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Abstract

This study examines effects of bottleneck congestion and an optimal time-varying congestion
toll on the spatial structure of cities. To this end, we develop a model in which heterogeneous
commuters choose departure times from home and residential locations in a monocentric city
with a bottleneck located between a central downtown and an adjacent suburb. We then show
three properties of our model by analyzing equilibrium with and without congestion tolling.
First, commuters with a higher value of travel time choose to live closer to their workplace.
Second, congestion tolling causes population to increase in the suburb and generates urban
sprawl. Third, commuters with a higher (lower) value of travel time gain (lose) from imposing
the congestion toll without toll-revenue redistribution. Our findings are opposite to the stan-
dard results of traditional location models, which consider static traffic flow congestion, and
differ fundamentally from the results obtained by Arnott (1998), who considers homogeneous

commuters.
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1 Introduction

The traditional residential location model describes spatial structure of cities and its evolution
based on the trade-off between land rents and commuting costs (Alonso, 1964; Mills, 1967; Muth,
1969). Those and subsequent studies successfully predict the empirically observed patterns of
residential location (e.g., spatial distribution of rich and poor) and the effects of assorted urban

policies.!

However, almost all previous studies describe traffic congestion using static flow
congestion models. Their use renders these models inappropriate for dealing with peak-period
traffic congestion and for examining the effects of measures intended to alleviate it (e.g., time-
varying congestion tolls, flextime, staggered work hours).

The bottleneck model most successfully describes how commuters choose their departure
times from home and peak-period congestion (Vickrey, 1969; Hendrickson and Kocur, 1981;
Arnott et al., 1990b, 1993). Its simple and effective framework for studying efficacies of various
measures to alleviate peak-period congestion has inspired numerous extensions and modifica-
tions. However, only Arnott (1998) and Gubins and Verhoef (2014) developed models to describe
how commuters choose where they live and when they depart from home. Arnott (1998) con-
sidered a (discrete space) monocentric city consisting of two areas—a downtown and a suburb—
connected by a single road with a bottleneck. He showed that imposing an optimal congestion
toll without redistributing its revenues affects neither commuting costs nor residential locations
of commuters. Gubins and Verhoef (2014) considered a (continuous space) monocentric city with
a bottleneck at the entrance to its central business district (CBD). Their model introduced an in-
centive for commuters to spend time at home, which the standard bottleneck model disregards,?
and assumed that the size of commuters” houses determined their marginal utility of spending
time at home. They demonstrated that congestion tolling causes commuters to spend more time
at home and to have larger houses, thereby leading to urban sprawl.

Results obtained by Arnott (1998) and Gubins and Verhoef (2014) differ fundamentally from the
results of traditional models with static flow congestion, which predict that cities become denser
with congestion pricing (Kanemoto, 1980; Wheaton, 1998; Anas et al., 1998). Their models,
however, assume that commuters are homogeneous, although it is established that optimal
congestion tolling changes commuting costs in bottleneck models with heterogeneous commuters
(Arnottetal., 1992, 1994; van den Berg and Verhoef, 2011). That is, the effects of congestion tolling
in the bottleneck model with heterogeneous commuters can differ fundamentally from those in
models with homogeneous commuters.

This study extends the model developed by Arnott (1998) to consider commuter heterogeneity
and a continuous space monocentric city with a bottleneck located between a central downtown
and an adjacent suburb.> We then systematically analyze our model using the properties of
complementarity problems that define equilibrium. Our analysis shows that commuters sort
themselves temporally and spatially on the basis of their value of time: commuters with a higher
time-based cost per unit schedule delay (marginal schedule delay cost divided by marginal travel

1Fujita (1989), Glaeser (2008), and Fujita and Thisse (2013) provide detailed overviews of traditional residential location
models. For the effects of congestion pricing, see Kanemoto (1980), Wheaton (1998), and Anas et al. (1998). Recently,
Brueckner (2007), Anas and Rhee (2007), Joshi and Kono (2009), Kono et al. (2008, 2012), and Pines and Kono (2012)
show the efficiency of urban policies to substitute for congestion pricing (urban growth boundary, floor-to-area ratio
regulations).

2Vickrey (1973), Tseng and Verhoef (2008), Fosgerau and Engelson (2011), Fosgerau and Lindsey (2013), and Fosgerau
and Small (2014) considered the utility of spending time at home.

3We do not introduce the utility of spending time at home.



time cost) arrive at work earlier; commuters with higher value of travel time live closer to their
workplace.* Furthermore, we demonstrate that expanding the bottleneck capacity increases the
population of suburban commuters who traverse the bottleneck in our model. Thus, expanding
capacity can increase total queuing time at the bottleneck.

This study also investigates the effects of an optimal time-varying congestion toll on spatial
distribution of commuters. We show that introducing a congestion toll (with and without re-
distributing its revenues) changes commuters’ commuting costs, thereby altering their spatial
distribution. In addition, congestion tolling causes urban sprawl under assumptions common
in the literature employing bottleneck models and commuter heterogeneity (Arnott et al., 1992,
1994; van den Berg and Verhoef, 2011). Our finding is not merely opposite to the standard results
of traditional location models; it differs substantially from the findings by Arnott (1998). This
implies that strategic interactions among heterogeneous commuters change the effects of conges-
tion tolling on spatial structure of cities. Furthermore, we show that the optimal congestion toll
leads to an unbalanced distribution of benefits unless toll revenues are redistributed: commuters
with a high value of time (rich commuters) gain, while those with a low value of time (poor
commuters) lose from tolling.

This study proceeds as follows. Section 2 presents a model in which heterogeneous commuters
choose their departure times from home and residential locations in a monocentric city. Section 3
characterizes the equilibrium of our model by using the properties of complementarity problems.
Section 4 shows effects of the optimal time-varying congestion toll. To demonstrate properties of
our model and the effects of congestion tolling more concretely, Section 5 analyzes it in a simple
setting. Section 6 concludes the study.

2 The model

2.1 Basic assumptions

We consider a long narrow city with a spaceless CBD where all job opportunities are located.
The CBD is located at the edge of the city, and a residential location is indexed by distance x
from the CBD (Figure 1). Land is uniformly distributed with unit density along a road. The road
has a single bottleneck with capacity u at location d > 0. If arrival rates at the bottleneck exceed
its capacity, a queue develops. To model queuing congestion, we employ first-in-first-out and a
point queue in which vehicles have no physical length as in standard bottleneck models (Vickrey,
1969; Arnott et al., 1993). Free-flow travel time per unit distance is assumed to be constant at
T > 0 (i.e., free-flow speed is 1/7).

There are I types of commuters, each of whom must travel from home to the CBD and who have
the same preferred arrival time t* at work. The number of commuters of typei € 7 ={1,2,--- 1},
whom we call “commuters i,” is fixed and denoted by N;. Since the bottleneck is located at d, only
commuters who reside at x > d pass through the bottleneck, while those who reside at x € [0, d] do
not. Following Arnott (1998), we denote locations X° = {x € R, | x > d} as “suburb” and locations
X ={xeR, |xel0,d]} as “downtown.” We denote the number of commuters i in the suburb
and downtown by N and NY(= N; — N¢), respectively. If d is sufficiently large, all commuters
reside downtown and no commuter traverses the bottleneck. Because we are not interested in

4This spatial distribution is consistent with observations in a city with heavy traffic congestion (see McCann, 2013).
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Figure 1: Long narrow city

that case, d is assumed to be small such that } ;. N; > 0.
Commuting cost ¢;(x, t) of commuter i who resides at x and arrives at work at time ¢ (travels

at f) is expressed as the sum of travel time cost m;(x, t) and schedule delay cost s;(t — t*):

ci(x, t) = mi(x, t) + s;(t = t), (1a)

a;TX if xeX4,
mi(x, t) = (1b)
ai{gt) + x} if xe X5,

(F—t) if t<t,
si(t— ) = LU (1c)
yilt— 1) if t> .

Here g(t) denotes queuing time of a commuter traveling at time ¢, 7x represents free-flow travel
time of commuters residing at x, and «; > 0 is the value of travel time of commuters i. §; > 0 and
yi > 0 are early and late delay costs per unit time, respectively.

The utility of a commuter i who resides at x and travels at time ¢ is given by the logarithmic

quasi-linear utility function:®
u(zi(x, £), ai(x)) = zi(x, ) + x In[a;(x)], @)

where « is a positive constant, z;(x, t) denotes consumption of the numéraire goods, and 4;(x) is

the lot size at x. The budget constraint is expressed as
yi = 2 1) +{r0) + o) + i, ), 3)

where r* is the exogenous agricultural rent and 7(x) + r* denotes the land rent at x.
The first-order condition of the utility maximization problem (max;, 1)) 4(zi(x, t), a:(x)) s.t.

(3)) gives
ai() {r(x) + ) = k. @)

This implies that lot size a;(x) is independent of commuters’ type i. From (2), (3), and (4), we
obtain the indirect utility v;(x, ) as follows:

vi(x, ) = yi — ci(x, ) — k In[r(x) + r*] + €, 5)

where € = xIn[x] — x.

5As Arnott (1998) proved, if commuters are homogeneous, congestion tolling does not affect their spatial distribution
under a quasi-linear utility function (2).



2.2 Equilibrium conditions

Similar to models in Peer and Verhoef (2013), Gubins and Verhoef (2014), and Takayama (2015),
we assume that commuters make long-run decisions about residential locations and short-run
decisions about day-specific trip timing. In the short run, commuters i minimize commuting cost
ci(x, t) by selecting their arrival time t at work (trip timing ¢) taking their residential location x as
given. In the long run, each commuter i chooses a residential location x so as to maximize his/her
utility. We, therefore, formalize short-run and long-run equilibrium conditions in turn.

2.2.1 Short-run equilibrium conditions

Commuters in the short run determine only their day-specific trip timing ¢, which implies that
the number N;(x) of commuters i residing at x (i.e., spatial distribution of commuters) is assumed
to be given. Since commuting costs are given by (1), short-run equilibrium conditions differ
according to commuters’ residential locations. We first consider commuters residing in the
suburb (suburban commuters), who must traverse the bottleneck. The commuting cost c;(x, t) of
suburban commuter i can be divided into two costs: one depends only on trip timing t and the
other on residential location x:

ci(x, t) = c;(t) + ajtx, (6a)

ci(t) = aiq(t) +si(t — t°). (6b)

This implies that each suburban commuter chooses a trip timing ¢ so as to minimize c;(t). There-
fore, the short-run equilibrium conditions coincide with those in the standard bottleneck model,

which are given by three conditions:

m(t) ) -} =0

Viel, (7a)
n(t) >0, () - >0
gt {1 = Lier m()} =0 iem. 7b)
q(t) > 0, [.l - ZkEI ni(t) > 0
f ndt =N Viel, (7¢)

where 7(t) denotes the number of suburban commuters i who travel at time ¢ (i.e., the arrival
rate of suburban commuters 7 at the CBD) and ¢ is the short-run equilibrium commuting cost of
suburban commuters i.

Condition (7a) represents the no-arbitrage condition for the choice of trip timing. This con-
dition means that, at the short-run equilibrium, no commuter can reduce commuting cost by
altering trip timing unilaterally. Condition (7b) is the capacity constraint of the bottleneck, which
requires that the total departure rate Y7 75(f) at the bottleneck® equals capacity u if there is
a queue; otherwise, the total departure rate is (weakly) lower than u. Condition (7c) is flow
conservation for commuting demand. These conditions give 7:(t), q(f), and c* at the short-run
equilibrium as functions of the number N* = [N;] of suburban commutersi € 1. Therefore, at the

®Note that the departure rate from the bottleneck coincides with the arrival rate of suburban commuters at the CBD.



short-run equilibrium, the commuting cost of a suburban commuter i residing at x is represented
as ¢i"(N?) + ajtx.
We next consider commuters who reside downtown (downtown commuters). Since the

commuters do not traverse the bottleneck, their commuting cost c?(x, t) is expressed as
c(x,t) = ajTx + si(t — ). (8)

Thus, all downtown commuters must travel at t = t* and their commuting cost at the short-run
equilibrium is given by a;7x.

2.2.2 Long-run equilibrium conditions

In the long run, each commuter i chooses a residential location x so as to maximize utility v;(x),

which is expressed as

yi— ' (N°) —ajrx — kIn[r(x) + r*] + e if x€ X5,

o) = X | ) ©)
yi —aitx — kIn[r(x) + r*] + € if xe X%
Thus, long-run equilibrium conditions are given by
N;(x){vr —ovi(x); =0
(){’ ()} VxeR,, Viel, (10a)
Ni(x) 20, v} —vi(x) > 0
r(x){1 - ar(x)Ni(x)} =0
() {1 = Lger ar(0)Nk(x)} VxR, (10b)
r(x) >0, 1— Y ey ak(x)Ni(x) >0
f Ni(x)dx = N; Viel, (10c)
0

where v; denotes the long-run equilibrium utility of a commuter i.

Condition (10a) is the equilibrium condition for commuters” choice of residential location.
This condition implies that, at the long-run equilibrium, each commuter has no incentive to
change residential location unilaterally. Condition (10b) is the land market clearing condition.
This condition requires that if the total land demand Y. 7 ax(x)Ni(x) for housing at x equals supply
1, land rent r(x) + r* is (weakly) larger than agricultural rent +*. Condition (10c) expresses the
population constraint.

Substituting (4) into (10b), we have r(x) as follows:

LA A
) = gN(x) r® if  kN(x) > r2, an

if xN(x) <74,

where N(x) = } ;7 Ni(x) represents the total number of commuters residing at x. It follows from
(9) and (11) that the indirect utilities of suburban and downtown commuters, v}(x) and vf(x), are



expressed as

yi— " (N°) —aytx =k In[kN(x)] + € if xN(x) > r®,

() = (12a)
yi— " (N°) —ajrx — k In[r?] + € if xN(x) <A

() = yi —atx —kIn[kN(x)] +€ if ®N(x) >4, (12b)
yi —atx —xIn[rA] + € if xN(x) <rh.

Therefore, the long-run equilibrium conditions are rewritten as follows:

N;(x){v3(IN®) —vi(x); =0
{ ){ P (V) — il )} Vxe X, Viel, (13a)
Ni(x) 2 0, v7"(N?®) = vj(x) 2 0
f Ni(x)dx=N;  Viel, (13b)
d
Ni(x) {o™*(NY) — vd(x)} = 0
(){l ) ’()} Vxe X, Viel, (13c)
Nj(x) 2 0, v(N?) = v4(x) > 0
d
f Nix)dx=N{  Viel, (13d)
0
o (N > v(N®) if Ni>0
! ! ! Yiel, (13e)
v (NY) <o (N°) if N§>0
NY+N:=N; Viel, (13f)

where v7*(IN*) and v?*(N ) denote the utilities that commuters i receive from residing in the
suburb and downtown, respectively.

Conditions (13a) and (13b) are the equilibrium conditions for suburban commuters’ choice
of residential location x. Similarly, conditions (13c) and (13d) are the equilibrium conditions
for downtown commuters’ choice of residential location x. Conditions (13e) and (13f) are the
equilibrium conditions for commuters’ choice between residing in the suburb and downtown.
We use these conditions for characterizing equilibrium spatial distribution of commuters in
Section 3.

3 Equilibrium

3.1 Short-run equilibrium

The short-run equilibrium conditions (7) of suburban commuters coincide with those in the
standard bottleneck model, as shown above. Therefore, as proved in Iryo and Yoshii (2007), there

is an optimization problem equivalent to the short-run equilibrium conditions.

Proposition 1. The short-run equilibrium number [n*(t)] of suburban commuters traveling at time t
coincides with the solution of the following linear programming problem:

: si(t =)
min E—
[ ()] o

niBdt  stoop- Z n(t) > 0, f ni(f)dt = N, (14)

kel
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Figure 2: An example of cumulative arrival and departure curves at the short-run equilibrium

Let us define (travel) time-based cost as the cost converted into equivalent travel time. Since
that cost for a commuter i is given by dividing the cost by «a;, we say that s;(t — t*)/«a; represents
the time-based schedule delay cost of a commuter i. Therefore, Proposition 1 shows that, at the
short-run equilibrium, the total time-based schedule delay cost is minimized, but the total schedule
delay cost is not necessarily minimized.

We let supp (1) = {t € R, | ni*(t) > 0} be the support of the short-run equilibrium number
n*(t) of suburban commuters i who travel at . Then, from Proposition 1, we have

supp (Lier n7) = [t5,1], (15)

where ' and " denote the fastest and latest arrival times at the CBD of commuters, which satisfy

. Ni
=y Z”% (16)

This indicates that, at the short-run equilibrium, the rush hour in which queuing congestion
occurs must be a single time interval (Figure 2).

Furthermore, by using short-run equilibrium condition (7a), we obtain
ci(t) + cj.(tj) <c(ty) + c;:(ti) Vt; € supp (1), t; € supp (n“;i*). (17)
Substituting (6b) into this yields the following proposition:

Proposition 2. For any t; € supp (n]"), t; € supp (nj.*), and i, j € I, the following conditions hold:

((% - (%) (ti - tj) >0 if max{t,t}<t, (18a)
i Vi ‘ . )

This proposition indicates that the short-run equilibrium has the following properties: if
Bilai < B j/a ir early-arriving commuters i (commuters i arriving at the CBD earlier than the
preferred arrival time t*) arrive at the CBD earlier than early-arriving commuters j; if y;/a; < y;/a;,
late-arriving commuters i (commuters i arriving at the CBD later than t*) arrive at the CBD later

than late-arriving commuters j. That is, at the short-run equilibrium, commuters sort themselves



temporally on the basis of their marginal time-based schedule delay cost.

3.2 Long-run equilibrium
3.2.1 Suburban and downtown spatial structures

We first characterize long-run equilibrium spatial distribution of suburban commuters and that
of downtown commuters by using properties of complementarity problems (13a), (13b) (13c),
and (13d). We show that these problems are equivalent to the following optimization problem:

Proposition 3. The long-run equilibrium number [N;(x)] (x € X°) of suburban commuters residing at x

coincides with the solution of the following optimization problem:

maxz f BONi()dx st f Ni(x)dx=N¢ VieT. (19)
[Ni(x)] o7 Jd d

Furthermore, the long-run equilibrium number [N}(x)] (x € X% of downtown commuters residing at x

coincides with the solution of the following optimization problem:

dd
maxZ f W WNe)dx st f Ni(x)dx = N? VieT. (20)
kez V0 0

[Ni(x)]

Proof. The Karush-Kuhn-Tucker (KKT) conditions of problem (19) are equivalent to equilibrium
conditions (13a) and (13b). Additionally, KKT conditions of problem (20) are equivalent to
equilibrium conditions (13c) and (13d). These, together with the monotonicity of the indirect
utility functions (12) with respect to N;(x), give Proposition 3. O

This proposition shows that the total utility of suburban commuters and that of downtown
commuters are maximized at the long-run equilibrium.

Equilibrium conditions (13a) and (13c) yield the following lemma.
Lemma1. Thelong-run equilibrium number N*(x) of commuters residing at x has the following properties:

(a) The support of N*(x) is given by
supp (N*) = [0, X"], (21)

where X® denotes the residential location for commuters farthest from the CBD (i.e., the city bound-
ary).

(b) N*(x) satisfies

kN*(x) > r*  Vx € supp (N)\{XP}, (22a)
kN*(XB) = 2. (22b)
Proof. See Appendix A. o

Let Ni*(x) and Nf*(x) be the respective long-run equilibrium number of suburban and down-

town commuters i residing at x. Then, it follows from Lemma 1 that, for any x} € supp (N;) and



d

x! € supp (Nf ), the indirect utilities v3(x}) and vf(xf) are expressed as
vi(x}) = yi — ¢"(N°) — i} — kIn[kN(x)] + €, (23a)
() = y; — vt — k In[kN()] + €. (23b)

In addition, equilibrium conditions (13a) and (13c) give the following conditions for N:*(x) and
N%(x):
v (x}) + v;(xj.) > vs.(xj.) + vj.(xf.) Vx; € supp (N7"), Vx; € supp (Nj*), Vi,jel, (24a)
o) + o) 2 of () + o)V € supp (N{"), V] € supp (NT), Vi, j € . (24b)

Substituting (23) into (24) yields the following proposition.

Proposition 4. For any x; € supp (N{"), x; € supp (N;*), and i, j € 1, the following condition holds at
the long-run equilibrium:

(al- - D(]‘) (xl- - X]‘) >0. (25)

This condition also holds for any x; € supp (N*), x; € supp (Nj,l*), andi,je 1.

This proposition states that in the suburb and downtown, commuters with a higher value of
travel time reside closer to the CBD. That is, commuters sort themselves spatially on the basis of
their value of travel time. Furthermore, spatial distribution of suburban commuters and that of
downtown commuters are unaffected by short-run equilibrium commuting cost ¢*(IV?).

We explicitly obtain v#*(IN¥) and v5*(IN¥) using Proposition 4. We assume, without loss of
generality, that

ai_1 > q; Vie I'\{1}. (26)

Let X7 and Xf denote the respective locations for suburban and downtown commuters i residing
nearest the CBD. It follows from Proposition 4 that suburban and downtown commuters i reside
in [X?, X?, ;] and [Xf, Xfﬂ], respectively (i.e., supp (N;*) = [X;, X?, ;] and supp (Nf*) = [X?, X:'i+1] for
alli € 7). By using Xfl and X¢, the utility differences v*(IN®) — v?*, (IN®) and v?*(N dy Uf’jl(N ) are

represented as

07 (V) =0 (N") = g = s = (V") = €y ()] = (@i = i) X, 7
o (N = o) (N?) = yi = i1 = (@ = i) TXT. (27b)

Therefore, we have the following indirect utilities of suburban and downtown commuters:

() = yi — " (N®) =k In[r] — it X = ) apt(X5,, — X5) + €. (28a)

=~
1]

-

1

I
o (NY) = i - K Inlr(@d)] - X! = ) apr(XY,, - XD) +e, (28b)
k=i

10



where X} and Xz are given by

s s s K aiTN? A I s
Xi=d, X=X+ o)l gis +ZakTN, (29a)
k=i+1
d d i, K aTNY I d
X{=0,  Xi,=X[+ 2|1l gi=r@) +k;1 TN (29b)
Land rent 7(d) at location d is determined from the condition X?H =d.
The city boundary X® = X5, is obtained from (29a) as
1 aytN3
XB:d+1<Z—ln[ £ k+1]. (30)
fer KT P

This indicates that the city boundary is affected by the number IN* of suburban commuters i.

3.2.2 Equilibrium population of suburban and downtown commuters

We next characterize the long-run equilibrium number N** = [Ni*] and V! de = [Nf’*] of suburban
and downtown commuters i. From (27), we have the following proposition:

Proposition 5. The difference vf*(N dy v7*(IN®) between utilities from residing in the suburb and
downtown satisfies

(o () = 03" (IN9)) = (v (N) = 0", ()
=" (NY) = (N = (@i —a) T (X = X7)  VieT\(1).  (31)

From (26), (29), and Proposition 5, if ¢;*(IN?) < ¢;*, (IN®) foralli € 1 \{1},” we have
o (N?) — o (NF) < o™ (N) =05 ((NF)  VieI\{1L (32)

Note that from equilibrium condition (13e), every commuter i resides downtown if v¥(IN%) —
v7*(IN*) > 0 and every commuter i resides in the suburb if v?*(N &) — v7(IN®) < 0. Therefore, (32)
shows that commuters with a high (low) value of travel time reside downtown (in the suburb).
Furthermore, (28) gives us the utility difference vf*(N 4y — vi*(IN®) as
() I
d d d
x| (x - x0)+ Y (x5, - X)) - (X4, - X7))

o (N?) — o3 (N®) = " (V") - Kln[
k=i

(33)

4 Optimal congestion toll

Studies on the standard bottleneck model show that queuing time is a pure deadweight loss.
Hence, there is no queue at the social optimum. In our model, the social optimum can be achieved

by imposing an optimal time-varying congestion toll that eliminates queuing congestion. This

“Note that, as shown in Section 5, i, (IN?) is greater than ¢;"(IN®) in many cases since a;_1 > a;.

11



section considers the introduction of an optimal congestion toll p(t). That is, the commuting cost
ci(x, t) of a commuter i is given by

) +aix if x e XY,

ci(x ) = (34a)
') +aitx if x € X5,

o'ty = si(t = 1), (34b)

cH(E) = p(t) +silt — 1), (34¢)

We then characterize equilibrium under the optimal congestion toll p(f) and demonstrate that this
pricing policy alters spatial distribution of commuters. Our result differs fundamentally from
that obtained by Arnott (1998), who considers homogeneous commuters.

4.1 Short-run equilibrium

Congestion toll p(t) eliminates queuing congestion.® Note that since we consider heterogeneous
commuters, congestion toll p(f) does not equal travel time cost a;4(t) at the no-toll equilibrium
and is set so that travel demand Y. .7 #;(t) at the bottleneck equals the supply (i.e., capacity) u.
Therefore, short-run equilibrium conditions for suburban commuters are expressed as

Sliy=cr if ni(t)>0

VieI, VteR, (35a)
Sl = e if ni() =0

Yiermi(H)=u if p(t) >0

VieR, (35b)
Lierni(t) <p if pt)=0

fnf(t) dt=N; Viel, (35¢)

where c"* denotes the short-run equilibrium commuting cost of suburban commuters i under the
congestion toll.

Condition (35a) is the no-arbitrage condition for suburban commuters’ trip timing choices.
Condition (35b) denotes the bottleneck’s capacity constraints, which assure that queuing con-
gestion is eliminated at the equilibrium. Condition (35¢c) provides the flow conservation for
commuting demand. From these conditions, we have 7:(t), p(t), and C‘l‘ft* at the short-run equilib-
rium as functions of the number N* of suburban commuters i € 7.

As in the case without the congestion toll, there is an optimization problem equivalent to (35):

Proposition 6. The short-run equilibrium number [n3"(t)] of suburban commuters traveling at time t
under the optimal congestion toll coincides with the solution of the following linear programing problem:

. PR
[nn?(ltr)}ZfSl(t t) ni(t) dt (36a)
iel
s.t. an(t)sl,t VteR, fnf.(t) dt=N: Viel, ni()=0 Viel VteR.  (36b)

iel

8The tradable network permit scheme proposed by Akamatsu (2007) and Wada and Akamatsu (2013) has the same
effect as the optimal congestion toll.
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This proposition suggests that the total schedule delay cost is minimized at the short-run equi-
librium under the congestion toll. Note that the total schedule delay cost equals total commuting
cost minus total toll revenue. Hence, Proposition 6 indicates that, in the short run, the optimal
congestion toll minimizes the social cost of commuting. Furthermore, Propositions 1 and 6 show
that the equilibrium commuting cost ¢(IN*) under the congestion toll generally differs from the
no-toll equilibrium commuting cost ¢;*(IV?).

From equilibrium condition (35a), we obtain
() + cj-t*(t,-) <ch(ty) + c;t*(ti) Vt; € supp (1), Vt; € supp (nj.t*), Vi, jeT. (37)

Substituting (34c) into (37), we have the following proposition.

Proposition 7. Consider the short-run equilibrium under the optimal congestion toll. Then, for any
t; € supp (15"), t; € supp (nj.t*), and i, j € 1, the following conditions hold:

(ﬁi - ,3]‘) (fi - tj) if  max{t, tj} <t (38a)
—t

>0
(yi—y)(ti-t;)<0 if min{t,t)} 2 ¢ (38b)

This proposition indicates that early-arriving commuters travel in order of increasing f; and
late-arriving commuters travel in order of decreasing y;. Furthermore, the value of travel time
(i.e., a;) does not affect the short-run equilibrium distribution of trip timing under the congestion
toll.

Downtown commuters travel at t = t* as they need not traverse the bottleneck. That is, the
commuting cost of downtown commuters i at the short-run equilibrium under the congestion
toll is given by a;x.

4.2 Long-run equilibrium

We characterize long-run equilibrium spatial distribution of commuters by using the short-run
equilibrium commuting cost. The difference between cases with and without tolling appears only
in the indirect utility v(x) of suburban commuters. Specifically, under the congestion toll, the
indirect utility v}(x) of suburban commuters i is expressed as

yi — " (N°) —ajtx — k In[kN(x)] + € if xN(x) > r®,

vi(x) = (39)

yi — " (N®) — ajrx — k In[r?] + € if ®N(x) <r?,

where ¢f*(N) is the short-run equilibrium commuting cost. Following the same procedure as
in Section 3.2 reveals that the spatial distribution of suburban commuters and that of downtown
commuters at the long-run equilibrium under the optimal congestion toll have the same properties
as those without tolling (i.e., Proposition 4).

Proposition 8. Consider the long-run equilibrium under the optimal congestion toll. Then, the spatial
distribution of suburban commuters and that of downtown commuters have the following properties:

(a) The long-run equilibrium number [th*(x)] (x € X?) of suburban commuters at x coincides with the
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solution of the following optimization problem:

[Ni(x)]

maxz f BNy st f ) Ni(x)dx = N¢ VieT. (40)
kel d

(b) The long-run equilibrium number [N;“*(x)] (x € X%) of downtown commuters at x coincides with
the solution of the following optimization problem:

d
max X)Ni(x)dx s.t. Ni(x)dx =N? VieT. 41
[N,.<x>12f [N | war = @

(c) Foranyx; € supp (N3"), xj € supp (N?*), and i, j € I, the following condition holds at the long-run
equilibrium:

(Oti - Ck]‘) (xi - X]‘) > 0. 42)
This condition also holds for any x; € supp (N{"), x; € supp (N7"), and i, j € 1.

We denote the utilities of commuters i residing in the suburb and downtown under the
congestion toll by v¥*(IN®) and vft*(N 4), respectively, which are derived from (13a), (13b), (13c),
and (13d) with the use of (39). Then, under the assumption in (26), vft*(N ) and v‘iit*(N ) are
obtained in the same manner as in (28):

1
oM (N®) = i — *(N™) — xIn[r] — a7 XS — Z (X, - X + e, (43a)
k=i
o™(N?) = y; — xIn[r(d)] — a7 X% — Z ar(XE — X" v, (43b)
k=i

where X}' and X]‘ft are, respectively, the residential locations for suburban and downtown com-
muters i closest to the CBD, which are given by (29). Thus, v{*(N?) — v%*(IN*) is represented
as

* s * S St S ( ) S S S
o (NY) — o (IN®) = &"(NF) - [ + oyt (X5 - X7) + Zaﬂ X3t =Xy - (xd, - xi)).
k=i
(44)
It follows from this and (33) that

(o (N™) = v (N®)) = (0 (N?) = 05" (N)) = " (N¥) = "(N)  VieT. (45)

Furthermore, following the same procedure as for Proposition 5, we obtain (vff*( N) - y?f*( N?)) -
(@ (N?) - v (N?)) as follows.

Proposition 9. Under the optimal congestion toll, the difference vft*(N dy _ v?t*(N $) between utilities
from residing in the suburb and downtown has the following properties:
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(a) Forallie I\{1},

(" (N = 5" (V) = (0 (V) = 255, (N)) = (0 (N) = 07 (V) = (08, (V) = 07, (V)
(46)

if and only if there exists 6 such that ¢*(IN®) = ¢;*(N®) + 6 forall i € T.

(b) Forallie I\{1},

(0" () = 07" () = (03 (V) = 05, (IN9)) = 6" () = 1y (N°) = (@iea = @) (X5 = XT').
(47)

Note that, in general, there is no 6 such that cft" =¢;" + 6 Vi € I when we consider commuter
heterogeneity in the value of travel time. Unlike Arnott (1998), therefore, Proposition 9 (a) implies
that imposing the optimal congestion toll does change spatial distribution of commuters in our model.
Note also that the results presented thus far are obtained under the assumption that toll
revenues are not redistributed. Since the optimal congestion toll minimizes short-run social cost
of commuting, commuting costs of all commuters can be reduced by appropriately redistributing
toll revenues. That is, if policymakers appropriately redistribute toll revenues, the following

condition is satisfied for all i € 7
of"(NY) = 0" (N?) = pi(IN®) < 0" (N¥) = 0} (N?), (48)

where p;(IN?) denotes the toll-revenue redistribution for a commuter i. This indicates that appro-
priate redistribution attracts commuters to the suburb and causes urban sprawl.

Proposition 9 (b) shows that if ¢*(N®) < ¢ (IN®) for all i € I, the following condition is
satisfied:

(N — v(N®) < o™ (N?) — o (N®)  Vie T\{1}. (49)
That is, at the long-run equilibrium with tolling, commuters with a high value of travel time
reside downtown, while those with a low value of travel time reside in the suburb.

5 A simple example

In this section, we analyze our model in a simple setting to show concretely the properties
of equilibrium and effects of the congestion toll. Specifically, we assume that the following
conditions hold.
Bici  Bi Yier Vi )
i1 >, 1> Bi, 1>V, — <=, — <=, i1 > Vi Vie I\{1}. 50

-1 Qa; ﬁl 1 ﬁl Vi-1 Vi i a; iy a; Vi1 Yi 1 \{ } ( a)
For expositional clarity, we further introduce the assumption common to literature that employs
a bottleneck model with commuter heterogeneity (Arnott et al., 1992, 1994; van den Berg and
Verhoef, 2011):

Yi_y Viel. (50b)

Bi
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These assumptions mean that commuters with smaller 7 are rich and those with larger i are poor.

5.1 Theoretical analysis
5.1.1 Short-run equilibrium

We first examine the properties of the short-run equilibrium. It follows from assumption (50) and
Proposition 2 that early-arriving suburban commuters with smaller i travel earlier at the no-toll
short-run equilibrium. Thus, the difference between time-based commuting costs of suburban

commuters i and 7 — 1 is as follows:

GO Gy () g (ﬁ__ﬁ_)Z_N .0, 61

a; i1 1+n\ai  aig u

From assumption (50) and Proposition 7, early-arriving suburban commuters with larger i travel
earlier at the short-run equilibrium with tolling. Thus, cSt*(N ) — cSt* 1(IN?) is given by

i—1 S
SH(N®) = & (NF) = (/31 Bi-1) E<o. (52)
(51) and (52) give us ¢i*(IN*) and cft*(N %) as follows:
5% s Zk 1+1 ﬁ lec
¢ (IN°) = 1""7{ﬁ1 kz“a—j (53a)
Ns I N°
St S n Tk
¢ (V) = 1+n{ +;ﬁky}. (53b)

By using (53a), we obtain the difference between the no-toll short-run equilibrium commuting
costs of commuters i and i — 1.

S* S S* S Z - 7{
G (N )_Ci_l(N )= 1 1 {(,Bz ,Bz 1) + (011 aj— 1)2 _? (54)
Results obtained above show that for all i € 7\{1},

¢;'(N®) = ¢, (IN®) <0, (55a)
SH(IN®) = 7 (N®) < 0. (55b)
That is, at the short-run equilibrium with and without congestion tolling, commuting costs of

rich commuters exceed those of poor commuters.
Cft*(N °) — ¢"(IN?) is obtained from (53) as follows:

i—1 S I s
Stx S\ _ 5% S\ — Ui . é_ﬁ)l\i_ . — &
EHN) = & (N)—1+n{al;(ai o) Z(ﬂl B 1 (56)

From assumption (50), the first term on the right hand side of (56) is positive and the second is
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negative. Thus, we have
SPIN®) = ¢7'(N®) > &SP (IN®) = ¢ | (NP) Vie I\{1}. 57)

Furthermore, there exists i* € J such that cft*(N *)—c"(IN®) < Oforalli < i*and cft*(N )—c(N®) >0
for all i > i*. Therefore, introducing the congestion toll reduces the commuting cost of rich
commuters i < i* and increases the commuting cost of poor commuters 7 > i*.

At the no-toll long-run equilibrium N**, we can show from (56) that i* > min{supp (IN**)}. This
conclusion implies that the congestion toll reduces the short-run equilibrium commuting cost of
commutersi € 7" = {i € 1 | i < min{supp (IN**)} who are downtown commuters or are suburban
commuters having the highest value of travel time at the no-toll long-run equilibrium. In addition,
if there exist multiple types of suburban commuters at the no-toll long-run equilibrium, the
commuting costs ¢*(N**) and ¢ (IN*") of suburban commuters i = min{supp (IN*")} satisfy

¢ (NT) < cH(IN™). (58)
That is, congestion tolling reduces their commuting cost. This and (57) show that
H(IN) < ' (N™) Viel (59)
if there exist multiple types of suburban commuters at the no-toll long-run equilibrium.

Results obtained above are summarized as follows:

Proposition 10. Suppose conditions in assumption (50) hold. Then, the short-run equilibrium commuting
cost has the following properties:

(a) Forany N*®andie€ I\{1}, c'(N*) < ¢ (N®) and ¢ (N*) < " (N°®).

(b) There exists i* € T such that ¢ (IN®) < ¢*(N°®) for all i < i*.

(c) Consider the no-toll long-run equilibrium IN**. Then, cjt*(NS*) < ¢'(IN®) forall i € I'. A strict

inequality holds if there exist multiple types of suburban commuters.
5.1.2 Long-run equilibrium
We next show properties of spatial distribution of commuters at the long-run equilibrium. Using
Propositions 5, 9 (b), and 10 (a), we have
d* d £ dx d %
o' (N?) = o7 (N?) < v (N?) — v (IN?)

ol (V) = 03 (V) < o () = o, (V")

Vie I\{1}. (60)

This indicates that commuters with a high value of travel time reside downtown, while those
with a low value of travel time reside in the suburb at the long-run equilibrium with and without
congestion tolling. Together with Propositions 4 and 8 (c), this shows that commuters with a
higher value of travel time reside closer to the CBD. This result is consistent with empirical
observation in cities with heavy traffic congestion (McCann, 2013).

The effects of congestion tolling on spatial distribution of commuters can be examined using
the following relation at the no-toll long-run equilibrium N** and N%, which is obtained from
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(33) and (44):
o (INT) — oS (N™) = ¢ (IN™) = ¢ (™) + o (N") = o (N™)  Viel. (61)
From this and Proposition 10 (c), we have
o (N — oS(N*) < o (N*) — o (N™)  Vie T, (62)

We can verify that for any i € supp (IN*), v'f"(N 4y < v*(IN®"). Therefore, we obtain from (60) and
(62) that

vft*(Nd*) <o (N™) Vi € supp (N*). (63)

This condition shows that imposing a congestion toll must not create incentives for suburban
commuters to relocate downtown. Furthermore, (61) indicates that if commuters i* = max{Z"}
reside both in suburb and downtown (i.e., U;Z*(N ) = vl (IN®)) and there exist multiple types of
suburban commuters at the no-toll long-run equilibrium (i.e., cf.f*(N ) < ¢Z(IN*)), at least some
downtown commuters #° relocate to suburb.

By letting N*"* = [N3"] be the long-run equilibrium number of suburban commuters under
the optimal congestion toll, the results presented above can be represented as

Ni* >N Viel. (64)

This representation implies that imposing a congestion toll generally increases the suburban
population. Furthermore, since X® is given by (30), the population increase in the suburb leads
to urban sprawl.

This finding is opposite to the standard results of traditional location models, which consider
static flow congestion (Kanemoto, 1980; Wheaton, 1998; Anas et al., 1998). It also differs from
the results obtained by Arnott (1998), who considers homogeneous commuters. This demon-
strates that strategic interactions among heterogeneous commuters cause urban sprawl resulting from the
imposition of the optimal congestion toll.

We focus on changes in utility of commuters i € J¥ = 7\I" from introducing the congestion
toll. It follows from Proposition 10 and conditions (56) and (64) that all commuters i € 77 reside
in the suburb at the long-run equilibrium with and without tolling. Therefore, (28) and (43) yield

v (NT) =0 (N™) = = (S"(N*") - ' (N™))  Vie IV, (65)
Furthermore, (53b) and (64) give
SN > S (IN™) Vie IP. (66)
Substituting (66) into (65), we have
o (N) = o (N™) < = (S"(N™) = ' (N*™)) <0 Vie IV (67)

This indicates that the utility of all commuters i € ¥ declines after imposing the congestion
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toll. In addition, (64) shows that congestion tolling reduces the number of downtown com-
muters, thereby increasing the utility of all commuters residing downtown at the equilibrium
with tolling. This finding implies that rich commuters gain, while poor commuters lose from imposing
the optimal congestion toll. Therefore, when the optimal congestion toll is imposed, it is important
to simultaneously introduce some schemes to redistribute toll revenues appropriately.

Expanding bottleneck capacity u reduces ¢i*(IN®) and ¢{"(N®), and thus, prompts commuters
to relocate to the suburb, and traffic traversing the bottleneck increases. Therefore, expanding
the bottleneck capacity does not necessarily reduce total queuing time. Although this result does
not always arise in our model, we can show that such a situation exists, as discussed in Section
5.2.

The following proposition summarizes the results obtained.

Proposition 11. Suppose conditions in assumption (50) hold. Then, the long-run equilibrium has the
following properties:

(a) Commuters with a higher value of travel time reside closer to the CBD.

(b) N3 > N7 forall i € 1. A strict inequality holds at least for i* = max{I"} if there exist multiple
types of suburban commuters at the no-toll equilibrium N** and N** > 0.

(c) v*(N*") < v (IN™) forall i € I7.

(d) Expanding bottleneck capacity may increase total queuing time.

5.2 Numerical analysis

Finally, we numerically analyze our model and show effects of the optimal congestion toll. In
this analysis, we use the following parameter values:

I=4, d=10(km), t=2(min/km), [N;]=[1000,1500,2000,2500], (68a)
[y:] = [300,200,150,100], « =10, r* =200. (68b)

The values of a;, i, and 1) are set to be consistent with the empirical result (Small, 1982) and (50):
[a;] =[0.3,0.2,0.15,0.1], [B:] =[0.15,0.11,0.09,0.07], n=4. (68¢)

We conduct a comparative statics with respect to bottleneck capacity 1. The no-toll equilibrium
number of commutersi € 7 is described in Figure 3. This figure shows that downtown commuters
relocate to the suburb in order of decreasing i with increases in the bottleneck capacity. They do
so because increasing p reduces the commuting cost ¢;*(IN®) of all commuters, creating incentives
for downtown commuters to relocate to the suburb. This is consistent with the results in Section
5.1.

Figure 4 illustrates the relation between bottleneck capacity p and total queuing time Q, which
is given by

—Li E S S _ NS
Q=1 ety ;{aiz\@ [ZZNk Ni]}. (69)
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From this figure, we see that expanding bottleneck capacity can increase total queuing time
Q. More specifically, when capacity u is quite small, increasing u increases the population of
suburban commuters and exacerbates queuing congestion. As u keeps rising, total queuing
time Q is greatly reduced since the total number N* = },c; N} of suburban commuters remains
unchanged. Further increases in p prompt suburban population increases, but gradually improve
traffic congestion.

The effects of the optimal congestion toll are shown in Figures 5-9. Figure 5 represents
the long-run equilibrium number N;* of suburban commuters i under the optimal congestion
toll. Although this result is qualitatively the same as that at the no-toll equilibrium (Figure 3),
congestion tolling changes the total number N° of suburban commuters, as illustrated in Figure 6.
Note that when 1 is small, imposition of the congestion toll does not alter N°. This occurs because
for small y, only commuters 4 reside in the suburb (i.e., commuters traversing the bottleneck are
homogeneous). Thus, congestion tolling does not affect commuting costs of suburban commuters,
as shown in Arnott (1998). Furthermore, a suburban population increase due to congestion tolling
leads to expansion of the urban boundary X, as illustrated in Figure 7. That is, imposing the
optimal congestion toll causes urban sprawl.
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We investigate the effects of congestion tolling on social welfare W defined as the sum of

commuters’ total utility and toll revenues P:

W= Z f 0i(x)Ni(x)dx + P, (70)
iel
I IR o B PN R
P—1+n2#;{ﬁ1Ni[2;Nk Ni]}. (71)

Figure 8 shows the relations between W and p with and without congestion tolling. This figure
illustrates that expanding the bottleneck capacity increases social welfare. Figure 9 indicates
that congestion tolling reduces utility of commuters 4 (i.e., commuters with the lowest value of
time). That is, poor commuters lose from congestion tolling. These results are consistent with
Proposition 11.

6 Conclusions

This study has developed a model in which heterogeneous commuters choose their departure
time from home and residential locations in a monocentric city with a single bottleneck. By using
properties of the complementarity problem, we systematically examined spatial distribution of
commuters and effects of time-varying congestion tolling. Results indicate that commuters sort
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themselves temporally and spatially on the basis of their value of time and that imposing an opti-
mal congestion toll shifts population to the suburb and causes urban sprawl. This finding differs
fundamentally from results obtained by Arnott (1998), who considers homogeneous commuters.
It suggests that strategic interactions among heterogeneous commuters can change the effects of
congestion tolling significantly. Furthermore, we clarified that imposing a congestion toll without
redistributing toll revenues leads to an undesirable distribution of benefits among commuters.
That is, rich commuters gain, while poor commuters lose from tolling. These results suggest
that considering commuter heterogeneity is important when we examine the effectiveness of
transportation policies intended to alleviate peak-period congestion.

This study considered a city with a single bottleneck. We need to examine the robustness of
our result by analyzing a model with multiple bottlenecks.” In addition, it would be valuable
for future research to investigate effects of policies other than congestion tolling, such as step
tolls (Arnott et al., 1990a; Laih, 1994, 2004; Lindsey et al., 2012) and transportation demand
management measures for alleviating traffic congestion (Mun and Yonekawa, 2006; Takayama,
2015).

A Proof of Lemma1

We can show that for any x*, Xt e supp (N”), there is no x° € (x7, x?) such that N*(x°) = 0, because
the indirect utilities of suburban and downtown commuters 7 are given by (12). Thus, we obtain
(21).

Differentiating the indirect utilities v:(x) and v’f (x) with respect to location x, we have

1 dN*(x) . § A
S - >
dvs(x) _ ;T NG dx if xN*(x) >r?, 722)
dx -yt if kN*(x) <74,
1 dN*(x) .
d T — « A
dz;i (x) _ ;T NG)  dx if kN*(x) > r®, 72b)
dx —aiT if kN*(x) <A

Therefore, the long-run equilibrium number N*(x) of commuters residing at x satisfies
kN*(x) > 1* Vxe supp (N7). (73)

Furthermore, it follows from the long-run equilibrium conditions (13a) and (13c) that N*(x) also
satisfies

kN*(x) > Vx € supp (N)\{XPB},

74
kN*(XB) = rA. 74

This completes the proof.

9Kuwahara (1990) and Akamatsu et al. (2015) have shown the properties of a bottleneck model with multiple bottle-
necks.
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