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ABSTRACT 

We study the causal effect of an active learning teaching method on grades. We designed a 

randomized experiment with students at an undergraduate business and economics program in 

Chile. Two groups were taught by the same professor: the control group used traditional lectures, 

while the treatment group used an active learning method. Treated students failed the class less 

but the effect was not significant. They also had significantly better grades at the end and during 

the semester. The treatment effect was larger for males and students with high application scores. 

The effect does not appear instantaneously, and appears to fade away at the end of the semester. 

Results suggest students allocate effort differently across both groups, and this interacts with the 

treatment effect. 

 

Keywords: Classroom experiments, course performance, peer instruction, innovation in teaching. 

(JEL: A20, C21, C90) 

 

Throughout the world, traditional lecture-style methods of teaching are being replaced with a 

variety of methods that emphasize student engagement in their learning. Despite the enthusiasm 

in these innovations, the new strategies are costly to implement in terms of resources and 

instructor time. Drastic changes such as these should be accompanied by appraisals of their 

effect on student performance and, ultimately, learning. This paper is an attempt to contribute to 

this literature. 

Active learning methods, a particular brand of innovation, have aroused much enthusiasm. An 

active learning method is any instructional method that engages students in their own learning 
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process through activities and/or discussions in class, as opposed to passively listening to an 

expert. (Prince, 2004; Freeman et al., 2014). This broad definition includes many class strategies 

and activities used in economics and other fields, as flipped classrooms, classroom experiments 

and games, and peer instruction, among others.   

Various authors from different fields have attempted to measure active learning’s impact. 

Freeman et al. (2014) summarize these findings in a meta-analysis which examines 225 studies 

comparing student performance in traditional and active learning courses. They found that 

student performance in active learning groups was on average 6% higher than in traditional 

groups, and that students in traditional groups were 1.5 times more likely to fail a given course 

than students in active learning groups.  

However, the studies used in this meta-analysis may not be sufficient to draw conclusions on the 

causal effect of active learning methods. The studies focused on many different forms of active 

learning1 and included numerous non-experimental or quasi-experimental studies. They 

frequently used different instructors for treatment and control groups, and/or used students who 

had selected into their sections, and/or used students from different semesters, some of whom 

may have failed courses differently beforehand. These issues may prevent from identifying the 

causal effect of active learning methods on student performance.  

Of the literature reviewed in the meta-analysis, we found sixteen studies where the instructor in 

both the control and treatment groups was the same. These studies were from a variety of fields, 

but none from economics: biology (Paschal 2002, Knight and Wood 2005, Armstrong et al. 

2007, Walker et al. 2008, Carmichael 2009); chemistry (Williamson and Rowe 2002, Bilgin 

2006, Bilgin et al. 2009); mathematics (Lovelace and McKnight 1980, Keeler and Steinhorst 

1994, Giraud 1997); physics (Moelter et al. 2005); computer science (Hurley 2002); psychology 
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(Lawson et al. 2006); and engineering (Van Dijk et al. 2001, Pandy et al. 2004). Six of them 

studied large or medium groups, while ten of them looked at small groups. Although the average 

size of the treatment effect in the subgroup was 0.45 SDs (similar to the meta-analysis as a 

whole), only four of the sixteen studies found a positive and significant treatment effect.  

Fourteen of these studies were classified as quasi-experiments, with the issues described above - 

generally, using students from different semesters for the treatment and control groups. Only two 

of the studies are random experiments. Lovelace and McKnight (1980) is the paper most similar 

to ours: they evaluate a peer tutoring method to foster mathematical reading skills by 

implementing an experiment using two randomly-assigned classes with the same instructor. 

Pandy et al. (2004) designed an experiment to evaluate a single multimedia-based learning 

module in a biomechanics course. Both studies find positive but non-significant treatment 

effects.  

The economics literature on the effectiveness of different teaching methodologies has mostly 

focused on evaluating online learning (e.g., Brown and Liedholm 2002, Figlio et al. 2013, Green 

2014, Olitsky and Cosgrove 2014, Joyce et al. 2014) and on specific classroom games (e.g., 

Brouhle 2011, Cartera and Emersona 2012, Valcarcel 2013, among many others). Our study is 

more (loosely) related to the first literature: their findings so far suggest that live and/or hybrid 

classes are more effective than online courses, but they leave open the question of how to make 

live classes more effective. Other studies (Ghosh and Renna 2009, Bergstrom 2009, Salemi 

2009, Roach 2014, Emerson et al. 2015) report increased student satisfaction in economics 

courses using interactive methods similar to the one used in this paper, but they use non-

experimental techniques. Our conclusion is that there is a need for experimental studies on the 

effects of active learning on student performance.  
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EXPERIMENTAL DESIGN 

This paper aims to fill this gap by reporting on an experiment in which students were randomly 

assigned to sections taught by the same professor using two distinct methodologies. We 

implemented this experiment in two of six sections of Applied Algebra - a course specifically 

designed for and taught exclusively to first-semester students in the Business and Economics 

program at the Universidad de los Andes (Chile) - during the (Southern hemisphere) fall of 

2014.2 A subsample of students from the regular admissions process were randomly assigned 

into each of the two sections, stratified by their gender and application score - low or high 

relative to the mean application score of the incoming class.3  

Several features of this course make it ideal for a randomized experiment. As a first semester 

math course, students have not yet self-selected by advancing the curriculum at different paces, 

they are given their schedule and assigned into sections by the School administration, and we can 

control for their prior math knowledge via the nationwide application exam. 

The same instructor (one of the authors) taught the two sections using two different methods.4 

The control group had a “traditional” lecture-style class. In it, the instructor used a variety of 

visual aids - including Power Point presentations. He solved exercises on the board, and received 

unprompted questions from the students. Students were encouraged to ask questions during 

lecture, and to solve problems outside of it. Students were not required to read before lecture, 

and according to a survey at the end of the semester very few of them did. 

The treatment group used a mix of “active learning” strategies. Students were required to read 

and complete a short online quiz before lecture.5 The instructor would start lecture with a brief 
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summary of the main topics students had read about. Then, students would receive exercises to 

solve first individually and then with a classmate. Students would answer using some mobile 

device, which provided the instructor with real-time information on student performance.6 

Both groups covered the same content. The final grade consisted of three quizzes, two midterm 

exams, and a final exam. All evaluations except for one – quiz 2 – were the same for both 

groups; quiz 2 was delivered in two different days so it was similar but not the same. 

Additionally, the midterms and final exams were the same for the six Algebra sections, including 

those taught by other instructors. 

All evaluations except for the final exam were graded by a team of teaching assistants. A single 

teaching assistant was responsible for grading each question across both groups. The instructor 

graded the final exam for both groups.  

We use two statistical tests to check that the random assignment indeed worked. First, we use a t-

test on the equality of mean characteristics (gender and application score) between both groups;   

it is not possible to reject the null of equal means at the 10% significance level. Second, we use a 

logit model to test if any of the observed characteristics correlate with assignment to the 

treatment group; the model is not globally significant (p-value = 0.1439), and none of the 

variables is significant at the 10% level. 

 

REGRESSION RESULTS 

We focus on the percentage of students that failed the course and on their final grade; however, 

looking at the results of different evaluations during the semester allows us to observe when 

differences between the groups begin to appear or disappear.  
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[Insert Table 1 about here.] 

Table 1 provides summary statistics for the outcome variables for both groups. In previous 

semesters, failures rates for this course have hovered between 20 and 40 percent, and grades 

range from 1 to 7, with 4 as the passing grade. Our sample size is 78 students, with 39 students in 

each group; administrative regulations prevented us from increasing the sample size. Attrition is 

very low: only 3 students are missing the final grade, 2 of whom quit the course and 1 who 

missed the final exam. 

Students in the treatment group do better on average than students in the control group in all 

available outcomes. Table 1 shows that the proportion of students who failed the class is 12.8 

percentage points lower in the treatment group, but this difference is not significant. The average 

final grade is 0.29 points larger in the treatment group, and significantly different. The 

differences between the treatment and the control group in the average grades of individual 

evaluations range from 0.1 points in midterm 1 and the final exam to 0.6 points in midterm 2 and 

0.76 points in quiz 3; only the differences for quiz 3 and midterm 2 are significant. 

These differences show a distinct pattern when looked at chronologically. The difference 

between the two groups is small and insignificant at the beginning of the semester, then it 

increases and becomes statistically significant toward the middle of the semester, and finally it 

decreases again and practically disappears for the final exam. 

[Insert Table 2 about here.] 

Table 2 presents summary statistics by individual characteristics. In general, males fail more than 

females, although they have similar average grades. Students with low application scores did 

worse than students with high application scores in every outcome: they fail more and have 
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lower average grades. Students in the treatment group do better on average than students in the 

control group in all available outcomes for all types of students, but the difference is larger for 

males and for students with high application scores.  

The difference in failure rates between both groups is 22 percentage points for males and 20 

percentage points for students with high application scores. The difference in the final grade 

between both groups is 0.35 points for males and 0.31 points for students with high application 

scores. All differences are significant at the 5% level. This larger difference is also observed in 

every evaluation during the semester, not reported in Table 2.  

We measure the effect of the treatment on the probability of failing the course and on grades by 

using a logit model and a linear regression model respectively, controlling for individual 

characteristics in both cases (gender and application scores). Table 3 presents these results.  

[Insert Table 3 about here.] 

The treatment decreases the probability of failing by 13.4 percentage points, but it is not 

significant. It also increases the final grade significantly by 0.24 points. This effect corresponds 

to a 0.45 standard deviation increase in the final grade, which is quite large. The treatment has a 

positive effect in all evaluations. The effect ranges from 0.07 points in the final exam to 0.64 

points in quiz 3. It is significant only for quiz 3 and midterm 2, both given in the second half of 

the semester. 

We add interactions of the treatment status with each individual characteristic, to test if the 

treatment effect varies by student characteristics. Table 4 shows the effect of the treatment on the 

probability of failing the course. The treatment effect is negative, and it is larger for males (-25 

percentage points) and for students with high application scores (-20.6 percentage points for a 
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student with 681 points, the average, and -26.3 percentage points for a student with 700 points). 

The effect is significant at the 5% level for students with 700 points, and at the 10% level for 

males and students with 681 points.  

[Insert Table 4 about here.] 

Table 5 shows the effect of the treatment on the final grade. The treatment effect is positive, and 

it is larger for males (0.31 points or 58.7% SD) and for students with high application scores 

(0.23 points or 43.7% SD for a student with 681 points, and 0.27 points or 51.3% SD for a 

student with 700 points). All these results are significant at the 5% level. The effect of the 

treatment for females and students with low application scores is not different from zero. 

[Insert Table 5 about here.] 

 

ROBUSTNESS CHECKS 

The results highlighted above are robust to variations in the models. Failing to include individual 

controls, or using probit or linear probability models for the failure rate do not significantly 

affect the results. We also use other checks, as detailed below. All these robustness checks 

increase the estimated treatment effect, which suggests that our baseline case is conservative. 

Our first robustness check recognizes the panel structure of the data: instead of taking the data as 

six independent evaluations, we consider that each student’s performance is observed six times, 

from quiz 1 to the final exam. We employ the following panel data model: 

��� = � + ��� + 	
� + �� + �� + ��� 
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where the grade in evaluation j for student i, ���, depends on the student’s characteristics 
�, the 

treatment status ��, an individual unobserved effect ��, an evaluation unobserved effect  ��, and 

an iid zero-mean error ���. We run 4 different panel data regressions: (1) fixed effects only for 

the evaluations, i.e., �� = 0 and �� a fixed-effect7; (2) random effects only for the individuals, i.e., 

�� follows a normal distribution and �� = 0; (3) random effects for the individuals and fixed 

effects for the evaluations; and (4) random effects for the individuals and fixed effects for the 

evaluations, with treatment effects that vary by evaluation �� . 8 

The conclusions from our analysis are essentially unchanged. Table 6 shows that the treatment 

effect is between 0.28-0.29 points when only the final grade is considered; it is significant at the 

1% level and larger than before (see Table 3). When the treatment effect varies by evaluation we 

observe the same pattern than in the cross-sectional analysis: the treatment effect is always 

positive, but it is larger and significant in the middle of the semester. 

[Insert Table 6 about here.] 

For our second robustness check, we use as dependent variable the weighted grade before the 

exam to avoid any possible biases caused by the instructor having graded the exam. Because the 

effect of the treatment disappears toward the end of the semester, it is not surprising to find the 

results are in the same direction as those found when using the original final grade, but larger. 

These are shown in Table 7. The treatment effect increases to 0.34 points or 64% SD. The 

treatment effect is strongest for males and for students with high application scores, just as 

before.  

[Insert Table 7 about here.] 
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For our third robustness check, we look more closely at grades in midterm 2. Students on 

average did far worse on midterm 2 than on midterm 1. We compare the grades from both 

midterms with the results from the four other sections not included in the experiment to see if the 

control group’s performance in the second midterm was an outlier.9  

The results are shown in Table 8. All groups did better on average in midterm 1 than in midterm 

2, but while the control group and the sections not included in the experiment dropped their 

performance substantially, the fall in the treatment group’s average grade was smaller. This 

suggests the treatment helped them perform better than they otherwise would have.  

[Insert Table 8 about here.] 

 

DISCUSSION AND CONCLUSIONS 

Despite the small sample size, we find significant treatment effects on the final grade. The active 

learning method had larger effects on males and on students with high application scores, and the 

effect was larger during the middle of the semester.  

Our estimate of the treatment effect of 0.45 standard deviations is similar to the 0.47 standard 

deviations reported in the Freeman et al. (2014) meta-analysis. Our estimates are conservative 

considering the larger results of our robustness checks.  

Our estimates can also be viewed as conservative because of the effect the treatment may have 

had on student effort. Students in an active learning classroom were required to study constantly 

throughout the semester, and they may have felt they did not need as much study prior to the 

midterms or the exam. Likewise, students in the control group may have perceived they were 
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underperforming relative to their peers in the treatment group, and this could have prompted 

them to double their effort prior to the midterms and the exam. We do not observe effort, but we 

present three measures related to effort levels across both groups. 

First, we look at attendance. Students in the treatment group attended class slightly less (91.8% 

attendance rate in the treatment group and 92.6% in the control group), but the difference was 

not significant. No clear pattern emerges when looking at weekly attendance: some weeks the 

treatment group has larger attendance, and some weeks the control group does.  

Second, we have an anonymous survey the students completed at the end of the semester. 

Among other things, we asked them about the number of hours they studied for the course. Self-

reported hours of study are surely measured with error, although a priori we cannot expect the 

measurement error to differ between groups. Treated students report studying less frequently in 

groups before an evaluation. Regarding the overall hours they studied for each evaluation on the 

days prior, both groups report studying the same for quizzes - 3.3 hours on average - but treated 

students report studying fewer hours for the midterms (7.9 hours vs. 8.8 hours on average for the 

control group). This difference is not statistically significant. 

Third, we look more closely at the final exam. We found the treatment effect completely 

disappears in the final exam. One hypothesis is that student effort responds to the possibility of 

failing the course. We look at each student’s weighted grade prior the exam,10 and see how it 

correlates to the grade in the exam.  

[Insert Figure 1 about here.] 
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In Figure 1 we plot the grade in the exam and the weighted grade before the exam. Students 

above the 45 degree line obtained a higher grade in the exam than their weighted grade up to that 

point. We draw a vertical line at 4, which is the passing grade for the class.  

Most students in the treatment group tend to be concentrated in the area to the right of the 

vertical line and below the 45 degree line; this means that treated students have “passing” 

weighted grades but they perform worse in the exam. Students with weighted grade below the 

passing grade are mostly from the control group: most of them performed better in the exam than 

their weighted grade suggests. This helps explain the lack of treatment effect in the final exam, 

and is consistent with the hypothesis that students in the control group put in higher levels of 

effort in the exam in order to pass the course. 

Taken together, these three measures suggest that the treatment affected effort not through 

attendance but because students seem to be shifting time away from Algebra into other courses 

or leisure. We hope future research on the relationship between active learning and effort outside 

of class sheds more light on this. 

Finally, we check if the treatment had an effect on subsequent courses. Of the 78 students in the 

experiment, 60 passed Algebra and enrolled in Calculus in the spring semester of 2014: 30 were 

from the control group and 30 from the treatment group.11 We regress the final grade in Calculus 

on the treatment dummy, plus individual covariates and a Calculus-instructor fixed effect. The 

effect of the treatment on the final grade in Calculus is 0.26 points, but it is not significant. This 

suggests gains from active learning in one course may help students in the subsequent course of 

the sequence, but the evidence is weak. 
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Taken as a whole, this experiment confirms findings from other experiments. The fact that this is 

one of the few experiments done in an economics course outside of the US suggests the positive 

impact of these methods is not constrained by discipline or culture. Future research on other 

aspects of learning under these methods – particularly effort and the aspects of peer instruction 

that seem to yield benefits – should provide useful insights.   
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NOTES

                                                           
1 “The active learning interventions varied widely in intensity and implementation, and included 
approaches as diverse as occasional group problem-solving, worksheets or tutorials completed 
during class, use of personal response systems with or without peer instruction, and studio or 
workshop course designs.” (Freeman et al. 2014, 1) 
2 The experiment’s design was approved by the Universidad de los Andes Ethics Committee. 
Students were not told they were part of an experiment, but they were aware that their instructor 
was teaching the other section using a different methodology.  
3The PSU (“Prueba de Selección Universitaria”) is the Chilean college entry exam. It is 
mandatory for all universities. Together with high-school grades, they form the application score 
used to rank applying students to determine entry. The incoming students had application scores 
of 653 to 761 points, and the mean application score was 681. 
4 In an end-of-semester survey, students in the control group pointed out that the instructor was 
very motivated and interested in answering questions and explaining the material as thoroughly 
as possible. 
5Online quizzes were not part of the students’ final grades. They were a prerequisite to taking the 
final exam, one that every student in the treatment group met. 
6The treatment group used the Learning Catalytics platform (www.learningcatalytics.com) for 
delivering content, questions, and answers. 
7We obtain the same results using random effects for the evaluations. 
8In practice we include evaluation dummies for regressions (1), (3) and (4), and interact the 
evaluation dummies with the treatment status for regression (4). It is not possible to use fixed 
effects at the individual level because they absorb the treatment status and individual 
characteristics.  
9Some of these instructors implemented active learning methodologies to varying degrees. 
Students in these sections were not randomly selected. For these reasons, this comparison cannot 
be considered conclusive, but it can offer insights into the difficulty of the second midterm 
relative to the first. 
10 This corresponds to a weighted average of the evaluations taken up to midterm 2, weighted 
according to the weights for computing the final grade. 
11 These numbers include the students that passed Algebra after the final exam. A few students 
who were close to passing were allowed to pass after individually considering their cases. 
However, the final grade considered for this study was the grade they obtained prior to these 
deliberations. 
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TABLES AND FIGURES 

 
TABLE 1: Summary Statistics for Outcomes 

All Control Group Treatment Group Difference 

Variable   Obs Mean Obs Mean (1) Obs Mean (2) (2)-(1) p-value Significant 

quit § 78 0.026 39 0.026 39 0.026 0.000 0.500 no 

failed § 78 0.269 39 0.333 39 0.205 -0.128 0.103 no 

grade   75 4.309 38 4.155 37 4.446 0.291 0.008** yes 

Individual Evaluations (in chronological order) 

quiz1   76 4.725 37 4.605 39 4.838 0.233 0.146 no 

quiz2   77 4.564 38 4.463 39 4.662 0.198 0.185 no 

midterm1   77 4.909 38 4.861 39 4.956 0.096 0.222 no 

quiz3   75 3.588 36 3.194 39 3.951 0.757 0.003** yes 

midterm2   77 3.818 38 3.508 39 4.121 0.613 0.001** yes 

exam   75 4.256 38 4.192 37 4.319 0.127 0.272 no 
 

§ Binary variables - the variable takes value 1 if condition is met, 0 if not 

The p-value corresponds to a t-test of equality of means between the two groups, with alternative 

hypothesis that the mean of the treatment group is larger for the grades, and smaller for the failure rate. 

*p<.05; **p<.01 
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TABLE 2: Averages for Outcomes According to Individual Characteristics 

Variable All 
Control 

Group (1) 
Treatment 
Group (2) 

Difference 

(2)-(1) p-value Significant 

Failed 

Male 0.308 0.421 0.200 -0.221 0.071 no 

Female 0.231 0.250 0.211 -0.039 0.389 no 

Low Score 0.395 0.421 0.368 -0.053 0.374 no 

High Score 0.150 0.250 0.050 -0.200 0.040* yes 

Grade 

Male 4.300 4.117 4.465 0.348 0.042* yes 

Female 4.297 4.190 4.424 0.234 0.045* yes 

Low Score 4.068 3.942 4.200 0.258 0.050 no 

High Score 4.524 4.368 4.679 0.311 0.021* yes 
 
The p-value corresponds to a t-test of equality of means between the two groups,  

with alternative hypothesis that the mean of the treatment group is larger for the  
grades, and smaller for the failure rate. 
*p<.05; **p<.01 
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TABLE 3: Treatment Effects Over Outcomes 

Treatment Effect 

Std. Err. P-value Significant Variable In units In Std. Dev. 

failed § -0.134   0.100 0.180 no 

Grade 0.237 0.451 0.107 0.029* yes 

quiz1 0.348 0.363 0.213 0.106 no 

quiz2 0.150 0.156 0.224 0.504 no 

quiz3 0.642 0.533 0.245 0.011* yes 

midterm1 0.059 0.108 0.122 0.629 no 

midterm2 0.487 0.576 0.165 0.004** yes 

Exam 0.070 0.078 0.207 0.738 no 
 
§ Binary variable: logit model. Marginal effect is presented 
*p<.05; **p<.01 
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TABLE 4: Treatment Effect Over the Probability of 
Failing, by Individual Characteristics 

Characteristic Effect Std. Err. P-value Significant 

Gender 

Males -0.249 0.145 0.087 no 

Females -0.022 0.133 0.868 no 

Application score (PSU - mean=681) 

PSU=660 0.088 0.192 0.645 no 

PSU=681 -0.206 0.109 0.060 no 

PSU=700 -0.263 0.103 0.010* yes 
 
*p<.05; **p<.01 
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TABLE 5: Treatment Effect Over the Final Grade, by Individual 
Characteristics 

Characteristic 

Effect 

Std. Err. P-value Significant In units In Std. Dev. 

Gender 

Males 0.309 0.587 0.152 0.047* yes 

Females 0.168 0.320 0.150 0.265 no 

Application score (PSU - mean=681) 

PSU=660 0.186 0.353 0.166 0.267 no 

PSU=681 0.230 0.437 0.109 0.038* yes 

PSU=700 0.270 0.513 0.134 0.047* yes 
 
*p<.05; **p<.01     
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TABLE 6: Treatment Effect from Panel Data Models 

Specification 
Treatment 

Effect p-value Significant 

Estimation 1 0.292 0.000*** yes 

Estimation 2 0.287 0.004** yes 

Estimation 3 0.289 0.003** yes 

Estimation 4 eval 1: quiz 1 0.181 0.414 no 

  eval 2: quiz 2 0.154 0.476 no 

  eval 3: midterm 1 0.052 0.680 no 

  eval 4: quiz 3 0.705 0.004** yes 

  eval 5: midterm 2 0.568 0.000*** yes 

  eval 6: exam 0.080 0.688 no 
 
*p<.05; **p<.01; ***p<.001    
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TABLE 7: Treatment Effect Over the Final Grade Without the 
Exam, by Individual Characteristics 

Characteristic 

Effect Std. 
Err. P-value Significant In units In Std. Dev. 

All 0.337 0.640 0.098 0.001** yes 

Gender 

Males 0.426 0.811 0.140 0.003** yes 

Females 0.252 0.479 0.136 0.069 no 

Application score (PSU - mean=681) 

PSU=660 0.252 0.480 0.148 0.094 no 

PSU=681 0.327 0.622 0.100 0.002** yes 

PSU=700 0.394 0.749 0.124 0.002** yes 
 
*p<.05; **p<.01     
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TABLE 8: Average midterm grades for the different sections 

Sections Midterm 1 Midterm 2 % change 

Control 4.861 3.508 -27.8 

Treatment 4.956 4.121 -16.8 

Others not in the experiment 4.719 3.587 -24.0 
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