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Abstract We prove the existence of a unique pure-strategy Nash equilibrium
in nice games with isotone chain-concave best replies and compact strategy sets.
We establish a preliminary fixpoint uniqueness argument, thus showing sufficient
assumptions on the best replies of a nice game that guarantee the existence of
exactly one Nash equilibrium. Then, by means of a comparative statics analysis,
we examine the necessity and sufficiency of the conditions on marginal utility
functions for such assumptions to be satisfied; in particular, we find necessary
and sufficient conditions for the isotonicity and chain-concavity of best replies.
We extend the results on Nash equilibrium uniqueness to nice games with upper
unbounded strategy sets and we present “dual” results for games with isotone
chain-convex best replies. A final application to Bayesian games is exhibited.
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1 Introduction

Nash equilibrium uniqueness has been a point of interest since the inception of
non-cooperative game theory. In his Ph.D. dissertation (see [25]), John Forbes
Nash posed the following rhetorical question about a possible interpretation of
the solution concept that took name after him:

‘What would be a “rational” prediction of the behavior to be ex-
pected of rational playing the game in question?’

He answered that (Nash) equilibrium uniqueness, together with other con-
ditions of epistemic nature, are sufficient to expect that rational agents end up
behaving as prescribed by the solution concept he proposed for noncooperative
situations of strategic interaction:

‘By using the principles that a rational prediction should be unique,
that the players should be able to deduce and make use of it, and



that such knowledge on the part of each player of what to expect the
others to do should not lead him to act out of conformity with the
prediction, one is led to the concept of a solution defined before.’

His reasoning is not a conclusive argument by which one should expect that
the Nash’ solution concept can be considered the reasonable prediction of play-
ers’ behavior only in a non-cooperative game with exactly one Nash equilibrium.
Indeed, John Nash himself maintained later on in his thesis that in some classes
of noncooperative games some subsolutions can shrink the set of reasonable pre-
dictions to a singleton; besides, he offered also a mass-action interpretation of
his solution concept for which solution multiplicity is not a problem. Nonethe-
less, the quotation well enlightens about the historical importance of the issue of
Nash equilibrium uniqueness in (non-cooperative) game-theoretic thought. The
present paper is devoted to analyze such issue.

On Nash equilibrium uniqueness in the class of games under examination

Many games are known to possess a multiplicity of equilibria and one cannot
hope to derive general conditions for the existence of a unique Nash equilibrium.
Thus, in this work we shall restrict attention to a particular class of games: the
class of nice games' with isotone best reply functions.

The “isotonicity” of best reply correspondences, in some loose sense, is a very
general expression of the strategic complementarity among optimal choices of
agents. Games with “isotone” best reply correspondences have received special
attention in the economic and game-theoretic literature because of the richness
and easy intelligibility of their equilibrium structure and properties. Such a
literature, started from [32] and [33], had been popularized in economics by
several articles during the 1990s: [21], [35], [23] and [22] just to mention a few.
Some of these articles showed interesting properties implied by Nash equilibrium
uniqueness in classes of games admitting isotone selections from best replies. For
example, in some of such classes Nash equilibrium uniqueness was proved to be:
equivalent to dominance solvability (see Theorem 5 and the second Corollary at
p. 1266 in [21], Theorem 12 in [23] and Proposition 4 in [1]); sufficient to estab-
lish an equivalence between the convergence to Nash equilibrium of an arbitrary
sequence of joint strategies and its consistency with adaptive learning processes
(see the first Corollary at p. 1270 in [21] and Theorem 14 in [23]); sufficient
to infer the existence—and uniqueness—of coalition-proof Nash equilibria (see
Theorem Al and the last Remark at p.127 in [22]). However, these articles do
not provide sufficient structural conditions for Nash equilibrium uniqueness.

A new strand of the literature on nice games with isotone best replies played
on networks started a still partial investigation about the conditions on utility
functions for the existence of a unique Nash equilibrium in that class of games:

T.e., games with a finite set of players whose strategy space is a closed proper real interval
with a minimum and whose utility function is strictly pseudoconcave and upper semicontinu-
ous in own strategy. The term nice game is introduced in [24] and our definition is similar—but
not identical—to the one therein.



[3], [2], [16] and [13] to mention a few. Except for [16],? in such papers Nash equi-
librium uniqueness is guaranteed by a type of fixpoint argument—introduced
by [19] in the economic literature—whose application requires the isotonicity
of best reply functions.? However, the general structures of the primitives of a
game with isotone best replies ensuring the existence of a unique Nash equilib-
rium are still unclear, despite a natural interest of economic and game theorists
in the understanding thereof; in particular, the possible role played by the iso-
tonicity of best replies is unclear. Of course, the literature offers conditions on
the primitives of a game for the existence of a unique Nash equilibrium, but not
many results seem to crucially depend on the condition of isotonicity of best
replies. Restricting attention to nice games with isotone best reply functions,
can we add something to known Nash equilibrium uniqueness results?

Our contribution

We examine the conditions on the primitives of a nice game with isotone
best replies that ensure Nash equilibrium uniqueness. The investigation makes
use of a fixpoint argument—similar but not identical to the one in [19]—which
employes a notion of generalized concavity that we name chain-concavity (see
Sect. 3 for the definition). A particular version of the argument goes as follows.

Let f be a self-map of [0,1]" with no fizpoints on the boundary of
R (e.g., each f; could be positive). Then f has exactly one fixpoint
if each component function f; is isotone and chain-concave.

We derive four theorems on Nash equilibrium uniqueness in nice games. Such
theorems dispense with any differentiability assumption. In case of compact
nice games with differentiable utility functions, a corollary of one of our main
results—by which the reader might already gain an insight of our findings—can
be stated thus (see Sect. 2, 3 and 5 for all definitions).

Let T' be a smooth compact nice game. Suppose each strategy set S;
has minimum 0. Then T' has exactly one Nash equilibrium if, for
each player i, the marginal utility function M;:

e is quasiincreasing in every argument other than the i-th one;
e has a chain-convex upper level set at height zero;
e is positive at (0,...,0).

Our main Nash equilibrium uniqueness results do not rely on the differentia-
bility of utility functions and are formulated in terms of Dini derivatives (here
regarded as “generalized marginal utilities”). The prime contribution of these
results is not, however, the lack of any differentiability assumption: it will be

2Equilibrium uniqueness in [16] follows from Theorem 5.1 in [18].
3 An alternative argument, still relying on the isotonicity of best replies, is provided in [3].



shown that three classical theorems on Nash equilibrium uniqueness (i.e., [29]’s
Theorem 2, [18]’ s Theorem 5.1 and [10]’s Theorem 4.1) do not directly imply
our results even when utility functions are infinitely many times differentiable.

Our investigation proceeds as follows. First, we interpret the mentioned fix-
point uniqueness argument as a set of sufficient conditions on the best replies
of a compact nice game that guarantee Nash equilibrium uniqueness. Then we
characterize these conditions in terms of “generalized marginal utilities”. This
characterization is carried out through the examination of the necessity and
sufficiency of the conditions of a Choice Problem for the isotonicity and chain-
concavity of its Choice function: this examination is our key contribution. A
Choice Problem is—in the terminology of [26] and [20]—a Type A problem of
comparative statics where a parametrized (strictly pseudoconcave upper semi-
continuous) function is optimized on a fixed choice set (a compact proper real
interval) for each given value of the parameter; its Choice function associates
with each value of the parameter the optimal solution of the Choice Problem.

Sect. 4 and Appendix B provide new results in terms of the necessity and
sufficiency of the conditions for both the concavity/chain-concavity and iso-
tonicity of Choice functions. To the best of our knowledge, the concavity/chain-
concavity of optimal solutions has not been systematically studied in the litera-
ture, but results that guarantee the concavity or the chain-concavity of Choice
functions are useful also for game-theoretic analyses of problems not related to
Nash equilibrium uniqueness*. To the contrary, the isotonicity of Choice func-
tions has been extensively investigated. However, our results on this issue do
not follow from known theorems such as [23]’s Monotonicity Theorem or similar
results of the subsequent literature: for example, those in [30], [9], [1] and—
though in a more abstract spirit—in [20]. In fact our results on the isotonicity
of Choice functions are structurally similar to Theorem 1 in [28] and hold for
a class of problems which is properly included in that for which Theorem 1
in [28] guarantee the isotonicity of Choice functions; nevertheless, as shown in
Appendix D, the conditions involved in our differential characterization differ
from the sufficient conditions on derivatives obtained in Sect. 2.4 in [28].

Structure of the paper

The paper is organized as follows: Sect. 2 presents preliminaries; Sect. 3
exposits novel notions of generalized convexity/concavity; Sect. 4 introduces
the definition of a (Normalized) Choice function for a Choice Problem and
examines the necessity and sufficiency of the conditions of a Choice Problem for
the isotonicity and chain-concavity of the Choice function and the positivity of
the Normalized Choice function; Sect. 5 illustrates the main Nash equilibrium
uniqueness results of this work and relates them to some known theorems of the
literature; Sect. 6 shows an extension of one of our uniqueness results to games
of incomplete information. Appendices A—F show a fixpoint argument, examine
the concavity of Choice functions and contain other mathematical facts.

4E.g., [5] and [6] use this type of results in the analysis of multi-leader multi-follower games.



2 Preliminary notation, definitions and results

2.1 Notation

Let I be a proper real interval and f : I — R. There are several standard
notations for the four Dini derivatives of f. Just to provide a precise reference,
our notation is the same of [17]: see (3.1.4-7) at p. 56 therein. Thus the
upper (resp. lower) right Dini derivative of f at xg # supl is denoted by
DT f(xg) (resp. D, f(x0)) and the upper (resp. lower) left Dini derivative
of f at gy # infI is denoted by D~ f (xg) (resp. D_f (z0)). We recall that
D" f(z0), Dy f(x0), D™ f(x9) and D_f (zg) are well-defined elements of the
set of the extended reals R = R U {—o00, +-00}.

Let f : A x B — R, where A and B are nonempty subsets of Euclidean
spaces. Let (a*,b*) € Ax B. Sometimes we write f (-,b*) to denote the function
A—R:aw— f(a,b*)and f (a*,-) to denote the function B — R : b+ f (a*,b).
Thus, for instance, the expression f(-,b*) (a*) is perfectly equivalent to the
expression f (a*,b*). This notation is standard; however, for clarity, we remark
that when (A C R and) we write D f (-, b*) (a*)—or an analogous expression—
we mean to indicate the upper right Dini derivative of f (-, b*) at a*.

2.2 Generalized monotonicity: standard concepts

For real-valued functions, the following notions of generalized monotonicity are
standard and, for instance, can be found at p. 1199 in [12]. In our definitions,
we prefer to use the term “increasing” instead of “monotone” to remark the fact
that the domains are totally ordered sets.

Definition 1 A function f : X C R — R is, respectively, increasing, strictly
increasing, strictly pseudoincreasing, quasiincreasing iff, respectively,

\ H

)

eEXxXandz<ZT= f(z)<f(@T),
(z) < f (@),

eXxX,z<Tand f(z)>0= f(z) >0,
)>0= f(z)>0.

To dispel any doubts, the standard notion of a quasiincreasing function em-
ployed in this paper is very different from that in [19].

eXxXandz<T=f

\ H

)

i% \

(z,7)
(z,7)
(z,7)
(z,7)eXxX,z<Tand f(z

)

Definition 2 A function f : X C R — R is, respectively, decreasing, strictly
decreasing, strictly pseudodecreasing, quasidecreasing iff —f is, respec-
tively, increasing, strictly increasing, strictly pseudoincreasing, quasiincreasing.

Henceforth, we assume the usual convention +oo x 0 = 0.



Remark 1 Suppose X is a nonempty Cartesian product of m subsets of R. Let
f:X—R,g: X —Ry andh: X — Ry,. If f is increasing (resp. strictly
increasing) in every argument then f - g (resp. f - h) is quasiincreasing (resp.
strictly pseudoincreasing) in every argument.

Table 1. Relation diagram for an extended
real-valued function f on a real interval

incr. = quasiincr.
str. incr. = str. pseudoincr.

Definition 3 A function f: X C R™ — R is isotone (resp. antitone) iff

(2,T) e X x X and z; <T; foralli=1,...,m
I
f(z) < f (@) (resp. f(z) < [f(z))
Remark 2 Suppose X is a Cartesian product of m subsets of R then a function

f: X CR™ — R is isotone (resp. antitone) if and only if f is increasing (resp.
decreasing) in every argument.

2.3 Generalized convexity: standard concepts

The standard definitions of a convex set X C R™ and of a real-valued (strictly)
convex function defined thereon are assumed to be known: just to provide a
precise reference, see Definitions 1.2.1 and 1.3.1 in [4]. As usual, we say that a
function f is (strictly) concave iff —f is (strictly) convex. We shall now formally
recall some standard definitions of generalized convexity.

Definition 4 Let X C R™ be convex. Then f : X — R is quasiconcave iff its
upper level sets at finite height are convex. (The upper level set at height A € R

of fis{zr e X : f(x)>A}.)

Remark 3 Let X C R™ be convex and g : X — Ry,. Iff: X — R is
quasiconcave then f - g has a convex upper level set at height 0.

We recall a characterization of a real-valued quasiconcave function (see The-
orem 2.2.3 in [4]) and a definition of a strict variant thereof.

Remark 4 Let X CR™ be convez, f: X — R is quasiconcave if and only if
Ael0, 1], (z,7) e XxX andz #T= f(Az+ (1 —-NT) >min{f (z),f(T)}.
Definition 5 Let X C R"™ be conver, f: X — R is strictly quasiconcave iff

Ael0, 1], (z,7) e XxX andz #T= f(Az+ (1 —-NT)>min{f (z),f(T)}.



Remark 5 Let X CR™ be convex and f: X — R.

(i) If f is strictly concave then f is concave;
(i) If f is concave then f is quasiconcave;
(iii) If f is strictly quasiconcave then f is quasiconcave.

Our definition of strict pseudoconcavity in terms of Dini derivatives is due
to [8]: see Definition 9 therein. On the history of the concept see Sect. 1 in [14]
and see also Definition 2 in [15] for recent further generalizations.

Definition 6 Let X C R be conver. Then f: X — R is strictly pseudocon-
cave iff

(z,7) € X x X, 2 <T and f(z) < f(T) = D f(z) >0

and
(z,T)eXxX,z<Tand f(z)> f(T)=D_f(T) <0;

f: X — R is strictly pseudoconvex iff —f is strictly pseudoconcave.

Remark 6 recalls some known facts: part (i) follows from part (ii) of Theorem
14 in [8]; part (ii) follows from the definition of strict pseudoconcavity; part (iii)
follows from Corollary 20 in [8].

Remark 6 Let X C R be conver and f: X — R.
(i) If f is strictly concave then f is strictly pseudoconcave;
(ii) If f is strictly pseudoconcave then f has at most one mazimizer;

(iii) If f strictly pseudoconcave and upper semicontinuous then f is strictly
quasiconcave.

Examples of real-valued strictly pseudoconcave functions on R which are nei-

ther quasiconcave nor upper semicontinuous can be constructed by the reader.

Table 2. Relation diagram for an upper semicontinuous
real-valued function f on a real interval

conc. = quasiconc.
str. conc. = str. pseudoconc. = str. quasiconc.

Finally, a characterization of strictly pseudoconcave functions is recalled: for
a proof see, e.g., Theorem 1 at p. 1199 in [12] and references therein.

Remark 7 A real-valued differentiable function f on an open proper real in-
terval is strictly pseudoconcave if and only if Df is strictly pseudodecreasing.



3 Generalized convexity: chain-convexity

We now introduce some notions of generalized convexity: to the best of our
knowledge all definitions and results of this Sect. 3 are new.

Definition 7 A subset X of R™ is said to be chain-convex iff

ve0,1], (z,T) € XxX and z; <T; foralli=1,...m = ~vz+(1—7)T € X.

Fig 1. A chain-convex set Fig 2. A chain-convex set

Remark 8 Let X CR™. If X is convex then X is chain-conver. When m =1
the converse is true but is generally false when m > 1.

Definition 8 Let X C R™ be chain-convex. A function f: X — R is said to
be chain-concave iff

vel0,1], (z,7) € X x X and z; <T; foralli=1,...m
U
W@+ A=Nf@)<flz+(1-7)7).

A function f: X — R is said to be chain-convezx iff —f is chain-concave.

Remark 9 Ifg and h are chain-concave real-valued functions on a chain-convex
subset X of R™ then so is g + h. Also, when X C R™ is convex, a concave
function f : X — R is chain-concave; the converse is true when m = 1 but is
generally false when m > 1 (examples of chain-concave functions with convex
domains that are not concave are shown after Remark 11). Clearly, every real-
valued function on a disconnected antichain in R?—e.g., on a set like the one
i Fig. 1—1is chain-concave but not concave.

We preliminarily recall a fact used in the proof of Lemma 1.



Remark 10 Let Ix C R be a proper interval and Iy C R be an open superset
of Ix. Suppose g : Iy — R is twice continuously differentiable. A necessary
and sufficient condition for the concavity of g on Ix —i.e., for the concavity of
gl1yx —is that D?g (t) <0 for all t € Ix.

Definition 9 An m xm matriz H is conegative iff v -H-v < 0 for allv € R,

Lemma 1 Let Y C R™ be open and nonempty and f : Y — R be twice con-
tinuously differentiable. Let X be a chain-conver subset of Y. Then f is chain-
concave on X if the Hessian matriz

H(z) = {afjéfm (x)L,z

18 conegative at all x € X.

Proof. If X = () we are done. Assume that X # (). By contradiction, suppose
that H (z) is conegative at all z € X and f is not chain-concave. Then there
exist v € [0,1] and (z,%Z) € X x X such that z; <Z; for all i = 1,...,m and that
flz+(1=7)2) <vf(z)+ (1 —7)f(z). Thus z #z and v € ]0,1[. Put

v=zZ-z, Ix={teR:(z+tv)e X} and Iy ={teR: (z+tv) €Y}.
Note that [0,1] C Ix C Iy C R, that I'x is an interval and that Iy is open. Let
p:ly - R:t— f(z+1tv).
A5 (0) = f(2), (1) = £ (2) and o (1 = ) = f (72 + (1 ) 7), we have that
p(1=7) <vp(0)+ (1= e().

Thus ¢ is twice continuously differentiable on Ix but not concave on Ix. Thus
D?p (t) > 0 for some t € Ix. But this is impossible as

D2p(t) =v" -H(z+tv)-vforall t € Ix
by the twice continuous differentiability of f and
UT-H(§+tU)-v§Oforallt€IX

by the conegativity of H(z +tv) forallt € Ix. =

A nonpositive m x m matrix is conegative, and Corollary 1 readily follows.

Corollary 1 Under the conditions of Lemma 1, f is chain-concave on X if
H (z) is nonpositive at all x € X (i.e., if

0% f
<
0x;0x; 7)< 0

foralli=1,...,m,alll=1,...,m and all z € X).




A characterization of chain-concave functions is provided.

Theorem 1 Let X C R™ be nonempty, open and chain-convex and f : X — R
be twice continuously differentiable. Then f is chain-concave if and only if the

Hessian matriz o2
HE) = | g @)

s conegative at all v € X.

Proof. The if part follows from Lemma 1. We prove the only if part. By
contradiction, assume that f is chain-concave and H(z) is not conegative for
some z € X. Then there exists v € R\ {0} such that v - H(z) - v > 0. As
X is open, there exists A € Ry and Z € X such that v = A(Z —z). Thus

Az-2)" H(2)- (A(Z—2)) > 0 and hence
(-2 H()-(F-2)>0. (1)
As f is chain-concave, the function

oI —>R:it— f(z+t(z—2) withI={teR:z+t(z—2)€ X

—

must be concave. Note that I is open and includes [0, 1]. Thus D%y (0) <0, in
contradiction with (1) and the fact that D2 (0) = (z—2)" ‘H(z)- (Z—2). =

Remark 11 In Theorem 1, a necessary and sufficient condition for the coneg-
ativity of H(x) is the semimonotonicity of —H (x): see Definition 3.9.1 and
Proposition 3.9.8 in [7]. Clearly, a sufficient condition for the conegativity of
H (x) is the negative semidefiniteness® of H (x). Also, a sufficient condition for
the negative semidefiniteness of H(x) is that H(z) is a diagonally dominant
matriz with nonpositive diagonal entries: see Definition 2.2.19 and part (¢) of
Proposition 2.2.20, in [7]. All these sufficient conditions can be used to check the
conegativity of H (x); however, for the examples of this article, the nonpositivity
condition mentioned in Corollary 1 remains the “easiest-to-check” condition.

We clarify further the relation between chain-concavity and (quasi)concavity:

e f:R? = R : (21,72) — —x17y is chain-concave but not concave (nor
quasiconcave or isotone or antitone);

o f:[0,1]* = [~1,0] : (z1,®2) — —z12 is antitone and chain-concave but
not concave (nor quasiconcave);

4 . .
e f:[0,1]" = [0,1] : (z1, 2, %3, 24) — 1 + T2 — X122 is isotone and chain-
concave but not concave (nor quasiconcave);

o f:R2 =Ry (z1,22) — 21+ 22 — e~ (@+D(x24+1) 4 =1 5 jsotone, Lip-
schitz continuous and chain-concave but not concave (nor quasiconcave).

5T.e., a sufficient condition is that v” - H (z) - v < 0 for all v € R™.

10



Changing the sign of the four functions above, one easily obtains examples
of chain-convex functions which are not convex. For instance, the function

o f:]0,1]> — [0,1] : (21, 22) — @125 is isotone and chain-convex but not
convex.

Alternatively, one can consider variants of the second and fourth examples
above to construct nonnegative chain-convex functions which are not convex.
For instance, the nonnegative function

o f: Ri — Ry (z1,22) > 21 + 22+ e~ (@1 tD)(@24+1) _ =1 ig chain-convex,
isotone and Lipschitz continuous but not convex.

Proposition 1 adapts to chain-concavity /convexity well-known results of con-
vex analysis. Part (i) of Proposition 1 can be considerably generalized and is
conveniently stated here for future reference.

Proposition 1 Let X CR™ and Y C R be chain-convex sets. Let f : Y — R
be isotone and let g : X — R. Suppose g[X] CY and put h= fog.

(i) If g is isotone then h is isotone.
(i) If g is chain-convex and f is chain-convex then h is chain-convez.
(i) If g is chain-concave and f is chain-concave then h is chain-concave.

Proof. The proof of (i) is trivial and hence is omitted. The proof of (ii) is
as follows. Suppose ¢ is chain-convex. Choose an arbitrary v € [0,1] and an
arbitrary pair (z,z) € X x X such that z; < z; for all ¢ = 1,...,m. Then

g(y) <vg(@)+(1—7)g(2) withy =~z +(1-7)z

Thus f(g(y)) < f(vg(z)+ (1 —7)g(z)) by the isotonicity of f. Suppose f
is chain-convex. Then f is convex as Y C R. By the convexity of f the last
inequality becomes f (g (y)) < vf (g (z)) + (1 —7) f(g(z)). We conclude that
h(y) < ~vh(x)+(1 — ) h(z) and thus that h is chain-convex by the arbitrariness
of v and (z, z). The proof of (iii) is analogous to the proof of (ii). m

Definition 10 A function f : X — R on a chain-convex subset X of R™ is
chain-quasiconcave iff its upper level sets at finite height are chain-convex.

The following conclusions can be easily derived by the reader.
Remark 12 Let X C R™ be chain-convex and f: X — R.
(i) If f is either isotone or antitone then f is chain-quasiconcave;
(i) If X is convex and f is quasiconcave then f is chain-quasiconcave;
(iii) If f is real-valued and chain-concave then f is chain-quasiconcave;

(i) If g: X — Ry and f is chain-quasiconcave then f-g has a chain-convex
upper level set at height 0.

11



4 On three properties of a C-function
We make use of the following definition of a Choice Problem.

Definition 11 By a Choice Problem (CP in short) we mean a triple (A, B, f)
where: (i) A is a compact proper real interval; (ii) B is a nonempty subset of
R™ with m € N; (iit) f is a function from A x B into R such that f (-,b) is
strictly pseudoconcave and upper semicontinuous for all b € B.

Notation (Dy) With each CP we associate the function
Dy :int (A) x B — R: (a,b) — D_f (-,b) (a).

We now define a Choice function for a CP and a normalization thereof.
These two functions are used in this Sect. 4 when analyzing the change of
optimal choices in a parameter. It is perhaps worth mentioning that, given a
CP and b € B, the set argmax f (-,b) is nonempty—as A is a compact proper
real interval and f (-,b) is upper semicontinuous—and hence contains exactly
one element as f (-, b) is strictly pseudoconcave (see Remark 6).

Definition 12 Given a CP, by the Choice function (C-function in short)
associated to such a CP we mean the function

B: B — A such that {f (b)} = argmax f (-,b) at allb € B

and by the Normalized Choice function (NC-function in short) associated
to such a CP we mean the function f* : B — Ry : b [ (b) — min A.

We now examine the necessity and sufficiency of the conditions for the iso-
tonicity and chain-concavity of a C-function and for the positivity of an NC-
function. We refer to Appendix B for an examination of the necessity and
sufficiency of the conditions for the concavity of a C-function.

4.1 Isotonicity of a C-function

The following Theorem 2 is the first main result of this Sect. 4. We refer to
Appendix D for a comparison with related results of the literature.

Theorem 2 Consider a CP and the associated function 5. Suppose B is the
Cartesian product of m subsets of R. Then, § is isotone if and only if Dy (a, )
is quasiincreasing in every argument’ for all a € int (A).

Proof. If part. Suppose Dy (a,-) is quasiincreasing in every argument for all
a € int (A). Pick (z,y) € B x B such that x #y and 2; <y, for all I = 1,...,m.

Recall that Dy (a,-) : []7*; B; — R. Thus the quasiincreasingness of Dy (a,-) in every
argument is—somehow incorrectly—the quasiincreasingness of Dy (a, (J:l);il) in every ;.
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It suffices to show that 8 (z) < B(y). If S(z) = min A then S8 (z) < 8(y).
Suppose S (z) > min A. By the strict pseudoconcavity of f (-, z),

Dt f(,x)(a) >0 for all a € [min A, 3 (z)].
Thus, by part (ii) of Theorem 1.13 in [11],
D¢ (a,z) =D_f(-,x)(a) >0 for all @ € min A, § (z)[
and hence, by Lemma C1 in Appendix C,
Dy (a,y) = D_f () (a) > 0 for all a € Jmin A, (z)]

because Dy (a,-) is quasiincreasing in every argument. Hence 8 (z) < 3 (y):
otherwise 8 (y) < B(z) and D_f(-,y) (a) > 0 for some a € |8 (y), B (z)[ in
contradiction with the strict pseudoconcavity of f (-, y).

Only if part. Assume that § is isotone and, by contradiction, suppose that
Dy (@, -) is not quasiincreasing in the j-th argument for some @ € int (4). Then
there exist @ € int (A), z € B and y € B such that z; < y;, ; = y; for all

I=A{1,....,m}\{j} and
D_f (=) (@ >0>D_f(,y)(@).

By part (iii) of Remark 6 and Corollary 2.5.2 in [4], f (-, x) is strictly decreasing
on [ (z),max A] and f (-,y) is strictly increasing on [min A, 8 (y)]. Hence

ac€Aanda>p(x) =D_f(-,z)(a) <0

and
a€Aand minA <a<p(y) =D_f(-y)(a)>0.

We conclude that @ < g (z) and @ > S (y), which implies §(y) < 8(y) in
contradiction with the isotonicity of 5. =

4.2 Positivity of an NC-function

Our results on the chain-concavity of the C-function § will be established on
the subset of B where (8 is greater than min A: such a subset coincides with the
support of the NC-function 3* (i.e., the set of points where 8* does not vanish).
Clearly, the support of 8* is B if and only if 8* is positive. Some simple facts
about the necessity and sufficiency of the conditions for B to coincide with the
support of 3% are provided by the following Proposition 2.

Proposition 2 Consider a CP and the associated functions 8 and 8. Suppose
B has a least element, say w. Besides assume that (8 is isotone. The support of
B* is B (or equivalently, B* is positive) if and only if DT f (-,w) (min A) > 0.
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Proof. First note that the isotonicity of 3 is equivalent to the isotonicity of 5*.

If part. Suppose DT f (-,w) (min A) > 0. Then $* (w) > 0 and w is in the
support of 3*. The isotonicity of 3% implies that the support of 8* is B.

Only if part. Suppose the support of 3% is B. If DT f(-,w) (min 4) < 0.
Then f(-,w)(minA) > f(-,w)(z) for all x > min A by the definition of a
strictly pseudoconcave function. Hence w, which is an element of B, would not
be in the support of 5*: a contradiction. m

4.3 Chain-concavity of a C-function
Theorem 3 is the second main result of this Sect. 4.

Theorem 3 Consider a CP and the associated functions 3 and 3*. Suppose B
is chain-convex. Besides assume that 3 is isotone and 8% is positive. Then S is
chain-concave if and only if Dy has a chain-convex upper level set at height 0.

Proof. Without loss of generality, we shall put min A = 0. Thus 5 equals the
NC-function £*.

If part. Assume that Dy has a chain-convex upper level set at height 0.
Suppose that = and z are elements of B such that z; < z; for alli = 1,...,m
and put

§:=p(z) and ¢ :=5(2).
By the isotonicity of the positive function 3,
0=minA <¢ <.
Pick v €]0,1[ and put y := ya + (1 — ) z. We are done if we prove that

vi=9{+(1-7)(<B(y) =

Case min {¢,(} < max A. In this case £ = min {£, (} < max A. Suppose, to
the contrary, that v < U. Note that

D_f(y)(0) <0 (2)
because f (-,y) is a strictly pseudoconcave function maximized at v, with
min A < v <7 < maxA.

Since ¢ and (¢ are respectively maximizers of f (-, z) and of f (-, z),

and hence
min {Dy (§,2), Dy (¢, 2)} > 0.
Thus (£, 2) and (¢, z) belong to the upper level set at height 0 of Dy, and hence

so does’ also (T, y) by the chain-convexity of the upper level set at height 0 of
Dy¢. Therefore

Dy (0,y) = D-f (-,y) (V) >0,

"Recall—and this is important here—that x; < z; for all 4 = 1,...,m and that £ < (.
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in contradiction with (2).
Case min{{,(} > max A. Thus £ = ( = max A. By the strict pseudocon-
cavity of f (-, z) and f (-, 2),

DY f(,z)(a) >0< DT f(-2)(a) for all a € int (A) U {min A} .

By part (ii) of Theorem 1.13 in [11], f (-, ) and f (-, z) are increasing on int (A);
consequently,

Ds(a,z) =D_f(-,z)(a) >0<D_f(-,2)(a) =Dy (a,z) for all a € int (A4)

and hence
Dy (a,y) =D_f(-,y) (a) > 0 for all a € int (A4)

by the chain-convexity of the upper level set at height 0 of Dy. Thus we
must have v = [ (y) = max A = U: otherwise § (y) € int (A) U {min A} and
D_f(-,y)(a) > 0 for some a € |3 (y),max A[ in contradiction with the strict
pseudoconcavity of f (-, y).

Only if part. Assume that § is chain-concave. By contradiction, suppose
the upper level set at height 0 of Dy is not chain-convex. Then there exist
(a,z) € int (A) x B, (a,z) € int (A) x B and v € ]0,1[ such that

a<dgand x; <z foralll=1,....m,

D,f(,l‘) (&) ZOSfo(vz) (é’)v (3)

and
D_f(-,yz+ (1—7)2) (va+ (1 —v)a) <0. (4)
By the strict pseudoconcavity of f (-, z) and f(, 2), (3) implies

B(z) > aand B(z) > a.
Thus 6 (z) > va and (1 —~) 5(2) > (1 — ) @, and hence
va+(1=v)a<yB(z)+ (1-7)B(2)

By part (iii) of Remark 6 and Corollary 2.5.2 in [4]—reasoning as in the proof
of the only if part of Theorem 2—we have that

Blyx+(1—-7)2) <vya+(1-v)a

since f(-,yx + (1 —~)z) is upper semicontinuous and strictly pseudoconcave
and (4) holds true. But then

Blrz+ (1 =7)z) <18 (z) + (1 —7)B(2),

in contradiction with the chain-concavity of 5. m
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5 Uniqueness of Nash equilibria

By a game I we mean a triple (N, (S;);cn » (4i);cy) where N = {1, ...,n} is the
set of players (thus we are tacitly assuming also that N is finite and n > 1),
S; # 0 is player i’s strategy set and u; : [Licn Si — R is player i’s utility
function. We denote by S the joint strategy set [[;cn S; and by S_; the
joint strategy set of i’s opponents HZGN\{Z} S;. Sometimes, an element of
S_; is denoted by s_; and we write (s;, s_;) instead of s.

Definition 13 We say that a game I' is a nice game if, for alli € N:

e S; is a proper closed real interval with a minimum;
e u; is upper semicontinuous in the i-th argument;

e u; is strictly pseudoconcave in the i-th argument.

Definition 14 A nice game T is a compact nice game if each S; is compact.
A nice game T is an unbounded nice game if each S; is upper unbounded.

Notation (w,a) The least joint strategy (min S;),;. 5 of a nice game is denoted
by w and the greatest joint strategy (maxS;);cn of a compact nice game by a.

Notation (D",D} ) Given a nice game I' and i € N, we denote
e player i’s lower left marginal utility function by
D" iint (S;) x S—; — R (si,5-4) — D_u; (-, 5-;) (s4),
e player i’s upper right marginal utility function by
Dy +int (S;) x S_i = R (si,5-3) — DTy (-,5-5) (s4) -
Notation (D%,D{) Given a nice game I' and i € N, we denote
e player i’s extended lower left marginal utility function by
D (S;\ {inf S;}) x S_; = R : (s4,5_3) — D_u; (-,5_;) (si),
e player i’s extended upper right marginal utility function by
D (Si\{supS;}) x S_i = R (si;5-3) — DT, (-, 5-5) (si) -

The definition of a smooth game used in the Introduction is the following.
(Note that, despite our terminology, a player’s “smooth” utility function can
well be discontinuous in the opponents’ strategies.)
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Definition 15 Let I' be a nice game. We say that T' is a smooth nice game
if ui (-, s—i) has a differentiable extension v; (-, s—;) to some open superset of S;,
for all s_; € S_; and for all i € N. Given a smooth nice game I' and chosen
a differentiable extension v; (-,5—;) of u; (-,5—;) for each i € N and for each
s_; € S_;, the function

8’01'

i R:
M;: 5 — 5|—>88i

(s)
is called player i’s marginal utility function.

As usual, a (pure strategy) Nash equilibrium is a fixpoint of the set-valued
joint best reply function

b:S—[len 2% ¢ 51— (argmaxu; (-, 5-i));cn »

that is, e is a Nash equilibrium for I' if and only if e; € b; (e) for all i € N. When
player i’s best reply function b; is single-valued, such b; can be understood
as a function into S;: this observation will be often used without further mention
in the sequel of Sect. 5.

Remark 13 In any nice game player i’s best reply b; can be understood as a
partial function b; : S - S; defined by {b; (s)} = argmaxuw; (-, s—;) whenever
argmaxu; (-, s—;) # 0: recall that in any nice game arg maxu; (-, s_;) is either a
singleton or the empty set (see Remark 6). Thus, when b; is nonempty-valued—
like, e.g., in compact nice games—such partial function is indeed a function
b : S — S, defined by {b; (s)} = argmaxu, (-,5_;).

5.1 A characterization theorem

Corollaries A1 and A2 in Appendix A state two fixpoint uniqueness results for
a self-map of a finite Cartesian product of compact proper real intervals; but
as a matter of fact, the two Corollaries provide also sufficient conditions on the
joint best reply function of a compact nice game for the existence of exactly one
Nash equilibrium. In Sect. 4 we have characterized such conditions in terms of
“generalized marginal utilities”; Theorem 4 and its Corollary 2 readily follow
from these characterizations.

Theorem 4 Let I’ be a compact nice game and i € N. The best reply function
b; is (i) isotone, (ii) chain-concave and (iii) greater than w; if and only if:

Hi. DY is quasiincreasing in the j-th argument, for all j € N\ {i};
H2. D" has a chain-convex upper level set at height 0;

H3. D;[i is positive at the least joint strategy w.

17



Proof. Let (A, B, f) be the CP where A = S;, B = S_; and f is defined by
f(siy5-;) = u; (si,8—;). Pick an arbitrary = € S; and note that the function
B:85_; —S;:s_;— bi(x,s_;) is the C-function for (A, B, f). Note also that
B is isotone (resp. chain-concave, greater than w;) if and only if so is b;.

If part. Suppose H1-3 hold. As H1 holds, f is isotone by Theorem 2; thus
b; is isotone. As f is isotone and H3 holds, § is greater than w; by Proposition
2; thus b; is greater than w;. As ( is isotone and greater than w; and H2 holds,
[ is chain-concave by Theorem 3; thus b; is chain-concave.

Only if part. Suppose b; is isotone, chain-concave and greater than w;; then
so is also 8. As f is isotone, H1 holds by Theorem 2. As f3 is isotone and greater
than w;, H3 holds by Proposition 2. As § is isotone, chain-concave and greater
than w; then H2 holds by Theorem 3. =

Corollary 2 is only a “dual” reformulation of Theorem 4.

Corollary 2 Let I" be a compact nice game and i € N. The best reply function
b; is (i) isotone, (ii) chain-convex and (iii) smaller than «; if and only if:

H1’. D} is quasiincreasing in the j-th argument, for all j € N\ {i};
H2'. DJZ, has a chain-convex lower level set at height 0;
H3’. D" is negative at the greatest joint strategy c.

Proof. To prove the thesis for I' = (N, (5)),c v » (w),c ), it suffices to consider
the game (NN, (—=5)),cn - (w © (—id_g))) and apply Theorem 4. m

Theorem 5 is worth to be stated separately: its proof follows the same
reasoning of that of Theorem 4 and is omitted.

Theorem 5 Let I' be a compact nice game and i € N. The best reply function
b; is isotone if and only if H1 is satisfied for i.

Example 1 shows compact nice games where H1 is satisfied for all players.
Example 1 Put X =[0,1] and let T be a multiplayer game where, for alli € N,
Si =X and u; (s) = g (s-i) — d; (si, f (5-4))

for some function g; : S_; — R, some isotone function f; : S_; — X and some
premetric® d; : R x R — R which is lower semicontinuous in the first argument
and strictly pseudoconvex in the first argument: e.g., letting v > 0, § > 0 and
A > 0, we might have that

di (z,y) = Nz —y|+ 7R (z —y) + 0yR (z — y)

or that \
di(z,y) = |z —y|” +vH (z —y) + dyR (x — y)

8 A premetric d; : R x R — R is a nonnegative function such that d; (z,2) = 0 for all z € R.
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(where R denotes the so-called ramp function R : R — R defined by R(z) =
max (0,z) and H denotes the so-called Heavyside step function H : R — R
defined by H(2) =0if 2<0and by H(z)=1ifz>0).

In the statement of Theorem 5 one can replace H1 with H1’: this would be
only an equivalent reformulation. Also, by reversing the order of the parameter
set of the CP considered in Theorem 2, one readily obtains a necessary and
sufficient condition® for the antitonicity of best replies in compact nice games:
such a result, however, is only another reformulation of Theorem 5 and hence
we omit it. The following consequence of Tarski’s fixpoint theorem is recalled.

Remark 14 Let T’ be a compact nice game where H1 is satisfied for all players.
Then a greatest Nash equilibrium and a least Nash equilibrium exist.

5.2 Bounded strategy sets

Theorem 6 readily follows from Theorem 4 and Corollary Al: we omit the proof.

Theorem 6 Let I' be a compact nice game where H1, H2 and HS3 are satisfied
for alli € N. Then T' has exactly one Nash equilibrium.

Theorem 7 readily follows from Corollaries 2 and A2: we omit the proof.

Theorem 7 Let T be a compact nice game where H1’, H2’ and H3’ are satisfied
for alli € N. Then T' has exactly one Nash equilibrium.

Though evident, the following fact is explicitly remarked.

Remark 15 In Theorem 6 no i-th component of the unique Nash equilibrium
equals w; (an analogous remark holds for Theorem 8). Similarly, in Theorem 7
no i-th component of the unique Nash equilibrium equals ;.

Example 2 Consider again Example 1 and additionally assume that each func-
tion f; (resp. 1 — f;) is chain-concave and positive: a unique Nash equilibrium
exists as H1, H2 and H3 (resp. H1’, H2’ and H3’) are satisfied for alli € N.
5.3 Unbounded strategy sets

Theorems 8-9 extend Theorems 6-7 to the case of upper unbounded strategy
sets: their proofs are contained in Appendix E.

Theorem 8 Let I' be an unbounded nice game where H1, H2 and H3 are sat-
isfied for all i € N. Suppose there exists s* in the interior of S such that

,inl (5:5 S*_Z) < 0, fOT all 1 e N. (5)

Then T has exactly one Nash equilibrium.

9Which would be the quasidecreasingness of each D“# in the opponents’ strategies.
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We remark that Theorem 9 below is in no way a “dual” of Theorem 8.

Theorem 9 Let I" be an unbounded nice game where H1’ and H2’ are satisfied
for alli € N. Suppose

DY (t,...,t) <0 for alli € N, for all sufficiently large t € Ry . (6)
Then T has exactly one Nash equilibrium.

Example 3 Consider again Ezample 1. Replace the assumption X = [0, 1] with
the assumption X = R, leaving unaltered all the other conditions. Additionally
assume that each f; is positive and chain-concave (resp. chain-convex). Finally,
assume that f; (x,...,x) < x for all sufficiently large x, for all i € N. Then
Theorem 8 (resp. Theorem 9) ensure the existence of a unique Nash equilibrium.

5.4 Further examples and relation to other results

Theorems 6-9 can be certainly applied to games on networks: conditions H1-
3 and H1’-3’ are compatible with a utility function w; that is constant in the
strategy s; of some player [ # ¢ that does not belong to player i’s neighbourhood
N; € N\ {i}. It should be clear, however, that this compatibility would not
have occurred in general if, for instance, in H2 the condition “D"* has a chain-
convex upper level set at height 0” had been the much stronger “D* is strictly
concave” or in HI the condition “D*’ is quasiincreasing in the j-th argument,
for all 7 € N\ {i}” had been the much stronger “D"¢ is strictly increasing in
the j-th argument, for all j € N\ {i}”. Examples 4-5 below are conceived as
possible examples of games on networks (note that the “functional form” of w;
in Examples 4-5 is similar to that defined by (2) in [3]); but the structure of the
system of neighbours in the network is not important for the application of our
Nash equilibrium uniqueness results, and hence we shall not mention it.

Example 4 Let I’ be a game where each S; = [0, o] (with a; € Ry ) and each
u; 18 defined by
ui t s+ fi (0 (s-4)) si + ;810 — disy*

for some isotone chain-concave function o; : S_; — Ry and some concave'’

function f; : Ry — R4 and with
v; >0,8; >0 and p; > 2.

Then T satisfies all conditions of Theorem 6: each u; (-, s_;) is strictly concave
and continuous; each w; (-,w_;) is not decreasing (hence DV u; (-, w_;) (w;) > 0
by the strict concavity of u; (-,w_;)); each function int (S;) x S_; — R : s —
D_w; (-, s_;) (s;) is increasing in every argument j # i and chain-concave.

10Recall that any concave function f; : Ry — Ry is necessarily increasing. Also, recall that
Proposition 1 guarantees that f; oo; : S_; — Ry is chain-concave and isotone.
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Example 5 Example 4 can be readily generalized. Let I' be a game where each
S; = [0, ;] (with o € Ry, ) and—adopting the convention 0° = 1—each u; is
defined by

Ui s (05 (5-0)) 82 + 8 — Gusl
for some isotone chain-concave function o; : S_; — Ry and some concave

function f; : Ry — Ry and with A\; € [0,1], v; >0, 6; > 0 and p; > 2. Then T
satisfies all conditions of Theorem 6: Appendiz F proves this claim.'!

Theorem 6 does not follow from Theorem 2 in [29]: Remark 16 clarifies.

Remark 16 Theorem 2 in [29] does not guarantee the existence of exactly one
Nash equilibrium for some games described by Example 4 (and hence, more
generally, satisfying the conditions of Theorem 6). This is evident, for instance,
if we consider the game T' where N = {1,2}, S; = S5 =10,1],

ug (81,82) =1 (14 s2) — 2351)’ and  ug(s1,82) =s2(1+81) — 233,

This is the particular game described in Example 4 where N = {1,2} and for
alli € N: v, = 1,6 =2, u; =3, fi =idg, and 0y : s_; — ZleNi s; with
N; = N\ {i}. Pick a player i € N of this symmetric game: the function

5:]071[—>R:t'—>g? (t,t)

is strictly increasing on 10,1/12[ and we can conclude that T' does not satisfy
the assumptions of Theorem 2 in [29] since those assumptions would imply the
decreasingness of & (on the entire |0, 1]).

Let us now consider an “unbounded” version of Example 4.

Example 6 Consider again Exvample 4 and suppose each p; # 2. Replace the
assumption that each S; is a compact proper interval with S; = Ry. Now T’
satisfies all conditions of Theorem 8. (Note that f; o o; is isotone concave and
nonnegative on L, = {(z,...,x) :x > k} CR"! forallk > 0, thus (f; o 0;) |1,
is Lipschitz continuous when k > 0 and DY (z,...,z) < 0 for some large x > 0.)

Remark 17 clarifies that Theorem 8 does not follow from Theorem 5.1 in [18]
or from Theorem 4.1 in [10].

Remark 17 Reconsider the game described in Remark 16, but now put S =
So =R,. Such a modified game I is certainly compatible with the conditions of
Ezample 6 (and, more generally, with the conditions of our Theorem 8). Pick
a player i € N of this modified symmetric game T': the function

8ui

Si

Ry - Rt (t,t)

I Note that some condition listed at the end of Example 4 need not be satisfied when \; # 1.
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is strictly increasing on ]0,1/12[ and

82’U,1

881851

2
(1/24,1/24) = — 1 <1 = Fw

1/24,1/24).
2 851852(/’/)

Thus T' does not satisfy the conditions of Theorem 5.1 in [18] since those condi-
tions would imply the decreasingness of & (on the entire Ry ); also, T' does not
satisfy the conditions of Theorem 4.1 in [10] since those conditions would imply

82U1

881651

82u1
881882

(1/24, 1/24)’ > ‘ (1/24,1/24)| .

6 Incomplete information

Some of our equilibrium uniqueness results extend to certain incomplete infor-
mation games. Following the interim formulation of the Bayesian game in Sect.
3 of [34], we show a possible extension to Bayesian games with finite types.

Definition 16 A Bayesian game is a quintuple

G = (M, (Z0)ienr - (T)iens » (o (10))ger Jienss (V1))
where M = {1,...,m} is a finite set of elements called players and for alll € M:

e 7 is a nonempty set of elements called player l’s actions;
e T} is a nonempty finite set of elements called player 1’s types;
o p(:10) : T_; — [0,1] is a probability measure'® on T_;, for all 6 € Ty;

e v : Zyx Z_ xTy xT_; — R associates a payoff to player | with each joint
action (z1,z—;) in Z; X Z_; and each joint type (t;,t_;) € Ty x T—;.

To avoid confusion, we clarify that m > 1 and that

T_l = H Tk and Z_l = H Zk.
ke M\{l} ke M\{l}

Definition 17 A Bayesian Nash equilibrium for a Bayesian game G is an
m-tuple o = (01 : Ty — Zy),c, of functions such that, for alll € M,

o;(0) € argmax Y. v (,0-1(7),0,7) p (7]0) for all§ €T,
TeT_;

where o_; (1) = (ok (Tk))keM\{l}'

12Henceforth we shall write p; (7]60) instead of p; (+|0) (7). Clearly, >rer_, pu(r]0) =1. One

might interpret p; (7]6) as the conditional probability for [ that the joint type of I’s opponents
is 7 when [I’s type is 8. However such an interpretation is not very important here.
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Definition 18 LetI' = (N, (5:);cn » (4i);cn) be a (complete information) game.
We say that T satisfies property P if, for alli € N:

e S; is a compact proper real interval with minimum w;;
e cach function u; (-, s—;) is (i) strictly concave and (i) continuous;
e the function u; (-,w—;) is not decreasing (where w_; = (wi);c N (11)5

o the function int (S;) x S—; — R : s+ D_u; (-,5-;) (s;) is (i) increasing
in every argument j # i and (ii) chain-concave.

If a game satisfies property P then DV u; (1,w_;) (w;) > 0 (as u; (-, w_4) is
strictly concave and not decreasing) and

D_ui(-;5-4) (si) = D ui (-, 5-4) (s4)

whenever s; € int.S;. Noted this, one can readily verify that the use of the
“Selten trick” allows to infer Corollary 3 from Theorem 6: other corollaries can
be inferred from Theorems 7-9 and are left to the reader. Clearly, the use of
such a “trick” is allowed by our definition of a Bayesian game which is restricted
to the particular case of a finite set of players with finite sets of types.

Corollary 3 Let G be a Bayesian game where, for each joint type t € [ ;¢ Ti,
the (complete information) game

F(t) = (M7 (Zl)ZeM ) (Ui ('a %y tia t—i))ie]\/[)
satisfies property P. Then G has exactly one Bayesian Nash equilibrium.

Using Corollary 3 one can easily specify classes of Bayesian games with
exactly one Bayesian Nash equilibrium like, for instance, in Example 7 below.

Example 7 Let G be a Bayesian game where, for all t € [, ,Ti, the (com-
plete information) game (M, (Z;);cps» (Vi (o tist—i))iens) is specified like in
Example 4. Then G has exactly one Bayesian Nash equilibrium by Corollary 3.
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Appendix A: Fixpoint uniqueness

Theorem A1l Let I be a finite index set, {F;},.; be a family of compact
proper real intervals and f be a self-map of F = [],c; F;. Suppose that each
component function f; of f is isotone and chain-concave and that f has no
fixpoints in

F-:={teF :min{t;, —minF;:i€ I} =0}.
Then f has exactly one fixpoint.
Proof. Each (F;,<) is a complete lattice, where < denotes the usual partial
order relation'® on R induced on F;. Denote by < the usual product partial
order relation on F. Also (F, =) is a complete lattice. By Tarski’s fixpoint
theorem there exist a least fixpoint for f, say y, and a greatest fixpoint for f,
say z. We are done if we prove that y = z. By contradiction, suppose y # z.
Note that

min F; < y; < z; for all i € I,

where the first inequality holds because f has no fixpoints in F*- and the second
because z is the greatest fixpoint for f. Let

y={te F:t <y} and y; =y, \{y},

and let aff ({y, z}) denote the affine hull of {y, z}. The finiteness of I guarantees
that aff ({y, z}) Ny, # 0.1* Pick

z € (aff ({y,2}) Nyy)
and let v € ]0, 1] be such that
y=vz+(1-7)=

By Tarski’s fixpoint theorem (see the last equality in the statement of Theorem
1in [31]), f(¢t) Atforall t € y);. Then

x; < fi (z) for some | € I.
Since fi (y) —yi = fi(2) — 21 =0 < f; (z) — x;, we have
i) =y <y (fi(e) —z)+ (A =7) (/i (2) —21);
hence, since y; = yz; + (1 — ) 2;, we have
fily) <afi(x) + (1 =) fi(2).
But the last strict inequality contradicts the chain-concavity of f;. m
For clarity, when we shall write that “f; is greater than w;” and that “f;

is smaller than a;” in the statements of Corollaries A1-2 we shall respectively
mean that “f; (z) > w; for all x € F” and that “f; (z) < «; for all z € F”.

13The lack of an index for < (i.e., the fact that we write < instead of the more correct <;)
should not be a source of confusion.
14ndeed, one might reason as follows: put IT = {i€1I:2 —y;>0}—where IT # —and

)\:min{m :ie]*} and note that A > 0 and y—%(z—y) € (aff ({y,2}) Nyy ).

Z2i—Yi
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Corollary A1 Let I be a finite nonempty index set and {F;},.; be a family of
compact proper real intervals. Let f be a self-map of F = [];c; Fi and denote
by w the least element of F. Then f has exactly one fixpoint if each component
function f; is (i) isotone, (i) chain-concave and (iii) greater than w;.

Corollary Al, and a fortiori Theorem Al, cannot be directly inferred from
Theorem 3.1 in [19] for at least two reasons: in Theorem 3.1 in [19] the domain
is unbounded and f — id is “strictly R-concave” while in Corollary Al the
domain is bounded and f — id need not be “strictly R-concave” (e.g., the self-
map of [—2,1] x [—1,1] defined by f : (z1,z2) — (z2,z1/2+ 1/4) satisfies all
conditions'® of Corollary Al but no extension of f to R/l can be “strictly R-
concave” in the precise sense of Definition 2.1 in [19] because f(1/2,1/2) —
(1/2,1/2) =0 and f; (A\,A\) = A =0 for all A € [0,1/2]).

The following Corollary A2 is nothing but the “dual” of Corollary Al: its
proof in fact consists of the reversion of the order of F'.

Corollary A2 Let I be a finite nonempty index set and {F;},.; be a family of
compact proper real intervals. Let f be a self-map of F = [],c; F; and denote by
« the greatest element of F. Then f has exactly one fizpoint if each component
function f; is (i) isotone, (ii) chain-convex and (i) smaller than ;.

Appendix B: Concavity of a C-function

We prove a variant of Theorem 3 about the concavity of a C-function 5 on the
support of the NC-function 8*. The variant is established without preliminary
assumptions on the isotonicity of 3 and the positivity of 3*. Sufficient conditions
for the concavity of 8 can be easily derived by applying Proposition B1.

Theorem B1 Consider a CP and the associated functions 3 and 3. Suppose
B is convex. Then B has convex support and 3 is concave thereon if and only
if Dy has a convex upper level set at height 0.
Proof. Without loss of generality, we shall put min A = 0. Thus 8 = 8*.

If part. Suppose the upper level set at height 0 of Dy is convex. Choose x
and z in B such that

§:=0(x)>0<pb(2) =

(Therefore min {£,(} > 0 = min A.) Pick v €]0,1[ and put y := vz + (1 —7) z.
We are done if we prove that

U=+ (L=7) <Py = v
15 Alternatively, one might also consider the self-map f of F = [—2,1] x [~1,2] defined by

[ (z1,22) — (min{x2,1},21/2+1/4),

noting that the first component of f —id (i.e., F — R : (z1,22) — min{z2,1} — z1) is even
constant in the second argument on the subset [—2,1] x [1,2] of its domain F.
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Case min {&, (} < max A. Suppose, to the contrary, that v < T. Note that
D_f () (@) <0 (7)
because f (-,y) is a strictly pseudoconcave function maximized at v, with
min A <v < 7T < max A.

Since ¢ and ¢ are respectively maximizers of f (-, z) and of f (-, z),

D_f(z)(§) 20<D_f(2)(C)

and hence
0 <min{Dy (§,2),Dy (¢, 2)}-

Therefore (£,z) and (¢, z) belong to the upper level set at height 0 of Dy, and
then so does also (T,y) by the convexity of the upper level set at height 0 of
Dy. Thus

Dy (0,y) =D_f (y) (©) 20

in contradiction with (7).
Case min{{,(} > maxA. In this case £ = ( = maxA. By the strict
pseudoconcavity of f (-,z) and f (-, 2),

DYf(,x)(a) >0< DVf(-,2)(a) foralla€ {minA}Uint(A).

By part (ii) of Theorem 1.13 in [11], f (-, ) and f (-, z) are increasing on int (A4);
consequently,

Df(a,z) =D_f(-,x)(a) >0<D_f(-,2)(a) =Dy (a,z) forall a€int(A)

and hence
D¢ (a,y) =D_f(-,y)(a) >0 for all a € int (A)

by the convexity of the upper level set at height 0 of Dy. Thus v = B (y) =
max A = T: otherwise § (y) € {min A} Uint (4) and D_f (-,y) (a) > 0 for some
a €16 (y) ,max A[ in contradiction with the strict pseudoconcavity of f (-, y).
Only if part. Suppose [ has convex support and is concave thereon. By
contradiction, suppose the upper level set at height 0 of Dy is not convex. Then
there exist (a,z) € int (A) x B, (4, 2) € int (A) x B and « € ]0, 1] such that

and
D_f(,yvz+(1—7)z)(va+ (1—7)a) <O0. (9)
By the strict pseudoconcavity of f (-, z) and f(-,2), (8) implies

B(z)>a>minA=0and 5(z) >a>minA=0.
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Thus 8 (z) > va and (1 —~) 8(2) > (1 — ) @, and hence

va+ (1 —y)a <8 (z)+ (1 —7)B(2).

Note that x and z belong to the support of S—which is convex—and hence
so does also vz + (1 — ) z. By part (iii) of Remark 6 and Corollary 2.5.2 in
[4]—reasoning as in the proof of the only if part of Theorem 2—we have that

Blyz+(1=7)2) <ra+(1—-7)a

since f (-,vx + (1 —~)2) is upper semicontinuous and strictly pseudoconcave
and (9) holds true. But then

Byzx+(1—79)z) <v8(z) +(1—-7)B(2),

in contradiction with the concavity of 5 on its support. m

We show conditions for the support of 8* to coincide with B. Clearly, if the
support of 3% coincides with B and 3 is concave thereon, then 3 is concave.

Proposition B1  Consider a CP and the associated function 8. The support
of 8% is B if and only if DT f(-,b) (min A) > 0 for all b € B.
Proof. If part. An immediate consequence of the definition of D f (-, b).

Only if part. Suppose the support of 8 is B. If DT f(-,b) (min A) < 0
for some b € B then f(-,b) (min A) > f(-,b) (z) for all > min A by the the
definition of a strictly pseudoconcave function. Hence b € B would not be in
the support of 3*: a contradiction. m

Appendix C: An equivalence lemma

Definition 19 A function f: X C R — R is T-pseudoincreasing iff
(2,7) € X x X, 2 <7 and f(z) > 0= f(T) > 0.

If f: X CR — R is ]-pseudoincreasing then f is quasiincreasing; however,
the converse is generally false. We now establish a particular equivalence result.

Lemma C1 Let A C R be a proper interval, B C R™ be the Cartesian product
of m nonempty subsets of R and f: Ax B — R. Suppose f(-,b) is strictly
pseudoconcave and upper semicontinuous for all b € B. Let L ={1,...,m} and

Dy :int (A) x B—R: (a,b) — D_f(-,b) (a).
Then assertions A1, A2 and A8 are equivalent.
Al. Dy (a,-) is quasiincreasing in every argument for all a € int (A).

A2. Dy (a,-) is 1-pseudoincreasing in every argument for all a € int (A).
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A3. The following implication is true:

acint(A), (2,7) € Bx B, 2; <% foralll € L and Dy (a,-) () >0

4 (10)
Df (a’ ) (f) > 0.

Proof. Proof of A1 = A2. Suppose that Dy (a, ) is quasiincreasing in every ar-
gument for all a € int (A). Then, equivalently, Dy (a, -) is quasiincreasing in the
I-th argument for all [ € L, for all a € int (A). Now, by contradiction, suppose
there exists ¢ € L and & € int (A) such that Dy (a,-) is not T-pseudoincreasing
in the i-th argument. Then there exists a pair (z*,2**) € B x B such that

x <z, xf =" for all | € L\ {¢} and Dy (a,-) (z*) > 0> Dy (a,-) (™).

7

By the quasiincreasingness of Dy (a, -) in the i-th argument, we must have that
Dy (a,-) (z*) = 0. (11)

As Dy (a,-) (z**) < 0, there exists @ € A such that ¢ < @ and f (-,2**) (a) >
f(,2**) (a). Thus there exists a € [a, & that maximizes the upper semicontin-
uous (and strictly pseudoconcave) function f (-, 2**) |(4,4); hence

Dy (-, ™) (a) <0 for all a € ]a, a] (12)

lja,a)- As (11) is true, the strict pseudo-
) (@) < f (- 2%)(a); thus

Dy (6, ) =0 < LTV D T ()@

by the strict pseudoconcavity of f (-, z**)
concavity of f (-,z*) implies that f (-, z*

(13)

@>

and by part (ii) of Theorem 1.8 in [11]—Remark 18 clarifies why part (ii) of
Theorem 1.8 in [11] can apply—there exists a® € ]a, a[ such that

Dy (-27) (a%) =

> 0. (14)

Thus, by (12) and (14), Df (-, z*) (a®) > 0 > Dy (-, ™) (a°) with a°® € ]a,al.
Equivalently—just changing the notation—we have that

Dy (a°,-) (z*) > 0> Dy (a°, ) (z**) with a° € |a,a] C int (A)

and hence that Dy (a°,-) is not quasiincreasing in the ¢-th argument: a contra-
diction with the assumption that Dy (a, -) is quasiincreasing in the I-th argument
for alll € L, for all a € int (A).

Proof of A2 = Al. Suppose Dy (a, ) is T-pseudoincreasing in every argument
for all @ € int (A). Fix an arbitrary ¢ € L and an arbitrary a € int (A). Clearly,
Dy (a,-) is T-pseudoincreasing in the i-th argument. Then, as we have in fact
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already noted just before Lemma C1, Dy (a,-) is also quasiincreasing in the i-
th argument. As ¢ is arbitrary in L and a is arbitrary in int (A), Dy (a,-) is
quasiincreasing in every argument for all a € int (A).

Proof of A2 = A3. Suppose Dy (a, -) is 1-pseudoincreasing in every argument
for all @ € int (A). Then, equivalently, Dy (a, -) is T-pseudoincreasing in the i-th
argument for all a € int (A), for alll € L. Now fix a € int (A) and (z,T) € Bx B
and suppose z; < 7; for all [ € L and Dy (a,-) (z) > 0. Then there exists a

“taxicab” sequence (xo, . ,xm) in B such that 2° = z and

=2 @ —x) 1 foralll=1,...,m

where 1(;) € R™ denotes the unit vector with the /-th component equal to one.
Since Dy (a, -) is 1-pseudoincreasing in the [-th argument for all [ € L, we have

Dy (a,) (z') > 0and l € {0,...,m — 1} = Dy (a,-) (z') > 0.

As 2 =z, 2™ =7 and Dy (a,-) (z) > 0, we infer that Dy (a,-) () > 0. Thus
implication (10) is true.

Proof of A3 = A2. Suppose implication (10) is true. Fix an arbitrary ¢ € L
and an arbitrary a € int (A). Then, by (10), Dy (a,-) is T-pseudoincreasing in
the i-th argument. As ¢ is arbitrary in L and a is arbitrary in int (A), Dy (a, )
is T-pseudoincreasing in every argument for all a € int (A). =

Remark 18 Note that (13) implies that
fGan) (@) = f(,a")(a)

t—a tela,al.
Py (t—a) for somet € ]a,al

fam) @)= (at) (@) >

To check this fact, one might reason as follows. Were the previous inequality
true for no t € |a, al, one would have that

f(d,m*? — f(a,z")

p (t—a) forallt€la,al;

f(t7x*) - f(&vx*) <

thus one would have also that

f(tz") = f(a,z") <
for all t € ]a,a| and that
f(a,z”

Q| ~—

f(t7x*) - f(d7.%'*) <

—a
for allt € ]a,al; but the previous inequality would imply that

f(t,.%‘*) —f(d,.%‘*) > f(fl,ﬂ?*) —f((?L,l‘*)

- = ~ >0
t—a

a—a

for allt € ]a,a[ and hence Dy (G, z*) > 0, which contradicts (18).
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Appendix D: Relation to other isotonicity theorems

Theorem 4 in [23] provides sufficient—but not necessary—conditions for a CP
to possess an isotone C-function 5. Example 8 clarifies.

Example 8 Consider the CP where A = [0,10], B = {1,2}, f(-,1)(a) =
5—la—5] and f(-,2)(a) = 30 — 5]a — 6| — 3a. Theorem 2 guarantees the
isotonicity of B (note, in particular, that

1 ifa<h 2 ifa<6
Df(“’l):{—1 ifa>s o Df(“’Q):{—a% ifa>6

and hence that Dy (a,-) is quasiincreasing in every argument for all a € A).
However f does not satisfy the single crossing property in (a;b) and Theorem /
in [28] does not guarantee the isotonicity of 8 (note, in particular that we have

f(81) = f(0,1)>0>f(8,2) - f(0,2)).

Analogous examples can show that the if part of our Theorem 2 does not
follow from any Proposition or Theorem in [20] where at least one of the four
conditions (7a), (7b), (7c), (7d) is involved.

From Theorem 1 in [28]—see also Theorem A in [27] and the discussion
before it—one easily infers necessary and sufficient conditions for a CP to have
an isotone C-function . At the beginning of Sect. 2.4 in [28], the authors
pointed out that such conditions need not be easily checked and with Proposition
2 in [28] they provided other simple sufficient conditions on the derivatives of
the function involved in their maximization problem. The following Example 9
shows that Theorem 2 does not follow from Proposition 2 in [28].

Example 9 Consider the CP where A =[—4,4], B ={1,2} and
f(50) (@) = —al".

Theorem 2 applies and guarantees that 5 is increasing. For this CP there does
not exist any positive increasing function o : A — Ry such that

Df(-,2)(a) > a(a)-Df(-,1)(a) for almost all a € A,

otherwise we would have

—————= >a(x) > a(—=3) >0 for almost all x € ]-3,0
DD - W= el
(and g;gi;gg oz(iii) > sz(fg) > 1 for a.a. x €1-3,0[) in contradiction with
Df(-,2 1 -2
lim sup 162 (@) = lim A

z10 Df ('7 1) (SC) « (_3) =10 « (_3)

In fact, an immediate restatement of Theorem 2 can be used to check whether
an IDO relation—in the sense of [28]—exists in some simple classes of IDO
families where their Proposition 2 cannot be used.
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Appendix E: Proofs of Theorems 8 and 9

Proof of Theorem 8.  We split the proof into two parts: existence and
uniqueness. In the first part we construct a new game I'* which has a common
Nash equilibrium with I' = (N, (S;),cn » (4i);cn)- In the second part we prove
the existence of at most one Nash equilibrium for T.

Equilibrium existence. As usual, denote by b the joint best reply for I', but
consider it as a partial function from S into S. Put

i

SY = |ws,s;] foralli € N and S* = HieN S;

As T is a nice game, (5) ensures that each b; is nonempty-valued at s*; in
particular, we must have that b; (s*) € [w;, s}] for all i € N. We can extend the
previous conclusion to the entire S* asserting that each b;|s+ is a function into
S¥: to verify this last fact it suffices to note that (5), condition H1 and Lemma
C1 in Appendix C imply'6

DY (z) < 0 for all z € S such that z; = s and z; < s] for all I € N\ {3}

and to repeat the previous reasoning for s* at any such z (considering also
that b; () = b; (s4,2—;) for all s; € S; and for any such z). Hence b|s~ can be
understood as a self-map on S*; this fact in turn implies that b| g+« coincides with
the joint best reply, call it b*, of the game I'* = (N, (57 );c s (u});cy) Where

K3

u; = u;|g- for all i € N.

As b|g- = b*, the fixpoints of b and b* coincide on S*; thus each Nash equilibrium
for I'* is also a Nash equilibrium for I'. It is easily seen that I'* satisfies all
conditions of Theorem 6 and hence I'* has a (unique) Nash equilibrium.
Equilibrium uniqueness. Suppose there exist two distinct Nash equilibria e®
and e® for I'. Let ' = (N, (S;)ien, (W)ien) be the game where, for all i € N,

Si = [wi, max {ef,ef} + 1]

1771

and T; = w;|g with S = [],cy Si- As {e®,e°} € S C S, e® and ¢° are distinct
Nash equilibria also for I'. But then we have a contradiction, since T satisfies
all conditions of Theorem 6 and hence it has exactly one Nash equilibrium. =

Proof of Theorem 9. Fquilibrium existence. By (6), there exists a point s*
in the topological interior of S such that

DY (s*) <0 foralli € N. (15)

As already pointed out—see again the discussion after Example 1—conditions
H1 and H1’ are equivalent (if needed, reason as in the proof of Corollary 2). Now
the proof of equilibrium existence is exactly the same proof of that of Theorem
8 above: just replace “(5)” with “(15)” and “Theorem 6” with “Theorem 7”.

16To prove the implication identify A with S;, B with S_;, f with u; and Dy with D",
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Equilibrium uniqueness. Suppose there exist two distinct Nash equilibria for
I', say e® and e°. Put

t=max{|ef] ... len], €51, eg]}

Choose t > t such that D (¢,...,t) < 0 for all # € N (such a point ¢ can be
found by assumption) and put

a=(t...,t) eRY .
Thus we have
DY (ai,a_i) <Oforallie N.

Let T = (N, (S)ien, (W)ien) be the game where, for all i € N, S; = [w;, @]
and T; = u;|g with S = [],cy Si- As {e®,e°} € S C S, e® and ¢° are distinct
Nash equilibria also for T'. But I satisfies all conditions of Theorem 7 and hence
it cannot have two distinct Nash equilibria. m

Appendix F: Proof of a claim in Example 5

We prove that the games in Example 5 satisfy all conditions of Theorem 6 when
Ai € [0,1]. In fact, the case A; = 1 has been already discussed in Example 4.
The case A\; = 0 is evident. Let us consider the case A; € |0, 1[. Note that each
u; (-, $—;) is continuous and strictly concave, Dy, (w) = 400 and

D% (s) = Sg\ifl(/\ifi (0 (5-4)) +yi80 ™ — 61'/11»52‘1'_”).

Thus each D;[i is positive at the least joint strategy w and—Dby virtue of Re-
marks 1 and 12—it can be inferred that each D is quasiincreasing in the j-th
argument for all j € N\ {i¢} and that each D" has a chain-convex upper level
set at height 0 because D' (s) is the product of the positive function

int (S;) x S_; > R:s— sf‘ﬁl
and the chain-concave function
i

int (Sz) X S*i — )\zfz (O’i (871')) + 7i8141_>\i — 51N1851*

that is increasing in the j-th argument for all j € N\ {i}.
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