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1. Introduction

For both human beings and animals, infectious disease has always been one of the
most important factors influencing fatality. Currently, infectious diseases affect
many economic aspects of livestock husbandry, and the prevention of epidemic
infections is a serious issue, especially due to recent globalization. When dealing
with infectious diseases, it is important to estimate specific disease-related factors;
infectious disease models can be used for such purposes. This material provides
simple explanations for infectious disease modelling. In the following material,
several models of infectious disease are provided; these models are often referred
to as SIR models. To facilitate understanding of this material, demonstrations using
MS Excel and sometimes the R codes are provided as supplementary materials.

The SIR-type epidemiological model dates back to publications by Kermack -
McKendrick (1927); however, no solid research followed these studies for decades.
Indeed, after a long period without additional studies on SIR-type models, the
Kermack - McKendrick (1927) model was finally appreciated, and full-fledged
studies were started in the 1970s. Most recent works are more directly traced back
to Anderson and May (1979), May and Anderson (1979), and Anderson (1991).

Some introductory texts and papers, which include similar materials, are provided
on the website of the Swiss Federal Institute of Technology, Zurich (ETH ZUrich,
2009, 2010), as well as in papers published by Keeling and Rohani (2008) and Tassier

(2013).

2. Basic Things to Know

2.1. Infectious status

Infectious diseases are caused when certain types of parasites invade into a host.
Some of these types of parasites are shown in Table 1. In the text that follows, we
will mainly discuss diseases incurred from microparasites. In SIR models, individuals
in a population are divided into susceptible (S), exposed/latent (E), infectious (I),
and recovered/removed (R) individuals, and the models are referred to on the basis
of the infections statuses of included individuals (Figure 1).



Here,

S: Susceptible individuals are those who can be infected but have not been
infected.

E: Exposed individuals are those who have been exposed to the disease and
infected, but are not infectious (namely, those whose disease is in the latent
stage).

I: Infectious individuals are those who are infectious.

R: Removed individuals are those who recovered from the disease and have
immunity. In some models, removed individuals will be reverted to the S stage
once they have lost immunity. Additionally, Rs may be removed individuals
from the population because of disease-related death.

Table 1. Infectious agents
Type of agent Characteristics [Examples]

Microparasites

Virus Small, simple, obligatory parasites of larger cells
[Ex.: influenza]

Bacteria Large and more complex than viruses; many are able to grow independently,
but some require a cellular host
[Ex.: Salmonella typhi (typhoid fever)]

Protozoa Large single-celled organisms, more complex than bacteria, many are able to
grow independently, but some require a cellular host
[Ex.: Plasmodium falciparum (malaria)]

Macroparasites

Helminths Large (1 mm to 10 m) multicellular organisms
(worms) [Ex.: Schistosoma mansoni (schistosomiasis)]
Arthropods Insects, lice, ticks, and their relatives

[Ex.: Ixodes spp. (ticks)]

Source: Vynnycky and White (2010), Table 1.1.
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Figure 1. Infection status

Source: Keeling and Rohani (2008) Figure 1.2

2.2. Variables and parameters

Because exposed and recovered individuals E and R have already been infected
and have acquired immunity, only susceptible individuals S can be infected when
contacting infectious individuals I. Let us suppose p represents the probability that
S will be infected when contacting I and that ¢ represents the number of
opportunities an individual in S has to come in contact with individuals I within a
certain period. Then, the infection rate is pc. It can be easily inferred that the
expected number of individuals who transition from S to I in a certain period will
be pc SI.

S, E, I,and R arereferred to as variables, whose values change over time, while c
and p are referred to as parameters, whose values are constant over time. A
parameter is always a coefficient of some variable. If it is not related to the variable,
it is simply called a ‘constant’. With empirical data and/or previous studies, we often
set initial values of variables and values for parameters and constants.

2.3. Discrete time and difference equation

Two different time spans are used in modelling. In particular, discrete time is used
when we use the difference equation. As explained above, values of variables
change over time. Let us define time explicitly. For example, the population size of
some animal at the beginning of any two sequential times t and t + 1 can be




given as N, tons and N.,; tons, respectively. Specifically, let us suppose that two
sequential times implies two sequential years. Population sizes will change during
these sequential years because of the following reasons:

(1) increases in the number of individuals by immigration from outside of a
population and/or decreases in the number of individuals by emigration from
inside of the population

(2) increases in the number of individuals by births inside of the population and/or
decreases in the number of individuals by deaths inside of the population

Here (1) can be regarded as a situation where immigration and emigration occur
between several populations within the metapopulation. However, for the sake of
simplicity, a single population is sometimes assumed, and immigrants and emigrants

are ignored. Then, the population size changes based on births and deaths. That is,
Ntyy = Ny + By — Dy Q)

Here,
B¢: number of births in this population in year t
D;: number of deaths in this population in year t

Under some assumptions and after a few complicated calculations, we have the
famous logistic equation as follows (see Appendix I):

News = N = 71 = 2| N, 2)

Here,
K: carrying capacity (tons)
7: growth rate (per year)

The amount of population increase or decrease during a certain period of time (e.g.,
one year) is ‘flow’, while the population size at a certain time (e.g., at the beginning
of the year) is ‘stock’. Differences in stocks are considered flow. In our case, both
Ny and N;,, are stock, and the difference in these stocks (namely, N;.; — N;) is
flow. It can be easily inferred that the unit of measure of N, and N;,, is, for



example, tons; however, that of N;,; — N; should be, for example, tons/year.
Let us check the consistency of units on both the left hand side (I.h.s.) and right

hand side (r.h.s) of eq. (2). As stated above, the unit of the lL.h.s. is ‘tons/year’ and
that of the r.h.s. is as follows:

ANtons

A, /year [1 ] Aytons (3)

tons . . . .
Because oms 1S cancelled out and will be unit free, the above representative can be

reduced to ‘tons/year’, which is consistent with the units of the l.h.s. of eq. (2).

[Example 1] Consistency of units

Suppose r =0.2/year, K =100 tons. If the stock size of year t is 50 tons,

50tons

55 tons — 50 tons = 0.2/year X [1 100tons

] 50 tons (E1)
( J
Y

Because the l.h.s. is the difference between the stocks,
this is flow, and we need to add ‘/year’

2.4. Continuous time and differential equation

If we analyse species that reproduce during some specific season and for which
changes in generations occur simultaneously, it is appropriate to use discrete time
(Teramoto, 1997). However, if the reproductive season is not common, it is more
appropriate to use a differential equation to describe the dynamics of such species
(Teramoto, 1997).

Because the reproductive season of microparasites usually varies, we often use a
differential equation. A continuous version of the logistic equation can be obtained
as follows:




dN _

T=rli-gly (a)

Here, r is the instantaneous growth rate. If necessary, we substitute N;,; and N,
with N(t) and N(t + 1) to distinguish between the discrete and continuous

versions of population sizes.

The interpretation of the growth rate 7 and the instantaneous growth rate r is
completely different because of the difference in the time span. However, when

. . . . dN , _
conducting numerical simulations, r and - are often interpreted as r

and N;,; — N;, respectively, and we often use parameter values and differences in
population sizes between two sequential times for calculation. We will see some

examples later.

Finally, you may think that N; and N.,; should be non-negative integral numbers.
In a real numerical simulation, calculated figures will not necessarily be an integral
number because they may be interpreted as the average of several individuals or
the average of several trials.

2.5. Other model categories

First, we have to distinguish between deterministic and stochastic models. If there
is no randomness among parameters, results of numerical simulations for the same
initial values will always be the same. On the other hand, if randomness exists at
least in one parameter, results of numerical simulations will be different every time
(sometimes the same result may be obtained). In the following text, we use only

deterministic models.

Second, we need to distinguish the closed model. In subsection 2.3, we assume that
neither immigration nor emigration occur. When considering a very short period, it
can be realistic to ignore both birth and death. In other words, if the dynamics of
infectious disease are far faster than that of the population, the closed model is
applicable. If all of these four factors (i.e., immigration, emigration, birth, and
death) are omitted, such a model is referred to as the closed model. We will
examine the closed model in section 3.



However, it is more realistic to consider birth and death, especially when the time
span of disease is long. In such cases, the steady model is used. However, this model
has a unique restriction: the number of births should always coincide with the
number of deaths. In other words, the parameter value of birth rate is the same as
that of death rate. As we will see later, total population size will be constant over
time. We will examine the steady model in section 4.

Both closed and steady models are appropriate under specific conditions and easy
to use because of simplifying assumptions; however, in some cases, these
assumptions are less valid, and more realistic models can be used. In section 5, we
examine the SEI model in the context of rabies among the red fox, where total
population size is no longer constant overtime.

3. Closed Models

3.1. SIR model (1)

The following is a revised version of the classical Kermack and McKendrick (1927)
model. Susceptible individuals S decrease by aSI in proportion to the rate «
(=pc), defined as the rate at which susceptible individuals meet infectious
individuals and become infected (in short, a is the infection rate).

as
—, = —asl (5)

Infectious individuals I increase by aSI and decrease by BI in proportion to the
rate [, which is the rate of immunity-acquired individuals.

dl
= = asl - pl (6)

The number of recovered individuals with lifelong immunity will increase by SI.
Therefore,



- =Bl )
Egs. (5), (6), and (7) comprise a modified Kermack and McKendrick-type SIR model.

If % = 0, the number of [ is constant over time. By substituting this condition into

eg. (6) and after some simple calculations, we have the following:

I(aS=p) =0 (8)

Because we are interested in the situation where infectious individuals exist,
aS — B should be zero (otherwise, I will be zero to obtain equality with eq. (8)).
Then, if the following condition holds, the number of I is constant over time.

7 =1 (9)

aS(t)

Let us denote 5 R.." Itis straightforward to obtain following conditions.

If R, >1,theinfectious disease will prevail (epidemic may occur)
if R, <1, the infectious disease will die out (epidemic will not occur)

R, =1 is the epidemic threshold (in some other contexts, this is also referred to as
the endemic threshold). R, is referred to as the reproduction number. Let us
define the initial stage as the time when infectious disease does not invade the
population, and let us denote the initial stage as t = 0. Then, S(0) =N, I(0) =0,

as(©) _ aN _ R,. Here, N is the total

and R(0) =0, and the following holds: 2 3

population size, and R, is referred to as the basic reproduction number. For
further understanding, a numerical example would be helpful. However, it might be
appropriate to provide an additional explanation before checking a numerical

example.

" Usually R is used. However, in this text, to distinguish it from the recovered individuals, we
will use R,.



If summing up egs. (5) to (7), all terms will cancel out, and we have the following:

ds dl dR
E‘i‘a‘f‘a—o (10)

Therefore, total number of population N is constant over time. That is,
N(0) = N(t) = S(t) + I(t) + R(t) for "t (11)

There are two interpretations for R in the SIR model. First, as explained above, R
represents recovered individuals. Measles, mumps, and chicken pox would be
typical examples. Once an individual has measles (or others), he/she rarely suffer
from the same infection after transitioning to become a recovered individual R.
Recovered individuals Rs are not infectious. If the population size is conserved (as
shown by eq. (11)), the number of R increases while those of S and I decrease.
Therefore, after a long period, I will be reduced to zero, and only S and R

remain in the population.
The second interpretation of R is ‘removed’. In other words, some individuals die
instead of recovering. The Black Death (the Bubonic Plague) is a typical example. In
this case, interpretation of eq. (11) is a bit complicated. We have to sum up all the
dead in additionto S and I. Thatis,

N(0) =N(t) =S() +I(t) + R(t) + 21 D(0) for ¢ (12)

Here, D(i) is the number of deaths at each time between t =1 and t — 1.

Now, we are ready to examine some numerical examples.

[Example 2] Numerical example of the SIR model (1)

Let ¢ =0.02, f = 0.5 and fill in A4 and B4 with ‘0.02’ and ‘0.5, respectively. Fill in
between the first, third, and sixth lines as well as row A (A6 and below) on the basis
of Figure 2. Use the initial values of S(0), 1(0), and R(0) as 50, 0, and o,
respectively and fill in B7, C7, and D7 with ‘507, ‘0’, and ‘0’, respectively. Then fill in
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B8, C8, and D8 as follows.

‘=B7-$A$4*B7*C7’,
‘=C7+$A%$4*B7*C7-$B$4*C7’,
‘=D7+$B$4*C7’.

Copy these cells until line 57. Now, most of Figure 2 is reproduced in your MS Excel
spreadsheet. The dynamics of S, I, and R are demonstrated by Figure 3. Because
there is no infectious disease in a population, S is constant at 50.

Suppose one infected individual has entered the population (although we suppose
there is no immigration or emigration, ignore this restriction here). Then, you will

have completely different results, which are shown in Figures 4 and 5.
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Figure 2. SIR model (1) (S(0) =50, I(0) =0,and R(0) =0)
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Figure 3. Dynamics of S, I,and R (S(0) =50, I(0) =0,and R(0) =0)
Note: Vertical and horizontal axes are population size and time, respectively
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Figure 4. SIR model (1) (S(0) =50, I1(0) =1,and R(0) =0)
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Figure 5. Dynamics of S, I,and R (S(0) =50, I(0) =1,and R(0) =0)
Note: Vertical and horizontal axes are population size and time, respectively

The R code for the latter case is provided in Appendix Il.

[Example 3] Endemic threshold and herd immunity

Next, let us check the endemic threshold. Because when t = o, S(0) = 50, it
follows that

as(t) _ 0.02x50

Ry = B 0.5

=2>1 (E2)

Because R, > 1, this infectious disease will take hold. Note that the value of R, is
shown in F7 of Figures 2 and 4, where you should fill in F7 with ‘$A$4*B7/$B$4’. Copy
F7 until line 57, and R,s are shown.

Next, let us calculate the value of S(t), which brings R, =1. The value is
S(t) = 0.5/0.02 = 25 individuals, as shown in G7 of Figures 2 and 4 (you should fill
in G7 with ‘=B4/A4’). This suggests that as time passes, the disease will take hold in
the earlier phase, but S(t) decreases. When the number of S(t) is less than 25
individuals, the disease prevalence begins to decrease. We can check this result in
Figures 4 and 5, where t = 8 and S(t) = 23.37 individuals, which is less than 25
individuals. Then, as is shown in Figure 5, I(t) starts to decrease. Finally, the

13




population sizes almost stabilize at 7.8, 0, and 43 for S, I, and R, respectively

when t is around 27.

This result suggests another important thing. At first, there were 50 susceptible

individuals, 7.8 of which were not infected. This phenomenon is referred to as herd

immunity. In our case, once the size of the susceptible individual population is less

than 25 individuals, the disease prevalence begins to decrease, where the sizes of

infectious I(t) and recovered R(t) individual populations have nothing to do

with the herd immunity. It follows that when we vaccinate susceptible individuals,

we can calculate the least number of susceptible individuals who will be required to

be vaccinated. By doing so, we can minimize the risk of side effects of vaccines and

minimize the cost of vaccination.

3.2. SIRS model

The SIRS model can be shown as follows.

Here,

v :immunity decay rate

s _

E——aSI+yR
di
E—aSI—,BI
dR
E—ﬁl—)/R

(13)

(14)

(15)

The same procedure (solving % = 0) provides the reproduction number as before:

The value of S(t), which brings R, =1 is as follows.

aS(t)

R =
t™ g

14

(16)




s(t) = £ (17)

a
If summing up egs. (13) to (15), the following equation holds.

ds dl dR
E‘i‘a‘f‘a—o (18)

Therefore, total number of individuals in population N is constant over time.

The SIRS model is a simple extension of the SIR model when R represents the
recovered population. The common cold is a typical example.

[Example 4] Numerical example of the SIRS model

Provide some modifications on the basis of Figure 6: Let y = 0.05, and fill in C4 with
‘0.05’. Then fill in B8 and D8 as follows.

‘=B7-$A3$4*B7*C7+3C$4*D7’,
‘=D7+$B$4*C7-$C$4*D7’.

Copy these cells until line 57. Now, Figure 6 is reproduced in your MS Excel
spreadsheet. The dynamics of S, I,and R are demonstrated by Figure 7.
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Figure 6. SIRS model (5(0) =50, I(0) =1,and R(0) =0)
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Figure 7. Dynamics of S, I,and R (S(0) =50, I(0) =1,and R(0) =0)
Note: Vertical and horizontal axes are population size and time, respectively

The R code for this case is provided in Appendix II.
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3.3. SIS model
The SIS model can be shown as follows:

% = —aSI + pI (19)
% = aSI - pI (20)
We have the following:
5 _ as(t)
R, = 2 (21)
-
S() =~ (22)
and
ds | di
wtz=0 (23)

The SIS model is also simple extension of the SIR model where R is removed. The
common cold is a typical example. The SIS model fits to describe endemic diseases.
Note that endemic diseases prolong disease status in some areas, while epidemic
diseases occur within a relatively short period of time.

[Example 5] Numerical example of the SIS model (1)

Provide some modifications on the basis of Figure 8: Remove unnecessary cells.
Then fill in B8 and C8 as follows.

‘=B7-$A$4*B7*C7+$Bs4*C7’
‘=C7+$A%$4*B7*C7-$B$4*C7’

Copy these cells until line 57. Figure 8 is reproduced in your MS Excel spreadsheet.
The dynamics of S, I,and R are demonstrated by Figure 9.

17




=
m
o]
()
m
-
Gl
T

1 ki k2 1 o2 r k.

2

3 o T & m h Yy [l
4 ooz 05

5

gt = I Rt b

7 0] a0 1 i 25
a 1 495 15 188

El 2 43765 2235 1 8506

10 3 AT T02T7 J20T7206 1508103

11 4 4520555 4754445 1848222

12 o 4417218 6827324 1 766887

13 G 4155400 9445803 1 662164

14 73842672 1257328 1 5370659

15 B 3505036 1554564 140205

16 8 31854437 1915563 1273775

17 10 2922821 2477779 1163883

18 11 273832 238188 1095328

19 12 2625753 2474247 1 050301

20 13 2563524 2536474 10254

Figure 8. SIS model (S(0) =50,and 1(0) =1)
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Figure 9. Dynamics of S and I (S(0) =50,and 1(0) =1)
Note: Vertical and horizontal axes are population size and time, respectively

There are two cases for the SIS model. In Figure 9, both susceptible and infected
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individuals coexist, and their numbers are constant after t =30, where S =25 and
I =26. This coexistence is referred to as persistence. In the other case, the number
of infected individuals is reduced to zero, and only susceptible individuals are left;
the endemic disease is eradicated. You may find such examples by changing initial

value of parameters and/or variables.

[Example 6] Numerical example of the SIS model (2)

In Example 5, the initial value of S(0) = 50. Here, let us suppose S(0) = 10. Then,
we have results shown in Figures 10 and 11. Infected individuals are completely
eradicated after t =37.

& B [ ] E F [ H
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3 @ i3 T & m h Wy &
4 ooz 05
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Figure 10. SIS model (S(0) =10,and I(0) =1)
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Figure 1. Dynamics of S and I (S(0) =10,and 1(0) =1)
Note: Vertical and horizontal axes are population size and time, respectively

Specifically, if the parameter value of [ =0, the modelis called the SI model, which
may describe, for example, the natural history of HIV (Vynnycky and White, 2010).

4. Steady Model

4.1. SIR model (2)
The steady version of the SIR model can be shown as follows:

2 =mN —mS — asI (24)
dl
E=a51—(m+6+ﬁ)l (25)
dR
= =pI-mR (26)

Here,
0: the disease death rate

? Tassier (2013) pointed out that the SIR type model is the most appropriate for HIV, but when
considering the longevity of infection period, the S| model is sometimes applied.
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We introduce both birth and death from hereon. We further suppose that ‘mortality
rate’ = ‘birth rate’, both of which are denoted as m. Because of this condition, the
total population size is constant (and, therefore, the model is called the steady
model).

We have the following:

_as(®)
T m+6+pB (27)

5’)

and
s(r) =2 (28)

Additionally, the total number of individuals in population N is constant over time.

[Example 7] Numerical example of the SIR model (2)

Provide some modifications on the basis of Figure 12. Finally, you may reproduce
Figures 12 and 13.
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Figure 12. SIR model (2) (§(0) =50, I(0) =1,and R(0) =0)
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Figure 13. Dynamics of S, I,and R (S(0) =50, 1(0) =1,and R(0) =0)
Note: Vertical and horizontal axes are population size and time, respectively

[Example 8] Total population size
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In the above text, | stated that the total number of individuals in population N is
constant over time. Here, let’s confirm this statement using an MS Excel
spreadsheet (you may check the same for other models). Fill in G8, H8, and Hg as

follows:

‘=SUM(B8:D8)+H8’
=C7*$Ds4’
‘=H8+(8*$Ds4’

Copy G8 and H9 until line 57. Then, we have Figure 14, and we can confirm that
population size is conserved at 51 for all periods.

A B [ D E F ] H
1 ki k2 1 o2 r k.
2
3 o T & m h Yy [l
4 ooz 05 01 0000
5
gt = I F Rt b
7 0] a0 1 0 1 666389 30005
a 1 49 000 1.38889 05 1 633064 o1 o
El 2 4762839 15931725 11955 1 587348 o1 023595
10 3 457886 2612505 214654642 1 526032 51 0433162
11 4 4335654 3F437315 3471724 14463 51 0654422
12 o 4041337 4357938 5190035 1346905 o1 1038154
13 G 368924 5265163 7T.3684846 1228542 o1 1473848
14 73300878 5000425 1000033 1100109 51 2000464
15 3 2905564 6350307 1253454 056836 51 2505507
16 9 2536733 6229733 1461634 0345437 o1 3234537
17 10 22208584 5651904 15281465 0740175 21 3857511
18 11 1970083 4770852 22105467 0 ERE55 21 442270
19 12 1782383 3787514 2448879 084032 o1 48997465
20 13 1647659 2364794 2638009 0548128 o1 5278518

Figure 14. Total population size

4.2. SIR model with hunting

We assume that we cannot distinguish susceptible, exposed, and infectious
individuals when hunting and that all three types of individuals are hunted by the
same probability. Let & denote the per capita hunting rate; then, the SIR model
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with hunting can be shown as follows:

%sz—mS—aSI—hS

%zaSI—(m+6+,8)I—hI

dR
& = Bl —mR — R

Here,
h: hunting rate

We have the following:

_aS(®)
T m+6+B+h

5’)

and

S(t) = m+é‘;—ﬁ+h

(29)

(30)

(32)

(33)

Additionally, the total number of individuals in population N is constant over time.

[Example 9] Numerical example of the SIR model with hunting

After similar procedures above, we have Figures 15 and 16.
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20 13 87542 003458553 26445923 0278652

Figure 15. SIR model with hunting (S(0) =50, I(0) =1,and R(0) =0)
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Figure 16. Dynamics of S, I,and R (S(0) =50, I(0) =1,and R(0) =0)
Note: Vertical and horizontal axes are population size and time, respectively

The model in this subsection is less satisfactory because we introduce hunting while
the birth and death rates are assumed to be the same. On the basis of eq. (33), we
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may set the value of h so that R, is less than 1 (so that the infectious disease will
be eradicated). However, higher values of h yield smaller population sizes, as
Figure 16 demonstrates (even if the value of h is low, the population size will

decrease in the long run). In section 5, we will examine a more realistic model.

4.3. SIR model with vaccination
The SIR model with vaccination can be shown as follows:

as

—, =mN—mS—aSl—vS (34)
al
= aSl—=(m+6+ Bl (35)
Z—}z=,81—mR+vS (36)
Here,
v: vaccination rate
We have the following:
_as(®)
7 mrs+p (37)
and
s(r) =2 (38)

Additionally, the total number of individuals in population N is constant over time.

[Example 10] Numerical example of the SIR model with vaccination

After similar procedures as above, we have Figures 17 and 18.
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Figure 17. SIR model with vaccination (§(0) =50, I(0) =1,and R(0) =0)
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Figure 18. Dynamics of S, I,and R (S(0) =50, I(0) =1,and R(0) =0)
Note: Vertical and horizontal axes are population size and time, respectively
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5. Advanced model

5.1. SEl model for rabies

The SIR-type epidemiological model can be used to describe the transmission of
rabies in the red fox. The model described below heavily depends on studies by
Anderson et al. (1981) and Smith (1985).> Anderson et al. (1981) provide a model for
a single population and ignore the spatial transmission of infectious diseases to
other populations. However, by doing so, their model makes it possible to calculate
the results analytically. After the publication of their paper, some articles examined
the spatial transmission of infectious diseases; however, these papers could not
provide solutions analytically and had to provide them numerically (Smith, 1985). It
is necessary to take these aspects of the models into consideration when building
models for real situations.

In the case of rabies, once rabies has developed, the infected animals will generally
die without recovering, and therefore, R is removed from the model. In addition,
acquisition of infectiousness does not occur soon after infection; there is a time lag,
and those under this process are called exposed or latent individuals and are
denoted as E. Therefore, the SEI model is usually used for rabies.

Here, let us examine the dynamics of susceptible S, exposed E, and infectious I
individuals using mathematical equations. First, let us derive the equation for
susceptible individuals. Suppose that only susceptible individuals are involved in
procreation (Smith, 1985). Eq. (A5) in the Appendix | is modified as follows:

as by+d

Susceptible individuals will decrease by aSI, and eq. (39) can be rewritten as

follows:

S=rl1-Z]s—asi (40)

3 Smith (1985) have also provided almost the same educational materials. When compared with
Smith (1985), this material provides a more detailed derivation of mathematical expressions and
more examples of numerical simulations, which make this material more introductory.
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Next, let us derive the equation for exposed individuals. Eq. (A5) is modified as

follows:

dE by +d
E:[—dl—TX%N]E (41)

Because it is assumed that exposed individuals are not involved in procreation, b,
= 0. The population size of exposed individuals increases by aSI. On the other hand,
let constant ¢ denote the rate that exposed individuals acquires infectiousness.
Then, the number of exposed individuals will decrease by ¢E, and Eq. (41) can be

rewritten as follows:

dE N
Z=asl—|o+d, +=|E (42)

Finally, let us derive the equation for infectious individuals. Eq. (A5) is modified as

follows:

dal b,+d
E:[—dl—TX%XN]I (43)

The population size of infectious individuals increases by oE. On the other hand,
here again, the number of infectious individuals will decrease by 61, and eq. (43)

can be rewritten as follows.

dl N
S =0E—[5+d+2|1 (44)

Egs. (40), (41), and (42) comprise the SEI model for rabies, which is presented in
Anderson et al. (1981).

[Example 11] Numerical example of the SEI model

After similar procedures above, we have Figures 19 and 20.
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Figure 19. SEl model (5(0) =50, 1(0) =1,and R(0) =0)
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Figure 20. Dynamics of S, E,and I (S(0) =50, I(0) =1,and R(0) =0)
Note: Vertical and horizontal axes are population size and time, respectively

5.2. SEl model with hunting
In this section, we suppose a situation where rabies has been prevalent in a red fox
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population, and we examine hunting with guns (we may reach the same results if

we consider traps and/or bait poison). Let & denote the per capita hunting rate,

then egs. (40), (41), and (42) are modified as follows:

ds _

a5 r[l—%]S—aSI—hS

dat

dE
dt

dal
dt

=Sl — [0 +dy + =X E — hE

L =oE—[s+dy+2|1-ni

(45)

(46)

(47)

[Example 12] Numerical example of the SEIl model with hunting

After similar procedures above, we have Figures 21 and 22.
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Figure 21. SEI model with hunting (S(0) =50, 1(0) =1,and R(0) =0)
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Figure 22. Dynamics of S, E,and I (5(0) =50, 1(0) =1,and R(0) =0)
Note: Vertical and horizontal axes are population size and time, respectively

5.3. SEI model with vaccination

In this section, we suppose a situation where rabies has been prevalent in a red fox
population, and we examine the effects of vaccination. Currently, in Europe, baits
with vaccine have been dropped in habitats of red foxes from helicopters and
planes. The following model can be used to examine the effects of this kind of

vaccination.

For the sake of simplicity, suppose that vaccination is effective only for susceptible
individuals and is not effective for exposed individuals. Let V denote vaccinated
individuals. Further, suppose that vaccinated individuals are involved in procreation.
Because individuals who are born from vaccinated individuals have not been
vaccinated until they eat bait containing vaccine, the number of susceptible
individuals increases by b;V. Let constant v denote the rate of vaccinated
individuals among susceptible individuals. Then, the number of susceptible
individuals decreases by vS. Therefore, eq. (40) is modified as follows:

as N
S =r|1-Z|s+ bV —asi—vs (48)
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Eq. (As5) is modified for vaccinated individuals as follows:

|-d, —r x 222 x Ny (49)

The number of vaccinated individuals increases by vS. Therefore, eq. (49) is further
modified as follows:

%:vs—[dl +%]V (50)

Egs. (42) and (44), in addition to (48) and (50), comprise a modified SEI model for
rabies under vaccination.

[Example 13] Numerical example of the SEI model with vaccination

After similar procedures as described above, we have Figures 23 and 24.

A B C D E E G H
1 Hl ke it o2 r K

o 025 0.001 0.05 0.001 0.2 100

3 @ & T & r k W o
4 002 01 04 01
5

6t = E I W N

7 0 50 0 1 0" 51

5 1 339 1 0.748 20 55648

g 2 2783992 1245848 0A52551 3033408 600724

10 3 261473 1272628 0600852 3630856 6432064

11 4 2631675 1252211 0560682 4028087 6835051

12 5 2722885 1173943 052311 4328386 7220079

13 6 2838681 1113185 0486491 4576018 7574667

14 7 2057280 1053766 0451135 4709454 7057232

15 8 3060423 00096002 0417537 4976428 58187219

16 9 317141 0839924 0356181 5140514 5444534

17 10 326214 0885138 0357024 5283567 8670223

15 11 3341716 0831813 0330075 5408284 585661485

19 12 3410816 0780144 0305215 5515538 9034592

20 13 3470391 0730358 02822595 5607443 91 79095

Figure 23. SEI model with vaccination (S(0) =10, I(0) =1,and R(0) =0)
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Figure 24. Dynamics of S, E,and I (S(0) =50, I(0) =1,and R(0) =0)
Note: Vertical and horizontal axes are population size and time, respectively

Appendix |

For a more concrete explanation, suppose there is a red fox population. As
explained before, the size of the red fox population changes on the basis of birth
and death. Namely,

DN_B-D (A1)

Here, B and D are the rate at which individuals born and die.

Further, suppose the population size of the red fox is relatively low compared to the
carrying capacity of its habitat. Under such conditions, each red fox can easily
obtain enough food, and litter sizes may be large. Conversely, suppose the
population size of the red fox is relatively high. Under such conditions, red foxes in
the same population may compete for food, and litter sizes may be small. Therefore,
let b denote the average per capita birth rate, and suppose b decreases as a
function of population size (as the population size N increases, the value of b
decreases). Then, we have the following equation:
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b =b, —b,N (A2)

Under small population sizes, red foxes happen to be found by predators less
frequently, and transmission of immunizing infections may be moderate or may not
occur, which may result in a low average per capita death rate. On the other hand, if
the population size is high, red foxes are more often found by predators, and
immunizing infections may transmit more widely. Therefore, let d denote the
average per capita death rate, and suppose d increases as a function of population
size (as the population size N increases, the value of d increases). Then, we have
the following equation.

d =d, + d,N (A3)

Here, let us examine the case where b = d, that is, the average per capita birth rate
and average per capita death rate are the same value. Population size under this
condition is called the carrying capacity K. The carrying capacity is derived as
follows from egs. (A2) and (A3):

K _ bl_dl _ T (A4)

T by+dy  by+d,

Here, r = by — d,.

Note that B = bN and D = dN. Substituting egs. (A2) to (A4) into eq. (A1), we
obtain the following:

dN by+d
from which, we have the following:
dN N
E_r[l_E]N (A6)

Eqg. (A6) is the same as eq. (4) in the body text and is called the logistic equation.
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The logistic equation is often criticized because many factors such as cohorts and
others are combined. However, in the real application of mathematical models, we
often face the fact that enough cohort data are not available and/or it is difficult to
selectively catch special cohorts (for more detail, see Munro and Scott, 1985).
Simpler mathematical models make it possible to have analytical solutions. This is
especially true when we incorporate socio-economic aspects into biological
mathematical models; if we use complicated models, we will often find it impossible
to have analytical solutions and to conduct qualitative analyses.

[Example A1] Growth curve

First, we calculate the values of the average per capita birth rate b, average per
capita death rate d, growth rate r, and carrying capacity K, where death means
natural deaths other than those caused by infectious disease. Suppose, b; = 0.25,
b, =0.001, d; =0.05,and d, = 0.001. Let us calculate the values of b and d by
changing the value of N. Fill in between the first and sixth lines (except E2 and F2)
as well as row A on the basis of Figure A1. Then fill in cells E2 and F2 with ‘=A2-C2’
and ‘=(A2-C2)/(B2+D2)’, respectively. Fill in cells B7 and C7 with ‘=$A%2-$B$2*A7" and
'=$C$2+$D3$2*A7’, respectively, and copy these cells until B19 and C19. Now, Figure
A1 is reproduced in your MS Excel spreadsheet. You can easily check that K =100

when b = d =0.15.

Next, let us draw a growth curve represented by eq. (A6). Fill in between the first
and sixth lines, as well as row A on the basis of Figure A2. Then, fill in cell B7 with
‘=$E$2%(1-A7/$F$2)*A7’, and copy this cell until B19. Now, Figure A2 is reproduced in
your MS Excel spreadsheet. You can easily check that when population size is less
than carrying capacity, population change between year t and t + 1 is positive
and vice versa. Finally, we draw the growth curve in Figure A3.

36




1 ki ey i1 dZ r k.

2 025 0.0 005 .00 nz 100
3 @ 2 T & i h Y [l
a4

5

g M b 5|

7 0 025 005

a 10 024 006

E 20 023 007

10 a0 o2z 003

11 40 021 009

12 =10 02 01

13 3]0 019 011

14 70 018 012

15 a0 017 013

16 a0 016 o014

17 100 015 015

18 110 014 016

149 120 013 017

20
Figure A1. Calculation of the average per capita birth rate, death rate, growth
rate, and carrying capacity
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Figure A2. Calculation of the growth curve
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Figure A3. Growth curve

Appendix Il

The R codes in Appendix Il were originally written by Professor Koki Kyo from
Obihiro University of Agriculture and Veterinary Medicine, with some modifications
by the author of this material. Note that values of S, I, and R are restricted to be

non-negative values.

You can copy the following R code and paste it on R. After pushing the ‘Enter’ key, a
graph is automatically generated.

#i### R code for SIR #####
# Parameter value setting
a<-0.02
r<-0.5

# Initial value setting
S0 <-50
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10 <-1
Ro<-0

# Estimation period setting
T<-50

# Simulation
S <- numeric(T); | <- numeric(T); R <- numeric(T)
ds <--a*So*lo
dl <-a*So*lo - r*lo
dR <-r*lo
S[1] <- So +dS
I[1] <- 1o +dI
R[1] <-Ro +dR
for (iin 2:T)
{
ds <--a*S[i-1]*1[i-1]
dl <- a*S[i-1]*1[i-1] - r*I[i-1]
if (dI > S[i-1]) {dI <-S[i-1]}
dR <- r*I[i-1]
if (dR > I[i-1]) {dR<-1[i-1]}
S[i] <- S[i-1] + dS
if(S[i] < 0) {S]i] <- o}
I[i] <- I[i-1] + dI
if(I[i] < o) {I[i] <- o}
R[i] <- R[i-1] + dR
if(R[i] < 0) {R[i] <- 0}

# Graph depiction
t <-c(1:T)
plot(t, S, xlim=range(t), ylim=c(min(S,I,R), max(S,l,R)), type="1",
xlab="year", ylab="", lwd=1)
lines(t, I, lwd=2)
lines(t, R, Iwd=3)
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# Calculation of Ro
Ro <- a*(So+lo+Ro)/r
Ro

##### R code for SIRS #####
# Parameter value setting
a<-0.02
r<-0.5
Vv <- 0.05

# Initial value setting
S0 <-50
10 <-1
Ro<-0

# Estimation period setting
T<-50

# Simulation
S <- numeric(T); | <- numeric(T); R <- numeric(T)
ds <--a*So*lo + v¥*Ro
dl <-a*So*lo -r*lo
dR <-r*lo-v*Ro
S[1] <-So +dS
[1] <- 10 + dI
R[1] <-Ro +dR
for (iin 2:T)
{
ds <--a*S[i-1]*I[i-1] + v*R[i-1]
dl <- a*S[i-1]*1[i-1] - r*I[i-1]
if (dI >S[i-1]) {dI <- S[i-1]}
dR <-r*I[i-1] - v*R[i-1]
if (dR>1[i-1]) {dR<-1[i-1]}
S[i] <- S[i-1] + dS
if(S[i] < 0) {S][i] <- o}
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I[i] <- [i4] + dI
if(1[i] < 0) {I[i] <- 0}
R[i] < R[i] + dR
if(R[i] < 0) {R[i] <- 0}
}

# Graph depiction
t <-c(1:T)
plot(t, S, xlim=range(t), ylim=c(min(S,I,R), max(S,l,R)), type="1",
xlab="year", ylab="", Iwd=1)
lines(t, I, lwd=2)
lines(t, R, Iwd=3)

# Calculation of Ro
Ro <- a*(So+lo+Ro)/r
Ro
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