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Abstract

This study examines effects of bottleneck congestion and an optimal time-varying congestion

toll on the spatial structure of cities. To this end, we develop a model in which heterogeneous

commuters choose departure times from home and residential locations in a monocentric city

with a bottleneck located between a central downtown and an adjacent suburb. We then show

three properties of our model by analyzing equilibrium with and without congestion tolling.

First, commuters with a higher value of travel time choose to live closer to their workplace.

Second, congestion tolling causes population to increase in the suburb and generates urban

sprawl. Third, commuters with a higher (lower) value of travel time gain (lose) from imposing

the congestion toll without toll-revenue redistribution. Our findings are opposite to the stan-

dard results of traditional location models, which consider static traffic flow congestion, and

differ fundamentally from the results obtained by Arnott (1998), who considers homogeneous

commuters.
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1 Introduction

The traditional residential location model describes spatial structure of cities and its evolution

based on the trade-off between land rents and commuting costs (Alonso, 1964; Mills, 1967; Muth,

1969). Those and subsequent studies successfully predict the empirically observed patterns of

residential location (e.g., spatial distribution of rich and poor) and the effects of assorted urban

policies.1 However, almost all previous studies describe traffic congestion using static flow

congestion models. Their use renders these models inappropriate for dealing with peak-period

traffic congestion and for examining the effects of measures intended to alleviate it (e.g., time-

varying congestion tolls, flextime, staggered work hours).

The bottleneck model most successfully describes how commuters choose their departure

times from home and peak-period congestion (Vickrey, 1969; Hendrickson and Kocur, 1981;

Arnott et al., 1990b, 1993). Its simple and effective framework for studying efficacies of various

measures to alleviate peak-period congestion has inspired numerous extensions and modifica-

tions. However, only Arnott (1998) and Gubins and Verhoef (2014) developed models to describe

how commuters choose where they live and when they depart from home. Arnott (1998) con-

sidered a (discrete space) monocentric city consisting of two areas—a downtown and a suburb—

connected by a single road with a bottleneck. He showed that imposing an optimal congestion

toll without redistributing its revenues affects neither commuting costs nor residential locations

of commuters. Gubins and Verhoef (2014) considered a (continuous space) monocentric city with

a bottleneck at the entrance to its central business district (CBD). Their model introduced an in-

centive for commuters to spend time at home, which the standard bottleneck model disregards,2

and assumed that the size of commuters’ houses determined their marginal utility of spending

time at home. They demonstrated that congestion tolling causes commuters to spend more time

at home and to have larger houses, thereby leading to urban sprawl.

Results obtained by Arnott (1998) and Gubins and Verhoef (2014) differ fundamentally from the

results of traditional models with static flow congestion, which predict that cities become denser

with congestion pricing (Kanemoto, 1980; Wheaton, 1998; Anas et al., 1998). Their models,

however, assume that commuters are homogeneous, although it is established that optimal

congestion tolling changes commuting costs in bottleneck models with heterogeneous commuters

(Arnott et al., 1992, 1994; van den Berg and Verhoef, 2011). That is, the effects of congestion tolling

in the bottleneck model with heterogeneous commuters can differ fundamentally from those in

models with homogeneous commuters.

This study extends the model developed by Arnott (1998) to consider commuter heterogeneity

and a continuous space monocentric city with a bottleneck located between a central downtown

and an adjacent suburb.3 We then systematically analyze our model using the properties of

complementarity problems that define equilibrium. Our analysis shows that commuters sort

themselves temporally and spatially on the basis of their value of time: commuters with a higher

time-based cost per unit schedule delay (marginal schedule delay cost divided by marginal travel

1Fujita (1989), Glaeser (2008), and Fujita and Thisse (2013) provide detailed overviews of traditional residential location
models. For the effects of congestion pricing, see Kanemoto (1980), Wheaton (1998), and Anas et al. (1998). Recently,
Brueckner (2007), Anas and Rhee (2007), Joshi and Kono (2009), Kono et al. (2008, 2012), and Pines and Kono (2012)
show the efficiency of urban policies to substitute for congestion pricing (urban growth boundary, floor-to-area ratio
regulations).

2Vickrey (1973), Tseng and Verhoef (2008), Fosgerau and Engelson (2011), Fosgerau and Lindsey (2013), and Fosgerau
and Small (2014) considered the utility of spending time at home.

3We do not introduce the utility of spending time at home.
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time cost) arrive at work earlier; commuters with higher value of travel time live closer to their

workplace.4 Furthermore, we demonstrate that expanding the bottleneck capacity increases the

population of suburban commuters who traverse the bottleneck in our model. Thus, expanding

capacity can increase total queuing time at the bottleneck.

This study also investigates the effects of an optimal time-varying congestion toll on spatial

distribution of commuters. We show that introducing a congestion toll (with and without re-

distributing its revenues) changes commuters’ commuting costs, thereby altering their spatial

distribution. In addition, congestion tolling causes urban sprawl under assumptions common

in the literature employing bottleneck models and commuter heterogeneity (Arnott et al., 1992,

1994; van den Berg and Verhoef, 2011). Our finding is not merely opposite to the standard results

of traditional location models; it differs substantially from the findings by Arnott (1998). This

implies that strategic interactions among heterogeneous commuters change the effects of conges-

tion tolling on spatial structure of cities. Furthermore, we show that the optimal congestion toll

leads to an unbalanced distribution of benefits unless toll revenues are redistributed: commuters

with a high value of time (rich commuters) gain, while those with a low value of time (poor

commuters) lose from tolling.

This study proceeds as follows. Section 2 presents a model in which heterogeneous commuters

choose their departure times from home and residential locations in a monocentric city. Section 3

characterizes the equilibrium of our model by using the properties of complementarity problems.

Section 4 shows effects of the optimal time-varying congestion toll. To demonstrate properties of

our model and the effects of congestion tolling more concretely, Section 5 analyzes it in a simple

setting. Section 6 concludes the study.

2 The model

2.1 Basic assumptions

We consider a long narrow city with a spaceless CBD where all job opportunities are located.

The CBD is located at the edge of the city, and a residential location is indexed by distance x

from the CBD (Figure 1). Land is uniformly distributed with unit density along a road. The road

has a single bottleneck with capacity µ at location d > 0. If arrival rates at the bottleneck exceed

its capacity, a queue develops. To model queuing congestion, we employ first-in-first-out and a

point queue in which vehicles have no physical length as in standard bottleneck models (Vickrey,

1969; Arnott et al., 1993). Free-flow travel time per unit distance is assumed to be constant at

τ > 0 (i.e., free-flow speed is 1/τ).

There are I types of commuters, each of whom must travel from home to the CBD and who have

the same preferred arrival time t∗ at work. The number of commuters of type i ∈ I ≡ {1, 2, · · · , I},

whom we call “commuters i,” is fixed and denoted by Ni. Since the bottleneck is located at d, only

commuters who reside at x > d pass through the bottleneck, while those who reside at x ∈ [0, d] do

not. Following Arnott (1998), we denote locationsXs = {x ∈ R+ | x > d} as “suburb” and locations

Xd = {x ∈ R+ | x ∈ [0, d]} as “downtown.” We denote the number of commuters i in the suburb

and downtown by Ns
i

and Nd
i
(= Ni − Ns

i
), respectively. If d is sufficiently large, all commuters

reside downtown and no commuter traverses the bottleneck. Because we are not interested in

4This spatial distribution is consistent with observations in a city with heavy traffic congestion (see McCann, 2013).
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Figure 1: Long narrow city

that case, d is assumed to be small such that
∑

k∈INs
k
> 0.

Commuting cost ci(x, t) of commuter i who resides at x and arrives at work at time t (travels

at t) is expressed as the sum of travel time cost mi(x, t) and schedule delay cost si(t − t∗):

ci(x, t) = mi(x, t) + si(t − t∗), (1a)

mi(x, t) =



















αiτx if x ∈ Xd,

αi
{

q(t) + τx
}

if x ∈ Xs,
(1b)

si(t − t∗) =



















βi(t
∗ − t) if t ≤ t∗,

γi(t − t∗) if t ≥ t∗.
(1c)

Here q(t) denotes queuing time of a commuter traveling at time t, τx represents free-flow travel

time of commuters residing at x, and αi > 0 is the value of travel time of commuters i. βi > 0 and

γi > 0 are early and late delay costs per unit time, respectively.

The utility of a commuter i who resides at x and travels at time t is given by the logarithmic

quasi-linear utility function:5

u(zi(x, t), ai(x)) = zi(x, t) + κ ln[ai(x)], (2)

where κ is a positive constant, zi(x, t) denotes consumption of the numéraire goods, and ai(x) is

the lot size at x. The budget constraint is expressed as

yi = zi(x, t) +
{

r(x) + rA
}

ai(x) + ci(x, t), (3)

where rA is the exogenous agricultural rent and r(x) + rA denotes the land rent at x.

The first-order condition of the utility maximization problem (maxzi(x,t),ai(x) u(zi(x, t), ai(x)) s.t.

(3)) gives

ai(x)
{

r(x) + rA
}

= κ. (4)

This implies that lot size ai(x) is independent of commuters’ type i. From (2), (3), and (4), we

obtain the indirect utility vi(x, t) as follows:

vi(x, t) = yi − ci(x, t) − κ ln[r(x) + rA] + ϵ, (5)

where ϵ = κ ln[κ] − κ.

5As Arnott (1998) proved, if commuters are homogeneous, congestion tolling does not affect their spatial distribution
under a quasi-linear utility function (2).
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2.2 Equilibrium conditions

Similar to models in Peer and Verhoef (2013), Gubins and Verhoef (2014), and Takayama (2015),

we assume that commuters make long-run decisions about residential locations and short-run

decisions about day-specific trip timing. In the short run, commuters i minimize commuting cost

ci(x, t) by selecting their arrival time t at work (trip timing t) taking their residential location x as

given. In the long run, each commuter i chooses a residential location x so as to maximize his/her

utility. We, therefore, formalize short-run and long-run equilibrium conditions in turn.

2.2.1 Short-run equilibrium conditions

Commuters in the short run determine only their day-specific trip timing t, which implies that

the number Ni(x) of commuters i residing at x (i.e., spatial distribution of commuters) is assumed

to be given. Since commuting costs are given by (1), short-run equilibrium conditions differ

according to commuters’ residential locations. We first consider commuters residing in the

suburb (suburban commuters), who must traverse the bottleneck. The commuting cost cs
i
(x, t) of

suburban commuter i can be divided into two costs: one depends only on trip timing t and the

other on residential location x:

cs
i (x, t) = cs

i (t) + αiτx, (6a)

cs
i (t) = αiq(t) + si(t − t∗). (6b)

This implies that each suburban commuter chooses a trip timing t so as to minimize cs
i
(t). There-

fore, the short-run equilibrium conditions coincide with those in the standard bottleneck model,

which are given by three conditions:



















ns
i
(t)

{

cs
i
(t) − cs∗

i

}

= 0

ns
i
(t) ≥ 0, cs

i
(t) − cs∗

i
≥ 0

∀i ∈ I, (7a)



















q(t)
{

µ −
∑

k∈I ns
k
(t)

}

= 0

q(t) ≥ 0, µ −
∑

k∈I ns
k
(t) ≥ 0

∀t ∈ R+, (7b)

∫

ns
i (t)dt = Ns

i ∀i ∈ I, (7c)

where ns
i
(t) denotes the number of suburban commuters i who travel at time t (i.e., the arrival

rate of suburban commuters i at the CBD) and cs∗
i

is the short-run equilibrium commuting cost of

suburban commuters i.

Condition (7a) represents the no-arbitrage condition for the choice of trip timing. This con-

dition means that, at the short-run equilibrium, no commuter can reduce commuting cost by

altering trip timing unilaterally. Condition (7b) is the capacity constraint of the bottleneck, which

requires that the total departure rate
∑

k∈I ns
k
(t) at the bottleneck6 equals capacity µ if there is

a queue; otherwise, the total departure rate is (weakly) lower than µ. Condition (7c) is flow

conservation for commuting demand. These conditions give ns
i
(t), q(t), and cs∗

i
at the short-run

equilibrium as functions of the number N s = [Ns
i
] of suburban commuters i ∈ I. Therefore, at the

6Note that the departure rate from the bottleneck coincides with the arrival rate of suburban commuters at the CBD.
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short-run equilibrium, the commuting cost of a suburban commuter i residing at x is represented

as cs∗
i

(N s) + αiτx.

We next consider commuters who reside downtown (downtown commuters). Since the

commuters do not traverse the bottleneck, their commuting cost cd
i
(x, t) is expressed as

cd
i (x, t) = αiτx + si(t − t∗). (8)

Thus, all downtown commuters must travel at t = t∗ and their commuting cost at the short-run

equilibrium is given by αiτx.

2.2.2 Long-run equilibrium conditions

In the long run, each commuter i chooses a residential location x so as to maximize utility vi(x),

which is expressed as

vi(x) =



















yi − cs∗
i

(N s) − αiτx − κ ln[r(x) + rA] + ϵ if x ∈ Xs,

yi − αiτx − κ ln[r(x) + rA] + ϵ if x ∈ Xd.
(9)

Thus, long-run equilibrium conditions are given by



















Ni(x)
{

v∗
i
− vi(x)

}

= 0

Ni(x) ≥ 0, v∗
i
− vi(x) ≥ 0

∀x ∈ R+, ∀i ∈ I, (10a)



















r(x)
{

1 −
∑

k∈I ak(x)Nk(x)
}

= 0

r(x) ≥ 0, 1 −
∑

k∈I ak(x)Nk(x) ≥ 0
∀x ∈ R+ (10b)

∫ ∞

0

Ni(x) dx = Ni ∀i ∈ I, (10c)

where v∗
i

denotes the long-run equilibrium utility of a commuter i.

Condition (10a) is the equilibrium condition for commuters’ choice of residential location.

This condition implies that, at the long-run equilibrium, each commuter has no incentive to

change residential location unilaterally. Condition (10b) is the land market clearing condition.

This condition requires that if the total land demand
∑

k∈I ak(x)Nk(x) for housing at x equals supply

1, land rent r(x) + rA is (weakly) larger than agricultural rent rA. Condition (10c) expresses the

population constraint.

Substituting (4) into (10b), we have r(x) as follows:

r(x) =



















κN(x) − rA if κN(x) ≥ rA,

0 if κN(x) ≤ rA,
(11)

where N(x) =
∑

k∈INk(x) represents the total number of commuters residing at x. It follows from

(9) and (11) that the indirect utilities of suburban and downtown commuters, vs
i
(x) and vd

i
(x), are
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expressed as

vs
i (x) =



















yi − cs∗
i

(N s) − αiτx − κ ln[κN(x)] + ϵ if κN(x) ≥ rA,

yi − cs∗
i

(N s) − αiτx − κ ln[rA] + ϵ if κN(x) ≤ rA.
(12a)

vd
i (x) =



















yi − αiτx − κ ln[κN(x)] + ϵ if κN(x) ≥ rA,

yi − αiτx − κ ln[rA] + ϵ if κN(x) ≤ rA.
(12b)

Therefore, the long-run equilibrium conditions are rewritten as follows:



















Ni(x)
{

vs∗
i

(N s) − vs
i
(x)

}

= 0

Ni(x) ≥ 0, vs∗
i

(N s) − vs
i
(x) ≥ 0

∀x ∈ Xs, ∀i ∈ I, (13a)

∫ ∞

d

Ni(x) dx = Ns
i ∀i ∈ I, (13b)



















Ni(x)
{

vd∗
i

(N d) − vd
i
(x)

}

= 0

Ni(x) ≥ 0, vd∗
i

(N d) − vd
i
(x) ≥ 0

∀x ∈ Xd, ∀i ∈ I, (13c)

∫ d

0

Ni(x) dx = Nd
i ∀i ∈ I, (13d)



















vd∗
i

(N d) ≥ vs∗
i

(N s) if Nd
i
≥ 0

vd∗
i

(N d) ≤ vs∗
i

(N s) if Ns
i
≥ 0

∀i ∈ I, (13e)

Nd
i +Ns

i = Ni ∀i ∈ I, (13f)

where vs∗
i

(N s) and vd∗
i

(N d) denote the utilities that commuters i receive from residing in the

suburb and downtown, respectively.

Conditions (13a) and (13b) are the equilibrium conditions for suburban commuters’ choice

of residential location x. Similarly, conditions (13c) and (13d) are the equilibrium conditions

for downtown commuters’ choice of residential location x. Conditions (13e) and (13f) are the

equilibrium conditions for commuters’ choice between residing in the suburb and downtown.

We use these conditions for characterizing equilibrium spatial distribution of commuters in

Section 3.

3 Equilibrium

3.1 Short-run equilibrium

The short-run equilibrium conditions (7) of suburban commuters coincide with those in the

standard bottleneck model, as shown above. Therefore, as proved in Iryo and Yoshii (2007), there

is an optimization problem equivalent to the short-run equilibrium conditions.

Proposition 1. The short-run equilibrium number [ns∗
i

(t)] of suburban commuters traveling at time t

coincides with the solution of the following linear programming problem:

min
[ns

i
(t)]

∫

si(t − t∗)

αi
ns

i (t)dt s.t. µ −
∑

k∈I

ns
k(t) ≥ 0,

∫

ns
i (t)dt = Ns

i . (14)
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Figure 2: An example of cumulative arrival and departure curves at the short-run equilibrium

Let us define (travel) time-based cost as the cost converted into equivalent travel time. Since

that cost for a commuter i is given by dividing the cost by αi, we say that si(t − t∗)/αi represents

the time-based schedule delay cost of a commuter i. Therefore, Proposition 1 shows that, at the

short-run equilibrium, the total time-based schedule delay cost is minimized, but the total schedule

delay cost is not necessarily minimized.

We let supp (ns∗
i

) = {t ∈ R+ | ns∗
i

(t) > 0} be the support of the short-run equilibrium number

ns∗
i

(t) of suburban commuters i who travel at t. Then, from Proposition 1, we have

supp (
∑

i∈I ns∗
i

) = [tF, tL], (15)

where tF and tL denote the fastest and latest arrival times at the CBD of commuters, which satisfy

tL = tF +

∑

i∈INi

µ
. (16)

This indicates that, at the short-run equilibrium, the rush hour in which queuing congestion

occurs must be a single time interval (Figure 2).

Furthermore, by using short-run equilibrium condition (7a), we obtain

cs
i (ti) + cs

j(t j) ≤ cs
i (t j) + cs

j(ti) ∀ti ∈ supp (ns∗
i ), t j ∈ supp (ns∗

j ). (17)

Substituting (6b) into this yields the following proposition:

Proposition 2. For any ti ∈ supp (ns∗
i

), t j ∈ supp (ns∗
j

), and i, j ∈ I, the following conditions hold:

(

βi

αi
−
β j

α j

)

(

ti − t j

)

≥ 0 if max{ti, t j} ≤ t∗, (18a)

(

γi

αi
−
γ j

α j

)

(

ti − t j

)

≤ 0 if min{ti, t j} ≥ t∗. (18b)

This proposition indicates that the short-run equilibrium has the following properties: if

βi/αi < β j/α j, early-arriving commuters i (commuters i arriving at the CBD earlier than the

preferred arrival time t∗) arrive at the CBD earlier than early-arriving commuters j; ifγi/αi < γ j/α j,

late-arriving commuters i (commuters i arriving at the CBD later than t∗) arrive at the CBD later

than late-arriving commuters j. That is, at the short-run equilibrium, commuters sort themselves

8



temporally on the basis of their marginal time-based schedule delay cost.

3.2 Long-run equilibrium

3.2.1 Suburban and downtown spatial structures

We first characterize long-run equilibrium spatial distribution of suburban commuters and that

of downtown commuters by using properties of complementarity problems (13a), (13b) (13c),

and (13d). We show that these problems are equivalent to the following optimization problem:

Proposition 3. The long-run equilibrium number [N∗
i
(x)] (x ∈ Xs) of suburban commuters residing at x

coincides with the solution of the following optimization problem:

max
[Ni(x)]

∑

k∈I

∫ ∞

d

vs
k(x)Nk(x)dx s.t.

∫ ∞

d

Ni(x)dx = Ns
i ∀i ∈ I. (19)

Furthermore, the long-run equilibrium number [N∗
i
(x)] (x ∈ Xd) of downtown commuters residing at x

coincides with the solution of the following optimization problem:

max
[Ni(x)]

∑

k∈I

∫ d

0

vd
k(x)Nk(x)dx s.t.

∫ d

0

Ni(x)dx = Nd
i ∀i ∈ I. (20)

Proof. The Karush–Kuhn–Tucker (KKT) conditions of problem (19) are equivalent to equilibrium

conditions (13a) and (13b). Additionally, KKT conditions of problem (20) are equivalent to

equilibrium conditions (13c) and (13d). These, together with the monotonicity of the indirect

utility functions (12) with respect to Ni(x), give Proposition 3. □

This proposition shows that the total utility of suburban commuters and that of downtown

commuters are maximized at the long-run equilibrium.

Equilibrium conditions (13a) and (13c) yield the following lemma.

Lemma 1. The long-run equilibrium number N∗(x) of commuters residing at x has the following properties:

(a) The support of N∗(x) is given by

supp (N∗) = [0,XB], (21)

where XB denotes the residential location for commuters farthest from the CBD (i.e., the city bound-

ary).

(b) N∗(x) satisfies

κN∗(x) > rA ∀x ∈ supp (N∗)\{XB}, (22a)

κN∗(XB) = rA. (22b)

Proof. See Appendix A. □

Let Ns∗
i

(x) and Nd∗
i

(x) be the respective long-run equilibrium number of suburban and down-

town commuters i residing at x. Then, it follows from Lemma 1 that, for any xs
i
∈ supp (Ns

i
) and

9



xd
i
∈ supp (Nd

i
), the indirect utilities vs

i
(xs

i
) and vd

i
(xd

i
) are expressed as

vs
i (x

s
i ) = yi − cs∗

i (N s) − αiτxs
i − κ ln[κN(xs

i )] + ϵ, (23a)

vd
i (xd

i ) = yi − αiτxd
i − κ ln[κN(xd

i )] + ϵ. (23b)

In addition, equilibrium conditions (13a) and (13c) give the following conditions for Ns∗
i

(x) and

Nd∗
i

(x):

vs
i (x

s
i ) + vs

j(x
s
j) ≥ vs

i (x
s
j) + vs

j(x
s
i ) ∀xs

i ∈ supp (Ns∗
i ), ∀xs

j ∈ supp (Ns∗
j ), ∀i, j ∈ I, (24a)

vd
i (xd

i ) + vd
j (x

d
j ) ≥ vd

i (xd
j ) + vd

j (x
d
i ) ∀xd

i ∈ supp (Nd∗
i ), ∀xd

j ∈ supp (Nd∗
j ), ∀i, j ∈ I. (24b)

Substituting (23) into (24) yields the following proposition.

Proposition 4. For any xi ∈ supp (Ns∗
i

), x j ∈ supp (Ns∗
j

), and i, j ∈ I, the following condition holds at

the long-run equilibrium:

(

αi − α j

) (

xi − x j

)

≥ 0. (25)

This condition also holds for any xi ∈ supp (Nd∗
i

), x j ∈ supp (Nd∗
j

), and i, j ∈ I.

This proposition states that in the suburb and downtown, commuters with a higher value of

travel time reside closer to the CBD. That is, commuters sort themselves spatially on the basis of

their value of travel time. Furthermore, spatial distribution of suburban commuters and that of

downtown commuters are unaffected by short-run equilibrium commuting cost cs∗
i

(N s).

We explicitly obtain vd∗
i

(N d) and vs∗
i

(N s) using Proposition 4. We assume, without loss of

generality, that

αi−1 > αi ∀i ∈ I\{1}. (26)

Let Xs
i

and Xd
i

denote the respective locations for suburban and downtown commuters i residing

nearest the CBD. It follows from Proposition 4 that suburban and downtown commuters i reside

in [Xs
i
,Xs

i+1
] and [Xd

i
,Xd

i+1
], respectively (i.e., supp (Ns∗

i
) = [Xs

i
,Xs

i+1
] and supp (Nd∗

i
) = [Xd

i
,Xd

i+1
] for

all i ∈ I). By using Xd
i

and Xs
i
, the utility differences vs∗

i
(N s)− vs∗

i−1
(N s) and vd∗

i
(N d)− vd∗

i−1
(N d) are

represented as

vs∗
i (N s) − vs∗

i−1(N s) = yi − yi−1 −
{

cs∗
i (N s) − cs∗

i−1(N s)
}

− (αi − αi−1) τXs
i , (27a)

vd∗
i (N d) − vd∗

i−1(N d) = yi − yi−1 − (αi − αi−1) τXd
i . (27b)

Therefore, we have the following indirect utilities of suburban and downtown commuters:

vs∗
i (N s) = yi − cs∗

i (N s) − κ ln[rA] − αiτXs
i −

I
∑

k=i

αkτ(Xs
k+1 − Xs

k) + ϵ. (28a)

vd∗
i (N d) = yi − κ ln[r(d)] − αiτXd

i −

I
∑

k=i

αkτ(Xd
k+1 − Xd

k ) + ϵ, (28b)
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where Xs
k

and Xd
k

are given by

Xs
1 = d, Xs

i+1 = Xs
i +

κ

αiτ
ln

[

αiτNs
i

ϕi
+ 1

]

, ϕi = rA +

I
∑

k=i+1

αkτNs
k, (29a)

Xd
1 = 0, Xd

i+1 = Xd
i +

κ

αiτ
ln













αiτNd
i

ψi
+ 1













, ψi = r(d) +

I
∑

k=i+1

αkτNd
k . (29b)

Land rent r(d) at location d is determined from the condition Xd
I+1
= d.

The city boundary XB = Xs
I+1

is obtained from (29a) as

XB = d + κ
∑

k∈I

1

αkτ
ln

[

αkτNs
k

ϕk
+ 1

]

. (30)

This indicates that the city boundary is affected by the number N s of suburban commuters i.

3.2.2 Equilibrium population of suburban and downtown commuters

We next characterize the long-run equilibrium number N s∗ = [Ns∗
i

] and N
d∗ = [Nd∗

i
] of suburban

and downtown commuters i. From (27), we have the following proposition:

Proposition 5. The difference vd∗
i

(N d) − vs∗
i

(N s) between utilities from residing in the suburb and

downtown satisfies

(

vd∗
i (N d) − vs∗

i (N s)
)

−
(

vd∗
i−1(N d) − vs∗

i−1(N s)
)

= cs∗
i (N s) − cs∗

i−1(N s) − (αi−1 − αi) τ
(

Xs
i − Xd

i

)

∀i ∈ I\{1}. (31)

From (26), (29), and Proposition 5, if cs∗
i

(N s) < cs∗
i−1

(N s) for all i ∈ I\{1},7 we have

vd∗
i (N d) − vs∗

i (N s) < vd∗
i−1(N d) − vs∗

i−1(N s) ∀i ∈ I\{1}. (32)

Note that from equilibrium condition (13e), every commuter i resides downtown if vd∗
i

(N d∗) −

vs∗
i

(N s∗) > 0 and every commuter i resides in the suburb if vd∗
i

(N d∗)− vs∗
i

(N s∗) < 0. Therefore, (32)

shows that commuters with a high (low) value of travel time reside downtown (in the suburb).

Furthermore, (28) gives us the utility difference vd∗
i

(N d) − vs∗
i

(N s) as

vd∗
i (N d) − vs∗

i (N s) = cs∗
i (N s) − κ ln

[

r(d)

rA

]

+ αiτ
(

Xs
i − Xd

i

)

+

I
∑

k=i

αkτ
{(

Xs
k+1 − Xs

k

)

−
(

Xd
k+1 − Xd

k

)}

.

(33)

4 Optimal congestion toll

Studies on the standard bottleneck model show that queuing time is a pure deadweight loss.

Hence, there is no queue at the social optimum. In our model, the social optimum can be achieved

by imposing an optimal time-varying congestion toll that eliminates queuing congestion. This

7Note that, as shown in Section 5, cs∗
i−1

(N s) is greater than cs∗
i

(N s) in many cases since αi−1 > αi.
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section considers the introduction of an optimal congestion toll p(t). That is, the commuting cost

ct
i
(x, t) of a commuter i is given by

ct
i(x, t) =



















cdt
i

(t) + αiτx if x ∈ Xd,

cst
i

(t) + αiτx if x ∈ Xs,
(34a)

cdt
i (t) = si(t − t∗), (34b)

cst
i (t) = p(t) + si(t − t∗). (34c)

We then characterize equilibrium under the optimal congestion toll p(t) and demonstrate that this

pricing policy alters spatial distribution of commuters. Our result differs fundamentally from

that obtained by Arnott (1998), who considers homogeneous commuters.

4.1 Short-run equilibrium

Congestion toll p(t) eliminates queuing congestion.8 Note that since we consider heterogeneous

commuters, congestion toll p(t) does not equal travel time cost αiq(t) at the no-toll equilibrium

and is set so that travel demand
∑

i∈I ns
i
(t) at the bottleneck equals the supply (i.e., capacity) µ.

Therefore, short-run equilibrium conditions for suburban commuters are expressed as



















cst
i

(t) = cst∗
i

if ns
i
(t) > 0

cst
i

(t) ≥ cst∗
i

if ns
i
(t) = 0

∀i ∈ I, ∀t ∈ R, (35a)



















∑

i∈I ns
i
(t) = µ if p(t) > 0

∑

i∈I ns
i
(t) ≤ µ if p(t) = 0

∀t ∈ R, (35b)

∫

ns
i (t) dt = Ns

i ∀i ∈ I, (35c)

where cst∗
i

denotes the short-run equilibrium commuting cost of suburban commuters i under the

congestion toll.

Condition (35a) is the no-arbitrage condition for suburban commuters’ trip timing choices.

Condition (35b) denotes the bottleneck’s capacity constraints, which assure that queuing con-

gestion is eliminated at the equilibrium. Condition (35c) provides the flow conservation for

commuting demand. From these conditions, we have ns
i
(t), p(t), and cst∗

i
at the short-run equilib-

rium as functions of the number N s of suburban commuters i ∈ I.

As in the case without the congestion toll, there is an optimization problem equivalent to (35):

Proposition 6. The short-run equilibrium number [nst∗
i

(t)] of suburban commuters traveling at time t

under the optimal congestion toll coincides with the solution of the following linear programing problem:

min
[ns

i
(t)]

∑

i∈I

∫

si(t − t∗) ns
i (t) dt (36a)

s.t.
∑

i∈I

ns
i (t) ≤ µ ∀t ∈ R,

∫

ns
i (t) dt = Ns

i ∀i ∈ I, ns
i (t) ≥ 0 ∀i ∈ I, ∀t ∈ R. (36b)

8The tradable network permit scheme proposed by Akamatsu (2007) and Wada and Akamatsu (2013) has the same
effect as the optimal congestion toll.

12



This proposition suggests that the total schedule delay cost is minimized at the short-run equi-

librium under the congestion toll. Note that the total schedule delay cost equals total commuting

cost minus total toll revenue. Hence, Proposition 6 indicates that, in the short run, the optimal

congestion toll minimizes the social cost of commuting. Furthermore, Propositions 1 and 6 show

that the equilibrium commuting cost cst∗
i

(N s) under the congestion toll generally differs from the

no-toll equilibrium commuting cost cs∗
i

(N s).

From equilibrium condition (35a), we obtain

cst∗
i (ti) + cst∗

j (t j) ≤ cst∗
i (t j) + cst∗

j (ti) ∀ti ∈ supp (nst∗
i ), ∀t j ∈ supp (nst∗

j ), ∀i, j ∈ I. (37)

Substituting (34c) into (37), we have the following proposition.

Proposition 7. Consider the short-run equilibrium under the optimal congestion toll. Then, for any

ti ∈ supp (nst∗
i

), t j ∈ supp (nst∗
j

), and i, j ∈ I, the following conditions hold:

(

βi − β j

) (

ti − t j

)

≥ 0 if max{ti, t j} ≤ t∗, (38a)
(

γi − γ j

) (

ti − t j

)

≤ 0 if min{ti, t j} ≥ t∗. (38b)

This proposition indicates that early-arriving commuters travel in order of increasing βi and

late-arriving commuters travel in order of decreasing γi. Furthermore, the value of travel time

(i.e., αi) does not affect the short-run equilibrium distribution of trip timing under the congestion

toll.

Downtown commuters travel at t = t∗ as they need not traverse the bottleneck. That is, the

commuting cost of downtown commuters i at the short-run equilibrium under the congestion

toll is given by αiτx.

4.2 Long-run equilibrium

We characterize long-run equilibrium spatial distribution of commuters by using the short-run

equilibrium commuting cost. The difference between cases with and without tolling appears only

in the indirect utility vs
i
(x) of suburban commuters. Specifically, under the congestion toll, the

indirect utility vs
i
(x) of suburban commuters i is expressed as

vs
i (x) =



















yi − cst∗
i

(N s) − αiτx − κ ln[κN(x)] + ϵ if κN(x) ≥ rA,

yi − cst∗
i

(N s) − αiτx − κ ln[rA] + ϵ if κN(x) ≤ rA,
(39)

where cst∗
i

(N s) is the short-run equilibrium commuting cost. Following the same procedure as

in Section 3.2 reveals that the spatial distribution of suburban commuters and that of downtown

commuters at the long-run equilibrium under the optimal congestion toll have the same properties

as those without tolling (i.e., Proposition 4).

Proposition 8. Consider the long-run equilibrium under the optimal congestion toll. Then, the spatial

distribution of suburban commuters and that of downtown commuters have the following properties:

(a) The long-run equilibrium number [Nst∗
i

(x)] (x ∈ Xs) of suburban commuters at x coincides with the
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solution of the following optimization problem:

max
[Ni(x)]

∑

k∈I

∫ ∞

d

vs
k(x)Nk(x)dx s.t.

∫ ∞

d

Ni(x)dx = Ns
i ∀i ∈ I. (40)

(b) The long-run equilibrium number [Ndt∗
i

(x)] (x ∈ Xd) of downtown commuters at x coincides with

the solution of the following optimization problem:

max
[Ni(x)]

∑

k∈I

∫ d

0

vd
k(x)Nk(x)dx s.t.

∫ d

0

Ni(x)dx = Nd
i ∀i ∈ I. (41)

(c) For any xi ∈ supp (Nst∗
i

), x j ∈ supp (Nst∗
j

), and i, j ∈ I, the following condition holds at the long-run

equilibrium:

(

αi − α j

) (

xi − x j

)

≥ 0. (42)

This condition also holds for any xi ∈ supp (Ndt∗
i

), x j ∈ supp (Ndt∗
j

), and i, j ∈ I.

We denote the utilities of commuters i residing in the suburb and downtown under the

congestion toll by vst∗
i

(N s) and vdt∗
i

(N d), respectively, which are derived from (13a), (13b), (13c),

and (13d) with the use of (39). Then, under the assumption in (26), vst∗
i

(N s) and vdt∗
i

(N d) are

obtained in the same manner as in (28):

vst∗
i (N s) = yi − cst∗

i (N st) − κ ln[rA] − αiτXst
i −

I
∑

k=i

αkτ(Xst
k+1 − Xst

k ) + ϵ, (43a)

vdt∗
i (N d) = yi − κ ln[r(d)] − αiτXdt

i −

I
∑

k=i

αkτ(Xdt
k+1 − Xdt

k ) + ϵ, (43b)

where Xst
k

and Xdt
k

are, respectively, the residential locations for suburban and downtown com-

muters i closest to the CBD, which are given by (29). Thus, vdt∗
i

(N d) − vds∗
i

(N s) is represented

as

vdt∗
i (N d) − vst∗

i (N s) = cst∗
i (N s) − κ ln

[

r(d)

rA

]

+ αiτ
(

Xst
i − Xdt

i

)

+

I
∑

k=i

αkτ
{(

Xst
k+1 − Xst

k

)

−
(

Xdt
k+1 − Xdt

k

)}

.

(44)

It follows from this and (33) that

(

vdt∗
i (N d) − vst∗

i (N s)
)

−
(

vd∗
i (N d) − vs∗

i (N s)
)

= cst∗
i (N s) − cs∗

i (N s) ∀i ∈ I. (45)

Furthermore, following the same procedure as for Proposition 5, we obtain (vdt∗
i

(N d)− vst∗
i

(N s))−

(vdt∗
i−1

(N d) − vst∗
i−1

(N s)) as follows.

Proposition 9. Under the optimal congestion toll, the difference vdt∗
i

(N d) − vst∗
i

(N s) between utilities

from residing in the suburb and downtown has the following properties:
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(a) For all i ∈ I\{1},

(

vdt∗
i (N d) − vst∗

i (N s)
)

−
(

vdt∗
i−1(N d) − vst∗

i−1(N s)
)

=
(

vd∗
i (N d) − vs∗

i (N s)
)

−
(

vd∗
i−1(N d) − vs∗

i−1(N s)
)

,

(46)

if and only if there exists δ such that cst∗
i

(N s) = cs∗
i

(N s) + δ for all i ∈ I.

(b) For all i ∈ I\{1},

(

vdt∗
i (N d) − vst∗

i (N s)
)

−
(

vdt∗
i−1(N d) − vst∗

i−1(N s)
)

= cst∗
i (N s) − cst∗

i−1(N s) − (αi−1 − αi) τ
(

Xst
i − Xdt

i

)

.

(47)

Note that, in general, there is no δ such that cst∗
i
= cs∗

i
+ δ ∀i ∈ I when we consider commuter

heterogeneity in the value of travel time. Unlike Arnott (1998), therefore, Proposition 9 (a) implies

that imposing the optimal congestion toll does change spatial distribution of commuters in our model.

Note also that the results presented thus far are obtained under the assumption that toll

revenues are not redistributed. Since the optimal congestion toll minimizes short-run social cost

of commuting, commuting costs of all commuters can be reduced by appropriately redistributing

toll revenues. That is, if policymakers appropriately redistribute toll revenues, the following

condition is satisfied for all i ∈ I:

vdt∗
i (N d) − vst∗

i (N s) − ρi(N
s) < vd∗

i (N d) − vs∗
i (N s), (48)

where ρi(N
s) denotes the toll-revenue redistribution for a commuter i. This indicates that appro-

priate redistribution attracts commuters to the suburb and causes urban sprawl.

Proposition 9 (b) shows that if cst∗
i

(N s) < cst∗
i−1

(N s) for all i ∈ I, the following condition is

satisfied:

vdt∗
i (N d) − vst∗

i (N s) < vdt∗
i−1(N d) − vst∗

i−1(N s) ∀i ∈ I\{1}. (49)

That is, at the long-run equilibrium with tolling, commuters with a high value of travel time

reside downtown, while those with a low value of travel time reside in the suburb.

5 A simple example

In this section, we analyze our model in a simple setting to show concretely the properties

of equilibrium and effects of the congestion toll. Specifically, we assume that the following

conditions hold.

αi−1 > αi, βi−1 > βi, γi−1 > γi,
βi−1

αi−1
<
βi

αi
,

γi−1

αi−1
<
γi

αi
, yi−1 > yi ∀i ∈ I\{1}. (50a)

For expositional clarity, we further introduce the assumption common to literature that employs

a bottleneck model with commuter heterogeneity (Arnott et al., 1992, 1994; van den Berg and

Verhoef, 2011):

γi

βi
= η ∀i ∈ I. (50b)
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These assumptions mean that commuters with smaller i are rich and those with larger i are poor.

5.1 Theoretical analysis

5.1.1 Short-run equilibrium

We first examine the properties of the short-run equilibrium. It follows from assumption (50) and

Proposition 2 that early-arriving suburban commuters with smaller i travel earlier at the no-toll

short-run equilibrium. Thus, the difference between time-based commuting costs of suburban

commuters i and i − 1 is as follows:

cs∗
i

(N s)

αi
−

cs∗
i−1

(N s)

αi−1
=

η

1 + η

(

βi

αi
−
βi−1

αi−1

)
∑I

k=i Ns
k

µ
> 0. (51)

From assumption (50) and Proposition 7, early-arriving suburban commuters with larger i travel

earlier at the short-run equilibrium with tolling. Thus, cst∗
i

(N s) − cst∗
i−1

(N s) is given by

cst∗
i (N s) − cst∗

i−1(N s) =
η

1 + η

(

βi − βi−1
)

∑i−1
k=1 Ns

k

µ
< 0. (52)

(51) and (52) give us cs∗
i

(N s) and cst∗
i

(N s) as follows:

cs∗
i (N s) =

η

1 + η















βi

∑I
k=i+1 Ns

k

µ
+ αi

i
∑

k=1

βk

αk

Ns
k

µ















, (53a)

cst∗
i (N s) =

η

1 + η















βi

∑i−1
k=1 Ns

k

µ
+

I
∑

k=i

βk

Ns
k

µ















. (53b)

By using (53a), we obtain the difference between the no-toll short-run equilibrium commuting

costs of commuters i and i − 1.

cs∗
i (N s) − cs∗

i−1(N s) =
η

1 + η















(βi − βi−1)

∑I
i Ns

k

µ
+ (αi − αi−1)

i−1
∑

k=1

βk

αk

Ns
k

µ















< 0. (54)

Results obtained above show that for all i ∈ I\{1},

cs∗
i (N s) − cs∗

i−1(N s) < 0, (55a)

cst∗
i (N s) − cst∗

i−1(N s) < 0. (55b)

That is, at the short-run equilibrium with and without congestion tolling, commuting costs of

rich commuters exceed those of poor commuters.

cst∗
i

(N s) − cs∗
i

(N s) is obtained from (53) as follows:

cst∗
i (N s) − cs∗

i (N s) =
η

1 + η















αi

i−1
∑

k=1

(

βi

αi
−
βk

αk

)

Ns
k

µ
−

I
∑

k=i

(

βi − βk
)

Ns
k

µ















. (56)

From assumption (50), the first term on the right hand side of (56) is positive and the second is
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negative. Thus, we have

cst∗
i (N s) − cs∗

i (N s) > cst∗
i−1(N s) − cs∗

i−1(N s) ∀i ∈ I\{1}. (57)

Furthermore, there exists i∗ ∈ I such that cst∗
i

(N s)−cs∗
i

(N s) ≤ 0 for all i ≤ i∗ and cst∗
i

(N s)−cs∗
i

(N s) > 0

for all i > i∗. Therefore, introducing the congestion toll reduces the commuting cost of rich

commuters i ≤ i∗ and increases the commuting cost of poor commuters i > i∗.

At the no-toll long-run equilibriumN
s∗, we can show from (56) that i∗ ≥ min{supp (N s∗)}. This

conclusion implies that the congestion toll reduces the short-run equilibrium commuting cost of

commuters i ∈ Ir ≡ {i ∈ I | i ≤ min{supp (N s∗)} who are downtown commuters or are suburban

commuters having the highest value of travel time at the no-toll long-run equilibrium. In addition,

if there exist multiple types of suburban commuters at the no-toll long-run equilibrium, the

commuting costs cst∗
is

(N s∗) and cs∗
is

(N s∗) of suburban commuters is = min{supp (N s∗)} satisfy

cst∗
is (N s∗) < cs∗

is (N s∗). (58)

That is, congestion tolling reduces their commuting cost. This and (57) show that

cst∗
i (N s∗) < cs∗

i (N s∗) ∀i ∈ Ir (59)

if there exist multiple types of suburban commuters at the no-toll long-run equilibrium.

Results obtained above are summarized as follows:

Proposition 10. Suppose conditions in assumption (50) hold. Then, the short-run equilibrium commuting

cost has the following properties:

(a) For any N
s and i ∈ I\{1}, cs∗

i
(N s) < cs∗

i−1
(N s) and cst∗

i
(N s) < cst∗

i−1
(N s).

(b) There exists i∗ ∈ I such that cst∗
i

(N s) ≤ cs∗
i

(N s) for all i ≤ i∗.

(c) Consider the no-toll long-run equilibrium N
s∗. Then, cst∗

i
(N s∗) ≤ cs∗

i
(N s∗) for all i ∈ Ir. A strict

inequality holds if there exist multiple types of suburban commuters.

5.1.2 Long-run equilibrium

We next show properties of spatial distribution of commuters at the long-run equilibrium. Using

Propositions 5, 9 (b), and 10 (a), we have



















vd∗
i

(N d) − vs∗
i

(N s) < vd∗
i−1

(N d) − vs∗
i−1

(N s)

vdt∗
i

(N d) − vst∗
i

(N s) < vdt∗
i−1

(N d) − vst∗
i−1

(N s)
∀i ∈ I\{1}. (60)

This indicates that commuters with a high value of travel time reside downtown, while those

with a low value of travel time reside in the suburb at the long-run equilibrium with and without

congestion tolling. Together with Propositions 4 and 8 (c), this shows that commuters with a

higher value of travel time reside closer to the CBD. This result is consistent with empirical

observation in cities with heavy traffic congestion (McCann, 2013).

The effects of congestion tolling on spatial distribution of commuters can be examined using

the following relation at the no-toll long-run equilibrium N
s∗ and N

d∗, which is obtained from
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(33) and (44):

vdt∗
i (N d∗) − vst∗

i (N s∗) = cst∗
i (N s∗) − cs∗

i (N s∗) + vd∗
i (N d∗) − vs∗

i (N s∗) ∀i ∈ I. (61)

From this and Proposition 10 (c), we have

vdt∗
i (N d∗) − vst∗

i (N s∗) ≤ vd∗
i (N d∗) − vs∗

i (N s∗) ∀i ∈ Ir, (62)

We can verify that for any i ∈ supp (N s∗), vd∗
i

(N d∗) ≤ vs∗
i

(N s∗). Therefore, we obtain from (60) and

(62) that

vdt∗
i (N d∗) ≤ vst∗

i (N s∗) ∀i ∈ supp (N s∗). (63)

This condition shows that imposing a congestion toll must not create incentives for suburban

commuters to relocate downtown. Furthermore, (61) indicates that if commuters is = max{Ir}

reside both in suburb and downtown (i.e., vd∗
is

(N d∗) = vs∗
is

(N s∗)) and there exist multiple types of

suburban commuters at the no-toll long-run equilibrium (i.e., cst∗
is

(N s∗) < cs∗
is

(N s∗)), at least some

downtown commuters is relocate to suburb.

By letting N
st∗ = [Nst∗

i
] be the long-run equilibrium number of suburban commuters under

the optimal congestion toll, the results presented above can be represented as

Nst∗
i ≥ Ns∗

i ∀i ∈ I. (64)

This representation implies that imposing a congestion toll generally increases the suburban

population. Furthermore, since XB is given by (30), the population increase in the suburb leads

to urban sprawl.

This finding is opposite to the standard results of traditional location models, which consider

static flow congestion (Kanemoto, 1980; Wheaton, 1998; Anas et al., 1998). It also differs from

the results obtained by Arnott (1998), who considers homogeneous commuters. This demon-

strates that strategic interactions among heterogeneous commuters cause urban sprawl resulting from the

imposition of the optimal congestion toll.

We focus on changes in utility of commuters i ∈ Ip ≡ I\Ir from introducing the congestion

toll. It follows from Proposition 10 and conditions (56) and (64) that all commuters i ∈ Ip reside

in the suburb at the long-run equilibrium with and without tolling. Therefore, (28) and (43) yield

vst∗
i (N st∗) − vs∗

i (N s∗) = −
(

cst∗
i (N st∗) − cs∗

i (N s∗)
)

∀i ∈ Ip. (65)

Furthermore, (53b) and (64) give

cst∗
i (N st∗) ≥ cst∗

i (N s∗) ∀i ∈ Ip. (66)

Substituting (66) into (65), we have

vst∗
i (N st∗) − vs∗

i (N s∗) ≤ −
(

cst∗
i (N s∗) − cs∗

i (N s∗)
)

≤ 0 ∀i ∈ Ip. (67)

This indicates that the utility of all commuters i ∈ Ip declines after imposing the congestion
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toll. In addition, (64) shows that congestion tolling reduces the number of downtown com-

muters, thereby increasing the utility of all commuters residing downtown at the equilibrium

with tolling. This finding implies that rich commuters gain, while poor commuters lose from imposing

the optimal congestion toll. Therefore, when the optimal congestion toll is imposed, it is important

to simultaneously introduce some schemes to redistribute toll revenues appropriately.

Expanding bottleneck capacity µ reduces cs∗
i

(N s) and cst∗
i

(N s), and thus, prompts commuters

to relocate to the suburb, and traffic traversing the bottleneck increases. Therefore, expanding

the bottleneck capacity does not necessarily reduce total queuing time. Although this result does

not always arise in our model, we can show that such a situation exists, as discussed in Section

5.2.

The following proposition summarizes the results obtained.

Proposition 11. Suppose conditions in assumption (50) hold. Then, the long-run equilibrium has the

following properties:

(a) Commuters with a higher value of travel time reside closer to the CBD.

(b) Nst∗
i
≥ Ns∗

i
for all i ∈ I. A strict inequality holds at least for is = max{Ir} if there exist multiple

types of suburban commuters at the no-toll equilibrium N
s∗ and Nd∗

is
> 0.

(c) vst∗
i

(N st∗) ≤ vs∗
i

(N s∗) for all i ∈ Ip.

(d) Expanding bottleneck capacity may increase total queuing time.

5.2 Numerical analysis

Finally, we numerically analyze our model and show effects of the optimal congestion toll. In

this analysis, we use the following parameter values:

I = 4, d = 10 (km), τ = 2 (min/km), [Ni] = [1000, 1500, 2000, 2500], (68a)

[yi] = [300, 200, 150, 100], κ = 10, rA = 200. (68b)

The values of αi, βi, and η are set to be consistent with the empirical result (Small, 1982) and (50):

[αi] = [0.3, 0.2, 0.15, 0.1], [βi] = [0.15, 0.11, 0.09, 0.07], η = 4. (68c)

We conduct a comparative statics with respect to bottleneck capacityµ. The no-toll equilibrium

number of commuters i ∈ I is described in Figure 3. This figure shows that downtown commuters

relocate to the suburb in order of decreasing i with increases in the bottleneck capacity. They do

so because increasing µ reduces the commuting cost cs∗
i

(N s) of all commuters, creating incentives

for downtown commuters to relocate to the suburb. This is consistent with the results in Section

5.1.

Figure 4 illustrates the relation between bottleneck capacity µ and total queuing time Q, which

is given by

Q =
η

1 + η

1

2µ

∑

i∈I















βi

αi
Ns

i















2

I
∑

k=i

Ns
k −Ns

i





























. (69)
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Figure 3: Number Ns∗
i

of suburban com-
muters i at no-toll equilibrium

Figure 4: Total queuing time at no-toll equi-
librium

Figure 5: Number Nst∗
i

of suburban com-
muters i under the optimal congestion toll

without tolling

with tolling

Figure 6: Total number Ns of commuters
located in the suburb

From this figure, we see that expanding bottleneck capacity can increase total queuing time

Q. More specifically, when capacity µ is quite small, increasing µ increases the population of

suburban commuters and exacerbates queuing congestion. As µ keeps rising, total queuing

time Q is greatly reduced since the total number Ns =
∑

i∈INs
i

of suburban commuters remains

unchanged. Further increases in µ prompt suburban population increases, but gradually improve

traffic congestion.

The effects of the optimal congestion toll are shown in Figures 5–9. Figure 5 represents

the long-run equilibrium number Nst∗
i

of suburban commuters i under the optimal congestion

toll. Although this result is qualitatively the same as that at the no-toll equilibrium (Figure 3),

congestion tolling changes the total number Ns of suburban commuters, as illustrated in Figure 6.

Note that when µ is small, imposition of the congestion toll does not alter Ns. This occurs because

for small µ, only commuters 4 reside in the suburb (i.e., commuters traversing the bottleneck are

homogeneous). Thus, congestion tolling does not affect commuting costs of suburban commuters,

as shown in Arnott (1998). Furthermore, a suburban population increase due to congestion tolling

leads to expansion of the urban boundary XB, as illustrated in Figure 7. That is, imposing the

optimal congestion toll causes urban sprawl.
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without tolling

with tolling

Figure 7: Urban boundary XB

without tolling

with tolling

Figure 8: Social welfare W

without tolling

with tolling

Figure 9: Utility v∗
4

of commuters 4

We investigate the effects of congestion tolling on social welfare W defined as the sum of

commuters’ total utility and toll revenues P:

W =
∑

i∈I

∫

vi(x)Ni(x)dx + P, (70)

P =
η

1 + η

1

2µ

∑

i∈I















βiN
s
i















2

i
∑

k=1

Ns
k −Ns

i





























. (71)

Figure 8 shows the relations between W and µ with and without congestion tolling. This figure

illustrates that expanding the bottleneck capacity increases social welfare. Figure 9 indicates

that congestion tolling reduces utility of commuters 4 (i.e., commuters with the lowest value of

time). That is, poor commuters lose from congestion tolling. These results are consistent with

Proposition 11.

6 Conclusions

This study has developed a model in which heterogeneous commuters choose their departure

time from home and residential locations in a monocentric city with a single bottleneck. By using

properties of the complementarity problem, we systematically examined spatial distribution of

commuters and effects of time-varying congestion tolling. Results indicate that commuters sort
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themselves temporally and spatially on the basis of their value of time and that imposing an opti-

mal congestion toll shifts population to the suburb and causes urban sprawl. This finding differs

fundamentally from results obtained by Arnott (1998), who considers homogeneous commuters.

It suggests that strategic interactions among heterogeneous commuters can change the effects of

congestion tolling significantly. Furthermore, we clarified that imposing a congestion toll without

redistributing toll revenues leads to an undesirable distribution of benefits among commuters.

That is, rich commuters gain, while poor commuters lose from tolling. These results suggest

that considering commuter heterogeneity is important when we examine the effectiveness of

transportation policies intended to alleviate peak-period congestion.

This study considered a city with a single bottleneck. We need to examine the robustness of

our result by analyzing a model with multiple bottlenecks.9 In addition, it would be valuable

for future research to investigate effects of policies other than congestion tolling, such as step

tolls (Arnott et al., 1990a; Laih, 1994, 2004; Lindsey et al., 2012) and transportation demand

management measures for alleviating traffic congestion (Mun and Yonekawa, 2006; Takayama,

2015).

A Proof of Lemma 1

We can show that for any xa, xb ∈ supp (N∗), there is no xc ∈ (xa, xb) such that N∗(xc) = 0, because

the indirect utilities of suburban and downtown commuters i are given by (12). Thus, we obtain

(21).

Differentiating the indirect utilities vs
i
(x) and vd

i
(x) with respect to location x, we have

dvs
i
(x)

dx
=























−αiτ −
1

N∗(x)

dN∗(x)

dx
if κN∗(x) ≥ rA,

−αiτ if κN∗(x) ≤ rA,

(72a)

dvd
i
(x)

dx
=























−αiτ −
1

N∗(x)

dN∗(x)

dx
if κN∗(x) ≥ rA,

−αiτ if κN∗(x) ≤ rA.

(72b)

Therefore, the long-run equilibrium number N∗(x) of commuters residing at x satisfies

κN∗(x) ≥ rA ∀x ∈ supp (N∗). (73)

Furthermore, it follows from the long-run equilibrium conditions (13a) and (13c) that N∗(x) also

satisfies



















κN∗(x) > rA ∀x ∈ supp (N∗)\{XB},

κN∗(XB) = rA.
(74)

This completes the proof.

9Kuwahara (1990) and Akamatsu et al. (2015) have shown the properties of a bottleneck model with multiple bottle-
necks.
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