Teradyne: The Aurora project & Teradyne: Corporate management of disruptive change, TN Harvard Business School Teaching Note 399 - 087.

799. Christensen C M 1999a Innovation and the general manager Irwin McGraw-Hill Homewood IL USA.

800. Christensen C M 1999b Impact of disruptive technologies in telecommunications in Bringing PC economies to the telecommunications industry PulsePoint Communications.

805. Christensen C M, Craig Th, Hart S March April 2001 The great disruption Foreign Affairs 80 no 2.

813. Christensen C M June 2002 The rules of innovation *Technology Review*.

817. Shah Ch D, Brennan T A, Christensen C M April 2003 Interventional radiology: Disrupting invasive medicine.

818. Christensen C M March April 2003 Beyond the innovator's dilemma *Strategy & Innovation* 1 no 1.

1244. Dobbs R, Woetzel J, Flanders St 2015 No ordinary disruption: The four global forces breaking all the trends Public Lecture on 08.06.2015 London School of Economics and Political Science London UK

Information Absorption in Economics, Finances, Business Administration Sciences and Information Asymmetry in Economics, Finances, Business Administration Sciences:

846. Farina V 2008 Network embeddedness, specialization choices and performance in investment banking industry University of Rome Tor Vergata Italy MPRA Paper no 11701 Munich University Munich Germany pp 1 – 26
http://mpra.ub.uni-muenchen.de/11701/.

Selected Research Papers in Macroeconomics, Microeconomics & Nanoeconomics Sciences:

847. Ledenyov V O, Ledenyov D O 2012a Shaping the international financial system in century of globalization Cornell University NY USA pp 1 – 20
848. Ledenyov V O, Ledenyov D O 2012b Designing the new architecture of international financial system in era of great changes by globalization Cornell University NY USA pp 1 – 18

850. Ledenyov D O, Ledenyov V O 2012b On the risk management with application of econophysics analysis in central banks and financial institutions Cornell University NY USA pp 1 – 10

851. Ledenyov D O, Ledenyov V O 2013a On the optimal allocation of assets in investment portfolio with application of modern portfolio management and nonlinear dynamic chaos theories in investment, commercial and central banks Cornell University NY USA pp 1 – 34

854. Ledenyov D O, Ledenyov V O 2013d To the problem of turbulence in quantitative easing transmission channels and transactions network channels at quantitative easing policy implementation by central banks Cornell University NY USA pp 1 – 40

855. Ledenyov D O, Ledenyov V O 2013e To the problem of evaluation of market risk of global equity index portfolio in global capital markets MPRA Paper no 47708 Munich University Munich Germany pp 1 – 25
http://mpra.ub.uni-muenchen.de/47708/ .

856. Ledenyov D O, Ledenyov V O 2013f Some thoughts on accurate characterization of stock market indexes trends in conditions of nonlinear capital flows during electronic trading at stock exchanges in global capital markets MPRA Paper no 49964 Munich University Munich Germany pp 1 – 52
http://mpra.ub.uni-muenchen.de/50235/,

http://mpra.ub.uni-muenchen.de/51176/,

http://mpra.ub.uni-muenchen.de/51903/,

http://mpra.ub.uni-muenchen.de/61946/,

http://mpra.ub.uni-muenchen.de/53780/,

Munich University Munich Germany, SSRN Paper no SSRN-id2560297 Social Sciences Research Network New York USA pp 1 – 175
http://mpra.ub.uni-muenchen.de/61863/ ,

http://mpra.ub.uni-muenchen.de/61805/ ,

865. Ledenyov D O, Ledenyov V O 2014f MicroLBO software program with the embedded optimized near-real-time artificial intelligence algorithm to create winning virtuous strategies toward leveraged buyout transactions implementation and to compute direct/reverse leverage buyout transaction default probability number for selected public/private companies during private equity investment in conditions of resonant absorption of discrete information in diffusion - type financial system with induced nonlinearities ECE James Cook University Townsville Australia, Kharkov Ukraine.

866. Ledenyov D O, Ledenyov V O 2015a Nonlinearities in microwave superconductivity 8th edition Cornell University NY USA pp 1 – 923

http://mpra.ub.uni-muenchen.de/61681/ ,

878. Ledenyov D O, Ledenyov V O 2015m Quantum money MPRA Paper no 67982 Munich University Munich Germany, SSRN Paper no SSRN-id2693128 Social Sciences Research Network New York USA pp 1 – 70

880. Ledenyov D O, Ledenyov V O 2015o MicroID software program with the embedded optimized near-real-time artificial intelligence algorithm to create the winning virtuous
business strategies and to predict the director’s election / appointment in the boards of directors in the firms, taking to the consideration both the director’s technical characteristics and the interconnecting interlocking director’s network parameters in conditions of the resonant absorption of discrete information in diffusion-type financial economic system with induced nonlinearities ECE James Cook University Townsville Australia, Kharkov Ukraine.

881. Ledenyov D O, Ledenyov V O 2015p MicroITF operation system and software programs: 1) the operation system to control the firm operation by means of the information resources near-real-time processing in the modern firms in the case of the diffusion-type financial economic system with the induced nonlinearities; 2) the software program to accurately characterize the director’s performance by means of a) the filtering of the generated/transmitted/received information by the director into the separate virtual channels, depending on the information content, and b) the measurement of the levels of signals in every virtual channel with the generated/transmitted/received information by the director, in the overlapping interconnecting interlocking directors networks in the boards of directors in the firms during the Quality of Service (QoS) measurements process; and 3) the software program to create the winning virtuous business strategies by the interlocking interconnecting directors in the boards of directors in the modern firms in the case of the diffusion-type financial economic system with the induced nonlinearities, using the patented recursive artificial intelligence algorithm ECE James Cook University Townsville Australia, Kharkov Ukraine.

882. Ledenyov D O, Ledenyov V O 2015r MicroIMF software program: the MicroIMF software program to make the computer modeling of 1) the interactions between the information money fields of one cyclic oscillation and the information money fields of other cyclic oscillation(s) in the nonlinear dynamic economic system, 2) the interactions between the information money fields of cyclic oscillation and the nonlinear dynamic economic system itself, and 3) the density distributions of the information money fields by different cyclic oscillations (the economic continuous waves) in the nonlinear dynamic economic system ECE James Cook University Townsville Australia, Kharkov Ukraine.

883. Ledenyov D O, Ledenyov V O 2015s MicroSA software program 1) to perform the spectrum analysis of the cyclic oscillations of the economic variables in the nonlinear dynamic economic system, including the discrete-time signals and the continuous-time signals; 2) to make the computer modeling and to forecast the business cycles for a) the central banks with the purpose to make the strategic decisions on the monetary policies,
financial stability policies, and b) the commercial/investment banks with the aim to make the business decisions on the minimum capital allocation, countercyclical capital buffer creation, and capital investments.

ECE James Cook University Townsville Australia, Kharkov Ukraine.

Probability Theory, Statistics Theory, Spectrum Analysis Theory, Brownian Movement Theory, Diffusion Theory, Chaos Theory, Information Communication Theory in Econometrics and Econophysics Sciences:

884. Huygens 1657 De ratiociniis in aleae ludo (On calculations in games of chance).

885. Bernoulli J 1713 Ars conjectandi (The art of guessing).

887. De Moivre 1730 Miscellanea analytica supplementum (The analytic method).

891. Bunyakovsky V Ya 1825 Rotary motion in a resistant medium of a set of plates of constant thickness and defined contour around an axis inclined with respect to the horizon Ph D Thesis no 1 under Prof. Augustin - Louis Cauchy supervision École Polytechnique Paris France.

895. Connor J J, Robertson E F (July) 2000 Viktor Yakovlevich Bunyakovsky (December 16, 1804 - December 12, 1889) School of Mathematics and Statistics University of St Andrews Scotland UK
http://www-history.mcs.st-andrews.ac.uk/Biographies/Bunyakovsky.html.

897. Chebyshev P L 1846 An experience in the elementary analysis of the probability theory Crelle’s Journal fur die Reine und Angewandte Mathematik.

904. Markov A A 1906 Extension of law of big numbers on variables, depending from each other Izvestiya Fiziko-Matematicheskogo Obschestva pri Kazanskom Universitete 2nd series vol 15 (94) pp 135 – 156 Russian Federation.

Germany; Extension of the limit theorems of probability theory to a sum of variables
connected in a chain Petelin S (translator) in Dynamic probabilities systems Howard R A
(editor) vol 1 pp 552 – 576 John Wiley and Sons Inc New York USA.

907. Markov A A 1910 Research on common case of trials, connected in chain Zapiski
Akademii Nauk po Fiziko-Matematicheskomu Otdeleniyu 8th series vol 25 (93)
Russian Federation.

908. Markov A A 1911 On one case of trials, connected in complex chain Izvestiya Akademii

909. Markov A A 1912 On trials of connected in chain unobserved events Izvestiya Akademii

910. Markov A A 1913 Example of statistical research on text of “Eugene Onegin”,
illustrating interconnection of trials in chain Izvestiya Akademii Nauk SPb 6th series vol 7

911. Fisher I 1892 Mathematical investigations in the theory of value and prices Transactions

912. Einstein A 1905 On the movement of small particles suspended in a stationary liquid

Dover New York USA.

914. Einstein A, Smolukhovsky M 1936 Brownian movement: Collection of research papers
ONTI Moscow Russian Federation.

Kiev Ukraine.

916. Slutsky E E 1912 Theory of correlation and elements of study about distribution curves

917. Slutsky E E 1913 On the criterion of goodness of fit of the regression lines and the best
method of fitting them to the data Journal Royal Statistics Society vol 77 part I pp 8 – 84.

918. Slutsky E E 1914 Sir William Petty: Short overview of his economic visions with
attachment of his several important research works Kiev Commerce Institute Bulletin 18
pp 5 – 48 Kiev Ukraine.

919. Slutsky E E 1915 Sulla teoria sel bilancio del consumatore Giornale degli economisti e
rivista di statistica 51 no 1 pp 1 – 26 Italy.

4 pp 104 – 120.
921. Slutsky E E 1922b To the question of logical foundations of probability calculation

922. Slutsky E E 1923a On the some patterns of correlation connection and the systematic
error of correlation coefficient Statistics Bulletin 1 – 3 pp 31 – 50.

923. Slutsky E E 1923b On a new coefficient of mean density of population Statistics Bulletin
4 – 6 pp 5 – 19.

924. Slutsky E E 1923c On calculation of state revenue from emission of paper money Local

926. Slutsky E E 1925b Ueber stochastische Asymptoten und Grenzwerte Metron Padova Italy
vol 5 no 3 pp 3 – 89.

927. Slutzhi E E 1926 Ein Beitrag zur Formal-praxeologischen Grundlegung der Oekonomik
Ann de la classe des sci soc-econ Akad Oukrainienne des Sciences Kiev Ukraine vol 4
pp 3 – 12.

928. Slutsky E E 1927a The summation of random causes as sources of cyclic processes
Problems of Conjuncture (Voprosy Kon’yunktury) vol 3 issue 1 pp 34 – 64 Moscow Russian
Federation.

929. Slutzhi E E 1927b Zur Kritik des Bohm-Bawerkschen Wertbegriffes und seiner Lehre von
der Messbarkeit des Wertes Schmollers Jb 51 (4) pp 37 – 52.

930. Slutsky E E 1929 Sur l’erreur quadratique moyenne du coefficient de correlation dans le
cas des suites des epreuves non independantes Comptes rendus 189 pp 612 – 614.

931. Slutsky E E 1935 To the extrapolation problem in connection with forecast problem

932. Slutsky E E 1937a Quelche propositione relative alla teoria delle funzioni aleatorie
Giornale dell Istituto Italiano degli Attuari 8 no 2 pp 3 – 19.

933. Slutsky E E 1937b The summation of random causes as the source of cyclical processes
Econometrica 5 pp 105 – 146.

pp 18 – 21.

935. Slutsky E E 1960 Selected research works (Izbrannye trudy) Academy of Sciences of
USSR Moscow Russian Federation.

UK.

946. Cramer H 1946 Mathematical methods of statistics *Princeton University Press* USA.

950. Neyman J, Scott E L 1948 Consistent estimates based on partially consistent observations *Econometrca* 16 pp 1 – 32.

Mandelbrot B B 1963a The stable Paretian income distribution when the apparent exponent is near two *International Economic Review* vol 4.

Mandelbrot B B 1963b The variation of certain speculative prices *Journal of Business* vol 36 pp 394 – 419.

Mandelbrot B B 1967a The variation of some other speculative prices Journal of Business vol 40 pp 393 – 413.

Mandelbrot B B (April) 1967b Some noises with 1/f spectrum: A bridge between direct current and white noise *IEEE Transactions on Information Theory* USA.

Mandelbrot B B 1969 Robustness of the rescaled range R/S in the measurement of non-cyclic long-run statistical dependence *Water Resources Research* vol 5 no 5 pp 967 – 988.

Mandelbrot B B 1977 Fractals: Form, chance and dimension *W H Freeman* San Francisco USA.

Mandelbrot B B 1982 The fractal geometry of nature *W H Freeman* San Francisco USA.

Mandelbrot B B 1997 Fractals and scaling in finance *Springer* New York USA.
972. Gnedenko B V, Khinchin A Ya 1961 An elementary introduction to the theory of probability *Freeman* San Francisco USA.

979. Shiryaev A N 1967 Two problems of sequential analysis *Cybernetics* 3 pp 63 – 69.

984. Shiryaev A N 1988 Probability *Springer-Verlag* Berlin Heidelberg Germany.

1014. Lamperti J 1966 Probability *Benjamin* New York USA.

1020. Breiman L 1968 Probability *Addison-Wesley* Reading MA USA.

1048. Taylor S 1986 Modeling financial time series *John Willey and Sons Inc* New York USA.

1049. Tong H 1986 Nonlinear time series *Oxford University Press* Oxford UK.

1056. Lancaster T 1990 The econometric analysis of transition data *Cambridge University Press* Cambridge UK.

1060. Cleveland W S 1993 Visualizing data *Hobart Press* Summit New Jersey USA.

1061. Pesaran M H, Potter S M (editors) 1993 Nonlinear dynamics, chaos and econometrics *John Willey and Sons Inc* New York USA.

1068. Moore G E 2003 No exponential is forever – but we can delay forever ISSCC.

1077. Hubbard B B 1998 The world according to wavelets A K Peters Wellesley MA USA.

1079. Teolis A 1998 Computational signal processing with wavelets Birkhauser Switzerland.

1086. Hayashi F 2000 Econometrics *Princeton University Press* Princeton NJ USA.

1095. Woolridge J M 2002 Econometric analysis of cross section and panel data *MIT Press* Cambridge MA USA.

Weatherall J O 2013 Physics of Wall Street Houfton New York USA.

Quantum Physics, Quantum Electronics, Quantum Computing, Quantum Mechanics:

1106. Planck M 1900a Über eine Verbesserung der Wienschen Spektralgleichung On an improvement of Wien's equation for the spectrum Verhandlungen der Deutschen Physikalischen Gesellschaft 2 pp 202 – 204
http://archive.org/stream/verhandlungende01goog#page/n212/mode/2up .

http://archive.org/stream/verhandlungende01goog#page/n246/mode/2up .

1108. Planck M 1900c Entropie und Temperatur strahlender Wärme Entropy and temperature of radiant heat Annalen der Physik 306 (4) pp 719 – 737

1111. Planck M 1903 Treatise on thermodynamics Longmans, Green & Co London UK
http://archive.org/stream/treatiseonthermo00planuoft#page/n7/mode/2up ,
1112. Planck M 1906 Vorlesungen über die Theorie der Wärmestrahlung *JA Barth* Leipzig Germany
http://lccn.loc.gov/07004527.

1113. Planck M 1914 The theory of heat radiation 2nd edition *P Blakiston's Son & Co*
http://openlibrary.org/books/OL7154661M.

http://adsabs.harvard.edu/abs/1943NW.....31..153P,
https://dx.doi.org/10.1007%2FBF01475738.

1116. Einstein A 1905 Zur Elektrodynamik bewegter Körper On the electrodynamics of moving bodies *Annalen der Physik* Berlin Germany (in German) **322** (10) pp 891 – 921
http://onlinelibrary.wiley.com/doi/10.1002/andp.19053221004/pdf,
http://adsabs.harvard.edu/abs/1905AnP...322..891E,
http://dx.doi.org/10.1002%2Fandp.19053221004.

1117. Einstein A 1917 Zur Quantentheorie der Strahlung On the quantum mechanics of radiation *Physikalische Zeitschrift* (in German) **18** pp 121 – 128
http://adsabs.harvard.edu/abs/1917PhyZ...18..121E.

http://echo.mpiwg-berlin.mpg.de/MPIWG:DRQK5WYB.

http://journals.aps.org/pr/pdf/10.1103/PhysRev.47.777,
http://adsabs.harvard.edu/abs/1935PhRv...47..777E,
https://dx.doi.org/10.1103%2FPhysRev.47.777.

 http://www.cond-mat.physik.uni-mainz.de/~oettel/ws10/bks_PhilMag_47_785_1924.pdf,
 https://dx.doi.org/10.1080%2F14786442408565262 .

1123. de Broglie L 1924, 1925 Recherches sur la théorie des quanta Researches on the quantum

1124. de Broglie L 1926 Ondes et mouvements Waves and motions *Gauthier-Villars* Paris
 France.

1125. de Broglie L 1927 Rapport au 5e Conseil de Physique Solvay Brussels Belgium.

1126. de Broglie L 1928 La mécanique ondulatoire Wave mechanics *Gauthier-Villars* Paris
 France.

 Nostrand Company Inc* New York USA
 https://www.worldcat.org/oclc/1871779 .

1128. Compton A; Allison S K 1935 X-Rays in theory and experiment *D Van Nostrand
 Company Inc* New York USA
 https://www.worldcat.org/oclc/853654 .

1129. Schrödinger E 1926 Quantisierung als Eigenwertproblem *Annalen der Phys* 384 (4)
 pp 273 – 376
 http://adsabs.harvard.edu/abs/1926AnP...384..361S ,
 https://dx.doi.org/10.1002%2Fandp.19263840404 .

1130. Schrödinger E 1935 Die gegenwärtige situation in der quantenmechanik (The present
 situation in quantum mechanics) *Naturwissenschaften* 23 (49) pp 823807 – 828812.

1131. Fermi E 1934 Radioattività indotta da bombardamento di neutroni *La Ricerca scientifica
 1* (5) p 283 (in Italian)

1132. Fermi E, Amaldi E, d'Agostino O, Rasetti F, Segre E 1934 Artificial radioactivity
 produced by neutron bombardment *Proceedings of the Royal Society A: Mathematical,
 Physical and Engineering Sciences* 146 (857) p 483
 http://adsabs.harvard.edu/abs/1934RSPSA.146..483F ,
 https://dx.doi.org/10.1098%2Frspsa.1934.0168 .

99
1133. Townes Ch 1939 Concentration of the heavy isotope of carbon and measurement of its nuclear spin *PhD thesis* Caltech California USA
http://thesis.library.caltech.edu/4202/.

http://adsabs.harvard.edu/abs/1955PhRv...99.1264G,
https://dx.doi.org/10.1103%2FPhysRev.99.1264.

1136. von Neumann J 1955 Mathematical foundations of quantum mechanics *Princeton University Press* Princeton NJ USA.

http://adsabs.harvard.edu/abs/1956PhRv..102.1308S,
https://dx.doi.org/10.1103%2FPhysRev.102.1308.

1138. Townes Ch H 1964 Nobel Prize in Physics Stockholm Sweden

1139. Townes Ch H 1966 Obtaining of coherent radiation with help of atoms and molecules *Uspekhi Fizicheskikh Nauk (UFN)* vol 88 no 3.

1140. Townes Ch H 1969 Quantum electronics and technical progress *Uspekhi Fizicheskikh Nauk (UFN)* vol 98 no 5.

http://www.springer-sbm.de/index.php?id=121&L=0.

1156. Schawlow A, Townes Ch 1958 Infrared and optical masers Physical Review 112 (6) p 1940
http://dx.doi.org/10.1103%2FPhysRev.112.1940 ,
http://adsabs.harvard.edu/abs/1958PhRv..112.1940S.

1158. Schawlow A 1964 Nobel Prize in Physics Stockholm Sweden

1167. Petersen A 1968 Quantum physics and philosophical tradition MIT Press Cambridge USA.

1177. Mygind J 1997 Private communications on the new sources of noise in the single electron transistors Department of Physics Technical University of Denmark Lyngby Denmark.

Wave Function in Schrödinger Quantum Mechanical Wave Equation in Quantum Mechanics:

http://journals.aps.org/pr/pdf/10.1103/PhysRev.47.777 ,
http://adsabs.harvard.edu/abs/1935PhRv...47..777E ,
https://dx.doi.org/10.1103%2FPhysRev.47.777.

Artificial Intelligence Science, Computer Science:

Continuous Time Signal, Analog Signals, Discrete Time Signal, Digital Signals, Spectrum of Signals, Electromagnetic Field, Gravitation Field, Calibrating Field, Information Field Theories in Physics and Engineering Sciences:

1242. Maxwell J C 1890 Introductory lecture on experimental physics in Scientific papers of J C Maxwell Niven W D (editor) vols 1, 2 Cambridge UK.

1244. Walsh J L 1923b A property of Haar’s system of orthogonal functions Math Ann 90 p 3845.

1255. Fountain T 1987 Processor arrays, architecture and applications Academic Press London UK.

 Upper Saddle River NJ USA.
 941413-35-7.
 Chichester UK.
 University Press Oxford UK.
1271. Wanhammar L 1999 DSP integrated circuits Academic Press San Diego California USA
 USA.
1274. McMahon D 2007 Signals and systems demystified McGraw Hill New York USA
 Englewood Cliffs NJ USA.
1276. Wikipedia 2015e Signal (electrical engineering) Wikipedia Inc USA
1277. Wikipedia 2015f Continuous wave Wikipedia Inc USA
1278. Wikipedia 2015g Discrete-time signal Wikipedia Inc USA
1279. Wikipedia 2015h Hadamard code Wikipedia USA
1280. Ledenyov D O, Ledenyov V O 2015a Nonlinearities in microwave superconductivity
 8th edition Cornell University NY USA pp 1 – 923