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1. Introduction 
 

For both human beings and animals, infectious disease has always been one of the 

most important factors influencing fatality. Currently, infectious diseases affect 

many economic aspects of livestock husbandry, and the prevention of epidemic 

infections is a serious issue, especially due to recent globalization. When dealing 

with infectious diseases, it is important to estimate specific disease-related factors; 

infectious disease models can be used for such purposes. This material provides 

simple explanations for infectious disease modelling. In the following material, 

several models of infectious disease are provided; these models are often referred 

to as SIR models. To facilitate understanding of this material, demonstrations using 

MS Excel and sometimes the R codes are provided as supplementary materials. 

 

The SIR-type epidemiological model dates back to publications by Kermack – 

McKendrick (1927); however, no solid research followed these studies for decades. 

Indeed, after a long period without additional studies on SIR-type models, the 

Kermack – McKendrick (1927) model was finally appreciated, and full-fledged 

studies were started in the 1970s. Most recent works are more directly traced back 

to Anderson and May (1979), May and Anderson (1979), and Anderson (1991). 

 

Some introductory texts and papers, which include similar materials, are provided 

on the website of the Swiss Federal Institute of Technology, Zurich (ETH Zürich, 

2009, 2010), as well as in papers published by Keeling and Rohani (2008) and Tassier 

(2013). 

 

 

2. Basic Things to Know 
 

2.1. Infectious status 

Infectious diseases are caused when certain types of parasites invade into a host. 

Some of these types of parasites are shown in Table 1. In the text that follows, we 

will mainly discuss diseases incurred from microparasites. In SIR models, individuals 

in a population are divided into susceptible (𝑆), exposed/latent (𝐸), infectious (𝐼), 

and recovered/removed (𝑅) individuals, and the models are referred to on the basis 

of the infections statuses of included individuals (Figure 1). 
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Here, 𝑆: Susceptible individuals are those who can be infected but have not been 

infected. 𝐸: Exposed individuals are those who have been exposed to the disease and 

infected, but are not infectious (namely, those whose disease is in the latent 

stage). 𝐼: Infectious individuals are those who are infectious. 𝑅: Removed individuals are those who recovered from the disease and have 

immunity. In some models, removed individuals will be reverted to the S stage 

once they have lost immunity. Additionally, 𝑅s may be removed individuals 

from the population because of disease-related death. 

 

Table 1. Infectious agents 
Type of agent Characteristics [Examples] 

Microparasites  

Virus Small, simple, obligatory parasites of larger cells 

[Ex.: influenza] 

Bacteria Large and more complex than viruses; many are able to grow independently, 

but some require a cellular host 

[Ex.: Salmonella typhi (typhoid fever)] 

Protozoa Large single-celled organisms, more complex than bacteria, many are able to 

grow independently, but some require a cellular host 

[Ex.: Plasmodium falciparum (malaria)] 

Macroparasites  

Helminths 

(worms) 

Large (1 mm to 10 m) multicellular organisms 

[Ex.: Schistosoma mansoni (schistosomiasis)] 

Arthropods Insects, lice, ticks, and their relatives 

[Ex.: Ixodes spp. (ticks)] 

Source: Vynnycky and White (2010), Table 1.1. 
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Figure 1. Infection status 

Source: Keeling and Rohani (2008) Figure 1.2 

 

 

2.2. Variables and parameters 

Because exposed and recovered individuals 𝐸 and 𝑅 have already been infected 

and have acquired immunity, only susceptible individuals 𝑆 can be infected when 

contacting infectious individuals 𝐼. Let us suppose p represents the probability that 𝑆  will be infected when contacting 𝐼  and that c represents the number of 

opportunities an individual in 𝑆 has to come in contact with individuals 𝐼 within a 

certain period. Then, the infection rate is pc. It can be easily inferred that the 

expected number of individuals who transition from 𝑆 to 𝐼 in a certain period will 

be pc 𝑆𝐼. 

 𝑆, 𝐸, 𝐼, and 𝑅 are referred to as variables, whose values change over time, while c 

and p are referred to as parameters, whose values are constant over time. A 

parameter is always a coefficient of some variable. If it is not related to the variable, 

it is simply called a ‘constant’. With empirical data and/or previous studies, we often 

set initial values of variables and values for parameters and constants. 

 

 

2.3. Discrete time and difference equation 

Two different time spans are used in modelling. In particular, discrete time is used 

when we use the difference equation. As explained above, values of variables 

change over time. Let us define time explicitly. For example, the population size of 

some animal at the beginning of any two sequential times 𝑡 and 𝑡 + 1 can be 

Susceptible (S) Exposed/Latent (E) Infectious (I) Recovered/Removed (R) 

Incubation Diseased 

Infection status 

Medical status 

pathogen 
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given as 𝑁𝑡 tons and 𝑁𝑡+1 tons, respectively. Specifically, let us suppose that two 

sequential times implies two sequential years. Population sizes will change during 

these sequential years because of the following reasons: 

 

(1) increases in the number of individuals by immigration from outside of a 

population and/or decreases in the number of individuals by emigration from 

inside of the population 

(2) increases in the number of individuals by births inside of the population and/or 

decreases in the number of individuals by deaths inside of the population 

 

Here (1) can be regarded as a situation where immigration and emigration occur 

between several populations within the metapopulation. However, for the sake of 

simplicity, a single population is sometimes assumed, and immigrants and emigrants 

are ignored. Then, the population size changes based on births and deaths. That is, 

 𝑁𝑡+1 = 𝑁𝑡 + 𝐵𝑡 − 𝐷𝑡                         (1) 

 

Here, 𝐵𝑡: number of births in this population in year 𝑡 𝐷𝑡: number of deaths in this population in year 𝑡 

 

Under some assumptions and after a few complicated calculations, we have the 

famous logistic equation as follows (see Appendix I): 

 𝑁𝑡+1 − 𝑁𝑡 = �̅� [1 − 𝑁𝑡𝐾 ] 𝑁𝑡                     (2) 

 

Here, 𝐾: carrying capacity (tons) �̅�: growth rate (per year) 

 

The amount of population increase or decrease during a certain period of time (e.g., 

one year) is ‘flow’, while the population size at a certain time (e.g., at the beginning 

of the year) is ‘stock’. Differences in stocks are considered flow. In our case, both 𝑁𝑡 and 𝑁𝑡+1 are stock, and the difference in these stocks (namely, 𝑁𝑡+1 − 𝑁𝑡) is 

flow. It can be easily inferred that the unit of measure of 𝑁𝑡 and 𝑁𝑡+1 is, for 
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example, tons; however, that of 𝑁𝑡+1 − 𝑁𝑡 should be, for example, tons/year. 

 

Let us check the consistency of units on both the left hand side (l.h.s.) and right 

hand side (r.h.s) of eq. (2). As stated above, the unit of the l.h.s. is ‘tons/year’ and 

that of the r.h.s. is as follows: 

 ∆𝑟/year [1 − ∆𝑁𝑡𝑜𝑛𝑠∆𝐾𝑡𝑜𝑛𝑠] ∆𝑁𝑡𝑜𝑛𝑠                      (3) 

 

Because 
𝑡𝑜𝑛𝑠𝑡𝑜𝑛𝑠 is cancelled out and will be unit free, the above representative can be 

reduced to ‘tons/year’, which is consistent with the units of the l.h.s. of eq. (2). 

 

[Example 1] Consistency of units 

 

Suppose 𝑟 = 0.2/year, 𝐾 = 100 tons. If the stock size of year 𝑡 is 50 tons, 

 55 tons − 50 tons = 0.2/year × [1 − 50tons100tons] 50 tons          (E1) 

 

Because the l.h.s. is the difference between the stocks, 

this is flow, and we need to add ‘/year’ 
 

 

 

2.4. Continuous time and differential equation 

If we analyse species that reproduce during some specific season and for which 

changes in generations occur simultaneously, it is appropriate to use discrete time 

(Teramoto, 1997). However, if the reproductive season is not common, it is more 

appropriate to use a differential equation to describe the dynamics of such species 

(Teramoto, 1997).  

 

Because the reproductive season of microparasites usually varies, we often use a 

differential equation. A continuous version of the logistic equation can be obtained 

as follows: 
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𝑑𝑁𝑑𝑡 = 𝑟 [1 − 𝑁𝐾] 𝑁                         (4) 

 

Here, 𝑟 is the instantaneous growth rate. If necessary, we substitute 𝑁𝑡+1 and 𝑁𝑡 

with 𝑁(𝑡) and 𝑁(𝑡 + 1) to distinguish between the discrete and continuous 

versions of population sizes. 

 

The interpretation of the growth rate �̅� and the instantaneous growth rate 𝑟 is 

completely different because of the difference in the time span. However, when 

conducting numerical simulations, 𝑟  and 
𝑑𝑁𝑑𝑡  are often interpreted as �̅� 

and 𝑁𝑡+1 − 𝑁𝑡, respectively, and we often use parameter values and differences in 

population sizes between two sequential times for calculation. We will see some 

examples later. 

 

Finally, you may think that 𝑁𝑡 and 𝑁𝑡+1 should be non-negative integral numbers. 

In a real numerical simulation, calculated figures will not necessarily be an integral 

number because they may be interpreted as the average of several individuals or 

the average of several trials. 

 

 

2.5. Other model categories 

First, we have to distinguish between deterministic and stochastic models. If there 

is no randomness among parameters, results of numerical simulations for the same 

initial values will always be the same. On the other hand, if randomness exists at 

least in one parameter, results of numerical simulations will be different every time 

(sometimes the same result may be obtained). In the following text, we use only 

deterministic models. 

 

Second, we need to distinguish the closed model. In subsection 2.3, we assume that 

neither immigration nor emigration occur. When considering a very short period, it 

can be realistic to ignore both birth and death. In other words, if the dynamics of 

infectious disease are far faster than that of the population, the closed model is 

applicable. If all of these four factors (i.e., immigration, emigration, birth, and 

death) are omitted, such a model is referred to as the closed model. We will 

examine the closed model in section 3. 
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However, it is more realistic to consider birth and death, especially when the time 

span of disease is long. In such cases, the steady model is used. However, this model 

has a unique restriction: the number of births should always coincide with the 

number of deaths. In other words, the parameter value of birth rate is the same as 

that of death rate. As we will see later, total population size will be constant over 

time. We will examine the steady model in section 4. 

 

Both closed and steady models are appropriate under specific conditions and easy 

to use because of simplifying assumptions; however, in some cases, these 

assumptions are less valid, and more realistic models can be used. In section 5, we 

examine the SEI model in the context of rabies among the red fox, where total 

population size is no longer constant overtime. 

 

 

3. Closed Models 
 

3.1. SIR model (1) 

The following is a revised version of the classical Kermack and McKendrick (1927) 

model. Susceptible individuals 𝑆 decrease by 𝛼𝑆𝐼 in proportion to the rate 𝛼 

(= 𝑝𝑐 ), defined as the rate at which susceptible individuals meet infectious 

individuals and become infected (in short, 𝛼 is the infection rate). 

 𝑑𝑆𝑑𝑡 = −𝛼𝑆𝐼                             (5) 

 

Infectious individuals 𝐼 increase by 𝛼𝑆𝐼 and decrease by 𝛽𝐼 in proportion to the 

rate 𝛽, which is the rate of immunity-acquired individuals. 

 

    
𝑑𝐼𝑑𝑡 = 𝛼𝑆𝐼 − 𝛽𝐼                           (6) 

 

The number of recovered individuals with lifelong immunity will increase by 𝛽𝐼. 

Therefore, 
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𝑑𝑅𝑑𝑡 = 𝛽𝐼                             (7) 

 

Eqs. (5), (6), and (7) comprise a modified Kermack and McKendrick-type SIR model. 

 

If 
𝑑𝐼𝑑𝑡 = 0, the number of 𝐼 is constant over time. By substituting this condition into 

eq. (6) and after some simple calculations, we have the following: 

 𝐼(𝛼𝑆 − 𝛽) = 0                          (8) 

 

Because we are interested in the situation where infectious individuals exist, 𝛼𝑆 − 𝛽 should be zero (otherwise, 𝐼 will be zero to obtain equality with eq. (8)). 

Then, if the following condition holds, the number of 𝐼 is constant over time. 

 𝛼𝑆𝛽 = 1                              (9) 

 

Let us denote 
𝛼𝑆(𝑡)𝛽 = �̂�𝑡.1 It is straightforward to obtain following conditions. 

 

If �̂�𝑡 > 1, the infectious disease will prevail (epidemic may occur) 

if �̂�𝑡 < 1, the infectious disease will die out (epidemic will not occur) 

 �̂�𝑡 = 1 is the epidemic threshold (in some other contexts, this is also referred to as 

the endemic threshold). �̂�𝑡 is referred to as the reproduction number. Let us 

define the initial stage as the time when infectious disease does not invade the 

population, and let us denote the initial stage as 𝑡 = 0. Then, 𝑆(0) = 𝑁, 𝐼(0) = 0, 

and 𝑅(0) = 0, and the following holds: 
𝛼𝑆(0)𝛽 = 𝛼𝑁𝛽 = �̂�0 . Here, 𝑁  is the total 

population size, and �̂�0 is referred to as the basic reproduction number. For 

further understanding, a numerical example would be helpful. However, it might be 

appropriate to provide an additional explanation before checking a numerical 

example. 

                                                   
1 Usually 𝑅 is used. However, in this text, to distinguish it from the recovered individuals, we 

will use �̂�𝑡. 
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If summing up eqs. (5) to (7), all terms will cancel out, and we have the following: 

 𝑑𝑆𝑑𝑡 + 𝑑𝐼𝑑𝑡 + 𝑑𝑅𝑑𝑡 = 0                        (10) 

 

Therefore, total number of population 𝑁 is constant over time. That is, 

 𝑁(0) = 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) for 𝑡∀               (11) 

 

There are two interpretations for 𝑅 in the SIR model. First, as explained above, 𝑅 

represents recovered individuals. Measles, mumps, and chicken pox would be 

typical examples. Once an individual has measles (or others), he/she rarely suffer 

from the same infection after transitioning to become a recovered individual 𝑅. 

Recovered individuals 𝑅s are not infectious. If the population size is conserved (as 

shown by eq. (11)), the number of 𝑅 increases while those of 𝑆 and 𝐼 decrease. 

Therefore, after a long period, 𝐼 will be reduced to zero, and only 𝑆 and 𝑅 

remain in the population. 

 

The second interpretation of 𝑅 is ‘removed’. In other words, some individuals die 

instead of recovering. The Black Death (the Bubonic Plague) is a typical example. In 

this case, interpretation of eq. (11) is a bit complicated. We have to sum up all the 

dead in addition to 𝑆 and 𝐼. That is, 

 𝑁(0) = 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + R(𝑡) + ∑ 𝐷(𝑖)𝑡−1𝑖=1  for 𝑡∀           (12) 

 

Here, D(𝑖) is the number of deaths at each time between 𝑡 = 1 and 𝑡 − 1. 

 

Now, we are ready to examine some numerical examples. 

 

[Example 2] Numerical example of the SIR model (1) 

 

Let 𝛼 = 0.02, 𝛽 = 0.5 and fill in A4 and B4 with ‘o.o2’ and ‘0.5’, respectively. Fill in 

between the first, third, and sixth lines as well as row A (A6 and below) on the basis 

of Figure 2. Use the initial values of 𝑆(0), 𝐼(0), and 𝑅(0) as 50, 0, and 0, 

respectively and fill in B7, C7, and D7 with ‘50’, ‘0’, and ‘0’, respectively. Then fill in 
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B8, C8, and D8 as follows. 

 

‘=B7-$A$4*B7*C7’, 
‘=C7+$A$4*B7*C7-$B$4*C7’, 
‘=D7+$B$4*C7’. 

 

Copy these cells until line 57. Now, most of Figure 2 is reproduced in your MS Excel 

spreadsheet. The dynamics of 𝑆, 𝐼, and 𝑅 are demonstrated by Figure 3. Because 

there is no infectious disease in a population, 𝑆 is constant at 50. 

 

Suppose one infected individual has entered the population (although we suppose 

there is no immigration or emigration, ignore this restriction here). Then, you will 

have completely different results, which are shown in Figures 4 and 5. 

 

 

Figure 2. SIR model (1) (𝑆(0) = 50, 𝐼(0) = 0, and 𝑅(0) = 0) 
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Figure 3. Dynamics of 𝑺, 𝑰, and 𝑹 (𝑆(0) = 50, 𝐼(0) = 0, and 𝑅(0) = 0) 

Note: Vertical and horizontal axes are population size and time, respectively 

 

 

Figure 4. SIR model (1) (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 
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Figure 5. Dynamics of 𝑺, 𝑰, and 𝑹 (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 

Note: Vertical and horizontal axes are population size and time, respectively 

 

The R code for the latter case is provided in Appendix II. 

 

 

[Example 3] Endemic threshold and herd immunity 

 

Next, let us check the endemic threshold. Because when 𝑡 = 0, 𝑆(0) = 50, it 

follows that 

 �̂�0 = 𝛼𝑆(𝑡)𝛽 = 0.02×500.5 = 2 > 1                   (E2) 

 

Because �̂�0 > 1, this infectious disease will take hold. Note that the value of �̂�0 is 

shown in F7 of Figures 2 and 4, where you should fill in F7 with ‘$A$4*B7/$B$4’. Copy 

F7 until line 57, and �̂�𝑡s are shown. 

 

Next, let us calculate the value of 𝑆(𝑡) , which brings �̂�𝑡 = 1 . The value is 𝑆(𝑡) = 0.5 0.02⁄ = 25 individuals, as shown in G7 of Figures 2 and 4 (you should fill 

in G7 with ‘=B4/A4’). This suggests that as time passes, the disease will take hold in 

the earlier phase, but 𝑆(𝑡) decreases. When the number of 𝑆(𝑡) is less than 25 

individuals, the disease prevalence begins to decrease. We can check this result in 

Figures 4 and 5, where 𝑡 = 8 and 𝑆(𝑡) = 23.37 individuals, which is less than 25 

individuals. Then, as is shown in Figure 5, 𝐼(𝑡) starts to decrease. Finally, the 
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population sizes almost stabilize at 7.8, 0, and 43 for 𝑆, 𝐼, and 𝑅, respectively 

when 𝑡 is around 27. 

 

This result suggests another important thing. At first, there were 50 susceptible 

individuals, 7.8 of which were not infected. This phenomenon is referred to as herd 

immunity. In our case, once the size of the susceptible individual population is less 

than 25 individuals, the disease prevalence begins to decrease, where the sizes of 

infectious 𝐼(𝑡) and recovered 𝑅(𝑡) individual populations have nothing to do 

with the herd immunity. It follows that when we vaccinate susceptible individuals, 

we can calculate the least number of susceptible individuals who will be required to 

be vaccinated. By doing so, we can minimize the risk of side effects of vaccines and 

minimize the cost of vaccination. 

 

 

 

3.2. SIRS model 

The SIRS model can be shown as follows.  

 𝑑𝑆𝑑𝑡 = −𝛼𝑆𝐼 + 𝛾𝑅                          (13) 

    
𝑑𝐼𝑑𝑡 = 𝛼𝑆𝐼 − 𝛽𝐼                           (14) 

𝑑𝑅𝑑𝑡 = 𝛽𝐼 − 𝛾𝑅                           (15) 

 

Here, 

γ: immunity decay rate 

 

The same procedure (solving 
𝑑𝐼𝑑𝑡 = 0) provides the reproduction number as before: 

 �̂�𝑡 = 𝛼𝑆(𝑡)𝛽                             (16) 

 

The value of 𝑆(𝑡), which brings �̂�𝑡 = 1 is as follows. 
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S(𝑡) = 𝛽𝛼                             (17) 

 

If summing up eqs. (13) to (15), the following equation holds. 

 𝑑𝑆𝑑𝑡 + 𝑑𝐼𝑑𝑡 + 𝑑𝑅𝑑𝑡 = 0                        (18) 

 

Therefore, total number of individuals in population 𝑁 is constant over time. 

 

The SIRS model is a simple extension of the SIR model when 𝑅 represents the 

recovered population. The common cold is a typical example. 

 

[Example 4] Numerical example of the SIRS model 

 

Provide some modifications on the basis of Figure 6: Let 𝛾 = 0.05, and fill in C4 with 

‘o.o5’. Then fill in B8 and D8 as follows. 
 

‘=B7-$A$4*B7*C7+$C$4*D7’, 
‘=D7+$B$4*C7-$C$4*D7’. 

 

Copy these cells until line 57. Now, Figure 6 is reproduced in your MS Excel 

spreadsheet. The dynamics of 𝑆, 𝐼, and 𝑅 are demonstrated by Figure 7. 
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Figure 6. SIRS model (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 

 

 
Figure 7. Dynamics of 𝑺, 𝑰, and 𝑹 (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 

Note: Vertical and horizontal axes are population size and time, respectively 

 

The R code for this case is provided in Appendix II. 
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3.3. SIS model 

The SIS model can be shown as follows: 

 𝑑𝑆𝑑𝑡 = −𝛼𝑆𝐼 + 𝛽𝐼                          (19) 

    
𝑑𝐼𝑑𝑡 = 𝛼𝑆𝐼 − 𝛽𝐼                           (20) 

 

We have the following: 

 �̂�𝑡 = 𝛼𝑆(𝑡)𝛽                             (21) 

S(𝑡) = 𝛽𝛼                             (22) 

 

and 

 𝑑𝑆𝑑𝑡 + 𝑑𝐼𝑑𝑡 = 0                           (23) 

 

The SIS model is also simple extension of the SIR model where 𝑅 is removed. The 

common cold is a typical example. The SIS model fits to describe endemic diseases. 

Note that endemic diseases prolong disease status in some areas, while epidemic 

diseases occur within a relatively short period of time. 

 

[Example 5] Numerical example of the SIS model (1) 

 

Provide some modifications on the basis of Figure 8: Remove unnecessary cells. 

Then fill in B8 and C8 as follows. 

 

‘=B7-$A$4*B7*C7+$B$4*C7’ 
‘=C7+$A$4*B7*C7-$B$4*C7’ 
 

Copy these cells until line 57. Figure 8 is reproduced in your MS Excel spreadsheet. 

The dynamics of 𝑆, 𝐼, and 𝑅 are demonstrated by Figure 9. 



18 
 

 

 

Figure 8. SIS model (𝑆(0) = 50, and 𝐼(0) = 1) 

 

 
Figure 9. Dynamics of 𝑺 and 𝑰 (𝑆(0) = 50, and 𝐼(0) = 1) 

Note: Vertical and horizontal axes are population size and time, respectively 
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individuals coexist, and their numbers are constant after 𝑡 = 30, where 𝑆 = 25 and 𝐼 = 26. This coexistence is referred to as persistence. In the other case, the number 

of infected individuals is reduced to zero, and only susceptible individuals are left; 

the endemic disease is eradicated. You may find such examples by changing initial 

value of parameters and/or variables. 

 

[Example 6] Numerical example of the SIS model (2) 

 

In Example 5, the initial value of 𝑆(0) = 50. Here, let us suppose 𝑆(0) = 10. Then, 

we have results shown in Figures 10 and 11. Infected individuals are completely 

eradicated after 𝑡 = 37. 

 

 

Figure 10. SIS model (𝑆(0) = 10, and 𝐼(0) = 1) 
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Figure 11. Dynamics of 𝑺 and 𝑰 (𝑆(0) = 10, and 𝐼(0) = 1) 

Note: Vertical and horizontal axes are population size and time, respectively 

 

 

Specifically, if the parameter value of 𝛽 = 0, the model is called the SI model, which 

may describe, for example, the natural history of HIV (Vynnycky and White, 2010).2 

 

 

4. Steady Model 
 

4.1. SIR model (2) 

The steady version of the SIR model can be shown as follows:  

 𝑑𝑆𝑑𝑡 = 𝑚𝑁 − 𝑚𝑆 − 𝛼𝑆𝐼                        (24) 

𝑑𝐼𝑑𝑡 = 𝛼𝑆𝐼 − (𝑚 + 𝛿 + 𝛽)𝐼                      (25) 

𝑑𝑅𝑑𝑡 = 𝛽𝐼 − 𝑚𝑅                          (26) 

 

Here, 𝛿: the disease death rate 

                                                   
2 Tassier (2013) pointed out that the SIR type model is the most appropriate for HIV, but when 
considering the longevity of infection period, the SI model is sometimes applied. 
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We introduce both birth and death from hereon. We further suppose that ‘mortality 

rate’ = ‘birth rate’, both of which are denoted as 𝑚. Because of this condition, the 

total population size is constant (and, therefore, the model is called the steady 

model). 

 

We have the following: 

 �̂�𝑡 = 𝛼𝑆(𝑡)𝑚+𝛿+𝛽                            (27) 

 

and 

 S(𝑡) = 𝑚+𝛿+𝛽𝛼                            (28) 

 

Additionally, the total number of individuals in population 𝑁 is constant over time. 

 

[Example 7] Numerical example of the SIR model (2) 

 

Provide some modifications on the basis of Figure 12. Finally, you may reproduce 

Figures 12 and 13. 
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Figure 12. SIR model (2) (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 

 

 
Figure 13. Dynamics of 𝑺, 𝑰, and 𝑹 (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 

Note: Vertical and horizontal axes are population size and time, respectively 

 

 

[Example 8] Total population size 
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In the above text, I stated that the total number of individuals in population 𝑁 is 

constant over time. Here, let’s confirm this statement using an MS Excel 

spreadsheet (you may check the same for other models). Fill in G8, H8, and H9 as 

follows: 

 

‘=SUM(B8:D8)+H8’ 
‘=C7*$D$4’ 
‘=H8+C8*$D$4’ 

 

Copy G8 and H9 until line 57. Then, we have Figure 14, and we can confirm that 

population size is conserved at 51 for all periods. 

 

 

Figure 14. Total population size 

 

 

 

4.2. SIR model with hunting 

We assume that we cannot distinguish susceptible, exposed, and infectious 

individuals when hunting and that all three types of individuals are hunted by the 

same probability. Let h  denote the per capita hunting rate; then, the SIR model 
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with hunting can be shown as follows: 

 𝑑𝑆𝑑𝑡 = 𝑚𝑁 − 𝑚𝑆 − 𝛼𝑆𝐼 − ℎ𝑆                    (29) 

𝑑𝐼𝑑𝑡 = 𝛼𝑆𝐼 − (𝑚 + 𝛿 + 𝛽)𝐼 − ℎ𝐼                   (30) 

𝑑𝑅𝑑𝑡 = 𝛽𝐼 − 𝑚𝑅 − ℎ𝑅                         1) 

 

Here, ℎ: hunting rate 

 

We have the following: 

 �̂�𝑡 = 𝛼𝑆(𝑡)𝑚+𝛿+𝛽+ℎ                          (32) 

 

and 

 S(𝑡) = 𝑚+𝛿+𝛽+ℎ𝛼                           (33) 

 

Additionally, the total number of individuals in population 𝑁 is constant over time. 

 

[Example 9] Numerical example of the SIR model with hunting 

 

After similar procedures above, we have Figures 15 and 16. 
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Figure 15. SIR model with hunting (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 

 

 
Figure 16. Dynamics of 𝑺, 𝑰, and 𝑹 (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 

Note: Vertical and horizontal axes are population size and time, respectively 

 

 

The model in this subsection is less satisfactory because we introduce hunting while 
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may set the value of ℎ so that �̂�𝑡 is less than 1 (so that the infectious disease will 

be eradicated). However, higher values of ℎ yield smaller population sizes, as 

Figure 16 demonstrates (even if the value of ℎ is low, the population size will 

decrease in the long run). In section 5, we will examine a more realistic model. 

 

 

4.3. SIR model with vaccination 

The SIR model with vaccination can be shown as follows:  

 𝑑𝑆𝑑𝑡 = 𝑚𝑁 − 𝑚𝑆 − 𝛼𝑆𝐼 − 𝑣𝑆                     (34) 

𝑑𝐼𝑑𝑡 = 𝛼𝑆𝐼 − (𝑚 + 𝛿 + 𝛽)𝐼                      (35) 

𝑑𝑅𝑑𝑡 = 𝛽𝐼 − 𝑚𝑅 + 𝑣𝑆                        (36) 

 

Here, 𝑣: vaccination rate 

 

We have the following: 

 𝑅𝑡 = 𝛼𝑆(𝑡)𝑚+𝛿+𝛽                           (37) 

 

and 

 S(𝑡) = 𝑚+𝛿+𝛽𝛼                           (38) 

 

Additionally, the total number of individuals in population 𝑁 is constant over time. 

 

[Example 10] Numerical example of the SIR model with vaccination 

 

After similar procedures as above, we have Figures 17 and 18. 
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Figure 17. SIR model with vaccination (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 

 

 
Figure 18. Dynamics of 𝑺, 𝑰, and 𝑹 (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 

Note: Vertical and horizontal axes are population size and time, respectively 
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5. Advanced model 
 

5.1. SEI model for rabies 

The SIR-type epidemiological model can be used to describe the transmission of 

rabies in the red fox. The model described below heavily depends on studies by 

Anderson et al. (1981) and Smith (1985).3 Anderson et al. (1981) provide a model for 

a single population and ignore the spatial transmission of infectious diseases to 

other populations. However, by doing so, their model makes it possible to calculate 

the results analytically. After the publication of their paper, some articles examined 

the spatial transmission of infectious diseases; however, these papers could not 

provide solutions analytically and had to provide them numerically (Smith, 1985). It 

is necessary to take these aspects of the models into consideration when building 

models for real situations. 

 

In the case of rabies, once rabies has developed, the infected animals will generally 

die without recovering, and therefore, 𝑅 is removed from the model. In addition, 

acquisition of infectiousness does not occur soon after infection; there is a time lag, 

and those under this process are called exposed or latent individuals and are 

denoted as 𝐸. Therefore, the SEI model is usually used for rabies.  

 

Here, let us examine the dynamics of susceptible 𝑆, exposed 𝐸, and infectious 𝐼 

individuals using mathematical equations. First, let us derive the equation for 

susceptible individuals. Suppose that only susceptible individuals are involved in 

procreation (Smith, 1985). Eq. (A5) in the Appendix I is modified as follows: 

 𝑑𝑆𝑑𝑡 = [𝑏1 − 𝑑1 − 𝑟 × 𝑏2+𝑑2𝑟 × 𝑁] 𝑆                  (39) 

 

Susceptible individuals will decrease by 𝛼𝑆𝐼, and eq. (39) can be rewritten as 

follows: 

 𝑑𝑆𝑑𝑡 = 𝑟 [1 − 𝑁𝐾] 𝑆 − 𝛼𝑆𝐼                      (40) 

                                                   
3 Smith (1985) have also provided almost the same educational materials. When compared with 
Smith (1985), this material provides a more detailed derivation of mathematical expressions and 
more examples of numerical simulations, which make this material more introductory. 
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Next, let us derive the equation for exposed individuals. Eq. (A5) is modified as 

follows: 

 𝑑𝐸𝑑𝑡 = [−𝑑1 − 𝑟 × 𝑏2+𝑑2𝑟 𝑁] 𝐸                    (41) 

 

Because it is assumed that exposed individuals are not involved in procreation, 𝑏1 

= 0. The population size of exposed individuals increases by 𝛼𝑆𝐼. On the other hand, 

let constant 𝜎 denote the rate that exposed individuals acquires infectiousness. 

Then, the number of exposed individuals will decrease by 𝜎𝐸, and Eq. (41) can be 

rewritten as follows: 

 𝑑𝐸𝑑𝑡 = 𝛼𝑆𝐼 − [𝜎 + 𝑑1 + 𝑟𝑁𝐾 ] 𝐸                   (42) 

 

Finally, let us derive the equation for infectious individuals. Eq. (A5) is modified as 

follows: 

 𝑑𝐼𝑑𝑡 = [−𝑑1 − 𝑟 × 𝑏2+𝑑2𝑟 × 𝑁] 𝐼                   (43) 

 

The population size of infectious individuals increases by 𝜎𝐸. On the other hand, 

here again, the number of infectious individuals will decrease by 𝛿𝐼, and eq. (43) 

can be rewritten as follows. 

 𝑑𝐼𝑑𝑡 = 𝜎𝐸 − [𝛿 + 𝑑1 + 𝑟𝑁𝐾 ] 𝐼                    (44) 

 

Eqs. (40), (41), and (42) comprise the SEI model for rabies, which is presented in 

Anderson et al. (1981). 

 

[Example 11] Numerical example of the SEI model 

 

After similar procedures above, we have Figures 19 and 20. 
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Figure 19. SEI model (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 

 

 
Figure 20. Dynamics of 𝑺, 𝑬, and 𝑰 (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 

Note: Vertical and horizontal axes are population size and time, respectively 

 

 

 

5.2. SEI model with hunting 

In this section, we suppose a situation where rabies has been prevalent in a red fox 
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population, and we examine hunting with guns (we may reach the same results if 

we consider traps and/or bait poison). Let h  denote the per capita hunting rate, 

then eqs. (40), (41), and (42) are modified as follows: 

 𝑑𝑆𝑑𝑡 = 𝑟 [1 − 𝑁𝐾] 𝑆 − 𝛼𝑆𝐼 − ℎ𝑆                      (45) 

𝑑𝐸𝑑𝑡 = 𝛼𝑆𝐼 − [𝜎 + 𝑑1 + 𝑟𝑁𝐾 ] 𝐸 − ℎ𝐸                   (46) 

𝑑𝐼𝑑𝑡 = 𝜎𝐸 − [𝛿 + 𝑑1 + 𝑟𝑁𝐾 ] 𝐼 − ℎ𝐼                    (47) 

 

[Example 12] Numerical example of the SEI model with hunting 

 

After similar procedures above, we have Figures 21 and 22. 

 

 

Figure 21. SEI model with hunting (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 
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Figure 22. Dynamics of 𝑺, 𝑬, and 𝑰 (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 

Note: Vertical and horizontal axes are population size and time, respectively 

 

 

 

5.3. SEI model with vaccination 

In this section, we suppose a situation where rabies has been prevalent in a red fox 

population, and we examine the effects of vaccination. Currently, in Europe, baits 

with vaccine have been dropped in habitats of red foxes from helicopters and 

planes. The following model can be used to examine the effects of this kind of 

vaccination. 

 

For the sake of simplicity, suppose that vaccination is effective only for susceptible 

individuals and is not effective for exposed individuals. Let 𝑉 denote vaccinated 

individuals. Further, suppose that vaccinated individuals are involved in procreation. 

Because individuals who are born from vaccinated individuals have not been 

vaccinated until they eat bait containing vaccine, the number of susceptible 

individuals increases by 𝑏1𝑉 . Let constant 𝑣  denote the rate of vaccinated 

individuals among susceptible individuals. Then, the number of susceptible 

individuals decreases by 𝑣𝑆. Therefore, eq. (40) is modified as follows: 

 𝑑𝑆𝑑𝑡 = 𝑟 [1 − 𝑁𝐾] 𝑆 + 𝑏1𝑉 − 𝛼𝑆𝐼 − 𝑣𝑆                  (48) 
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Eq. (A5) is modified for vaccinated individuals as follows: 

 𝑑𝑉𝑑𝑡 = [−𝑑1 − 𝑟 × 𝑏2+𝑑2𝑟 × 𝑁] 𝑉                    (49) 

 

The number of vaccinated individuals increases by 𝑣𝑆. Therefore, eq. (49) is further 

modified as follows: 

 𝑑𝑉𝑑𝑡 = 𝑣𝑆 − [𝑑1 + 𝑟𝑁𝐾 ] 𝑉                       (50) 

 

Eqs. (42) and (44), in addition to (48) and (50), comprise a modified SEI model for 

rabies under vaccination. 

 

[Example 13] Numerical example of the SEI model with vaccination 

 

After similar procedures as described above, we have Figures 23 and 24. 

 

 

Figure 23. SEI model with vaccination (𝑆(0) = 10, 𝐼(0) = 1, and 𝑅(0) = 0) 
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Figure 24. Dynamics of 𝑺, 𝑬, and 𝑰 (𝑆(0) = 50, 𝐼(0) = 1, and 𝑅(0) = 0) 

Note: Vertical and horizontal axes are population size and time, respectively 

 

 

 

Appendix I 
For a more concrete explanation, suppose there is a red fox population. As 

explained before, the size of the red fox population changes on the basis of birth 

and death. Namely, 

 𝑑𝑁𝑑𝑡 = 𝐵 − 𝐷                           (A1) 

 

Here, 𝐵 and 𝐷 are the rate at which individuals born and die.  

 

Further, suppose the population size of the red fox is relatively low compared to the 

carrying capacity of its habitat. Under such conditions, each red fox can easily 

obtain enough food, and litter sizes may be large. Conversely, suppose the 

population size of the red fox is relatively high. Under such conditions, red foxes in 

the same population may compete for food, and litter sizes may be small. Therefore, 

let 𝑏 denote the average per capita birth rate, and suppose 𝑏 decreases as a 

function of population size (as the population size 𝑁 increases, the value of 𝑏 

decreases). Then, we have the following equation: 
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𝑏 = 𝑏1 − 𝑏2𝑁                          (A2) 

 

Under small population sizes, red foxes happen to be found by predators less 

frequently, and transmission of immunizing infections may be moderate or may not 

occur, which may result in a low average per capita death rate. On the other hand, if 

the population size is high, red foxes are more often found by predators, and 

immunizing infections may transmit more widely. Therefore, let 𝑑 denote the 

average per capita death rate, and suppose 𝑑 increases as a function of population 

size (as the population size 𝑁 increases, the value of 𝑑 increases). Then, we have 

the following equation. 

 𝑑 = 𝑑1 + 𝑑2𝑁                          (A3) 

 

Here, let us examine the case where 𝑏 = 𝑑, that is, the average per capita birth rate 

and average per capita death rate are the same value. Population size under this 

condition is called the carrying capacity 𝐾. The carrying capacity is derived as 

follows from eqs. (A2) and (A3): 

 𝐾 = 𝑏1−𝑑1𝑏2+𝑑2 = 𝑟𝑏2+𝑑2                        (A4) 

 

Here, 𝑟 = 𝑏1 − 𝑑1. 

 

Note that 𝐵 = 𝑏𝑁 and 𝐷 = 𝑑𝑁. Substituting eqs. (A2) to (A4) into eq. (A1), we 

obtain the following: 

 𝑑𝑁𝑑𝑡 = [𝑏1 − 𝑑1 − 𝑟 × 𝑏2+𝑑2𝑟 × 𝑁] 𝑁                 (A5) 

 

from which, we have the following: 

 𝑑𝑁𝑑𝑡 = 𝑟 [1 − 𝑁𝐾] 𝑁                        (A6) 

 

Eq. (A6) is the same as eq. (4) in the body text and is called the logistic equation. 
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The logistic equation is often criticized because many factors such as cohorts and 

others are combined. However, in the real application of mathematical models, we 

often face the fact that enough cohort data are not available and/or it is difficult to 

selectively catch special cohorts (for more detail, see Munro and Scott, 1985). 

Simpler mathematical models make it possible to have analytical solutions. This is 

especially true when we incorporate socio-economic aspects into biological 

mathematical models; if we use complicated models, we will often find it impossible 

to have analytical solutions and to conduct qualitative analyses. 

 

[Example A1] Growth curve 

 

First, we calculate the values of the average per capita birth rate 𝑏, average per 

capita death rate 𝑑, growth rate 𝑟, and carrying capacity 𝐾, where death means 

natural deaths other than those caused by infectious disease. Suppose, 𝑏1 = 0.25, 𝑏2 = 0.001, 𝑑1 = 0.05, and 𝑑2 = 0.001. Let us calculate the values of 𝑏 and 𝑑 by 

changing the value of 𝑁. Fill in between the first and sixth lines (except E2 and F2) 

as well as row A on the basis of Figure A1. Then fill in cells E2 and F2 with ‘=A2-C2’ 
and ‘=(A2-C2)/(B2+D2)’, respectively. Fill in cells B7 and C7 with ‘=$A$2-$B$2*A7’ and 

‘=$C$2+$D$2*A7’, respectively, and copy these cells until B19 and C19. Now, Figure 

A1 is reproduced in your MS Excel spreadsheet. You can easily check that 𝐾 = 100 

when 𝑏 = 𝑑 = 0.15. 

 

Next, let us draw a growth curve represented by eq. (A6). Fill in between the first 

and sixth lines, as well as row A on the basis of Figure A2. Then, fill in cell B7 with 

‘=$E$2*(1-A7/$F$2)*A7’, and copy this cell until B19. Now, Figure A2 is reproduced in 

your MS Excel spreadsheet. You can easily check that when population size is less 

than carrying capacity, population change between year 𝑡 and 𝑡 + 1 is positive 

and vice versa. Finally, we draw the growth curve in Figure A3. 
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Figure A1. Calculation of the average per capita birth rate, death rate, growth 

rate, and carrying capacity 

 

Figure A2. Calculation of the growth curve 
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Figure A3. Growth curve 

 

 

 

Appendix II 
The R codes in Appendix II were originally written by Professor Koki Kyo from 

Obihiro University of Agriculture and Veterinary Medicine, with some modifications 

by the author of this material. Note that values of 𝑆, 𝐼, and 𝑅 are restricted to be 

non-negative values. 

 

You can copy the following R code and paste it on R. After pushing the ‘Enter’ key, a 

graph is automatically generated. 

 

##### R code for SIR ##### 

# Parameter value setting 

  a <- 0.02 

  r <- 0.5 

 

# Initial value setting 

  S0 <- 50 
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  I0 <- 1 

  R0 <- 0 

 

# Estimation period setting 

  T <- 50 

 

# Simulation 

  S <- numeric(T); I <- numeric(T); R <- numeric(T) 

  dS <- -a*S0*I0 

  dI <- a*S0*I0 - r*I0 

  dR <- r*I0 

  S[1] <- S0 + dS 

  I[1] <- I0 + dI 

  R[1] <- R0 + dR 

  for (i in 2:T) 

    { 

     dS <- -a*S[i-1]*I[i-1] 

     dI <- a*S[i-1]*I[i-1] - r*I[i-1] 

     if (dI > S[i-1])  {dI <- S[i-1]} 

     dR <- r*I[i-1] 

     if (dR > I[i-1])  {dR <- I[i-1]} 

     S[i] <- S[i-1] + dS 

     if(S[i] < 0) {S[i] <- 0} 

     I[i] <- I[i-1] + dI 

     if(I[i] < 0) {I[i] <- 0} 

     R[i] <- R[i-1] + dR 

     if(R[i] < 0) {R[i] <- 0} 

    } 

 

 # Graph depiction 

  t <- c(1:T) 

  plot(t, S, xlim=range(t), ylim=c(min(S,I,R), max(S,I,R)), type="l",  

       xlab="year", ylab="", lwd=1) 

  lines(t, I, lwd=2) 

  lines(t, R, lwd=3) 
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# Calculation of R0 

R0 <- a*(S0+I0+R0)/r 

R0 

 

 

##### R code for SIRS ##### 

# Parameter value setting 

  a <- 0.02 

  r <- 0.5 

  v <- 0.05 

 

# Initial value setting 

  S0 <- 50 

  I0 <- 1 

  R0 <- 0 

 

# Estimation period setting 

  T <- 50 

 

# Simulation 

  S <- numeric(T); I <- numeric(T); R <- numeric(T) 

  dS <- -a*S0*I0 + v*R0 

  dI <- a*S0*I0 - r*I0 

  dR <- r*I0-v*R0 

  S[1] <- S0 + dS 

  I[1] <- I0 + dI 

  R[1] <- R0 + dR 

  for (i in 2:T) 

    { 

     dS <- -a*S[i-1]*I[i-1] + v*R[i-1] 

     dI <- a*S[i-1]*I[i-1] - r*I[i-1] 

     if (dI > S[i-1])  {dI <- S[i-1]} 

     dR <- r*I[i-1] - v*R[i-1] 

     if (dR > I[i-1])  {dR <- I[i-1]} 

     S[i] <- S[i-1] + dS 

     if(S[i] < 0) {S[i] <- 0} 
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     I[i] <- I[i-1] + dI 

     if(I[i] < 0) {I[i] <- 0} 

     R[i] <- R[i-1] + dR 

     if(R[i] < 0) {R[i] <- 0} 

    } 

 

# Graph depiction 

  t <- c(1:T) 

  plot(t, S, xlim=range(t), ylim=c(min(S,I,R), max(S,I,R)), type="l",  

       xlab="year", ylab="", lwd=1) 

  lines(t, I, lwd=2) 

  lines(t, R, lwd=3) 

 

# Calculation of R0 

R0 <- a*(S0+I0+R0)/r 

R0 
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