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1 Introduction

Once the nominal interest rate reaches the zero lower bound (ZLB), monetary policy

looses the ability to stimulate the economy by further reducing the nominal interest rate.

Yet, the monetary authority retains the ability to stimulate by promising a path for

future interest rates which can raise expected inflation, thereby reducing the current real

interest rate. Conventional monetary policy, defined as setting current and future short-

term interest rates, retains a role at the ZLB when the monetary authority is willing to

announce "forward guidance" for short-term rates.

In the standard New Keynesian model, monetary policy is characterized by a Taylor

Rule, whereby the nominal interest rate is set to equal a target, comprised of the sum of

targets for the real interest rate and inflation, and to respond strongly to deviations of

inflation and output from their respective targets. Woodford (2003, p. 287) argues that

when all shocks are to demand, a Taylor Rule with a time-varying interest rate target

equal to the natural rate, implements optimal monetary policy. Setting the nominal

interest rate equal to the natural rate assures that both the output gap and inflation are

zero. The strong response of the interest rate to deviations of inflation and output from

their targets eliminates sunspot equilibria, thereby assuring that the equilibrium is locally

unique.

The monetary authority cannot set the nominal interest rate equal to the natural rate,

as required by Woodford’s implementation of optimal monetary policy with the Taylor

Rule, when the natural rate is negative. We show that there is a Taylor-Rule policy for

exiting the ZLB, which can implement optimal monetary policy at the ZLB. The monetary

authority must make two changes to Woodford’s Taylor Rule. First, it must announce the

first date on which the Taylor Rule applies, an exit date, setting the nominal interest rate

to zero until that date. Second, the monetary authority modifies the Taylor Rule with

an inflation target which declines at a fixed rate after the exit date.1 This Taylor-Rule

exit policy differs from a "truncated" version of Woodford’s Taylor Rule on two counts.

First, exit is postponed beyond the date on which the natural rate first becomes positive;

second, exit occurs at a non-zero inflation target.

We show that when the policy parameters are chosen optimally, commitment to the

optimal Taylor-Rule exit policy implements optimal monetary policy at the ZLB. The

1There is empirical evidence supporting the hypothesis that actual monetary policy has operated
with a time-varying inflation target in the Taylor Rule. Ireland (2007) argues that US inflation can be
explained by a New Keynesian model with a Taylor Rule only if the inflation target is allowed to vary
over time. Additionally, Kozicki and Tinsley (2001), Rudebusch and Wu (2004) and Gurkaynak, Sack
and Swanson (2005) provide evidence of a time-varying short-run inflation target for the US.
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postponed exit date provides stimulus since the interest rate will be kept at zero even

after the natural rate becomes positive. The optimal inflation target is negative, allowing

the monetary authority to smooth the squared deviations of the output gap and inflation,

responsible for welfare, reducing the large early deviations at the expense of creating

small negative deviations later. The welfare gains over a truncated Taylor Rule can

be large. Using our benchmark parameter values, over a range of adverse shocks for

which the initial natural interest rate varies between -0.58% to -4.97% at an annual rate,

loss with the truncated Taylor Rule ranges from 2.5 to 7 times the loss under optimal

policy. However, the optimal Taylor-Rule exit policy requires commitment to future

deflation and recession, a requirement which could prove difficult politically. And the

policy requires communicating both an exit time and the path for an inflation target

upon exit, communication which could be complicated.

We also consider an alternative Taylor-Rule exit policy in which the monetary au-

thority commits only to a particular exit time in the future, with this exit time chosen

optimally, subject to a zero inflation target. We find that this T-only policy achieves

almost all of the welfare gains of moving from a truncated Taylor Rule to the optimal

Taylor-Rule exit policy. Additionally, communication of this policy is particularly simple,

requiring announcement of the exit date, upon which the monetary authority will return

to letting the nominal rate follow the natural rate. These results justify the US Federal

Reserve policy of announcing that the nominal interest rate would be fixed near zero for

a "considerable period" of time, without any additional announcement of future recession

or deflation.

Our paper is related to other papers which address monetary policy at the ZLB. Adam

and Billi (2006, 2007) and Nakov (2008) have analyzed optimal policy under discretion

and under commitment when autoregressive demand shocks yield the possibility of the

ZLB. They do not explicitly consider implementation, communication, or the Taylor Rule.

Cochrane (2013) shows that the discretionary commitment to exit the ZLB with zero

values for inflation and the output gap yields a unique equilibrium at the ZLB. But, he

also argues that if the policy maker could commit to exit the ZLB at different values for

inflation and the output gap, this could yield a preferable equilibrium during the ZLB.

Krugman (1998), Eggertson and Woodford (2003), Adam and Billi (2006), and Nakov

(2008) demonstrate that optimal monetary policy with commitment relies on an increase

in inflationary expectations to leave the ZLB. Levin, Lopez-Salido, Nelson, and Yun (2009)

argue that, when the shock sending the economy to the ZLB is large and persistent, the

stimulus, which conventional monetary policy can provide at the ZLB, is not sufficient to
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prevent a sizeable recession.

These policies work within the confines of a simple New Keynesian model, in which

the effects of monetary policy are transmitted through the real interest rate. Much of

the literature on monetary policy in a liquidity trap expands policy to unconventional

methods, which are effective to the extent that financial-market arbitrage is imperfect,

that the monetary authority assumes risk on its balance sheet, and/or the quantity of

money has an effect on the economy independent of its effect on the real interest rate.

These policies are interesting and potentially useful, but the simple New Keynesian model

is not complex enough to provide a role for them.2 In a similar context, Williamson (2010)

argues that there is no ZLB, in the sense that the monetary authority can always find

some stimulative instrument. This instrument can be unconventional monetary policy,

but we argue that it can also be a commitment to a Taylor-Rule exit policy.

Additionally, Christiano, Eichenbaum, and Rebelo (2009), Woodford (2011), Werning

(2012), Erceg and Linde (2014), among others, have considered the implications of using

fiscal policy when monetary policy loses its effectiveness.3 Understanding the effectiveness

of fiscal policy at the ZLB, together with its interactions with conventional and unconven-

tional monetary policy is interesting and important, but is not the subject of this paper.

Our focus is more narrow — what can the monetary authority do in the absence of fiscal

cooperation in the stimulus effort?

This paper is organized as follows. Section 2 presents the simple New Keynesian

model with a Taylor Rule for monetary policy. The next sections provide solutions under

certainty. Section 3 provides the solution with commitment to the optimal Taylor-Rule

exit policy. Section 4 provides the solution with commitment to optimal monetary policy,

and Section 5 shows that, with parameter values optimally chosen, the Taylor-Rule exit

policy implements optimal monetary policy. Section 6 solves numerically for optimal

values of the exit time and inflation target upon exit for the optimal Taylor-Rule exit

policy. Section 7 solves the model under the T-only policy. Section 8 extends the results

to uncertainty and Section 9 concludes.

2Examples of unconventional monetary policy include Auerbach and Obstfeld (2004), Blinder (2000,
2010), Bernanke (2002), Bernanke and Reinhart (2004), Bernanke, Reinhart and Sack (2004), Clouse
et.al. (2003) and Gurkaynak, Sack and Swanson (2004,2005).

3Some unconventional monetary policies are arguable fiscal policies.
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2 Simple New Keynesian Model with Taylor Rule

Following Woodford (2003) and Walsh (2010), we represent the simple standard lin-

earized New Keynesian model as an IS curve, derived from the Euler Equation of the

representative agent, and a Phillips Curve, derived from a model of Calvo pricing (Calvo,

1983). The linearization is about an equilibrium with a long-run inflation rate of zero.4

yt = Et (yt+1)− σ [it − rnt − Etπt+1] (1)

πt = βEt (πt+1) + κyt. (2)

In these equations yt denotes the output gap; inflation (πt) is the deviation about a

long-run value of zero; it denotes the nominal interest rate, with a long-run equilibrium

value of r = 1−β
β
, where r is defined as the long-run real interest rate and rnt as the natural

rate of interest; σ represents the intertemporal elasticity of substitution with σ ≥ 1; κ

represents the degree of price stickiness;5 β ∈ (0, 1) denotes the discount factor. The

natural rate of interest embodies the combination of the long-run natural rate together

with shocks associated with preferences, technology, fiscal policy, etc. Following Woodford

(2003, Chapter 4), we do not add an independent shock to inflation in the Phillips Curve.6

This restricts the analysis to the case where monetary policy faces no trade-off between

inflation and the output gap.

We assume that, if the economy has not recently experienced the zero lower bound,

the monetary authority sets the nominal interest rate according to a Taylor Rule, given

by

it = rnt + π
∗

t+1 + φπ (πt − π∗t ) + φy (yt − y∗t ) , (3)

where π∗t represents a potentially time-varying inflation target and y
∗

t is the output target,
7

4This does not require that the inflation rate be zero in the long run, only that it not be so far from
zero to make the linearization inappropriate (Woodford 2003, p. 79).

5κ = (1−s)(1−βs)
s

σ−1+ω
1+ωε , where s ∈ (0, 1) represents the fraction of randomly selected firms that cannot

adjust their price optimally in a given period. Therefore, s = 0 ⇒ κ → ∞ ⇒ complete flexibility and
s = 1⇒ κ = 0⇒ complete stickiness. Hence, κ ∈ (0,∞)⇒ incomplete flexibility. ω > 0 is the elasticity
of firm’s real marginal cost with respect to its own output, ε > 0 is the price elasticity of demand of the
goods produced by monopolistic firms. See, Adam and Billi (2006) and Woodford (2003) for details.

6Adam and Billi (2006) demonstrate that calibrated supply shocks are not large enough to send the
economy to the zero lower bound.

7This specification for target output follows Woodford (2003), p. 246. He sets target output equal to
the solution of equation (2) with inflation set at target inflation. Ours differs because the target inflation
can vary over time.
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given by

y∗t =
π∗t − βπ∗t+1

κ
. (4)

This Taylor Rule has two distinguishing characteristics. First, it allows a potentially time-

varying inflation target. In periods for which the zero lower bound is distant history, the

optimal value for the inflation target is zero, and we assume that the monetary authority

chooses an inflation target of zero in these circumstances. Second, Woodford (2003) has

shown that optimal policy requires allowing the nominal rate to vary with the natural

rate, yielding a time-varying intercept. Since we allow a potentially time-varying inflation

target, our intercept varies not only with the natural rate, but also with the inflation

target.

The equilibrium solution for the output gap and inflation is independent of the values

for ϕπ and ϕy as long as they are large enough to assure two unstable roots.
8 Therefore,

it is important to understand the role of these policy parameters. The promise to respond

strongly to any sunspot shocks that raise inflation and/or output, in Cochrane’s (2011)

words, "to blow up the economy" in the event of sunspot shocks, serves to rule out

sunspot equilibria and to assure a locally unique equilibrium. This requires that the

monetary authority be completely transparent, communicating the intention to "blow up

the economy" and that this threat be completely credible. This is because ϕπ and ϕy

do not show up in the equilibrium solution and therefore cannot be inferred from any

observable evidence.9

The monetary authority can follow the Taylor Rule, described by equation (3), as

long as it yields a positive nominal interest rate. Once the natural rate of interest falls

below zero, the Taylor Rule becomes infeasible. We follow Jung, Teranishi, and Watanabe

(2005) by assuming that a large adverse shock creates the ZLB. Additionally, the shock is

autoregressive and vanishes at a fixed rate. Specifically, we assume that in period t = 1 a

large adverse shock to the natural rate sends the nominal interest rate in the Taylor Rule

to zero. The shock (υ) deteriorates at rate ξ such that

rnt = rn + σ−1ξt−1υ.

8The criteria for two unstable roots is: κ (ϕπ − 1) + (1− β)ϕy > 0.
9Cochrane (2011) emphasizes that at the optimal equilibrium, values for ϕπ and ϕy do not affect the

equilibrium. Woodford (2003, p. 288) makes the same point. If there were shocks to the Phillips Curve,
or if the intercept to the Taylor Rule did not vary optimally, then we would have evidence on the values
of ϕπ and ϕy. However, we would not have evidence that the monetary authority would actually "blow
up" the economy in the event of a sunspot shock.
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where, rn = r = 1−β
β
. In order to obtain analytical results, we continue to follow Jung et

al (2005) and assume that there are no other shocks, restricting our solution to certainty.

We extend the results to include uncertainty in the natural rate of interest in Section 9.

Nakov (2008) considered a "truncated" Taylor Rule, in which the monetary authority

follows a Taylor Rule10 whenever it implies a positive nominal interest rate and otherwise

sets the nominal rate to zero. In this paper, we offer two alternative Taylor-Rule modifi-

cations. Both allow conventional monetary policy to retain stimulative effects at the ZLB,

in contrast to the truncated Taylor Rule. In the first, the monetary authority commits to

an exit date, whereupon it will begin to follow a Taylor rule with an announced inflation

target, which declines at an announced rate. In the second, the monetary authority only

commits to follow the Taylor Rule on an announced exit date.

3 Solution with Full Commitment to a Taylor-Rule

Exit Policy

The Taylor-Rule exit policy requires that the monetary authority announce an exit

policy whereby it promises to implement equation (3) with inflation target

π∗T+1+i = ρiππ
∗ i ≥ 0,

on its chosen exit date (T + 1) . The choice of the time-varying inflation target requires

that the monetary authority choose two parameters, the inflation target on the exit date

(π∗) , and the rate at which it declines (ρπ). Prior to the announced exit date, the nominal

interest rate remains zero. The monetary authority must be able to fully commit.

We follow Jung et all (2005) and separate the solution into two phases, one after

exiting the ZLB and the other before.

3.1 Solution on Exit Date from ZLB Forward

Substituting the interest rate from the Taylor Rule (3), and target output, from equa-

tion (4) using πt+1 from equation (2), into the demand equation (1) yields a two-equation

system given by

yt+1 =

[
1 + σ

(
φy +

κ

β

)]
yt + σ

(
φπ −

1

β

)
πt − σεt+1, (5)

10Nakov’s (2008) Taylor Rule does not have a time-varying intercept.
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πt+1 = −
κ

β
yt +

1

β
πt, (6)

where

εt+1 = zπ∗t z = φπ − ρπ +
φy

κ
(1− βρπ) .

When φy and φπ are chosen large enough to satisfy the Taylor Principle, as we assume

here, both roots, denoted by γ1 and γ2, are larger than one. We solve forward, with both

the output gap and inflation determined to eliminate the two unstable roots, yielding

values for initial conditions upon exit as

yT+1 =
(1− βρπ) σz

β (γ1 − ρπ) (γ2 − ρπ)
π∗, (7)

πT+1 =
κσz

β (γ1 − ρπ) (γ2 − ρπ)
π∗. (8)

Note that yT+1 and πT+1 are related by

yT+1 =
(1− βρπ)

κ
πT+1. (9)

Values for the output gap and inflation beyond the exit date are governed by the

monetary authority’s choices for the inflation target, π∗ and the rate at which the target

vanishes, ρπ. We can write the solution either in terms of π
∗ and ρπ, or, using equation

(8), in terms of πT+1 and ρπ. For t ≥ T + 1, the appendix shows that values are given by

yt =
(1− βρπ)

β (γ1 − ρπ) (γ2 − ρπ)
σzρt−(T+1)π π∗ =

(1− βρπ)

κ
ρt−(T+1)π πT+1, (10)

πt =
κ

β (γ1 − ρπ) (γ2 − ρπ)
σzρt−(T+1)π π∗ = ρt−(T+1)π πT+1. (11)

The nominal interest rate is set to achieve these values for the output gap and inflation.

From equation (1), the nominal interest rate on the date of exit from the ZLB and beyond

(t ≥ T + 1) is

it = rnt + πt+1 +
1

σ
(yt+1 − yt) , t ≥ T + 1.

3.2 Solution Prior to Exit ZLB

Equations (1) and (2), with the nominal interest rate set to zero, yield solutions for

the output gap and inflation prior to exit. One root is less than one and one is greater.

We denote the stable root by ω1 and the unstable one by ω2. The solutions are subject
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to the terminal conditions given by equations (7) and (8).

Equations (41) and (42) in the appendix contain solutions as

yt =
1

κ(ω2−ω1)

[(
1
ω1

)T+1−t
(ω2 − ρπ) (1− βω1) +

(
1
ω2

)T+1−t
(ρπ − ω1) (1− βω2)

]
πT+1

+ σ
β(ω2−ω1)

T∑

k=t

[(
1
ω1

)k+1−t
(1− βω1)−

(
1
ω2

)k+1−t
(1− βω2)

]
rnk ,

(12)

πt =
1

(ω2−ω1)

[(
1
ω1

)T+1−t
(ω2 − ρπ) +

(
1
ω2

)T+1−t
(ρπ − ω1)

]
πT+1

+ σκ
β(ω2−ω1)

T∑

k=t

[(
1
ω1

)k+1−t
−
(
1
ω2

)k+1−t]
rnk .

(13)

These equations illustrate how the Taylor-Rule exit policy affects the behavior of the

output gap and inflation during the period of the ZLB. If we were truncating the Taylor

Rule, then the only terms determining the output gap and inflation at the ZLB would be

those with the natural rate of interest, while the natural rate is negative. For standard

parameter values, the terms multiplying the natural rates are positive. Therefore, the

negative natural rate terms yield negative effects.

The Taylor-Rule exit policy adds terms with positive natural rates up until the last

period prior to the chosen exit date, providing a stimulative effect. The stimulus is

greater the more natural rate terms are added, that is, the further into the future exit

is postponed. The Taylor-Rule exit policy also adds a term with the value of inflation

upon exit (πT+1). The term multiplying πT+1 is positive and increasing in T . Therefore,

a positive value of inflation upon exit also provides stimulus. From equation (8), the

monetary authority chooses values for the inflation target (π∗) and the rate at which the

inflation target vanishes (ρπ) , thereby choosing the value of inflation upon exit (πT+1) .

To gain insight on how optimal values for the policy parameters are determined under

an optimal Taylor-Rule exit policy, we turn to the solution for fully optimal policy.

4 Solution under Optimal Policy

Under fully optimal policy the standard presentation has the monetary authority di-

rectly choose values for the output gap, inflation, and the nominal interest rate, subject

to equations (1) and (2) and to the restriction that the nominal interest rate be positive,

to maximize utility of the representative agent. We use Woodford’s (2003) linear approx-
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imation to the utility function of the representative agent when equilibrium inflation is

zero and the flexible-price value for output is efficient. The Lagrangian is given by

L1 =
∞∑

t=1

βt−1
{
−
1

2

(
π2t + λy2t

)
− φ1,t [σ (it − rnt − πt+1)− yt+1 + yt]− φ2,t [πt − κyt − βπt+1] + φ3,tit

}
,

where the third restriction represents the inequality constraint on the nominal interest

rate. First order conditions with respect to πt, yt, and it respectively are

φ2,t − φ2,t−1 + πt − σβ−1φ1,t−1 = 0, (14)

φ1,t − β−1φ1,t−1 + λyt − κφ2,t = 0, (15)

−σφ1,t + φ3,t = 0 φ3,tit ≥ 0 φ3,t ≥ 0 it ≥ 0. (16)

Equations (16) reveal that when the nominal interest rate is zero, in the period of the

ZLB, that φ3,t is weakly positive, implying that φ1,t is weakly positive. In the period

after exit from the ZLB, the nominal interest rate becomes positive, moving φ3,t to zero,

implying that φ1,t is zero.

4.1 Solution for Output Gap and Inflation after Exit from ZLB

(t ≥ T + 2)

Exit from the ZLB occurs in period T + 1. After exit, φ1,t = 0 and it ≥ 0. We begin

the solution with period T +2 instead of period T +1, since φ1,T+1 = 0, but its lag
(
φ1,T

)

could be positive. The equations of the model become

yt+1 = yt + σ (it − rnt − πt+1) , (17)

πt+1 = −
κ

β
yt +

1

β
πt, (18)

φ2,t − φ2,t−1 + πt = 0, (19)

λyt − κφ2,t = 0. (20)

First difference equation (20) to yield

yt+1 − yt =
κ

λ

(
φ2,t+1 − φ2,t

)
.
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Substitute from equation (19) to yield

yt+1 − yt = −
κ

λ
πt+1 =

κ

λ

(
κ

β
yt −

1

β
πt

)
. (21)

Equations (18) and (21) can be solved to yield values for output and inflation in periods

T + 2 and beyond with initial values in period T + 1.

One root exceeds unity and the other is less than unity. Letting ψ2 be the smaller

stable root, initial values for output and inflation must lie along the saddlepath, thereby

eliminating the unstable root, and requiring

yT+1 =
(1− βψ2)

κ
πT+1 =

κψ2
λ (1− ψ2)

πT+1, (22)

where the second equality uses the characteristic equation for the system.11 Solutions

depend on the initial conditions, determined to assure stability after exit, and the stable

root. Equations (45) and (46) in the appendix yield solutions for t ≥ T + 1 as

yt =

(
1− βψ2

κ

)
ψ
t−(T+1)
2 πT+1, (23)

πt = ψ
t−(T+1)
2 πT+1. (24)

The optimal values for T and πT+1 are unique and are provided by solution for the

multipliers below in Section 6. These solutions provide guidance on how the monetary

authority, operating the Taylor-Rule exit policy, should optimally choose policy parame-

ters.

4.2 Solution Prior to Exit the ZLB

The solution for yt and πt, prior to exiting the ZLB, is similar to that under the Taylor-

Rule exit policy because, with the nominal interest rate set equal to zero, the dynamic

behavior of the output gap and inflation is governed by identical equations. The only

difference is that the relationship between output and inflation at T + 1 is governed by

ψ2 in equations (22) instead of by ρπ in equation (9). Solutions are given by

11The second expression is identical to that in Jung et al (2005).
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yt =
1

κ (ω2 − ω1)

[(
1

ω1

)T+1−t
(ω2 − ψ2) (1− βω1) +

(
1

ω2

)T+1−t
(ψ2 − ω1) (1− βω2)

]

πT+1

+
σ

β (ω2 − ω1)

[
T∑

k=t

(
1

ω1

)k+1−t
(1− βω1)−

(
1

ω2

)k+1−t
(1− βω2)

]

rnk , (25)

πt =
1

(ω2 − ω1)

[(
1

ω1

)T+1−t
(ω2 − ψ2) +

(
1

ω2

)T+1−t
(ψ2 − ω1)

]

πT+1

+
σκ

β (ω2 − ω1)

[
T∑

k=t

(
1

ω1

)k+1−t
−

T∑

k=t

(
1

ω2

)k+1−t]

rnk . (26)

These equations yield the same insights about how policy can affect the time paths of

the output gap and inflation during the ZLB. Postponing exit time (T + 1) beyond the

date on which the natural rate becomes positive adds terms with positive values of the

natural rate, creating stimulus. The term multiplying inflation upon exit is positive and

increasing in T . Therefore, a positive value of inflation upon exit (πT+1) also provides

stimulus.

5 Equivalence between Full Commitment to the Taylor-

Rule Exit Policy and Optimal Policy

Theorem: If the monetary authority chooses its policy parameters, T + 1,

ρπ, and π
∗, optimally, then the Taylor Rule exit policy implements optimal

monetary policy.

Proof: Solutions for the output gap and inflation before exit under the Taylor

Rule, equations (12) and (13), are equivalent to those under optimal policy

after exit, equations (25) and (26), if the monetary authority chooses ρπ = ψ2,

chooses T equal to its optimal value, and chooses π∗ to yield the optimal

inflation rate upon exit, πT+1. The last choice requires a value of the inflation

target given by

π∗ =
β (γ1 − ρπ) (γ2 − ρπ)

κσz
πT+1.

Additionally, these choices imply that solutions for values of the output gap
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and inflation after exit under the Taylor Rule, given by equations (10) and (11),

are identical to solutions after exit under optimal policy, given by equations

(23) and (24).

Therefore, the monetary authority can implement optimal policy by postponing exit

from the ZLB until the optimal exit time, choosing an inflation target in the Taylor Rule

compatible with the optimal value of inflation upon exit, and allowing the target to vanish

at a rate given by the value of the stable root with optimal policy after exit (ρπ = ψ2) .

Since agents are familiar with the Taylor Rule, and the addition of a time-varying

inflation target is a small modification, the Taylor-Rule exit policy provides a way to

implement and communicate optimal policy during and following a zero lower bound

event. Full commitment to the Taylor-Rule exit policy is an optimal policy.

Optimal exit time and the optimal inflation target are determined by continuing to

solve the optimal monetary policy problem for the multipliers.

6 Optimal Exit Time and Inflation Value

6.1 Analytical Solution

For t ≥ T + 2, equation (20), together with equation (23), yields a solution for φ2,t

given by

φ2,t =
λ

κ
yt =

ψ2
(1− ψ2)

ψ
t−(T+1)
2 πT+1.

Therefore, the solution for φ2,T+2 is given by

φ2,T+2 =
ψ2

(1− ψ2)
ψ2πT+1. (27)

We need solutions for φ2,T+1, φ2,T , and φ1,T . In period T + 1, the period of exit,

equations (14) and (15) with φ1,T+1 = 0 yield

φ2,T+1 − φ2,T + πT+1 − σβ−1φ1,T = 0, (28)

−β−1φ1,T + λyT+1 − κφ2,T+1 = 0. (29)

In period T + 2, these equations imply

φ2,T+2 − φ2,T+1 + πT+2 = 0,
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λyT+2 − κφ2,T+2 = 0.

Solving these equations, together with equation (22), yields

φ1,T = 0,

φ2,T =
1

(1− ψ2)
πT+1, (30)

φ2,T+1 =
ψ2

(1− ψ2)
πT+1 = ψ2φ2,T .

Solution for optimal values of πT+1 and T , requires solutions for the multipliers leading

up to and including the exit period. The equations for the output gap and inflation for

periods prior to exit (t ≤ T + 1) can be written in matrix notation as

Zt = AZt−1 − arnt−1, (31)

where

Zt =

[
yt

πt

]

A =

[
1 + σκ

β
−σ
β

−κ
β

1
β

]

a =

[
σ

0

]

.

A forward solution of the system to time T + 1 yields

Zt =

T∑

k=t

A−(k−t+1)arnk + A−(T−t+1)ZT+1.

From equations (22) and (30),

ZT+1 = WΦT ,

where

W =

[
0 κ

λ
ψ2

0 1− ψ2

]

ΦT =

[
φ1,T

φ2,T

]

. (32)

Substituting, we can write the solution for Zt as

Zt =
T∑

k=t

A−(k−t+1)arnk + A−(T−t+1)WΦT . (33)
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Write the equations for the multipliers as

Φt = CΦt−1 −DZt, (34)

where

Φt =

[
φ1,t

φ2,t

]

C =

[
1+κσ
β

κ
σ
β

1

]

D =

[
λ κ

0 1

]

. (35)

Solve Φt forward to time T , imposing that initial values (period 0) of both multipliers are

zero, to yield

ΦT = −
T∑

t=1

CT−tDZt.

Substituting from equation (33), we have an equation in ΦT , given by

ΦT = −

T∑

t=1

CT−tD

[
T∑

k=t

A−(k−t+1)arnk + A
−(T−t+1)WΦT

]

.

The solution for T is given by the value of T which solves

ΦT =

[
0

φ2,T

]

(36)

= −

[

I +

T∑

t=1

CT−tDA−(T−t+1)W

]−1 T∑

t=1

CT−tD

[
T∑

k=t

A−(k−t+1)arnk

]

.

Given T from equation (36), the solution for πT+1 is given by equation (30) as (1− ψ2)φ2,T .

6.2 Quantitative Solution

6.2.1 Benchmark Parameter Values

As a benchmark, we use the RBC parameterization from Adam and Billi (2006),

σ = 1, β = 0.99, κ = 0.057, ϕπ = 1.5, ϕy = 0.5, λ = 0.0074.

All flow values are expressed at quarterly rates. The values for the elasticity of substitution

and the discount factor are standard. The value of κ is consistent with 34% of firms

adjusting their price each period when demand elasticity is 7.66 and the elasticity of firm

marginal cost is 0.47.
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6.2.2 Problems with Integer T

The numerical algorithm considers alternative values for the optimal T by computing

values for Φ1,T for successive values of T, beginning with T large enough for the nominal

interest rate to be positive. In this range, φ1,T is falling in T, eventually becoming negative

as T continues to increase. Equation (36) requires that φ1,T = 0 at the optimum. However,

since T increases discretely, with φ1,T falling in T , for a given value for the shock, there

is a value for T for which φ1,T > 0 and φ1,T+1 < 0. We never actually observe a value of

T for which φ1,T = 0 due to the integer constraint on T.

For each value of the shock, consider choosing T as the last date for which φ1,T remains

positive (theoretically, it is never negative). The value for the inflation target is determined

by the value for φ2T . Figure (1) plots values for φ1,T and φ2,T , over a range of values for

the initial shock, υ, where the value for T is calculated as suggested above.

Figure: 1 Multipliers for Different Shocks

As the size of the shock increases, there is a range of values for the shock, for which

exit time is fixed (not shown in graph) and both multipliers rise. As the size of the shock

continues to increase, there is a critical value for the shock at which exit time rises by

one unit and both multipliers fall discretely. As shock size continues to rise above each

of these critical values, the size of both multipliers rises until the shock reaches another

critical value. Therefore, both multipliers reach local minima at critical values of shock

size for which exit time discretely rises.

Since φ1,T > 0, the optimal exit time is actually larger than T. If exit time were

15



continuous, we could raise exit time just enough to get φ1,T = 0. This increase in exit

time would also reduce φ2,T . The closer φ1,T is to zero, the less we would need to raise

a continuous value for the exit time above our choice of T to get φ1,T to reach zero.

Therefore, the optimal exit time, chosen by the above method, approaches the optimum

without an integer constraint, as the value for φ1,T approaches zero. Since we optimally

want to raise T less at critical shock values, the integer constraint is least binding at

these critical values. And the value for φ2,T is also closest to its value without an integer

constraint for these critical values of shocks. Comparing the optimal value of inflation

upon exit, implied by values of φ2,T in Figure (1) for any two discrete values of the shock,

reveals that the inflation value could rise or fall as the shock size increases depending on

how binding the integer constraint is for the particular set of shock sizes we have chosen.

The integer constraint is affecting the solution, particularly the value for optimal inflation

upon exit.12

We do not believe that the integer constraint actually constrains monetary policy. A

binding integer constraint would mean that there are only four dates in the year on which

the monetary authority could choose to raise the interest rate for the first time. This

restriction does not appear realistic. Therefore, we want a solution for which the integer

constraint is as close to non-binding as possible. The integer constraint is least binding

at the critical values of shocks for which the multipliers reach local minima. We consider

shock values which increase in increments of 1.0e-9, so that minimum values for φ1,T get

very close to zero, and restrict attention to the set of critical shock values (those for which

the multipliers reach local minima).

With these restrictions, multipliers are the lower envelopes of the two seesaw lines in

Figure 1. As shock size rises, φ1,T remains very close to zero. In contrast, φ2,T is negative

for any shock size and is falling in shock size. This later result implies that optimal

inflation upon exit is always negative and that it is decreasing in shock size. Failure to

restrict attention to shock values for which the multipliers reach local minima yields a

positive value for optimal inflation upon exit for some shock values. Positive inflation

is compensating for the inability to raise exit time by something less than one discrete

unit and therefore for having exit time too small relative to the optimal continuous value.

Additional experimentation has revealed that the negative value for inflation upon exit

is robust to persistence of the shock and to changes in other parameter values when we

12Were we to actually impose the integer constraint in the solution for optimal exit time, we would not
get the solution we propose. The monetary authority could explicity use the inflation target to compensate
for not raising the exit time sufficiently or for raising it too much due to the integer constraint.
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restrict attention to shock sizes which yield lower envelopes for the multipliers.13

6.2.3 Optimal Exit Strategy

We present the optimal exit strategy in terms of the Taylor-Rule exit policy. All values

for the output gap, inflation and the nominal interest rate along the adjustment path are

identical to those for optimal policy. Our purpose in using the Taylor-Rule exit policy to

present the results is to illustrate that communication can occur in terms of the Taylor

Rule, augmented with the time-varying inflation target and an date for exit from the ZLB.

Consider the time paths for the output gap and inflation with the optimal Taylor-

Rule exit policy after a particularly large adverse shock, υ = −0.02253508 in period one,

sending the natural rate to an annual rate of -4.97% . We set persistence high (ξ = 0.90)

such that the natural rate that does not return to positive territory until period nine. The

monetary authority optimally postpones raising the interest rate until period 14, fully five

periods after the nominal rate has become positive. Optimal inflation in the exit period

is negative and is given by (1− ψ2)φ2T = −0.0396% at a quarterly rate. This requires

an inflation target for the Taylor Rule given by equation (8), as

π∗ =
β (γ1 − ψ2) (γ2 − ψ2)

κσz
πT+1 = −0.0703%,

where the monetary authority has chosen ρπ = ψ2.

Figure 2 plots the time paths for the output gap, inflation, and the nominal interest

rate, beginning with the initial shock. Values on the vertical axis are quarterly percentages

expressed at annual rates, while values on the horizontal axis are quarters. The shock

occurs in quarter 1. As a benchmark, we also plot the time path that a truncated Taylor

Rule, with a zero inflation target and an intercept given by the natural rate, would deliver.

13We have reduced persistence to 0.80, considered values of σ between 0.16 and 6.25, and considered a
lower value for κ equal to 0.24.

17



Figure: 2 Alternative Taylor Rules

Before continuing with the presentation of the Taylor-Rule exit policy, consider why

the truncated Taylor Rule is a natural benchmark. The truncated Taylor Rule represents

optimal policy when the monetary authority can commit only to follow a Taylor Rule,

but not to an exit date or an inflation target. Essentially, the truncated Taylor Rule

implements optimal discretionary policy.14 Under this policy, the nominal interest rate

is zero as long as the natural rate is negative. Once the natural rate becomes positive,

the monetary authority optimally raises the nominal rate to the natural rate, thereby

returning both the output gap and inflation to their optimal values of zero.

Under full commitment to the Taylor-Rule exit policy, the monetary authority promises

14As Cochrane (2011) argues, the Taylor Rule itself requires commitment to "blow up" the economy
in the event of a sunspot shock, thereby assuring a locally unique equilibrium.
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to postpone the exit date15 and to exit with deflation which vanishes over time. The exit

date and the inflation-target parameters are all chosen optimally. This policy provides

considerable stimulus upon impact, all stemming from the postponed exit date. The later

exit date implies that there are more periods for which the monetary authority could

have raised the nominal interest rate, but has chosen not to. This raises inflationary

expectations, raising output and inflation, compared to a truncated Taylor Rule.

In contrast, the negative inflation target upon exit reduces inflationary expectations

and is contractionary. As the exit date nears, expectations of deflation actually cause

a small recession coupled with deflation prior to the arrival of the exit date.16 On the

exit date, the monetary authority raises the nominal interest rate higher than the real

rate to exacerbate the recession and deflation, which reach troughs at -0.16% and -1.34%

respectively, at annual rates. Both remain small and quickly vanish over the next few

quarters. The deflation and recession upon exit point to the importance of the ability to

commit, not only to an exit date, but also to exit with deflation and recession.

The negative value of inflation upon exit runs counter to the notion that all means of

monetary-policy stimulus should be employed at the ZLB, including postponing exit time

and raising inflation upon exit. Walsh (2009), Levine et al (2009), and Cochrane (2013) all

discuss the benefits of promising to exit the ZLB with positive inflation. Why does optimal

policy require a negative inflation target which produces a small future recession with

deflation? Loss is determined by discounted squared deviations. The large adverse shock

itself creates large negative deviations, which vanish over time under a truncated Taylor

Rule. With loss determined by discounted squared deviations, it is optimal to smooth

these deviations over time, reducing the initial large and lightly-discounted deviations at

the expense of creating new small and more heavily discounted deviations in the future.

The postponed exit date reduces the magnitude of early deviations, while the negative

inflation target creates small future deviations, creating some smoothing for deviations

across time.

The loss under the truncated Taylor Rule is 4.85 times as great as the loss under the

optimal Taylor-Rule exit policy. In general, relative loss is increasing in both the size of

the shock and in its persistence. With high persistence, 0.90 in this example, and a range

of initial shocks sending the natural rate of interest to values between -0.06 and -4.97 at

annual rates, loss due to failure to commit ranges from about 2.5 to 7 times that under

15The postponed exit date is the feature of optimal monetary policy emphasized by Jung et al (2005).
16Postponing exit beyond the first date on which the natural rate of interest becomes positive achieves

the overshooting of the inflation rate, necessary to reduce the real rate of interest. And, although inflation
is negative in the exit period, it is positive on the first date for which the natural rate becomes positive.
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commitment. When persistence is lower, for example 0.80, the range of excess loss is

smaller, between 2.5 and 3.2 times that under commitment. These results highlight the

relative importance of pursuing the optimal Taylor-Rule exit policy when the negative

shock is large and highly persistent.

The need to commit to a future recession and deflation could pose a political problem

to commitment, even though the magnitude of the recession and deflation are small.17

Additionally, communication of the policy in terms of an exit date and a time-varying

inflation target could be complicated. The forward guidance provided by the Federal

Reserve on US monetary policy stresses that the nominal interest rate will remain zero

for a "considerable period," but never states that once that period ends, that it will rise

sufficiently to exacerbate or create a recession and deflation. What does the monetary

authority lose in welfare if it commits to postpone the exit date from the ZLB beyond

that using a truncated Taylor Rule, but not to deflation target upon exit, a policy we

label "T-only"?

7 T-only Taylor-Rule Exit Policy

In this section, we investigate a policy in which the monetary authority chooses the

exit date optimally, conditional upon a zero inflation target upon exit. Upon exit, the

monetary authority returns to the Taylor-Rule with an inflation target of zero.18 This

policy is very much like the "forward guidance" for interest rates which the US Federal

Reserve enacted in 2008, whereby they have promised to keep nominal interest rates near

zero for "a considerable period."

We solve this problem numerically, choosing the value for the exit date (T + 1) which

yields the highest welfare. We solve the optimization problem over a large grid of mag-

nitudes for the shocks and observe that as shock size increases, welfare has a downward

trend, but the fall is not monotonic. Specifically, when the integer value for T is optimal,

welfare reaches a local maximum, and, as the shock size changes in both directions, T

remains fixed and welfare falls. As the shock size changes from a value for which the

17Jeanne and Svensson (2007) are concerned with the ability to commit to positive inflation upon
exit. Their solution, relying on the central bank’s desire to maintain the value of their foreign currency
reserves, does not work when the commitment is to deflation. However, over much of the period for
which the natural rate is positive and the nominal rate is zero, optimal inflation is positive. The positive
inflation after the natural rate becomes positive requires commitment, which could be supported by their
mechanism. The subsequent deflation cannot be supported by their mechanism.
18Carlstrom, Fuerst, and Paustian (2012) analyze a similar policy in the same New Keynesian model

without the initial adverse shock creating the ZLB.
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optimal value of T is an integer, agents would like to chose a non-integer value for T ,

but cannot, implying lower welfare. Since we do not believe that the integer constraint

is actually binding in the real world, we would like to consider results where the integer

value for T is very close optimal. Therefore, we follow a strategy similar to that in the

solution of the optimal Taylor-Rule exit policy. We identify a critical set of shocks asso-

ciated with local maxima for welfare. With this set of shocks, welfare is falling in the size

of the shock.

We want welfare comparisons under Taylor Rules with optimal policy and with T-

only policy. This is problematical since the admissible shock values in the two cases

differ. However, there are two instances in which admissible shock values are identical up

to four decimal points. We compare these two sets of shocks. When the admissible shock

with optimal policy is 0.011557 and that with T-only is .0115960, then T-only creates

loss 20% larger than loss under optimal policy. The second admissible pair of shocks is

0.018340, .0183370 with loss 7% larger under T-only. These results imply that postponing

the exit date achieves most of the gains of moving from the truncated Taylor Rule to full

commitment to the optimal Taylor-Rule exit policy.

21



Figure: 3 Compare T-Only with Other

Taylor Rules

We reinforce these insights by comparing time paths for the larger pair of shocks in

Figure 3, shocks which initially send the natural rate to -3.30%.19 This is a smaller shock

than we considered in the previous section with correspondingly smaller adverse effects.

With the T-only policy, exit occurs one period earlier than with optimal policy, in period

10 instead of in period 11. In the exit period, the nominal interest rate is set to equal the

natural rate, and both the output gap and inflation return to zero. The time path for the

output gap, leading up to the T-only exit period, is almost identical to that under optimal

policy, with output slightly higher early, and slightly lower later. Inflation is uniformly

higher under T-only than under optimal policy. T-only avoids the deflation and recession

in the vicinity of the exit period.

These results seem to justify US Federal Reserve policy following the financial crisis.

The Fed is likely to face political constraints in committing to future deflation and reces-

19We are comparing time paths for a slightly different shock value for the T-only policy. When we
use the identical value, the difference is so small that there is no perceptable difference in results on the
graph.
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sion, but not in the timing for initially raising interest rates. We have shown that the

optimal choice of exit time can achieve most of the gains of the optimal Taylor-Rule exit

policy. Additionally, this extension of "nearly"optimal policy to the ZLB is a very sim-

ple extension of Woodford’s optimal policy away from the ZLB. The monetary authority

simply announces its date of exit from the ZLB and then returns to Woodford’s optimal

policy. Therefore, communication is relatively simple. The policy differs from optimal

discretion in that the monetary authority can commit to keep the interest rate at the ZLB

beyond the date on which the natural rate becomes positive.

8 Extension to Uncertainty

8.1 Analytical Solution under Uncertainty

We generalize our analysis to include stochastic shocks to the natural rate of interest.

In Appendix 10.3, we show that equilibrium for the system under optimal policy with

uncertainty is characterized by equations (1), (2), (14), (15), and (16).

Consider our stochastic specification for the natural rate of interest. Adam and Billi

(2006) allow Markov shocks to the natural rate of interest and solve using value function

iteration with the multipliers, ϕ1t and ϕ2t, as additional state variables. Our proof of

equivalence between optimal policy and the fully optimal Taylor-Rule exit policy requires

an analytical solution. This restriction limits the nature of the uncertainty we can intro-

duce. The values for φ1,t and φ2,t at each value for t depend on the entire interest rate

history since the period the system entered the ZLB. In the forward solution we use, the

expectations must account for all possible realizations of the entire interest rate path until

exit from the ZLB occurs. Introducing Markov shocks to the natural interest rate yields

potential paths for the interest rate history, which expand too quickly, as time at the ZLB

grows, to be practical. Therefore, we introduce a simpler form of uncertainty to the path

of the natural interest rate.

We choose the nature of uncertainty to focus on the fact that the date, on which the

natural rate of interest first becomes positive again, is unknown. We assume that there

are three distinct paths for the real interest rate after the initial shock, determined by

three distinct paths for υ. We refer to these alternative paths as interest rate regimes.
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Prior to t = t̂, the shock vanishes at rate ξ according to

υt = ξt−1υ t ≤ t̂.

rnt = rn + σ−1υt, t ≤ t̂.

In period t̂+1, persistence becomes either ξ− ζ or ξ+ ζ with probability $ or remains ξ

with probability 1 − 2$. Therefore, there are three paths for the natural rate, based on

the shock to persistence given by

υ1,t = (ξ − ζ)t−t̂ ξ t̂−1υ

υ2,t = ξt−1υ

υ3,t = (ξ + ζ)t−t̂ ξ t̂−1υ

with the natural interest rate given by

rni,t = rn + σ−1υi,t, t ≥ t̂+ 1 i ∈ {1, 2, 3}

In Appendix 10.3, we solve the equations for output and inflation with uncertainty

forward, yielding solutions similar to those in the certainty case. The solution differs

from that under certainty because agents’ expectations of future output and inflation

depend on expectations of the future interest rate, where the interest rate can follow

one of three paths. The solution prior to exit from the ZLB depends upon exit times,

Ti, i ∈ (1, 2, 3) and on values for inflation upon exit in each interest-rate regime, with

outcomes in each regime weighted by its probability. This system of equations and its

solutions, as a function of exit times and the path of inflation upon exit, applies whether

monetary policy is conducted according to the Taylor-Rule exit policy or optimal policy.

With optimal monetary policy, additional equations for the multipliers, also solved in the

appendix, yield solutions for optimal inflation upon exit and exit times.

When the monetary authority chooses the optimal values for exit time and for in-

flation upon exit, together with its rate of persistence, then the Taylor-Rule exit policy

implements optimal monetary policy as before. Uncertainty does not invalidate the fun-

damental theorem that the Taylor-Rule exit policy implements optimal policy if exit times

and inflation upon exit are chosen optimally.
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8.2 Quantitative Solution under Uncertainty

In this section, we compare time paths under certainty and uncertainty, and consider

the welfare cost of moving from the fully optimal Taylor-Rule exit policy to the T-only

policy under uncertainty. The additional parameters we need are those for the change

in the rate of persistence of the initial shock under each interest rate regime (ζ) and

the probability of each interest rate regime ($). We set ζ = 0.05, and $ = 0.25. With

these alternative rates of persistence of the initial shocks, the natural rate of interest

first becomes positive in period 6 for regime 1 with low persistence, in period 8 with

persistence equal to the benchmark value with certainty, and in period 13 with high

persistence. Therefore, we consider interest rate regimes which return to positive half a

year earlier than the benchmark and a year and a quarter later.

Both the optimal values for exit time and for inflation upon exit, conditional on

obtaining the benchmark interest rate path, are identical to their values under certainty.

Therefore, Figure (4) shows that the time paths for the output gap and inflation under

certainty and uncertainty, conditional on realization of regime 2, are virtually identical,

having only a slight difference prior to the realization of the uncertainty. The difference

occurs because under uncertainty, the expected future path of interest rates replaces the

actual path while the path is unknown.
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Figure 4: Time Paths under Certainty and

Uncertainty

The very small effect of uncertainty on the actual path, conditional on realization of

regime 2, occurs even though exit times and time paths are different under realizations

of alternative interest rate paths. Figure (5) plots paths for the output gap and inflation

with optimal policy in each of the three alternative interest rate regimes. Exit dates are

different in each regime at 12, 14, and 19, and it is primarily these different exit dates

that yield the different time paths. Exit values for inflation are negative and small with

values of -0.170%, -0.158%, and -0.076%. The amount of uncertainty we have introduced

creates an additional welfare loss of about 15%, implying that its welfare implications are

relatively small.20

20Greater uncertainty would yield greater welfare losses.
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Figure 5: Time Paths under Alternative

Interest Rate Regimes

Finally, consider the implications of the T-only policy, whereby the monetary authority

chooses inflation equal to zero upon exit, but chooses an exit time for each of the three

interest rate path realizations. We choose values for the exit time by searching over a grid

of possible exit times and choosing the set of three which maximizes welfare. Exit times

under T-only are slightly earlier, at values of (11,12,18) compared with exit times under

optimal policy of (12,14,19). Loss under the T-only policy is about 10% higher than loss

under the fully optimal policy.

As in our solution under certainty, our comparison of welfare loss under T-only and

optimal policy is not entirely reliable since a real-world monetary authority would not

have to respect the integer constraint in its choice of exit time. In each measure of

welfare, choices could be distorted more or less by the integer constraint, reducing welfare,

possibly by different amounts in the two measures. And it appears that the distortion

for this value of the shock is important for the T-only policy because time paths under

alternative interest rate regimes imply that the most contractionary regime is regime 2,

when the most contractionary path for interest rates is regime 3. We let exit in regime 2

27



come one period earlier and find that now regime 2 is the least contractionary. Clearly, the

integer constraint is preventing a result where time paths for regime 2 should lie between

time paths for regimes 1 and 3.

Therefore, we consider an alternative value of the shock, -0.0183370, chosen in the

section with certainty to minimize the distortion under the T-only policy. Loss under

this alternative shock value with T-only policy is only 1.45% higher than loss under fully

optimal policy. Therefore, using either shock, the order of magnitude of loss is small and

similar to values we found in our example under certainty where we could choose shock

values to minimize distortions. Additionally, the loss incurred by moving from optimal

policy to T-only is tiny compared to a loss under discretion 10.65 times as large as under

optimal policy.

We also calculate exit times and time paths for alternative interest rate regimes using

the alternative initial shock. Exit times for T-only are (8,9,12) in regimes (1,2,3) compared

with exit times under optimal policy of (9,9,13). Therefore, exit times are earlier for the

first and third regimes under T-only, but identical for the middle regime. We compare

time paths for each interest rate regime for T-only and optimal policies in Figure (6).
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Figure 6: Time Paths under Optimal and T-only Policies

For all, the T-only policy eliminates the small negative effects around the exit date,

required by the negative inflation upon exit in optimal policy. For regime 2, since exit

dates are identical, paths are virtually identical. Differences for regimes 1 and 3 are also

small. For optimal policy, the negative inflation target reduces stimulus, while for T-only,

the earlier exit date provides the stimulus reduction.

9 Conclusion

Our first result is theoretical. We prove analytically that a Taylor Rule exit policy,

with an optimally-chosen value for the exit date and for the time path of inflation upon

exit, implements optimal monetary policy at the zero lower bound. This implies that

implementation of optimal monetary policy at the ZLB requires focus on three parameters:
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exit time, the inflation target upon exit, and the rate of decline of the inflation target.

Our second result is quantitative. We find that the welfare cost of moving from optimal

policy to a T-only policy is small. Therefore, the monetary authority can implement a

policy very close to optimal by announcing only an exit date from the ZLB. This result

implies that of the three parameters necessary to implement optimal policy, the exit date

is the most important.

We derive our results under certainty and show that they continue to hold when we

introduce uncertainty. These results justify the policy by the Federal Reserve of promising

that interest rates will remain low for a "considerable period."

10 Appendix

10.1 Solution under Taylor Rule Policy

10.1.1 Solution from Exit Date Forward

We can write this system of equations given by (5) and (6) in matrix notation as

[
yt+1

πt+1

]

=

[
1 + σ

(
φy +

κ
β

)
σ
(
φπ −

1
β

)

−κ
β

1
β

][
yt

πt

]

−

[
σεt+1

0

]

.

The eigenvalues are given by

γ =

1 + 1
β
+ σ

(
φy +

κ
β

)
±

[(
1 + 1

β
+ σ

(
φy +

κ
β

))2
− 4

(
1
β

) (
1 + σ

(
φy + κφπ

))]
1

2

2
,

where φy and φπ are chosen such that both eigenvalues exceed unity. Decomposing the

system into eigenvalues and eigenvectors yields

[
yt+1

πt+1

]

= EΓE−1

[
yt

πt

]

−

[
σεt+1

0

]

,

where

E =

[
1−βγ1
κ

1−βγ2
κ

1 1

]

Γ =

[
γ1 0

0 γ2

]

E−1 =
κ

β (γ2 − γ1)

[
1 −1−βγ2

κ

−1 1−βγ1
κ

]

,
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with

γ1γ2 =
1

β

(
1 + σ

(
φy + κφπ

))
.

Pre-multiplying by E−1 yields

E−1

[
yt+1

πt+1

]

= ΓE−1

[
yt

πt

]

− E−1

[
σεt+1

0

]

,

where

E−1

[
yt+1

πt+1

]

=

[
y
′

t+1

π
′

t+1

]

E−1

[
σεt+1

0

]

=
κσ

β (γ2 − γ1)

[
εt+1

−εt+1

]

.

Substituting yields

[
y
′

t+1

π
′

t+1

]

=

[
γ1 0

0 γ2

][
y
′

t

π
′

t

]

+

[
− κσεt+1
β(γ2−γ1)
κσεt+1
β(γ2−γ1)

]

.

Since both roots exceed unity, we solve each equation forward to yield

y
′

t =
κσ

β (γ2 − γ1)

∞∑

i=1

(
1

γ1

)i
εt+i,

π
′

t =
−κσ

β (γ2 − γ1)

∞∑

i=1

(
1

γ2

)i
εt+i.

We are interested in the value of the variables in the period of exit from the ZLB, that is

in period T + 1.

y
′

T+1 =
κσ

β (γ2 − γ1)

∞∑

i=1

(
1

γ1

)i
εT+1+i,

π
′

T+1 =
−κσ

β (γ2 − γ1)

∞∑

i=1

(
1

γ2

)i
εT+1+i.

To do the summations, write the expressions for the ε′s as

εT+2 =

[(
φπ +

φy

κ

)
π∗T+1 −

(
1 +

βφy

κ

)
π∗T+2

]
=

[
φπ +

φy

κ
−

(
1 +

βφy

κ

)
ρπ

]
π∗ = zπ∗,
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εT+2+i =

[(
φπ +

φy

κ

)
π∗T+1+i −

(
1 +

βφy

κ

)
π∗T+2+i

]
=

[
φπ +

φy

κ
−

(
1 +

βφy

κ

)
ρπ

]
ρiππ

∗

= zρiππ
∗.

Substituting, the sums can be expressed as

∞∑

i=1

(
1

γ1

)i
εT+1+i =

z

γ1 − ρπ
π∗,

∞∑

i=1

(
1

γ2

)i
εT+1+i =

z

γ2 − ρπ
π∗.

This allows us to write the solution for the transformed variables as

y
′

T+1 =
κσπ∗

β (γ2 − γ1)

[
z

γ1 − ρπ

]
,

π
′

T+1 =
−κσπ∗

β (γ2 − γ1)

[
z

γ2 − ρπ

]
.

To solve for the original variables, multiply by the matrix E,

[
yT+1

πT+1

]

=

[
1−βγ1
κ

1−βγ2
κ

1 1

][
y
′

T+1

π
′

T+1

]

,

yielding

yT+1 =
(1− βρπ)

β (γ1 − ρπ) (γ2 − ρπ)
σzπ∗, (37)

πT+1 =
κ

β (γ1 − ρπ) (γ2 − ρπ)
σzπ∗. (38)

Note that at T + 1, the output gap is proportional to inflation according to

yT+1 =
(1− βρπ)

κ
πT+1.

These values give us terminal conditions for the solution prior to exit.

Since there is only single stable root, provided by the rate at which the inflation target

vanishes, values beyond T + 1 are given by

yt =
(1− βρπ)

β (γ1 − ρπ) (γ2 − ρπ)
σzρt−(T+1)π π∗ =

(1− βρπ)

κ
ρt−(T+1)π πT+1, (39)
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πt =
κ

β (γ1 − ρπ) (γ2 − ρπ)
σzρt−(T+1)π π∗ = ρt−(T+1)π πT+1. (40)

Substituting from the equations for output and inflation after exit, equations (39) and

(40), yields the behavior of the interest rate after exit

it = rnt +

[
1 +

(1− βρπ) (ρπ − 1)

ρπσκ

]
πT+1ρ

t−T−1
π

= rnt +

[
1 +

(1− βρπ) (ρπ − 1)

ρπσκ

] [
κσz

β (γ1 − ρπ) (γ2 − ρπ)

]
π∗ρt−T−1π .

10.1.2 Solution Prior to Exit ZLB

Equations (1) and (2) with the nominal interest rate set to zero can be written as,

[
yt+1

πt+1

]

=

[
1 + σκ

β
−σ
β

−κ
β

1
β

][
yt

πt

]

−

[
σ

0

]

rnt .

The roots of the system are given by

ω =

1+σκ
β
+ 1±

[(
1 + 1+σκ

β

)2
− 4( 1

β
)

] 1
2

2
,

implying that one root is larger than unity and one is smaller. Let ω1 > 1, be the unstable

root.

We solve the system subject to the terminal conditions given by equations (37) and

(38). Using eigenvalues and eigenvectors, we can express the system as

[
yt+1

πt+1

]

= FΩF−1

[
yt

πt

]

−

[
σrnt

0

]

,

where

F =

[
1−βω1
κ

1−βω2
κ

1 1

]

Ω =

[
ω1 0

0 ω2

]

F−1 =
κ

β (ω2 − ω1)

[
1 −1−βω2

κ

−1 1−βω1
κ

]

,

with

ω1ω2 =
1

β
.
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Pre-multiplying by F−1 yields

F−1

[
yt+1

πt+1

]

= ΩF−1

[
yt

πt

]

− F−1

[
σrnt

0

]

,

where

F−1

[
yt+1

πt+1

]

=

[
y
′

t+1

π
′

t+1

]

F−1

[
σrnt

0

]

=
κσ

β (ω2 − ω1)

[
rnt

−rnt

]

.

Substituting yields

[
y
′

t+1

π
′

t+1

]

=

[
ω1 0

0 ω2

][
y
′

t

π
′

t

]

+

[
−

κσrn
t

β(ω2−ω1)
κσrn

t

β(ω2−ω1)

]

.

Solve each equation forward to period T + 1, yielding

y
′

t =

(
1

ω1

)T+1−t
y
′

T+1 +

T∑

k=t

(
1

ω1

)k+1−t
κσ

β (ω2 − ω1)
rnk ,

π
′

t =

(
1

ω2

)T+1−t
π
′

T+1 −
T∑

k=t

(
1

ω2

)k+1−t
κσ

β (ω2 − ω1)
rnk .

To solve for the original variables, we pre-multiply by the matrix F,

[
yt

πt

]

=

[
1−βω1
κ

1−βω2
κ

1 1

][
y
′

t

π
′

t

]

,

yielding

yt =
1− βω1

κ

[(
1

ω1

)T+1−t
y
′

T+1 +

T∑

k=t

(
1

ω1

)k+1−t
κσ

β (ω2 − ω1)
rnk

]

+
1− βω2

κ

[(
1

ω2

)T+1−t
π
′

T+1 −

T∑

k=t

(
1

ω2

)k+1−t
κσ

β (ω2 − ω1)
rnk

]

,
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πt =

[(
1

ω1

)T+1−t
y
′

T+1 +
T∑

k=t

(
1

ω1

)k+1−t
κσ

β (ω2 − ω1)
rnk

]

+

[(
1

ω2

)T+1−t
π
′

T+1 −

T∑

k=t

(
1

ω2

)k+1−t
κσ

β (ω2 − ω1)
rnk

]

.

We transform the y
′

T+1 and π
′

T+1 into original variables using the terminal condition

yT+1 =
(1− βρπ)

κ
πT+1,

and [
y
′

T+1

π
′

T+1

]

= F−1

[
yT+1

πT+1

]

=
κ

β (ω2 − ω1)

[
1 −1−βω2

κ

−1 1−βω1
κ

][
yT+1

πT+1

]

,

to yield

y
′

T+1 =

[
ω2 − ρπ
ω2 − ω1

]
πT+1,

π
′

T+1 =

[
ρπ − ω1

ω2 − ω1

]
πT+1.

Substituting into the solutions for yt and πt yields

yt =
1− βω1

κ

[(
1

ω1

)T+1−t [
ω2 − ρπ
ω2 − ω1

]
πT+1 +

T∑

k=t

(
1

ω1

)k+1−t
κσ

β (ω2 − ω1)
rnk

]

(41)

+
1− βω2

κ

[(
1

ω2

)T+1−t [
ρπ − ω1

ω2 − ω1

]
πT+1 −

T∑

k=t

(
1

ω2

)k+1−t
κσ

β (ω2 − ω1)
rnk

]

,

πt =

[(
1

ω1

)T+1−t [
ω2 − ρπ
ω2 − ω1

]
πT+1 +

T∑

k=t

(
1

ω1

)k+1−t
κσ

β (ω2 − ω1)
rnk

]

(42)

+

[(
1

ω2

)T+1−t [
ρπ − ω1

ω2 − ω1

]
πT+1 −

T∑

k=t

(
1

ω2

)k+1−t
κσ

β (ω2 − ω1)
rnk

]

.

35



10.2 Optimal Policy

10.2.1 After Exit ZLB

In matrix form, equations (18) and (21) can be written as

[
yt+1

πt+1

]

=

[
1 + κ2

βλ
− κ
βλ

−κ
β

1
β

][
yt

πt

]

,

with eigenvalues

ψ =
1 + κ2+λ

βλ
±

√(
1 + κ2+λ

βλ

)2
− 4

β

2
,

implying that one stable and one unstable root. Decomposing the system using eigenvalues

and eigenvectors yields [
yt+1

πt+1

]

= GΨG−1

[
yt

πt

]

,

with

G =

[
1−βψ1
κ

1−βψ2
κ

1 1

]

Ψ =

[
ψ1 0

0 ψ2

]

G−1 =
κ

β (ψ2 − ψ1)

[
1 −1−βψ2

κ

−1 1−βψ1
κ

]

,

and

ψ1ψ2 =
1

β
.

Pre-multiply by G−1 to yield

G−1

[
yt+1

πt+1

]

= ΨG−1

[
yt

πt

]

[
y
′

t+1

π
′

t+1

]

= Ψ

[
y
′

t

π
′

t

]

.

These two differential equations in y
′

t and π
′

t can be solved forward to yield

y
′

t = ψ
t−(T+1)
1 y

′

T+1,

π
′

t = ψ
t−(T+1)
2 π

′

T+1.

Letting the unstable root be given by ψ1, the system is explosive unless y
′

T+1 = 0. There-
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fore we set y
′

T+1 = 0. Transforming back into original variables yields

[
yt

πt

]

= G

[
ψ
t−(T+1)
1 y

′

T+1

ψ
t−(T+1)
2 π

′

T+1

]

=

[
1−βψ1
κ

1−βψ2
κ

1 1

][
0

ψ
t−(T+1)
2 π

′

T+1

]

.

The two equations become

yt =
1− βψ2

κ
ψ
t−(T+1)
2 π

′

T+1, (43)

πt = ψ
t−(T+1)
2 π

′

T+1. (44)

We transform the π
′

T+1 back into original variables using

[
y
′

T+1

π
′

T+1

]

= G−1

[
yT+1

πT+1

]

=
κ

β (ψ2 − ψ1)

[
1 −1−βψ2

κ

−1 1−βψ1
κ

][
yT+1

πT+1

]

.

Therefore,

y
′

T+1 =
κ

β (ψ2 − ψ1)

[
yT+1 −

1− βψ2
κ

πT+1

]
,

π
′

T+1 =
κ

β (ψ2 − ψ1)

[
−yT+1 +

1− βψ1
κ

πT+1

]
.

Setting y
′

T+1 = 0, as previously assumes, assures that the system does not explode. This

yields a relation between exit-period values of output and inflation given by

yT+1 =
1− βψ2

κ
πT+1.

Substituting yields

π
′

T+1 =
κ

β (ψ2 − ψ1)

[
−

(
1− βψ2

κ
πT+1

)
+
1− βψ1

κ
πT+1

]
= πT+1.

Substituting into equations (43) and (44), the solutions for output and inflation for t ≥

T + 1 become

yt =

(
1− βψ2

κ

)
ψ
t−(T+1)
2 πT+1 (45)

πt = ψ
t−(T+1)
2 πT+1 (46)
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10.3 Optimal Policy under Uncertainty

Consider the solution for optimal monetary policy. We repeat the Lagrangian, but

reinstate expectations to yield

L1 = E1

∞∑

t=1

βt
{
−
1

2

(
π2t + λy

2
t

)
− φ1,t [σ (it − rnt − πt+1)− yt+1 + yt]− φ2,t [πt − κyt − βπt+1] + φ3,tit

}
,

Since the constraints are forward-looking, some terms involve period t Lagrange multipli-

ers
(
φ1,t, φ2,t

)
multiplied by period t+1 choice variables (πt+1, yt+1) . Following Adam and

Billi (2006), relabel the Lagrange multipliers for these terms as ϕi,t+1 (i = 1, 2) , and add

transition equations ϕi,t+1 = φi,t. Collect all terms dated t and add ϕ2,1π1+ϕ1,1

(
σπ1+y1

β

)
,

defining ϕi,1 = 0. This delivers the following Lagrangrian.

L1 = E1

∞∑

t=1

βt
{
−
1

2

(
π2t + λy2t

)
− φ1,t [σ (it − rnt ) + yt] + ϕ1,tβ

−1 (σπt + yt)− φ2,t [πt − κyt] + ϕ2,tπt

}

+

∞∑

t=1

βtφ3,tit.

Note the Lagrangian is expressed as the infinite sum of period t objective functions,

which depend only on variables in period t. At each t, the monetary authority has full

information on the period-t objective function and chooses πt, yt, and it, to maximize that

objective function, yielding first order conditions

−φ2,t + ϕ2,t − πt + σβ
−1ϕ1,t = 0,

−φ1,t + β
−1ϕ1,t − λyt + κφ2,t = 0,

−σφ1,t + φ3,t = 0 φ3,tit ≥ 0 φ3,t ≥ 0 it ≥ 0.

Substituting for the ϕi,t yields equations (14) and (15). This implies that choices made in

period t do depend on lagged values, and therefore on past stochastic disturbances and

choices. However, note that these equations are purely backward-looking, containing no

expectations. The values of the multipliers do respond to past values and to stochastic

changes in contemporaneous output and inflation.

We add the equations for output and inflation, equations (1) and (2). Together with

equation (16), these five equations constitute a system in the two multipliers, the nominal

interest rate, and in output and inflation and their expectations.
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Equation (31) combines equations (1) and (2) using matrix notation. A forward solu-

tion of equation (31), allowing the possibility of each of the three interest rate regimes,

for t ≤ t̂, yields

Zt = EtZt =

[
T1∑

k=t

A−(k−t+1)arn1,k + A
−(T1−t+1)ZT1+1

]

$ (47)

+

[
T3∑

k=t

A−(k−t+1)arn3,k + A
−(T3−t+1)ZT3+1

]

$

+

[
T2∑

k=t

A−(k−t+1)arn2,k + A
−(T2−t+1)ZT2+1

]

(1− 2$)

= R (1, t, T1)$ +R(2, t, T2)(1− 2$) +R(3, t, T3)$

+A−(T1−t+1)ZT1+1$ + A−(T2−t+1)ZT2+1(1− 2$) + A−(T3−t+1)ZT3+1$.

where

R (i, t, Ti) =

Ti∑

k=t

A−(k−t+1)arni,k.

To obtain optimal values for exit times and inflation upon exit, we continue to solve

the system. We center the system around the middle value for the shock and write the

expression for Zt for t ≤ t̂ as

Zt = R(2, t, T2) + A−(T2−t+1)ZT2+1

+$ [R(1, t, T1) +R(3, t, T3)− 2R(2, t, T2)]

+$
[
A−(T1−t+1)ZT1+1 + A

−(T3−t+1)ZT3+1 − 2A
−(T2−t+1)ZT2+1

]
.

There are three time paths of Z for Ti ≥ t > t̂, each conditional on the realization of the

interest rate regime. For i ∈ (1, 2, 3) , the time path for Z for t > t̂ is given by

Zi,t = EtZ1,t =

Ti∑

k=t

A−(k−t+1)arni,k + A
−(Ti−t+1)ZTi+1

= R(i, t, Ti) + A
−(Ti−t+1)ZTi+1.

From equations (22) and (30),

ZTi+1 = WΦTi,
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with W given by equation (32) and the set of multipliers for each interest rate regime by

ΦTi =

[
φ1,Ti
φ2,Ti

]

.

Substituting, the values for the Z ′ts, for t ≤ t̂, are given by

Zt = R(2, t, T2) + A
−(T2−t+1)WΦT2

+$ [R(1, t, T1) +R(3, t, T3)− 2R(2, t, T2)]

+$
[
A−(T1−t+1)WΦT1 + A

−(T3−t+1)WΦT3 − 2A
−(T2−t+1)WΦT2

]
.

and for t > t̂ are

Zi,t = EtZi,t = R(i, t, Ti) + A−(Ti−t+1)WΦTi .

Write the equations for the multipliers, using equation (34) and recognizing that there

is a set of equations for each interest rate regime, as

Φi,t = CΦi,t−1 −DZi,t,

where

Φi,t =

[
φ1i,t

φ2i,t

]

and C and D are given by equation (35) as before. Actual values of the multipliers are

chosen as a function of current and past values, so that we are solving for actual values of

the multipliers not expectations. Solve Φt forward to time T , imposing that initial values

(period 0) of both multipliers are zero, to yield

ΦTi = −
t̂∑

t=1

CTi−tDZt −

Ti∑

t=t̂+1

CTi−tDZi,t.

We center the system around the middle value for the shock, yielding.

ΦT2 = −

t̂∑

t=1

CT2−tDZt −

T2∑

t=t̂+1

CT2−tDZ2,t

ΦT1 = CT1−T2ΦT2 +

T2∑

t=t̂+1

CT2−tDZ2,t −

T1∑

t=t̂+1

CT1−tDZ1,t
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ΦT3 = CT3−T2ΦT2 +

T2∑

t=t̂+1

CT2−tDZ2,t −

T3∑

t=t̂+1

CT3−tDZ3,t.

Substituting the Z ′s into ΦT2 yields

ΦT2 = −

T2∑

t=1

CT2−tD
[
R(2, t, T2) + A

−(T2−t+1)WΦT2
]

−$

t̂∑

t=1

CT2−tD [R(1, t, T1) +R(3, t, T3)− 2R(2, t, T2)]

−$

t̂∑

t=1

CT2−tD
[
A−(T1−t+1)WΦT1 + A−(T3−t+1)WΦT3 − 2A

−(T2−t+1)WΦT2
]

Solving for ΦT2 as a function of differences yields

ΦT2 = −

[

I +

T2∑

t=1

CT2−tDA−(T2−t+1)W

]−1 [ T2∑

t=1

CT2−tDR(2, t, T2) + ∆$

]

where

∆ = −

t̂∑

t=1

CT2−tD [R(1, t, T1) +R(3, t, T3)− 2R(2, t, T2)]

−

t̂∑

t=1

CT2−tD
[
A−(T1−t+1)WΦT1 + A−(T3−t+1)WΦT3 − 2A

−(T2−t+1)WΦT2
]

Solving for the multipliers associated with alternative interest rate paths (i ∈ (1, 3)) as a

function of the multipliers associated with regime 2 yields

ΦTi = CTi−T2ΦT2 +

T2∑

t=t̂+1

CT2−tD
[
R(2, t, T2) + A−(T2−t+1)WΦT2

]

−

Ti∑

t=t̂+1

CTi−tD
[
R(1, t, Ti) + A

−(Ti−t+1)WΦTi
]
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Solving for ΦT1 yields

ΦT1 =



I +
T1∑

t=t̂+1

CT1−tDA−(T1−t+1)W





−1

×



CT1−T2

(

ΦT2 +

T2∑

t=1

CT2−tD
[
R(2, t, T2) + A

−(T2−t+1)WΦT2
]
)

−

T1∑

t=t̂+1

CT1−tDR(1, t, T1)





We solve numerically for the values for ΦTi by first solving for ΦT2 , setting ∆ = 0.We

use this value to solve for ΦT1 and ΦT3 . Next, we use the values for ΦT1 and ΦT3 to solve

for ∆.We resolve for ΦT2 using the value for ∆.We resolve for ΦT1 and ΦT3 using the new

value for ΦT2 and continue to iterate the process until it converges.
21

21We offer no proof that convergence will occur, but in our examples, it occurs very quickly, in about
five iterations.
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