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Abstract

In this paper, we propose a new class of tests for overidentifying restrictions

in moment condition models. The tests in this new class are quite easy to com-

pute. They avoid the complicated saddle point problem in generalized empirical

likelihood (GEL) estimation, only a
√
n consistent estimator, where n is the

sample size, is needed. In addition to discussing their first-order properties, we

establish that under some regularity conditions these tests share the same higher

order properties as GEL overidentifying tests, given proper consistent estimators.

Monte Carlo simulation study shows that the new class of tests of overidentifying

restrictions has better finite sample performance than the two-step GMM overi-

dentification test, and compares well to several potential alternatives in terms of

overall performance.
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1 Introduction

The generalized method of moments (GMM), initially developed by Hansen (1982),

provides a unifying econometric framework, nesting a lot of econometric methods such

as maximum likelihood (ML), ordinary least squares and two-stage least squares in in-

strumental regressions. It generalizes the traditional method of moments in the sense

that it allows the number of moments functions to be larger than the number of un-

known parameters, which is prevalent in econometrics. Its applications include, but

not limited to, rational expectation models, panel data models, continuous models and

semiparametric models.

The importance and usefulness of GMM mandates accurate estimation and infer-

ence procedures. Hansen (1982) proposes a two-step GMM procedure. The basic idea

is to minimize the criterion function of a quadratic form of sample average of the mo-

ment functions with an optimal weighting matrix. Since the optimal weighting matrix

depends on the unknown parameters, Hansen (1982) suggests using initial, possibly

inefficient, estimates to estimate this optimal weighting matrix. He also suggests a test

for overidentifying restrictions, the famous J or Sargan test, based on the value of the

quadratic criterion function evaluated at the two-step GMM estimator, and shows that

the J test follows, under standard regularity conditions, a chi-squared distribution with

degrees of freedom equal to the number of overidentifying restrictions asymptotically

under the null hypothesis that the moment restrictions hold.

Hansen (1982)’s two-step GMM procedure is relatively easy to implement, hence

quite popular in practice. However theoretical analysis and Monte Carlo evidences

have shown that two-step GMM estimators may be badly biased in finite samples and

the first-order asymptotic theory often provides poor approximation to the distribution

of test statistics based on it. For example, Newey and Smith (2004) establish the high

order properties of two-step GMM estimators theoretically, Hansen, Heaton, and Yaron

(1996) find that the J test is too large, leading to overrejection of the asset-pricing model

they study, when asymptotic critical values are used. See also other papers in Special
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Issue of the Journal of Business and Economic Statistics (July 1996). Because of this, a

lot of efforts have been done to improve the finite sample properties of two-step GMM

estimators and test statistics. One approach is to employ Bootstrapping methods,

see Hall and Horowitz (1996) and Brown and Newey (2002). Another approach is

to employ alternative criterion functions to obtain parameter estimators and derive

overidentification test statistics. These include estimators and test statistics based on

the empirical likelihood (EL) of Owen (1988, 1990), Qin and Lawless (1994), and Imbens

(1997), the continuous-updating GMM of Hansen et al. (1996), and the exponential

tilting (ET) of Kitamura and Stutzer (1997) and Imbens, Spady, and Johnson (1998).

Newey and Smith (2004) show that these estimators share a common structure, being

members of a class of generalized empirical likelihood (GEL) estimators. They also

show that GEL estimators may be less prone to bias than two-step GMM estimator.

Despite the nice theoretical properties of GEL, it is unclear whether the higher order

advantages of GEL over GMM estimators translate into improved finite sample perfor-

mance and it has been rarely applied in empirical applications. This may be attributed

to the computational difficulty arising from the saddle point characterization of GEL.

This saddle point problem can be solved through an inner-loop and out-loop optimiza-

tion algorithm, as discussed in Kitamura (2007). While the inner-loop optimization

with respect to the auxiliary parameters is usually a well defined convex optimization

problem, the outer-loop optimization is generally complicated because of its highly

nonlinear nature. Several papers have focused on how to overcome the computational

burden to obtain GMM estimators as efficient as GEL estimators, see, for example,

Antoine, Bonnal, and Renault (2007), and Fan, Gentry and Li (2011).

In this paper, we focus on the inference of GEL. As its name implies, GEL bears a

lot of similarities with the classical maximum likelihood methods, allowing to construct

the likelihood ratio type tests, Lagrange multiplier (LM) type tests and score type tests

for overidentifying restrictions, see Imbens et al. (1998), Imbens (2002), and Smith

(1997, 2011). Imbens et al. (1998) find that particular GEL tests for overidentifying

restrictions, especially ET, possess actual sizes closer to nominal size than the J test,
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although still oversized in finite samples. However, to construct these tests, we have to

firstly compute the GEL estimators, which is still an expensive or infeasible task in real

applications. In terms of alleviating the computational burden of parameter estimation,

we notice that C (α) tests for composite hypotheses are proposed by Neyman (1959) in

ML. Smith (1987) extends this idea for implicit function restrictions in ML. While C (α)

tests rely on the score of log-likelihood, Wooldridge (1990) develops, in the scenario of

conditional moment tests, new statistics based on the score of the conditional moment

restrictions. Wang (2015) proposes new conditional moment tests based on projections,

generalizing Wooldridge’s idea into GMM context. In the event of GEL, C (α) type tests

for overidentifying restrictions should be very useful. Aiming at this, we propose such

tests in this direction. Like traditional C (α) type tests, the tests in this new class are

quite easy to compute. They avoid the complicated saddle point problem of GEL, only a

√
n consistent estimator, where n is the sample size, is needed. In addition to discussing

their first-order properties, we establish that under some regularity conditions these

tests share the same higher order properties as GEL overidentification tests, given some

proper consistent estimators. Monte Carlo simulation study shows that the new class of

tests of overidentifying restrictions has better finite sample performance than the two-

step GMM overidentification test, and compares well to several potential alternatives

in terms of overall performance.

The organization of the paper is as follows. In section 2, we discuss the preliminaries

and give a review on tests for overidentifying restrictions in GMM and GEL framework.

We introduce the new class of tests for overidentifying restrictions, and discuss their

asymptotic properties in section 3. Monte Carlo simulations are conducted in section

4. Section 5 concludes.

2 Preliminaries

The model we consider is the one with a finite number of moment restrictions. Following

the setup of Smith and Newey (2004), let zi (i = 1, ..., n) be i.i.d. observations on a
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data vector z. Also, let β be a p× 1 parameter vector and g(z, β) be an m× 1 vector of

functions of the data observation z and the parameter β. We consider the overidentified

case, e.g., m > p. The model has the true parameter β0 ∈ B ∈ Rp satisfying the moment

conditions

E [g(z, β0)] = 0 a.s.

The null hypothesis we are interested in is

H0 : E [g(z, β0)] = 0 a.s., for β0 ∈ B. (1)

The alternative hypothesis is

H0 : Pr (E [g(z, β)] = 0) < 1 a.s., for all β ∈ B.

Let gi (β) = g(zi, β), ĝ (β) = n−1
n∑

i=1

gi (β), and Ω̂ (β) = n−1
n∑

i=1

gi (β) gi (β)
′; Let β̃ be

some preliminary estimator, for example, β̃ = argminβ∈B ĝ (β)′ Ŵ−1ĝ (β), where B

denotes the parameter space, and Ŵ is a proper weighting matrix, normally identity

matrix. The two-step GMM estimator β̂GMM is obtained by minimizing the following

criterion function

min
β∈B

ĝ (β)′ Ω̂
(
β̃
)−1

ĝ (β) .

Let Gi (β) = ∂gi (β) /∂β
′, Ĝ (β) = 1

n

n∑
i=1

∂gi (β) /∂β
′. The first-order condition is

Ĝ
(
β̂GMM

)′
Ω̂
(
β̃
)−1

ĝ
(
β̂GMM

)
= 0.

The corresponding J test is

ŜGMM = Ŝ(β̂GMM) = nĝ
(
β̂GMM

)′
Ω̂
(
β̃
)−1

ĝ
(
β̂GMM

)
.

Hansen (1982) shows that J test follows, under standard regularity conditions, a chi-

squared distribution with degrees of freedom equal to the number of overidentifying
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restrictions asymptotically under the null. However there are increasing simulation

evidences indicating that the two-step GMM estimator may be severely biased and the

J test tends to be oversized in small samples. Because of this, a number of alternative

estimation and inference approaches have been proposed in various forms. Hansen et

al. (1996) propose the continuous-updating estimator (CUE), which is defined as the

solution to a minimization problem as follows

β̂CUE = argmin
β∈B

ĝ (β)′ Ω̂ (β)− ĝ (β) ,

where A− denotes any generalized inverse of a matrix A, satisfying AA−A = A. The

difference between continuous-updating criterion function and two-step criterion func-

tion is that the weighting function is not fixed in the case of CUE. This makes the

first order conditions for this minimization problem more complicated. The first-order

condition right now is

Ĉ
(
β̂CUE

)′
Ω̂
(
β̂CUE

)−1

ĝ
(
β̂CUE

)
= 0,

where

Ĉ (β) = Ĝ (β)− 1

n

n∑

i=1

[
ĝ (β)′ Ω̂ (β)−1 gi (β)

]
Gi (β) . (2)

Given β̂CUE, the test for overidentifying restrictions is

ŜCUE = Ŝ(β̂CUE) = nĝ
(
β̂CUE

)′
Ω̂
(
β̂CUE

)−1

ĝ
(
β̂CUE

)
.

A major advantage of the CUE is that it has invariance properties. The two-step GMM

estimator requires that the researcher make an initial choice about the weighting matrix

used in the first step. This choice affects the numerical values of the final estimates,

even if this difference is of sufficiently low order that it does not affect the large-sample

asymptotic distribution. Hansen et al. (1996) find that ŜCUE is more reliable than

ŜGMM in terms of the size properties, even though β̂CUE tends to have heavy tails.
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Other alternative estimators, especially ET and EL, have appealing information-

theoretic interpretations in addition to being invariant to linear transformations of the

moment functions. EL is a nonparametric method of inference based on a data-driven

likelihood ratio function. Intuitively, given i.i.d data zi (i = 1, ..., n) only, the natural

estimate the distribution of zi is the empirical distribution, which puts weight 1/n

on each of the n sample points. However in a GMM setting because of the moment

restrictions E [g(z, β0)] = 0, the empirical distribution function with weights 1/n does

not satisfy this restriction. The idea behind EL is to modify the weights to ensure

that the estimated distribution does satisfy the restrictions. The empirical likelihood

estimator is obtained by minimizing the following problem,

β̂EL = arg min
β∈B,π1...πn

−
n∑

i=1

ln (πi) , subject to
n∑

i=1

πigi (β) = 0,
n∑

i=1

πi = 1. (3)

Based on minimization of the Kullback-Leibler information criterion, Imbens et al.

(1998) propose the exponential tilting estimator such that

β̂ET = arg min
β∈B,π1...πn

−
n∑

i=1

πi ln (πi) , subject to
n∑

i=1

πigi (β) = 0,
n∑

i=1

πi = 1. (4)

From a perspective of computation, the optimization problems of (3) and (4) are

not attractive since they have a dimension n+ dim(β) which is larger than the sample

size n. It is more convenient to rewrite them into a saddle point problem. To describe

it, let ρ(v) be a function of a scalar v that is concave in its domain, an open interval V

containing zero. Let Λ̂n (β) = {λ : λ′gi (β) ∈ V, i = 1, · · · , n} ,the GEL estimator β̂GEL

is the solution to a saddle point problem:

β̂GEL = argmin
β∈B

sup
λ∈Λ̂n(β)

n∑

i=1

ρ (λ′gi (β)) .

The EL estimator is a special case of GEL with ρ (v) = ln (1− v), V = (−∞, 1). The

ET estimator is a special case of GEL with ρ (v) = − exp (v). Newey and Smith (2004)
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also show that CUE is a member of GEL with ρ (v) = − (v + 1)2 /2.

In contrast to the two-step GMM, computation of GEL is much more involved.

Denote ρj (v) = ∂jρ (v) /∂vj, ρj = ρj (0) (j = 0, 1, 2, · · · ) and normalize that ρ1 = ρ2 =

−1. For a given function ρ (v), an associated GEL estimator β̂GEL, let

π̂GEL,i = πi

(
β̂GEL, λ̂GEL

)
=

ρ1

(
λ̂′
GELgi

(
β̂GEL

))

∑n
i=1 ρ1

(
λ̂′
GELgi

(
β̂GEL

)) ,

where

λ̂GEL = λ
(
β̂GEL

)
= arg max

λ∈Λ̂n(β)

n∑

i=1

ρ
(
λ′gi

(
β̂GEL

))
/n. (5)

Define k (v) = [ρ1 (v) + 1] /v, v 6= 0, and k (0) = −1. Also, let v̂GEL,i = λ̂′
GELgi

(
β̂GEL

)
,

k̂GEL,i = k (v̂GEL,i) /
∑n

j=1 k (v̂GEL,j). Theorem 2.3 in Newey and Smith (2004) show

that the GEL’s first-order conditions imply:

[
n∑

i=1

π̂GEL,iGi

(
β̂GEL

)]′ [ n∑

i=1

k̂GEL,igi

(
β̂GEL

)
gi

(
β̂GEL

)′
]−1

ĝ
(
β̂GEL

)
= 0. (6)

From (6) we observe that, Instead of using the unweighted sample average to es-

timate the Jacobian of the moment conditions, GEL estimators employ an efficient

estimator of the Jacobian of the moment conditions by using the implied probabilities

π̂GEL,i. In addition, the EL estimator also makes use of an efficient estimator of the

optimal weighting matrix.

Only in CUE case, λ̂GEL and π̂GEL,i have closed forms. In general EL and ET can

be computed through a nested optimization algorithm, basing on (5) and (6). While

the inner-loop optimization (5) with respect to the auxiliary parameters is usually a

well defined convex optimization problem, the outer-loop optimization (6) is generally

complicated by its highly nonlinear nature.

Associated with the empirical likelihood estimators are three tests for overidentiying

restrictions that are similar to the classical trinity of the likelihood ratio, the score, and

Lagrange multiplier tests. The likelihood-ratio type test is based on the value of the
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empirical likelihood function

L̂RGEL = 2n

[
n∑

i=1

ρ
(
λ̂′
GELgi

(
β̂GEL

))
/n− ρ0

]
.

The Lagrange-multiplier type test is

L̂MGEL = nλ̂′
GEL

(
n∑

i=1

π̂GEL,igi

(
β̂GEL

)
gi

(
β̂GEL

)′
)
λ̂GEL,

and the score type test1 is

ŜGEL = nĝ
(
β̂GEL

)′
(

n∑

i=1

π̂GEL,igi

(
β̂GEL

)
gi

(
β̂GEL

)′
)−1

ĝ
(
β̂GEL

)
.

All tests above follow a chi-squared distribution with m− p degrees of freedom asymp-

totically under the null. Note that all tests require the calculation of GEL estimators

in the first place. However, even with the rapid increase in computing power, it is

still expensive or infeasible to compute them. Moreover, Monte Carlo simulation ev-

idences have shown that the GEL estimators may suffer from ”no moment” problem,

see, for example, Hansen et al. (1996), Guggenberger (2008). When the focus is on

tests for overidentifying restrictions, testing procedures circumventing the complicated

estimation step should be useful. In the following, we will propose such tests.

3 The New Class of Tests for Overidentifying Re-

strictions

In this section, we adopt the same assumptions as in Newey and Smith (2004).

Assumption 1. (a) β0 ∈ B is the unique solution to E[g(z, β)] = 0; (b) B is compact;

(c) g(z, β) is continuous at each β ∈ B with probability 1; (d) E
[
supβ∈B ||g(z, β)||α

]
<

1The score type test is labeled as average moment test in Imbens et al. (1998), and bears lots of
similarity with the J test.
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∞ for some α > 2; (e) Ω is nonsingular, where Ω = E
[
gi (β0) gi (β0)

′
]
; (f) ρ (v) is

twice continuously differentiable in a neighborhood of zero.

Assumption 2. (a) β0 ∈ int (B); (b) g(z, β) is continuously differentiable in a neigh-

borhood N of β0 and E
[
supβ∈N ||∂gi (β) /∂β||

]
< ∞; (c) rank (G) = p, where G =

E [∂gi (β0) /∂β].

Assumption 3. Let ∇k denote a vector of all distinct partial derivatives with respect

to β of order k. There is b(z) with E [b(z)6] < ∞ such that for 0 ≤ k ≤ 4 and all z,

∇kg (z, β) exists on a neighborhood N of β0,supβ∈N
∥∥∇kg (z, β)

∥∥ ≤ b(z), and for each

β ∈ N , ‖∇4g (z, β)−∇4g (z, β0)‖ ≤ b(z) ‖β − β0‖. ρ (v) is four times continuously

differentiable with Lipschitz fourth derivative in a neighborhood of zero.

Suppose that one just gets some
√
n-consistent estimator β̂, it may be obtained by

the initial inefficient GMM estimation. Primitively, we present a test for overidentifying

restrictions in GMM, which is denoted as T̂ SGMM

(
β̂
)
, as follows:

T̂ SGMM

(
β̂
)
= nĝ

(
β̂
)′
R̂GMM

(
β̂
)
ĝ
(
β̂
)
,

where R̂GMM (β) = Ω̂ (β)−1−Ω̂ (β)−1 Ĝ (β)
[
Ĝ (β)′ Ω̂ (β)−1 Ĝ (β)

]−1

Ĝ (β)′ Ω̂ (β)−1. This

test appears in Newey and McFadden (1994) Section 9.5. It is more convenient to rewrite

T̂ SGMM

(
β̂
)
into the following

T̂ SGMM

(
β̂
)
= nḡGMM

(
β̂
)′
Ω̂
(
β̂
)−1

ḡGMM

(
β̂
)′
,

where

ḡGMM

(
β̂
)
= ĝ

(
β̂
)
− Ĝ

(
β̂
)[

Ĝ
(
β̂
)′
Ω̂
(
β̂
)−1

Ĝ
(
β̂
)]−1

Ĝ
(
β̂
)′
Ω̂
(
β̂
)−1

ĝ
(
β̂
)
.

This form bears a lot of similarities with the linearized classical test statistic proposed

by Smith (1987) in ML. Note that the structure of ḡGMM

(
β̂
)
relies on the first-order

condition of the two-step GMM objective function. Newey and McFadden (1994) de-
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rive the asymptotic first-order properties of T̂ SGMM

(
β̂
)
informally. Here we prove it

robustly in the following theorem

Theorem 1. Given a
√
n-consistent estimator β̂, under Assumptions 1-2 and under

the null hypothesis, the test statistic

T̂ SGMM

(
β̂
)

d→ χ2
m−p.

Proof. See the Appendix.

Extending this approach to continuous-updating GMM, we propose a new test of

overidentifying restrictions as

T̂ SCUE

(
β̂
)

= nĝ
(
β̂
)′
R̂CUE

(
β̂
)
ĝ
(
β̂
)

= nḡCUE

(
β̂
)′
Ω̂
(
β̂
)−1

ḡCUE

(
β̂
)′
, (7)

where R̂CUE (β) = Ω̂ (β)−1 − Ω̂ (β)−1 Ĉ (β)
[
Ĉ (β)′ Ω̂ (β)−1 Ĉ (β)

]−1

Ĉ (β)′ Ω̂ (β)−1, in

which Ĉ (β) is defined as (2), and

ḡCUE

(
β̂
)
= ĝ

(
β̂
)
− Ĉ (β)

[
Ĉ (β)′ Ω̂ (β)−1 Ĉ (β)

]−1

Ĉ (β)′ Ω̂ (β)−1 ĝ
(
β̂
)
.

The only difference between T̂ SGMM

(
β̂
)
and T̂ SCUE

(
β̂
)
is the estimator of G (β) em-

ployed. We shall prove a similar result as Theorem 1 and discuss the higher order prop-

erties of T̂ SCUE

(
β̂
)
in GEL framework later on. Interestingly, Kleibergen (2005) pro-

poses overidentification testing statistic T̂ SCUE (β0) in the case of weak identification.

In the light of our general results below, no surprise that T̂ SCUE (β0) statistic holds in

that case because the requirement of
√
n (β0 − β0) = op (1) holds trivially. T̂ SCUE

(
β̂
)

should be quite useful since it avoids the complicated calculation of continuous-updating

GMM estimators. Moreover, it has been reported that CUE suffers from the moment

problem and exhibits wide dispersion, e.g, see Hansen et al. (1996). For this reason
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Hansen argues ”My own interest in the continuous-updating GMM estimator is not

so much as a method for producing point estimates, but more as a method of making

approximate inference.” (Ghysels and Hall, 2002).

Right now, we are in a position to propose the new class of tests for overidentifying

restrictioins in GEL framework. Given β̂, we obtain λ
(
β̂
)
by maximizing the inner

loop, that is

λ̂ ≡ λ
(
β̂
)
= arg max

λ∈Λ̂n(β̂)

n∑

i=1

ρ
(
λ′gi

(
β̂
))

/n. (8)

Let πi (β, λ) =
ρ1(λ′gi(β))∑
n

i=1
ρ1(λ′gi(β))

, π̂i = πi

(
β̂, λ̂

)
. Also, let v̂i = λ̂′gi

(
β̂
)
, k̂i = k (v̂i) /

∑T
j=1 k (v̂j),

where k (v) = [ρ1 (v) + 1] /v, v 6= 0, and k (0) = −1.

Define

ḡGEL

(
β̂
)

= ĝ
(
β̂
)

−
n∑

i=1

π̂iGi

(
β̂
)




[
n∑

i=1

π̂iGi

(
β̂
)]′ [ n∑

i=1

k̂igi

(
β̂
)
gi

(
β̂
)′
]−1 n∑

i=1

π̂iGi

(
β̂
)




−1

×
[

n∑

i=1

π̂iGi

(
β̂
)]′ [ n∑

i=1

k̂igi

(
β̂
)
gi

(
β̂
)′
]−1

ĝ
(
β̂
)
.

This transformation is based on the first-order condition of GEL. In terms of λ
(
β̂
)
,

we propose the following transformation:

λ̄GEL

(
β̂
)

= λ
(
β̂
)

−
[
1

n

n∑

i=1

k (v̂i) gi

(
β̂
)
gi

(
β̂
)′
]−1 n∑

i=1

π̂iGi

(
β̂
)

×





[
n∑

i=1

π̂iGi

(
β̂
)]′ [ 1

n

n∑

i=1

k (v̂i) gi

(
β̂
)
gi

(
β̂
)′
]−1 n∑

i=1

π̂iGi

(
β̂
)




−1

×
[

n∑

i=1

π̂iGi

(
β̂
)]′

λ
(
β̂
)
.

The new tests for overidentifying restrictions, which are denoted as T̂ SGEL

(
β̂
)

and
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T̂LMGEL

(
β̂
)
respectively, are

T̂ SGEL

(
β̂
)
= nḡGEL

(
β̂
)′
[

n∑

i=1

π̂igi

(
β̂
)
gi

(
β̂
)′
]−1

ḡGEL

(
β̂
)
. (9)

T̂LMGEL

(
β̂
)
= nλ̄GEL

(
β̂
)′
[

n∑

i=1

π̂igi

(
β̂
)
gi

(
β̂
)′
]
λ̄GEL

(
β̂
)
. (10)

Comparing the tests for overidentifying restrictions based on GEL, the new class of tests

only need solve (8), a simple convex optimization problem, circumventing the compli-

cated outer-loop optimization problem. It is possible to follow alternative formulas

proposed by Antoine et al. (2007) and Fan et al. (2011) to avoid solving (8). We do

not exploit their approaches because of the unsophistication of the convex optimization

problem.

In the case of CUE, k̂i = 1/n, λ
(
β̂
)
= −Ω̂

(
β̂
)−1

ĝ
(
β̂
)
, so T̂ SCUE

(
β̂
)
= T̂LMCUE

(
β̂
)
.

When it comes to EL, k̂i = π̂i, we can rewrite (9) into

T̂ SEL

(
β̂
)

= nḡEL

(
β̂
)′
[

n∑

i=1

π̂igi

(
β̂
)
gi

(
β̂
)′
]−1

ḡEL

(
β̂
)

(11)

= nĝ
(
β̂
)′
R̂EL

(
β̂
)
ĝ
(
β̂
)
, (12)

where

R̂EL

(
β̂
)

=

[
n∑

i=1

π̂igi

(
β̂
)
gi

(
β̂
)′
]−1

−
[

n∑

i=1

π̂igi

(
β̂
)
gi

(
β̂
)′
]−1 n∑

i=1

π̂iGi

(
β̂
)

×





[
n∑

i=1

π̂iGi

(
β̂
)]′ [ n∑

i=1

π̂igi

(
β̂
)
gi

(
β̂
)′
]−1 n∑

i=1

π̂iGi

(
β̂
)




−1

×
n∑

i=1

π̂iGi

(
β̂
)[ n∑

i=1

π̂igi

(
β̂
)
gi

(
β̂
)′
]−1

.

Different from T̂ SGMM

(
β̂
)
, T̂ SEL

(
β̂
)
employs efficient estimates of Ω and G in this

case.
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In the theorem below, we characterize the asymptotic first-order properties of T̂ SGEL

(
β̂
)

and T̂LMCUE

(
β̂
)
.

Theorem 2. Under Assumptions 1-2, and under the null hypothesis, if β̂ − β̂GEL =

Op

(
n−1/2

)
, then the test statistics

T̂ SGEL

(
β̂
)

d→ χ2
m−p,

T̂LMGEL

(
β̂
)

d→ χ2
m−p.

Proof. See the Appendix.

The theorem shows that, given a
√
n consistent estimator β̂, T̂ SGEL

(
β̂
)
and T̂LMGEL

(
β̂
)

are first-order equivalent to other overidentification tests. But one may expect that

T̂ SGEL

(
β̂
)

and T̂LMGEL

(
β̂
)

have better finite sample properties, since they take

advantage of probability information implied by the moment restrictions.

Newey and Smith (2004) show that two-step GMM estimator and GEL estimator

have the same first leading term in the stochastic expansions under some regularity

conditions. In other words, there exists β̂ such that β̂ − β̂GEL = Op (n
−1). Thus, with

an asymptotically efficient estimator as our initial estimator, we will prove the higher-

order equivalence between the new class of tests and GEL overidentification tests in the

following theorem

Theorem 3. Under Assumptions 1-3 and under the null hypothesis, If β̂ − β̂GEL =

Op (n
−1), then

ḡGEL

(
β̂
)
= ĝ

(
β̂GEL

)
+Op

(
n−3/2

)
,

λ̄GEL

(
β̂
)
= λ̂

(
β̂GEL

)
+Op

(
n−3/2

)
,

T̂ SGEL

(
β̂
)
= ŜGEL +Op

(
n−1
)
,

and

T̂LMGEL

(
β̂
)
= L̂MGEL +Op

(
n−1
)
.

14



Proof. See the Appendix.

This theorem shows that when β̂− β̂GEL = Op (n
−1), T̂ SGEL

(
β̂
)
and T̂LMGEL

(
β̂
)

are asymptotically second-order equivalent to ŜGEL and L̂MGEL respectively. In a lot

of cases, it is relatively easy to obtain asymptotically efficient estimators, note that the

two-step GMM estimation does the job. In Imbens et al. (1998), in order to alleviate

the computation burden, they start with β̂GMM to obtain λ
(
β̂GMM

)
by solving (8) in

the case of ET, then construct a LM type test statistic basing on λ
(
β̂GMM

)
. However

this statistic does not have this higher-order equivalence property.

In Fan et al. (2011) a new class of iterated GEL estimator is proposed such that

β̂j− β̂GEL = Op

(
n−(j+1/)2

)
, if initial estimator β̂0 is a consistent estimator, β̂j− β̂GEL =

Op

(
n−(j+2/)2

)
, if β̂0 − β̂GEL = Op (n

−1), where j represents jth iteration. In this case,

when β̂j is employed, we have the following corollary:

Corollary 1. Under Assumptions 1-3, if β̂j − β̂GEL = Op (n
−a) where a = (j+1/)2 or

(j + 2/)2, then

ḡGEL

(
β̂j
)
= ĝ

(
β̂GEL

)
+Op

(
n−a−1/2

)
,

λ̄GEL

(
β̂j
)
= λ̂

(
β̂GEL

)
+Op

(
n−a−1/2

)
,

T̂ SGEL

(
β̂
)
= ŜGEL +Op

(
n−a
)
,

and

T̂LMGEL

(
β̂
)
= L̂MGEL +Op

(
n−a
)
.

It is possible to construct tests for overidentifying restrictions by simply replacing

β̂GEL with β̂j in ŜGEL and L̂MGEL, following Andrews (2002). However in this case it

can be shown that ĝ
(
β̂j
)
= ĝ

(
β̂GEL

)
+ Op (n

−a) and λ̂
(
β̂j
)
= λ̂

(
β̂GEL

)
+ Op (n

−a),

. In this sense, the C (α) type tests go one step further than Andrews’ approach.
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4 Monte Carlo Simulations

This section investigates the finite sample properties of T̂ SGEL

(
β̂
)
and T̂LMGEL

(
β̂
)

proposed in previous sections. In particular, we examine their size properties, and assess

their performance in comparison with tests ŜGMM , L̂RGEL, L̂MGEL and ŜGEL.

4.1 Asset Pricing Model

We consider an extended version of an asset pricing model investigated by Hall and

Horowitz (1996), Imbens et al. (1998). The parameter of interest is determined by the

following moment conditions

Eg (X, β0) = E




r (X, β0)

X2r (X, β0)

(X3 − 1) r (X, β0)

...

(Xm − 1) r (X, β0)




= 0,

where X = (X1, X2, · · · , Xm), r (X, β) = exp {−0.72− β (X1 +X2) + 3X2} − 1 and β

is a scalar parameter. These restrictions are satisfied at β0 = 3. Components of X are

mutually independent. X1, X2 have a bivariate normal distribution with correlation

coefficient zero, both means equal to zero and both variances equal to 0.16. X3, · · · , Xm

are independent and each follows a chi-squared distribution with 1 degree of freedom.

We set n = 200, 400 and 800. The number of replications is 10, 000. The consistent

estimator employed in T̂ SGEL

(
β̂
)
and T̂LMGEL

(
β̂
)
is the two-step GMM estimator

β̂GMM . In Imbens et al. (1998), Consistent estimators for the matrix Ω required in the

computation of the L̂MGEL and ŜGEL are obtained by using

Ω̂ (β) =
n∑

i=1

π̂ (β, λ) gi (β) gi (β)
′ ,
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or a robust estimate

Ω̂ (β) =
n∑

i=1

π̂ (β, λ) gi (β) gi (β)
′

×
(
n

n∑

i=1

π̂2 (β, λ) gi (β) gi (β)
′

)−1 n∑

i=1

π̂ (β, λ) gi (β) gi (β)
′ .

In T̂ SGEL

(
β̂
)
and T̂LMGEL

(
β̂
)
, we also consider both estimates. It has been shown

that the robust estimate only works well in the case of L̂MET and T̂LMET

(
β̂
)
, so

we ignore the other results of the robust version of the tests in the tables. We use the

Matlab package written by Evdokomiv and Kitamura (2011) to obtain the two-step

GMM estimators and the CUE and EL overidentification test statistics, and modify

their code to obtain the ET overidentification test statistics. As for the new class of

tests, we rely on their inner-loop optimization code to obtain λ
(
β̂
)
. The simulation

results are reported in Tables 1 and 2. We summarize the simulation results in the

following

1. In general, ŜGMM is heavily oversized, especially when m = 3. The increase of

sample size does not change this pattern. So it is not reliable to use ŜGMM as a

diagnostic tool in this example.

2. When m = 2, the superiority of the tests in the new class over ŜGMM in terms

of the size property is not clear-cut. When m = 3, the tests in the new class,

except for T̂ SET

(
β̂GMM

)
, have better size properties than ŜGMM . Among them,

T̂LMET

(
β̂GMM

)
with robust estimate of Ω performs best.

3. The size properties of T̂ SGEL

(
β̂GMM

)
and T̂LMGEL

(
β̂GMM

)
are comparable to

ŜGEL and L̂MGEL respectively. In some cases T̂ SGEL

(
β̂GMM

)
and T̂LMGEL

(
β̂GMM

)

even perform slightly better than ŜGEL and L̂MGEL. T̂LMET

(
β̂GMM

)
with ro-

bust estimate of Ω has the best size properties among all the tests we consider.

All in all, the simulation results demonstrate that the new class of tests for overi-

dentifying restrictions has better finite sample performance than the two-step GMM
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overidentification test, and compares well to several potential alternatives in terms of

overall performance, which echoes the theoretical results we obtained in the previous

section. Given the nice size properties and computational simplicity, the new class of

tests should be quite useful when the GEL estimation is cumbersome.

4.2 Chi-squared Moments Model

As in Imbens et al. (1998), the moment vector is

E [g (X, β)] = E

(
X − β

X2 − β2 − 2β

)
= 0.

The distribution of X is chi-square with one degree of freedom, and β0 = 1. Again, the

consistent estimator employed in T̂ SGEL

(
β̂
)
and T̂LMGEL

(
β̂
)
is the two-step GMM

estimator β̂GMM . The number of replications is 10, 000. The sample size is 500 and

1, 000. The simulation results are reported in Table 3.

We summarize the results in the following

1. Among class of tests of L̂MGEL, ŜGEL and L̂RGEL (ET and EL), L̂MET with

the robust estimate of Ω performs best in most cases. L̂MGEL, ŜGEL and L̂RGEL

all tend to be oversized, which is in accordance with the Monte Carlo evidences

reported by Imbens et al. (1998) and Ramalho and Smith (2006).

2. The size properties of T̂ SGEL

(
β̂
)
and T̂LMGEL

(
β̂
)
are identical to ŜGEL and

L̂MGEL respectively.

5 Conclusion

In this paper, we propose a new class of tests for overidentifying restrictions in moment

condition models. These tests extend the idea of C(α) test of Neyman (1959) in ML to

GEL framework. They are easy to compute, circumventing the complicated saddle point

characterization in GEL estimation. It has be shown that these tests share the same
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higher order properties as GEL overidentification tests, given some proper consistent

estimators. Monte carlo simulation has shown this new class of tests for overidentifying

restrictions has better finite sample performance than the J test, and compares well

to several potential alternatives in terms of overall performance. Given the nice finite

sample properties and computational simplicity, the new class of tests should be quite

useful when the GEL estimation is cumbersome and the focus is on inference.

Appendix

Proof of Theorem 1. Given β̂ such that
√
n
(
β̂ − β0

)
= Op (1), by first order Taylor

expansion,
√
nĝ
(
β̂
)
=

√
nĝ (β0) + Ĝ

(
β̄
)√

n
(
β̃ − β0

)
, where β̃ lies between β̂ and β0.

By Assumption 1, Ω̂
(
β̂
)

p→ Ω, Ω̂
(
β̂
)−1 p→ Ω−1. By Assumption 2, Ĝ

(
β̄
)
= G+op (1),

Ĝ
(
β̂
)
= G+ op (1) . So by Slutsky Theorem

√
nḡGMM

(
β̂
)

=

(
I − Ĝ

(
β̂
)[

Ĝ
(
β̂
)′
Ω̂
(
β̂
)−1

Ĝ
(
β̂
)]−1

Ĝ
(
β̂
)′
Ω̂
(
β̂
)−1
)

×
(√

nĝ (β0) + Ĝ
(
β̄
)√

n
(
β̂ − β0

))

=
√
nĝ (β0)−G

[
G′Ω−1G

]−1
G′Ω

√
nĝ (β0) + op (1) .

Then

nḡ′GMM

(
β̂
)
Ω̂
(
β̂
)−1

ḡGMM

(
β̂
)

d→ χ2
m−p.

Proof of Theorem 2. Given that
√
n
(
β̂ − β0

)
= Op (1), ĝ

(
β̂
)
= Op

(
n−1/2

)
and As-

sumption 1, based on Lemma A2 in Newey and Smith (2004), we get λ̂ = Op

(
n−1/2

)
.

Lemma A1 in Newey and Smith (2004) implies that max1≤i≤n

∣∣∣λ̂′gi

(
β̂
)∣∣∣ = op (1), then
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ρ1

(
λ̂′gi

(
β̂
))

− ρ1 (0) = op (1). So we have

π̂i =
ρ1

(
λ̂′gi

(
β̂
))

∑n
i=1 ρ1

(
λ̂′gi

(
β̂
)) =

1

n
[1 + op (1)] , uniformly in i = 1, · · · , n.

So
∑n

i=1 π̂iGi

(
β̂
)
= Ĝ

(
β̂
)
+ op (1).

Similarly

k
(
λ̂′gi

(
β̂
))

=
ρ1

(
λ̂′gi

(
β̂
))

+ 1

λ̂′gi

(
β̂
) = ρ2 (0) + op (1) , uniformly in i = 1, · · · , n.

k̂i =
k
(
λ̂′gi

(
β̂
))

∑n
j=1 k

(
λ̂′gj

(
β̂
)) =

1

n
[1 + op (1)] , uniformly in i = 1, · · · , n.

So
∑n

i=1 k̂igi

(
β̂
)
gi

(
β̂
)′

= Ω̂
(
β̂
)
+ op (1). Then we get to the conclusion that

T̂ SGEL

(
β̂
)

d→ χ2
m−p following the logic of proof of Theorem 1.

To prove T̂LMGEL

(
β̂
)

d→ χ2
m−p, by the first order condition of the inner loop

optimization
n∑

i=1

ρ1

(
λ̂′gi

(
β̂
))

gi

(
β̂
)
= 0.

By the definition of k (v̂i), we have

n∑

i=1

k (v̂i) gi

(
β̂
)
gi

(
β̂
)′
λ̂− nĝ

(
β̂
)
= 0.

Note that 1
n

∑n
i=1 k (v̂i) gi

(
β̂
)
gi

(
β̂
)′

= Ω̂
(
β̂
)
+ op (1). Then

λ̂ =

(
1

n

n∑

i=1

k (v̂i) gi

(
β̂
)
gi

(
β̂
)′
)−1

ĝ
(
β̂
)
.

So

λ̄GEL

(
β̂
)
=

(
1

n

n∑

i=1

k (v̂i) gi

(
β̂
)
gi

(
β̂
)′
)−1 (

ḡGMM

(
β̂
)
+ op (1)

)
.
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Then the conclusion follows.

In order to prove Theorem 3, we introduce the following Lemmas.

Lemma 1.

λ̂ = λ
(
β̂
)
= arg max

λ∈Λ̂n(β̂)

n∑

i=1

ρ
(
λ′gi

(
β̂
))

/n.

λ̂GEL = λ
(
β̂GEL

)
= arg max

λ∈Λ̂n(β̂GEL)

n∑

i=1

ρ
(
λ′gi

(
β̂GEL

))
/n.

Then λ̂− λ̂GEL = Op

(
β̂ − β̂GEL

)
.

Proof. By the first order condition

n∑

i=1

ρ1

(
λ̂′gi

(
β̂
))

gi

(
β̂
)
= 0,

n∑

i=1

ρ1

(
λ̂′
GELgi

(
β̂GEL

))
gi

(
β̂GEL

)
= 0.

By taking Taylor expansion around
(
β̂′
GEL, λ̂

′
GEL

)′
for
∑n

i=1 ρ1

(
λ̂′gi

(
β̂
))

gi

(
β̂
)
, we

obtain

0 = 0 +
1

n

n∑

i=1

ρ1

(
λ̃′gi

(
β̂
))

Gi

(
β̃
)(

β̂ − β̂GEL

)

+
1

n

n∑

i=1

ρ2

(
λ̃′gi

(
β̂
))

gi

(
β̃
)
gi

(
β̂
)′ (

λ̂− λ̂GEL

)
,

where β̃ and λ̃ are values between β̂, β̂GEL and λ̂, λ̂GEL respectively that actually differ

from row to row of the matrix ρ1

(
λ̃′gi

(
β̂
))

Gi

(
β̃
)
and ρ2

(
λ̃′gi

(
β̂
))

gi

(
β̃
)
gi

(
β̂
)′
. It

follows as Lemma A1 in Newey and Smith (2004) that maxi≤n

∣∣∣λ̃′gi

(
β̂
)∣∣∣ p→ 0. There-

fore, maxi≤n

∣∣∣ρ1
(
λ̃′gi

(
β̂
))

+ 1
∣∣∣ p→ 0 and maxi≤n

∣∣∣ρ2
(
λ̃′gi

(
β̂
))

+ 1
∣∣∣ p→ 0. It then fol-

lows from uniformly weak law of large numbers (UWL) that 1
n

∑n
i=1 ρ1

(
λ̃′gi

(
β̂
))

Gi

(
β̃
)

p→

G, and 1
n

∑n
i=1 ρ2

(
λ̃′gi

(
β̂
))

gi

(
β̃
)
gi

(
β̂
)′ p→ Ω. Then we get to conclusion.
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Lemma 2. If β̂ − β̂GEL = Op (n
−1), then

n∑

i=1

π̂igi

(
β̂
)
gi

(
β̂
)′

−
n∑

i=1

π̂GEL,igi

(
β̂GEL

)
gi

(
β̂GEL

)′
= Op

(
n−1
)
.

Proof. Denote

A1 =
n∑

i=1

(π̂i − π̂GEL,i) gi

(
β̂
)
gi

(
β̂
)′
,

and

A2 =
n∑

i=1

π̂GEL,i

[
gi

(
β̂GEL

)
gi

(
β̂GEL

)′
− gi

(
β̂
)
gi

(
β̂
)′]

.

So
n∑

i=1

π̂igi

(
β̂
)
gi

(
β̂
)′

−
n∑

i=1

π̂GEL,igi

(
β̂GEL

)
gi

(
β̂GEL

)′
= A1 + A2.

By Taylor Expansion

π̂i − π̂GEL,i =




ρ2

(
λ̃′gi

(
β̃
))

∑n
i=1 ρ1

(
λ̃′gi

(
β̃
)) −

ρ1

(
λ̃′gi

(
β̃
))∑n

i=1 ρ2

(
λ̃′gi

(
β̃
))

(∑n
i=1 ρ1

(
λ̃′gi

(
β̃
)))2




×
(
λ̂′gi

(
β̂
)
− λ̂′

GELgi

(
β̂GEL

))
,

where β̃ and λ̃ are values between β̂, β̂GEL and λ̂, λ̂GEL. It again follows Lemma A1 in

Newey and Smith (2004) maxi≤n

∣∣∣λ̃′gi

(
β̃
)∣∣∣ p→ 0, then

ρ2

(
λ̃′gi

(
β̃
))

∑n
i=1 ρ1

(
λ̃′gi

(
β̃
)) =

1

n
[1 + op (1)] , uniformly in i = 1, · · · , n.

ρ1

(
λ̃′gi

(
β̃
))∑n

i=1 ρ2

(
λ̃′gi

(
β̃
))

(∑n
i=1 ρ1

(
λ̃′gi

(
β̃
)))2 =

1

n
[1 + op (1)] , uniformly in i = 1, · · · , n.

So

π̂i − π̂GEL,i =
op (1)

n

(
λ̂′gi

(
β̂
)
− λ̂′

GELgi

(
β̂GEL

))
.
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Take Taylor expansion on gi

(
β̂GEL

)
around β̂, we have

π̂i − π̂GEL,i =
op (1)

n

((
λ̂− λ̂GEL

)′
gi

(
β̂
)
− λ̂′

GELGi

(
β̌
) (

β̂ − β̂GEL

))
,

where β̌ is a value between β̂ and β̂GEL. When β̂ − β̂GEL = Op (n
−1), then λ̂− λ̂GEL =

Op (n
−1) by Lemma 1. So

A1 = op
(
n−1
)
.

On the other hand,

vec

[
gi

(
β̂GEL

)
gi

(
β̂GEL

)′
− gi

(
β̂
)
gi

(
β̂
)′]

=
[
Gi

(
β̃
)
⊗ gi

(
β̃
)
+ gi

(
β̃
)
⊗Gi

(
β̃
)]

×
(
β̂GEL − β̂

)
,

where β̃ is between β̂GEL and β̂. So

vec(A2) = (E [Gi (β0)⊗ gi (β0) + gi (β0)⊗Gi (β0)] + op (1))

×
(
β̂GEL − β̂

)

= Op

(
n−1
)
.

Then we get to the result.

Proof of Theorem 3. We only prove ḡGEL

(
β̂
)
−ĝ
(
β̂GEL

)
= Op

(
n−3/2

)
, and T̂ SGEL

(
β̂
)
−

ŜGEL = Op (n
−1). Results about λ̄GEL

(
β̂
)
and T̂LMGEL

(
β̂
)
can be proved following

similar argument. By Taylor expansion

ĝ
(
β̂
)
− ĝ

(
β̂GEL

)
= Ĝ

(
β̃
)(

β̂ − β̂GEL

)
,

where β̃ lies between β̂ and β̂GEL. We use the result in the proof of Theorem 4.2 in Fan

et al. (2011)
n∑

i=1

π̂iGi

(
β̂
)
− Ĝ

(
β̂
)
= Op

(
n−1/2

)
.
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So

n∑

i=1

π̂iGi

(
β̂
)
− Ĝ

(
β̃
)
=

n∑

i=1

π̂iGi

(
β̂
)
− Ĝ

(
β̂
)
+ Ĝ

(
β̂
)
− Ĝ

(
β̃
)
= Op

(
n−1/2

)
.

Then

ḡGEL

(
β̂
)
− ĝ

(
β̂GEL

)
=

[
n∑

i=1

π̂iGi

(
β̂
)
+Op

(
n−1/2

)](
β̂ − β̂GEL

)

−
n∑

i=1

π̂iGi

(
β̂
)




[
n∑

i=1

π̂iGi

(
β̂
)]′ [ n∑

i=1

k̂igi

(
β̂
)
gi

(
β̂
)′
]−1 n∑

i=1

π̂iGi

(
β̂
)




−1

×
[

n∑

i=1

π̂iGi

(
β̂
)]′ [ n∑

i=1

k̂igi

(
β̂
)
gi

(
β̂
)′
]−1

ĝ
(
β̂
)

=

[
n∑

i=1

π̂iGi

(
β̂
)] [

β̂1 − β̂GEL

]
+Op

(
n−3/2

)
,

where

β̂1 = β̂ −





[
n∑

i=1

π̂iGi

(
β̂
)]′ [ n∑

i=1

k̂igi

(
β̂
)
gi

(
β̂
)′
]−1 [ n∑

i=1

π̂iGi

(
β̂
)]




−1

×
[

n∑

i=1

π̂iGi

(
β̂
)]′ [ n∑

i=1

k̂igi

(
β̂
)
gi

(
β̂
)′
]−1

ĝ
(
β̂
)
.

Specifcally, denote

fn (β) =

[
n∑

i=1

πi (β, λ)Gi (β)

]′ [ n∑

i=1

ki (β, λ) gi

(
β̂
)
gi

(
β̂
)′
]−1

ĝ
(
β̂
)
,

where ki (β, λ) = k (λ′gi (β)) /
∑T

j=1 k (λ
′gi (β)). Define Fn (β) = ∂fn (β) /∂β

′. Then

[
n∑

i=1

πi (β, λ)Gi (β)

]′ [ n∑

i=1

ki (β, λ) gi (β) gi (β)
′

]−1 [ n∑

i=1

πi (β, λ)Gi (β)

]
= Fn (β)+Op

(
n−1/2

)
.

Following Theorem 5 in Robinson (1988), we have β̂1 − β̂GEL = Op

(
n−3/2

)
. Then
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ḡGEL

(
β̂
)
− ĝ

(
β̂GEL

)
=

[
n∑

i=1

π̂iGi

(
β̂
)] [

β̂1 − β̂GEL

]
+Op

(
n−3/2

)
= Op

(
n−3/2

)
.

So basing on this result and Lemma 2, we have

T̂ SGEL

(
β̂
)
− ŜGEL = n(ĝ

(
β̂GEL

)
+Op

(
n−3/2

)
)′

×



(

n∑

i=1

π̂GEL,igi

(
β̂GEL

)
gi

(
β̂GEL

)′
)−1

+Op

(
n−1
)



×(ĝ
(
β̂GEL

)
+Op

(
n−3/2

)
)

−nĝ
(
β̂GEL

)′
(

n∑

i=1

π̂GEL,igi

(
β̂GEL

)
gi

(
β̂GEL

)′
)−1

ĝ
(
β̂GEL

)

= nOp

(
n−1/2

)
Op (1)Op

(
n−3/2

)
+ nOp

(
n−1/2

)
Op

(
n−1
)
Op

(
n−1/2

)

+nOp

(
n−1/2

)
Op

(
n−1
)
Op

(
n−3/2

)
+ nOp

(
n−3/2

)
Op (1)Op

(
n−1/2

)

+nOp

(
n−3/2

)
Op (1)Op

(
n−3/2

)
+ nOp

(
n−3/2

)
Op

(
n−1
)
Op

(
n−1/2

)

+nOp

(
n−3/2

)
Op

(
n−1
)
Op

(
n−3/2

)

= Op

(
n−1
)
.
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n Nominal

Size (%) ŜGMM ŜCUE T̂ SCUE ŜEL T̂ SEL ŜET T̂ SET L̂MEL T̂LMEL L̂MET T̂LMET L̂M
r

ET T̂LM
r

ET L̂REL L̂RET

200 20.0 25.8 23.4 24.0 26.5 26.4 27.7 27.7 26.5 26.4 24.1 24.2 25.4 25.2 25.6 25.9
15.0 20.3 18.0 19.0 21.3 21.3 22.8 22.6 21.3 21.3 19.2 19.3 19.6 19.4 21.1 20.7
10.0 14.9 12.8 14.2 15.5 15.5 17.3 17.2 15.5 15.5 14.5 14.6 13.3 13.2 15.4 15.2
5.0 8.6 7.5 8.9 9.7 9.6 11.2 10.9 9.7 9.6 9.3 9.4 7.1 7.0 9.1 9.1
1.0 2.7 2.4 3.9 3.1 3.0 4.8 4.7 3.1 3.0 4.3 4.3 1.8 1.8 3.0 3.5

400 20.0 23.1 22.0 22.2 23.5 23.5 24.7 24.6 23.5 23.5 22.2 22.3 22.5 22.4 23.6 23.1
15.0 17.6 16.7 17.0 18.3 18.4 19.5 19.5 18.3 17.4 17.2 17.3 17.0 16.7 18.1 17.9
10.0 12.4 11.6 12.0 13.0 13.0 14.3 14.2 13.0 13.0 12.2 12.3 11.3 11.3 12.8 12.6
5.0 7.2 6.8 8.3 7.2 7.2 8.6 8.4 7.2 7.2 7.5 7.6 5.7 5.7 7.2 8.5
1.0 2.2 2.5 2.9 2.0 2.0 3.2 3.1 2.0 2.0 3.0 3.1 1.2 1.2 2.1 2.5

800 20.0 22.2 21.3 21.3 22.8 22.9 23.6 23.7 22.8 22.9 21.5 21.5 22.1 22.1 23.0 22.6
15.0 16.8 16.3 16.4 17.8 17.8 18.8 18.7 17.8 17.8 16.6 16.6 16.8 16.7 17.7 17.2
10.0 12.1 11.7 11.8 12.6 12.7 13.5 13.5 12.6 12.7 11.9 11.9 11.4 11.3 12.3 12.3
5.0 7.0 6.8 7.0 7.2 7.2 8.3 8.3 7.2 7.2 7.2 7.2 5.8 5.8 7.0 7.1
1.0 2.0 2.4 2.5 1.8 1.8 2.8 2.7 1.8 1.8 2.6 2.7 1.2 1.2 2.0 2.3

Table 1: Finite sample performances of the new class of overidentifying tests in the asset pricing model. m = 2. β̂ = β̂GMM . T̂ SCUE

denotes T̂ SCUE(β̂). T̂ SEL denotes T̂ SEL(β̂). T̂ SET denotes T̂ SET (β̂). T̂LMEL denotes T̂LMEL(β̂). T̂LM
r

ET denotes T̂LM
r

ET (β̂) and

L̂M
r

ET denotes L̂M
r

ET (β̂) in which the robust estimate of Ω is employed.
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n Nominal

Size (%) ŜGMM ŜCUE T̂ SCUE ŜEL T̂ SEL ŜET T̂ SET L̂MEL T̂LMEL L̂MET T̂LMET L̂M
r

ET T̂LM
r

ET L̂REL L̂RET

200 20.0 37.2 27.4 29.5 35.1 34.7 38.5 37.6 35.1 34.7 29.9 30.5 30.4 29.8 33.9 32.7
15.0 32.0 21.8 24.4 29.5 29.1 33.7 32.6 29.5 29.1 25.0 25.5 24.3 23.5 28.3 27.2
10.0 26.1 15.9 19.0 23.2 22.8 28.1 27.3 23.2 22.8 19.9 20.4 17.8 17.1 22.0 21.3
5.0 18.9 9.5 13.0 15.8 15.2 21.4 19.4 15.8 15.2 13.8 14.2 10.5 9.9 14.5 14.2
1.0 8.6 2.7 5.7 6.7 6.2 12.1 10.4 6.7 6.2 6.3 6.7 2.9 2.9 6.0 6.3

400 20.0 31.3 25.0 25.8 29.8 29.7 33.0 32.4 29.8 29.8 26.3 26.4 26.2 25.8 29.2 28.1
15.0 26.2 20.2 21.0 24.5 24.4 28.0 27.3 24.5 24.5 21.6 21.8 20.6 20.1 23.4 22.9
10.0 20.5 14.9 15.8 18.4 18.4 22.2 21.3 18.4 18.4 16.5 16.6 14.5 14.0 17.8 17.4
5.0 13.8 9.1 10.2 12.2 12.0 15.8 14.9 12.2 12.0 10.8 10.9 8.4 7.9 11.0 11.0
1.0 6.5 3.0 4.2 4.5 4.3 8.0 7.2 4.5 4.3 4.8 4.9 2.3 1.9 4.1 4.4

800 20.0 28.1 24.2 24.4 27.0 27.2 29.5 29.3 27.0 27.2 25.0 25.0 24.6 24.4 26.8 26.3
15.0 22.8 19.1 19.3 22.0 22.1 24.6 24.3 22.0 22.1 20.0 20.0 19.3 19.1 21.4 20.8
10.0 17.5 14.2 14.4 16.5 16.6 19.5 19.2 16.5 16.6 15.2 15.2 13.3 13.1 15.8 15.5
5.0 11.6 8.8 9.1 9.7 9.8 12.8 12.4 9.7 9.8 9.6 9.6 7.1 6.9 9.3 9.6
1.0 4.7 3.1 3.4 3.0 3.1 5.3 5.0 3.0 3.1 3.8 3.8 1.6 1.5 2.8 3.4

Table 2: Finite sample performances of the new class of overidentifying tests in the asset pricing model. m = 3. β̂ = β̂GMM . T̂ SCUE

denotes T̂ SCUE(β̂). T̂ SEL denotes T̂ SEL(β̂). T̂ SET denotes T̂ SET (β̂). T̂LMEL denotes T̂LMEL(β̂). T̂LM
r

ET denotes T̂LM
r

ET (β̂) and

L̂M
r

ET denotes L̂M
r

ET (β̂) in which the robust estimate of Ω is employed.
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n Nominal

Size(%) ŜGMM ŜCUE T̂ SCUE ŜEL T̂ SEL ŜET T̂ SET L̂MEL T̂LMEL L̂MET T̂LMET L̂M
r

ET T̂LM
r

ET L̂REL L̂RET

500 20.0 24.8 24.8 24.8 26.2 26.2 27.1 27.1 26.2 26.2 24.7 24.7 24.8 24.8 26.3 26.7
15.0 20.9 20.9 20.9 22.0 22.1 22.5 22.5 22.0 22.1 20.8 20.8 20.2 20.6 22.1 21.2
10.0 16.3 16.3 16.3 16.2 16.3 17.3 17.3 16.2 16.3 16.2 16.2 14.5 14.5 16.1 16.9
5.0 11.9 11.9 11.9 10.1 10.2 11.4 11.6 10.1 10.2 11.9 11.9 7.5 7.8 10.4 11.1
1.0 7.4 7.4 7.4 2.9 3.1 4.0 4.2 2.9 3.1 7.4 7.4 1.6 1.6 3.4 5.2

1000 20.0 23.7 23.7 23.7 23.4 23.4 24.6 24.6 24.6 23.4 23.6 23.6 22.3 22.3 24.6 23.7
15.0 19.6 19.6 19.6 18.0 18.0 19.0 19.0 18.0 18.0 19.4 19.4 16.7 16.7 18.1 19.1
10.0 13.5 13.5 13.5 12.6 12.6 13.5 13.5 12.6 12.6 13.2 13.2 11.3 11.3 13.2 14.0
5.0 8.3 8.3 8.3 6.8 7.1 8.2 8.2 6.8 7.1 8.2 8.2 5.1 5.1 6.9 7.1
1.0 3.7 3.7 3.7 2.0 2.0 2.8 2.8 2.0 2.0 3.6 3.6 1.0 1.0 2.0 2.4

Table 3: Finite sample performances of the new class of overidentifying tests of chi-squared moments model. β̂ = β̂GMM . T̂ SCUE

denotes T̂ SCUE(β̂). T̂ SEL denotes T̂ SEL(β̂). T̂ SET denotes T̂ SET (β̂). T̂LMEL denotes T̂LMEL(β̂). T̂LM
r

ET denotes T̂LM
r

ET (β̂) and

L̂M
r

ET denotes L̂M
r

ET (β̂) in which the robust estimate of Ω is employed.
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