On the timing of innovation and imitation

Etienne Billette de Villemeur and Richard Ruble and Bruno Versaevel

Université de Lille & LEM (CNRS - UMR 9221), EMLyon Business School & GATE (CNRS - UMR 5824), EMLyon Business School & GATE (CNRS - UMR 5824)

18 December 2015

Online at https://mpra.ub.uni-muenchen.de/69161/
MPRA Paper No. 69161, posted 3 February 2016 05:43 UTC
On the timing of innovation and imitation

Etienne Billette de Villemeur, Richard Ruble, and Bruno Versaevel*

December 18, 2015

Abstract

When fixed costs of innovation and imitation differ, strategic competition between duopolists involves either preemption or attrition, the latter being likelier with high uncertainty. We show that industry value is maximized when firms neither stall nor hasten entry, whereas social welfare has local optima in both the attrition and preemption ranges. The social optimum implies a positive imitation cost, and with static business-stealing and sufficient discounting it involves preemption. Finally we endogenize entry barriers and discuss contracting, showing that firms are more likely to rely on secrecy and patents at low imitation costs and that simple licensing schemes are welfare improving.

JEL Classification: G31 (Capital Budgeting; Fixed Investment and Inventory Studies; Capacity), L13 (Oligopoly and Other Imperfect Markets), O33 (Technological Change: Choices and Consequences; Diffusion Processes)

Keywords: Dynamic oligopoly; Knowledge spillover; Real options

*Billette de Villemeur: LEM, Université de Lille, F-59655, France. Ruble and Versaevel: EMLYON Business School, Ecully F-69134 (primary affiliation) and CNRS, GATE Lyon Saint-Etienne, Ecully F-69130, France. Corresponding author: ruble@em-lyon.com. We are grateful to Xavier Boutin, Yann Braouezec, Denoit Chevalier-Roignant, David Encoua, Thilo Meyer-Brandis, Dean Paxson, Régis Renault, Jacco Thijssen, Mihkel Tombak, and Lenos Trigeorgis as well as seminar participants at Paris-Dauphine university, IESEG business school, LMU and TU München, and conference participants at the 2014 EARIE (Milan) and 2015 ROG (Athens and Monemvasia) conferences for valuable suggestions and help in various forms. All remaining errors are ours.
1 Introduction

Profitable investment by a pioneering firm often breeds imitation by subsequent entrants. When developing an invention into a commercial product requires significant enough resources so that only a few firms may jockey to secure positions in an industry either as a first-mover or as a second entrant, product development takes the form of a noncooperative timing game. This paper develops a theoretical framework for strategic investment that highlights the central role played by the relative cost of imitation. In this framework first and second mover advantage are parsimoniously parametrized, and strategic interaction ranges from a war of attrition to a preemption race. In practice, the ease of imitation depends on natural entry barriers but is also determined by firms and regulators, through their choices of technology, licensing, and intellectual property protection levels.\footnote{Mansfield et al. [26] and Mansfield [25] are pioneering empirical studies that have fixed the perception of imitation upon which much subsequent theoretical work is based. See also Cohen et al. [8].} It then seems natural to inquire which of the two regimes is preferable from the standpoint of an industry or a regulator: preemption or attrition? Our paper provides a number of novel welfare results that aim to shed light on this question.

1.1 Results

First, we characterize the effect of varying imitation cost on strategic competition. A low imitation cost leads to delayed product introduction as firms seek to enter second, a situation of attrition, whereas conversely a higher imitation cost is associated with accelerated product introduction, a case of preemption. Equilibrium in firm entry encompasses standard attrition and preemption but can also involve a gap in the support of mixed strategies. Preemption is more likely when product market competition is more intense whereas attrition is more likely when discounting is less important, as occurs when volatility is high.

Firms are taken to be \textit{ex-ante} identical and their roles as innovator or imitator are endogenous, so that positional rents are dissipated both in attrition and in preemption. We are therefore able to identify the optimal level of imitation cost for firms, which is that cost of imitation at which there is neither a race to preempt nor a war of attrition, \textit{i.e.} at which firms do not compete for positional rents by rushing to enter or waiting unduly to innovate. The intuition behind this result runs as follows. When imitation cost increases, a follower firm delays entry and has a lower expected value, whereas a leader firm benefits from a longer monopoly phase, and has a higher expected value. In a preemption race, rent equalization pegs expected value to the follower value
and thus decreases with imitation cost, while in a war of attrition the expected value of firms is that of the leader firm and increases with imitation cost.

We examine the welfare trade-offs associated with raising imitation cost, as may arise in the context of a regulator’s choice of broader patent protection. There is a positive lower bound for the optimal level of imitation cost, implying that free innovation is always socially costly. Otherwise, the social welfare function generally has two local maxima, so that for instance attrition is optimal if a monopoly innovator practices first-degree price discrimination and preemption is optimal if there is product market collusion under duopoly. When preemption is socially optimal, we show that with sufficient discounting the imitation cost instrument is of limited reach so the regulator’s optimum is a corner solution leading to a monopolized industry. Finally, assuming that product market competition is characterized by a business-stealing effect, we obtain a tractable upper bound on the welfare maximum in the attrition range, and thus derive conditions under which preemption is socially optimal.

Finally, we extend our model in several directions by incorporating a broader set of firm decisions. First we endogenize the cost of imitation by allowing the innovator to make reverse engineering of its product more difficult or to pursue patent protection more aggressively. We find that the lower the natural cost of imitation, the greater the effort exerted by innovators to raise entry barriers. In addition, we allow for contracting between innovator and imitator that can take the form either of a buyout or of a license agreement. With the former, attrition may disappear entirely as an equilibrium if discounting is sufficiently large. With the latter, licensing increases welfare if the efficiency effect is present, whereas if there is sufficient product market complementarity the innovator may choose to privately subsidize imitation.

1.2 Related literature

Our model of innovation and imitation builds upon an already rich literature dating back to Rein- ganum [30], who provides a foundation for dynamic game-theoretic models of duopoly investment that she construes as technology adoption. In a deterministic environment in which one of the firms can commit as a first investor, she identifies a diffusion equilibrium in which investments occur sequentially and result in a first-mover advantage. Fudenberg and Tirole [13] consider investment decisions when leader and follower roles are endogenous. With symmetric firms, there is a preemption race that accelerates the first investment, dissipating rents to the first investor so that firm values are equalized in equilibrium. In an otherwise similar framework but with asymmetric firms, Katz and Shapiro [22] allow either licensing or imitation to occur post-investment.
They find that a second-mover advantage can arise, so that investment decisions take the form either of a preemption race or of a waiting game.

Some recent research on innovation dynamics has focused on informational spillovers, which are one of the important determinants of second-mover advantage, into models of duopoly investment. A key reference is Hoppe [20] which introduces uncertainty regarding the success of new technology adoption. The follower firm only invests if the new technology is profitable, so that when the likelihood of success is low, firms engage in a war of attrition. In a similar vein, Huisman and Kort [21] allow the follower to benefit from the subsequent arrival of a better technology, and Femminis and Martini [12] model a disclosure lag of random duration before the follower benefits from a spillover. The effect of informational spillovers on investment incentives has also been studied in models of learning by Décamps and Mariotti [9] and Thijssen et al. [35]. In these models, the first-mover’s investment sends a profitability signal to the follower in addition to some ongoing background information that both firms receive. Depending on the relative importance of the preemption motive and the informational externality, firms engage in either preemption or attrition.

Through these different contributions runs a common thread, namely that to the extent an innovator’s investment has positive spillovers for its rival, competition between otherwise symmetric firms takes the form either of a preemption race or of a war of attrition. We depart from prior work by deriving a symmetric perfect equilibrium in a model of strategic investment that incorporates both potential first- and second-mover advantages, parametrized by the relative fixed costs of innovating and imitating firms. Thus, we relax the assumption in the so-called standard real option game framework2 that leader and follower investment costs are identical and exogenous. Some closely related work that we have identified in this area are Pawlina and Kort [29] and Mason and Weeds [27], which introduce firm asymmetry into duopoly investment games in ways that are complementary to the approach we adopt here.

Several other strands of research provide broader context for our work. In particular, the ease of imitation is pertinent in determining optimum patents, as described by Gallini [15] from whom we follow the formal specification of the cost of “inventing around”. The dynamics of patent races can be studied with similar tools to the strategic investment research cited above, as in Weeds [38], although such applications more closely describe the invention stage of innovation whereas our

2Azevedo and Paxson [3] is a recent survey of this field, which draws from game theory and continuous time finance in order to incorporate strategic and payoff uncertainty into models of investment. Typical applications are to capacity investment, as in Boyer et al. [6], as well as investment in R&D, as in the present paper. For a thorough and pedagogical presentation, see Chevalier-Roignant and Trigeorgis [7].
focus is on the subsequent development or product introduction phase. Another stream of research dating back to Benoit [4] studies imitation incentives once an innovator has achieved incumbency. More recent papers such as Mukherjee and Pennings [28] and Henry and Ruiz-Aliseda [19] have identified the importance of the patenting, licensing, and reverse engineering decisions that then arise. Our analysis is also related to models of cumulative innovation, as exemplified by Green and Scotchmer [16] and Denicolò [10] although our focus is on firms that are horizontal competitors rather than the distribution of rents between basic and applied research.

1.3 An example: imitation cost in the biopharmaceutical industry

The questions we address were originally motivated by real-world situations in which the same firms can face contrasting technological conditions with respect to ease of imitation over the different business segments in which they operate. In the biopharmaceutical industry, typically, whereas medications are easily imitated thus justifying the industry’s systematic recourse to patent protection, in the vaccine segment technological conditions render imitation much more costly.\(^3\)

On the one hand, pharmaceutical firms typically rely on intellectual property rights in order to increase the costs of imitators for new drugs “which otherwise could be copied more easily than products whose production processes can be kept secret, or for which the time and relative expense needed to copy the invention are much higher” (Scherer and Watal [32], p. 4). If such patent protection is not available, a generic product can be introduced at a much lower fixed cost than incurred by the branded product supplier. In India, after the passage of the Patents Act 1970, and before the TRIPs (Trade Related aspects of Intellectual Property rights) agreements were enforced, pharmaceutical products became unpatentable, “allowing innovations patented elsewhere to be freely copied” (Lanjouw [23], p. 3). By reducing imitation costs, the absence of legal protection fostered the domestic production of generic formulations.

This ease of imitation is not found in the vaccine segment, as vaccines are made from living micro-organisms, and unlike drugs “are not easily reverse-engineered, as the greatest challenges often lie in details of production processes that cannot be inferred from the final product,” implying that “there is technically no such thing as a generic vaccine” (Wilson [37], p. 13). The regulatory implication is that a me-too vaccine supplier must pay for clinical trials to demonstrate the safety and efficacy of its product. There is no short-cut toward the bio-equivalence of a copied

\(^3\)Another characteristic of the pharmaceutical industry is the uncertainty that is introduced by late-stage clinical trials regarding the outcome of an R&D project, most often after significant costs have already been sunk, but we do not seek to represent this specific feature in our model.
candidate vaccine, whose design and delivery require investments in technological capabilities and manufacturing facilities that comply with demanding regulatory standards. In the case of recent complex vaccines (e.g., a tetravalent dengue virus vaccine), a follower must catch up with leading-edge R&D and manufacturing approaches (the technological challenges for the design a dengue virus vaccine are reviewed in Guey Chuen et al. [17]). The fixed cost that must be incurred by a new entrant for the delivery of a follow-on vaccine can thus be prohibitively high.\footnote{We further discuss this example in light of the theoretical model in Section 4.1.}

2 A model of new product development

This section describes a model of strategic investment in line with the characteristic features of innovation and imitation identified above. The assumptions regarding industry structure and firm conduct are presented in Sections 2.1 and 2.2, and equilibrium in Section 2.3.

2.1 Assumptions

Two otherwise identical firms may enter a new market by introducing their own version of a product. Product development involves uncertainty regarding future levels of final demand and irreversibility, as in the investment framework described by Dixit and Pindyck [11]. Organizational constraints preclude a firm from selling two variants of the product.

The introduction of the product generates a perpetual profit flow whose instantaneous value depends on the number of active firms: π_M when a single firm is active, and π_D when both are. These flow profit levels may reflect either standard duopoly competition ($0 < 2\pi_D \leq \pi_M$) or duopoly competition with product complementarity ($\pi_M \leq 2\pi_D \leq 2\pi_M$). Flow profit is scaled by a multiplicative shock (Y_t) representing market size that follows a geometric Brownian motion ($dY_t = \alpha Y_t dt + \sigma Y_t dZ_t$ where $(Z_t)_{t \geq 0}$ is a standard Wiener process), so as to reflect the idea that demand for a new product is typically uncertain but growing over time. Profit flows are assumed to begin instantaneously and with certainty once investment has occurred.\footnote{Thus, we do not purport to model lead times, and our approach contrasts with some of the related work on patent races or information spillovers cited above, in which the success of innovation is an additional stochastic element for firms. A lower cost of imitation in our model is consistent with an informational spillover, if innovation requires success on a large number of independent trials or a search process that an imitator can bypass.} Firms have a common and constant discount rate (r).

Introducing the new product involves an irrecoverable fixed cost (I) for the the first firm that invests, i.e. for the innovator. A firm that observes its rival's innovation can invest after, even
immediately, as a second entrant, i.e. as an imitator. We assume that in addition to the various standard setup costs associated with bringing a product to market such as dedicated plant and equipment, marketing expenditures, and so forth, the follower incurs a cost of imitation of variable magnitude depending on technological or institutional conditions. Introducing the alternative version thus involves an irrecuperable fixed cost \((K)\), and we allow for the extreme case of costless imitation. The imitator’s fixed cost may be either higher or lower than the innovator’s, depending both on the difficulty of reengineering and on the degree of protection afforded to the intellectual property of innovators. If the second firm can develop the same product independently, for ex-ante identical firms, imitation is no more expensive than innovation \((K \leq I)\) in the absence of intellectual property protection. When the complexity of the product is limited or legal protection is weak (when the breadth of patents is narrow) the imitation costs can still be low enough that the entry cost is lower for the follower than for the leader. On the other hand, greater technological complexity and stronger legal protection imply a higher cost for imitators who must invest in reverse engineering or invent around any patents held by the innovator, although this is mitigated by disclosure requirements that reduce unnecessary duplication of effort, and a product can be so complex or legal protection can be so strong as to make the second mover incur higher entry costs than the leader \((K > I)\).\(^6\) Moreover, we later show that such a level of complexity legal protection can be socially optimal (in fact, that it can even be efficient to rule out the second firm’s entry and rely only upon the threat of product market competition by setting an arbitrarily high imitation cost \(K^* = \infty\)).

Finally, we suppose that information is complete and that \(\alpha \geq 0, \sigma \geq 0\) (with one of these inequalities strict), \(\alpha < r\), and \(0 < Y_0 < (r - \alpha) I/\pi_M\),\(^7\) so that absent competition an innovating firm would initially prefer to delay investment and hold on to their growth option, either because of deterministic growth in demand, or volatility, or some combination of the two.

\(^6\)Our focus is the relation between innovation and imitation, but other circumstances can also lead to asymmetric fixed costs for ex-ante identical firms. If developing the new product involves scarce assets, such as prime location in real estate or natural resource extraction, then the imitator may face a higher cost \((K > I)\). We do not pursue this interpretation actively. One area where doing so would make a difference is in the case of “ties”, where we will assume that if both firms seek to and effectively invest simultaneously, the investment cost is \(I\), rather than \(\max\{I, K\}\) as would be the case if firms had to compete for scarce assets in the input market. Also, imperfect competition in input markets may result in asymmetric investment costs. In Billette de Villemeur et al. [5], investment cost is determined endogenously by a strategic input supplier, resulting in a discounted input price for the first firm that invests \((I < K)\).

\(^7\)This bound ensures that firms prefer to delay investment under preemption rather than invest immediately even when imitation costs are large.
2.2 Threshold strategies and leader and follower payoffs

Firms decide independently when to introduce a new product. In order to focus on the economic aspects of the decision problems of the firms, we describe a reduced form market entry game that captures the relevant features of a more general dynamic entry game. This is done by taking firm strategies to consist of investment thresholds, which determine a stochastic time of investment, and by imposing a specific tie-breaking rule in the event that both firms face a known coordination problem in which they seek to invest simultaneously when it would only be optimal for one to do so (see Section ?? for a discussion of the underlying dynamic game).

At any time \(t \geq 0 \) at which it has not yet invested, the strategy of a firm \(i, i \in \{1, 2\}, \) consists of an entry threshold \(Y_i \in [Y_i, \infty) \) that, once reached for the first time and from below, triggers investment. Threshold choices result in (stochastic) investment times and endogenously determine the role of each firm as innovator or imitator. In the case of identical thresholds (\(Y_1 = Y_2 \)), a tie-breaking rule that is consistent with the equilibrium of the underlying continuous time game randomly determines the roles of each firm. Under these conditions, industry dynamics in the product market may be viewed as resulting from a two stage interaction which unfolds over time, where in the first stage (which determines the onset of the monopoly phase) the choices of initial entry thresholds \((Y_1, Y_2) \) determine the roles of the firms, and in the second stage (the onset of the duopoly phase), the remaining firm enters at a threshold of its choice that we denote by \(Y_F^* \) (with \(Y_F^* \geq Y_i \)) for the moment and specify further below.

The expected payoffs for innovators and imitators have the following specific forms:

\[
L(Y_i, Y_F^*) = \left(\frac{\pi_M}{r - \alpha} Y_i - I \right) \left(\frac{Y_i}{Y_i} \right)^\beta + \frac{\pi_D - \pi_M Y_F^*}{r - \alpha} \left(\frac{Y_i}{Y_F^*} \right)^\beta \quad \text{(innovator payoff)} \tag{1}
\]

and

\[
F(Y_i; K) = \left(\frac{\pi_D}{r - \alpha} Y_i - K \right) \left(\frac{Y_i}{Y_i} \right)^\beta \quad \text{(imitator payoff)} \tag{2}
\]

where in both (1) and (2), \(\beta \) is shorthand for the function of parameters

\[
\beta(\alpha, \sigma, r) := \frac{1}{2} - \frac{\alpha}{\sigma^2} + \sqrt{\left(\frac{1}{2} - \frac{\alpha}{\sigma^2} \right)^2 + \frac{2r}{\sigma^2}}. \tag{3}
\]

The function \(\beta \) given in (3) is a standard expression in real option models, satisfying \(\beta > 1 \) and \(\lim_{\sigma \to 0} \beta = r/\alpha \). A lower value of \(\beta \) is associated with a greater incentive to wait (it is
straightforward to check that \(\partial \beta / \partial \alpha < 0 \), \(\partial \beta / \partial \sigma < 0 \), and \(\partial \beta / \partial r > 0 \), so \(\beta \) may be interpreted as a measure of “impatience”. The \((Y_t/Y)^\beta \) terms in which \(\beta \) occurs reflect the expected discounting of the monetary units that are received when the stochastic process reaches the relevant thresholds for the first time.\(^8\)

The leader (innovator) payoff is comprised of two terms, which correspond to the monopoly profit flow of the innovating firm and the negative impact on this profit flow of the second firm’s entry. The follower (imitator) payoff has the standard form of a growth option. Both payoff functions are quasiconcave over their domains and attain non-negative global maxima at \(Y_L := (\beta (r - \alpha) I) / ((\beta - 1) \pi_M) \) and \(Y_F := \max \{ Y_t, (\beta (r - \alpha) K) / ((\beta - 1) \pi_D) \} \) respectively. We refer to these thresholds as the optimal standalone leader and follower thresholds, and the pair of strategies \(\{ Y_L, Y_F \} \) corresponds to the open loop equilibrium identified by Reinganum [30].\(^9\)

A key property of the payoff functions which is used throughout our analysis is that the leader payoff is nondecreasing in the imitation cost provided the follower invests at the optimal follower threshold \((\partial L (Y_i, Y^*_F) / \partial K) \geq 0 \), whereas the follower payoff is decreasing in the imitation cost \((\partial F (Y_i; K) / \partial K) < 0 \).

Lastly, both firms may introduce their respective products independently at the same moment, in which case we assume that they incur the same fixed cost. The corresponding payoff is denoted by \(M (Y_i) := L (Y_i, Y_i) (= F (Y_i; I)) \), which is maximized at \(Y_S := (\beta (r - \alpha) I) / ((\beta - 1) \pi_D) \).

2.3 Equilibrium

We choose to focus on symmetric equilibrium. One reason for this is that as firms are taken to be symmetric ex-ante, it seems natural to suppose that they hold symmetric beliefs about each other’s play at the beginning of the investment game. In so doing, the equilibrium described in Proposition 1 below is consistent with the earlier approaches of Fudenberg and Tirole [13] and Hendricks et al. [18].\(^{10}\) Another reason to focus on symmetric equilibrium is that it results in rent dissipation, a feature that is emphasized in the early timing game literature as surveyed by

\(^8\)In the deterministic case \((\sigma = 0) \) and letting \(t_i := \inf \{ \tau, Y_\tau \geq Y_i \} \), \((Y_i/Y)^\beta = \exp(-r(t_i - t)) \), which is the standard continuous time discounting term under certainty.

\(^9\)For sufficiently low values of \(K \ (K \in [0, K_l]) \), \(K_l := (\pi_D/\pi_M) I \), \(Y_F < Y_L \). In this range, if roles were exogenously assigned, a follower would be willing to pay its rival to induce it to invest earlier. We mention this possibility for completeness but the threshold \(K_l \) does not play a significant role in the rest of the analysis.

\(^{10}\)Particularly in attrition models, authors have sometimes proceeded differently. Notably, Hoppe [20] focuses on asymmetric equilibrium in pure strategies. This approach applies if, for instance, the same entry game is played in several independent markets and pre-play communication enables firm coordination, but we do not allow for this possibility here.
Fudenberg and Tirole [14], and which rationalizes a smooth dependence of equilibrium on imitation cost that is of compelling simplicity.

The reduced form game described in Section 2.2 occurs in two stages. First, firms compete in entry thresholds that endogenously determine their roles as innovators or imitators, and second, at once after initial entry has occurred, the remaining firm selects its own entry threshold. We therefore have

- **Stage 1**: both firms select initial entry thresholds \((Y_1, Y_2)\) (or distribution thereof) that determine innovator and imitator roles;
- **Stage 2**: if a single firm \((i)\) innovates, the remaining firm \((-i)\) then selects its imitator entry threshold.

To determine the equilibrium choices, notice that once initial investment by at least one of the firms has occurred, any firm that remains out of the market holds a standard growth option. It prefers to wait if the first investment occurs early enough (before \(Y_F^*\) is reached), and otherwise it prefers to invest immediately. The optimal follower policy for a given first investment threshold \(Y_i^*\) is therefore \(Y_F^* = \max\{Y_i, Y_F^*\}\), resulting in the follower value \(F(Y_F^*; K)\). By backward induction, the first stage leader payoff is therefore \(L(Y_i, Y_F^*)\).

In the first stage, a given firm \(i\)'s payoff is thus

\[
V(Y_i, Y_{-i}) = \begin{cases}
L(Y_i, Y_F^*) & \text{if } Y_i < Y_{-i} \\
p(Y_i; K) L(Y_i, Y_F^*) + p(Y_i; K) F(Y_F^*; K) + (1 - 2p(Y_i; K)) M(Y_i) & \text{if } Y_i = Y_{-i} \\
F(Y_F^*; K) & \text{if } Y_i > Y_{-i}
\end{cases}
\]

where the second line of (4) incorporates the tie-breaking rule of the reduced form game, which runs as follows. If at a given moment both firms seek to invest, whereas it would only be optimal for one to do so (i.e. \(F(Y_F^*; K) > M(Y_i)\)), then they face a known coordination problem (Fudenberg and Tirole [13]). If coordination is successful, either firm is equally likely to invest as a leader or as a follower, with probability

\[
p(Y_i; K) = \begin{cases}
\frac{F(Y_F^*; K) - M(Y_i)}{L(Y_i, Y_F^*) + F(Y_F^*; K) - 2M(Y_i)} & \text{if } L(Y_i, Y_F^*) \geq F(Y_F^*; K) \\
0 & \text{if } L(Y_i, Y_F^*) < F(Y_F^*; K)
\end{cases}.
\]

The expression \((1 - 2p(Y_i; K))\) is the probability that “mistaken” simultaneous investment occurs.\(^{11}\)

\(^{11}\)One contrast between our model and the standard real option game is that the values of the leader and follower
Note that there are two kinds of simultaneous investment outcomes that can arise in the model. If one firm invests first and thereby takes the role of innovator, but does so at a sufficiently high threshold \(Y_i \geq Y_F \), the remaining firm then chooses to invest immediately after, although it takes the follower role so its payoff is \(F(Y_i; K) \). On the other hand, if both firms attempt to invest simultaneously without coordinating their investments, they receive the same payoff \(M(Y_i) \).

In the proposition that follows, we establish that there exists a critical imitation cost, which we denote by \(\hat{K} \), that determines the nature of the duopoly investment game. This imitation cost is defined implicitly by the condition that firms are indifferent in equilibrium between the innovator and imitator payoffs when these are evaluated at the optimal standalone thresholds, that is \(L(Y_L, Y^*_F) = F(Y^*_F; \hat{K}) \) (note that \(Y^*_F \) is a function of \(K \)). For \(K \geq \hat{K} \) so that it is well-defined in \([Y_t, \infty)\), define a critical level of the multiplicative shock \(Y_t \), that we denote by \(Y_P \), as the lower root of the condition \(L(Y_P, Y^*_F) = F(Y^*_F; K) \). This threshold is usually referred to as the preemption threshold, and describes the point of indifference between innovating and imitating. Then,

Proposition 1 The duopoly investment game has a unique symmetric equilibrium and there exists a threshold imitation cost \(\hat{K} \leq 1 \) such that:

(i) if the imitation cost is low \((K < \hat{K}) \), firms play a game of attrition. The innovator investment threshold \(\tilde{Y}_I = \min\{\tilde{Y}_1, \tilde{Y}_2\} \) is distributed continuously over a possibly disconnected support bounded below by the standalone leader threshold \(Y_L \), and imitator investment occurs either at the optimal standalone follower threshold \(Y_F \) or immediately after the innovator’s entry.

(ii) if the imitation cost is intermediate \((K = \hat{K}) \), equilibrium innovator investment thresholds are \(Y^*_1 = Y^*_2 = Y_L \), and investments occur at the optimal standalone leader and follower thresholds \((Y_L, Y_F)\).

(iii) if the imitation cost is high \((K > \hat{K}) \), firms play a game of preemption. Equilibrium innovator investment thresholds are \(Y^*_1 = Y^*_2 = Y_P \), and investments occur at the thresholds \((Y_P, Y_F)\).

Payoffs generally differ at \(Y_F \) because of the asymmetry in investment costs. For some values of \(K \), the behavior of the mistake probability \(1 - 2p(Y_i; K) \) is non-monotonic (See Section ??).
In order to illustrate the cases described in Proposition 1, Figures 1 – 5 depict leader and follower payoffs in the first stage of the game, for different values of the imitation cost. Throughout these figures, as the imitation cost increases, the follower payoff shifts down and towards the right and the optimal standalone follower threshold Y_F increases. Because of the longer monopoly phase, the first stage leader payoff $L (Y_i, Y^*_F)$ accordingly shifts upward over the range of thresholds (Y_0, Y_F) over which investments are sequential. Note that the optimal standalone leader threshold Y_L is independent of K, and the leader payoff function has a kink at Y_F which constitutes the lower bound of the range of thresholds over which innovator and imitator entry are simultaneous. In Figures 1 and 2, there is a second-mover advantage (in the sense that $L (Y_L, Y_F) < F (Y_F; K)$) and the game is one of attrition. Figure 3 represents the intermediate case in which the imitation cost attains its critical value, $K = \hat{K}$, and there is neither a first-mover advantage nor a second-mover advantage. In Figures 4 and 5, there is a first-mover advantage (in the sense that $L (Y_L, Y_F) > F (Y_F; K)$), and the game is one of preemption, with the first investment occurring at Y_P.

In the symmetric equilibrium described in Proposition 1, positive rent dissipation occurs whenever the firms play a game of attrition ($K < \hat{K}$) or of preemption ($K > \hat{K}$). The expected value of firms in equilibrium can therefore be characterized. To state the following corollary, some further notation is necessary. Since $L (Y_i, Y^*_F)$ can have two local maxima, in cases of attrition in which the imitation cost is sufficiently low such as that illustrated in Figure 1, the global maximum may be attained at $Y_S := \arg \max M (Y_i)$, which then corresponds to the lower bound of the support of innovator entry thresholds. Thus, define $Y^*_L := \arg \max L (Y_i, Y^*_F)$ with $Y^*_L \in \{Y_L, Y_S\}$ to refer to the lower bound of all the threshold distributions in attrition equilibrium.

Corollary 1 In a symmetric equilibrium, the expected payoffs of firms are identical and equal to $E V (\tilde{Y}_1, \tilde{Y}_2) = \min \{L (Y^*_L, Y^*_F), F (Y_F; K)\}$, that is to the lowest of the diffusion equilibrium payoffs.

The dependence of the critical threshold imitation cost \hat{K} on model parameters is straightforward. The next corollary gives sensitivity results with respect to the intensity of competition in the product market (π_M / π_D) and discounting (β).

Corollary 2 The more intense product market competition is (π_M / π_D) and the more firms discount the future (β), the more likely it is that preemption occurs, and conversely for attrition:

$$\frac{\partial \hat{K}}{\partial (\pi_M / \pi_D)} < 0 \text{ and } \frac{\partial \hat{K}}{\partial \beta} < 0.$$ \(6\)
To provide intuition for this corollary, recall that the process \(Y_t \) is stochastic and that there is an option value for firms to wait before investing that is positively related to volatility. Provided that there is an inherent advantage to imitation (\(K < I \)), for some parameter values and in particular for large enough volatility (\(\hat{K} > K \)), this option value can outweigh any preemption motive to secure monopoly rents. That is to say, as \(\partial \beta / \partial \sigma < 0 \), by Corollary 2 an attrition regime is more likely in industries with greater demand volatility. This particular comparative static is important because it provides a counterweight to several of the mechanisms that are discussed in the rest of the paper. As the next sections show, institutional conditions such as intellectual property protection and firm choices regarding both technology and licensing generally serve to make market entry regimes more preemptive and attrition relatively rare, unless therefore there is a significant enough degree of demand uncertainty.

3 Imitation cost, industry profit, and welfare

The previous section highlights the key role played by the fixed cost of imitation in determining the nature of strategic competition and the equilibrium pattern of market entry. This imitation cost is likely to be determined by several different factors including technological conditions and the level of intellectual property protection. It thus varies from industry to industry and can be influenced \textit{ex-ante}, most commonly upward, by regulators. Such considerations raise the question of determining what may be desirable levels of imitation cost. At first glance this determination involves a simple trade-off since a higher imitation cost is socially wasteful but also hastens innovator entry. However different effects arise with regard to imitator entry in the preemption and attrition regimes that need to be examined carefully.

Two central results emerge in our model. First, social welfare generally has local maxima in the attrition and preemption regimes. Thus, a model that focuses attention exclusively on either attrition (second-mover advantage) or preemption (first-mover advantage) would run the risk of identifying only local maxima of welfare. Second, if the innovator’s static entry incentive is socially excessive, we are able to obtain an analytic condition for preemption to be socially optimal. A useful preliminary step to conducting this more thorough welfare analysis that is of independent interest is to first consider industry performance only, which allows us to derive an intermediate result regarding industry value.
3.1 Industry performance

We begin with the relationship between imitation cost, first and second mover advantage, and industry profitability. A first and seemingly obvious consideration that emerges from our framework is that lower imitation cost is a necessary, but not a sufficient condition for second mover advantage. Since $\hat{K} \leq I$, if firms have identical fixed costs, there is an inherent first-mover advantage that results from the monopoly phase of the entry game ($L(Y_L, Y_F^*) \geq F(Y_F^*, I)$). The degree of first-mover advantage in this case is determined by the relative importance of monopoly profit in the product market (π_M/π_D). On the other hand a second-mover advantage arises through the input market when the relative advantage of imitation (I/K) is sufficient to compensate for foregone monopoly profit. Thus the empirical presence of lower costs for imitators, as has been observed by different authors (Mansfield et al. [26], Samuelson and Scotchmer [31]), does not by itself ensure that firms will find it desirable to pursue so-called imitation strategies in a dynamic setting. In the symmetric equilibrium of our model, the relationship between imitation cost and entry thresholds runs as follows.

First, note that the higher is the imitation cost, the higher is the standalone threshold for the follower firm (Y_F), although actual follower entry may occur either at this threshold or later if the investment game is one of attrition. The effect of higher imitation cost on the innovator entry threshold (\tilde{Y}_I, Y_L or Y_P) is qualitatively similar throughout the range of imitation costs. As imitation cost increases, in the attrition regime it is the distribution of innovator entry thresholds (\tilde{Y}_I) that is shifted leftward whereas in the preemption regime rent equalization directly results in a lower preemption threshold (Y_P). The effect of higher imitation cost on the distribution of follower investment thresholds (Y_F^*) does not however exhibit a simple relationship with K. In an attrition regime, imitator entry occurs at a higher threshold as a result of an increase in imitation cost if innovation occurs early (if $\tilde{Y}_I \leq Y_F$) but its distribution is shifted leftward if the innovator enters late (if $\tilde{Y}_I > Y_F$). However, the gap (and therefore the expected time lag) between leader and follower thresholds can be shown to increase stochastically with imitation cost. To summarize, higher imitation cost may properly be said to to accelerate innovative investment and the arrival of imitative investment once innovation has occurred.

Lastly, the equilibrium characterized in Proposition 1 leads to a simple result regarding industry performance. Because in the different regimes of attrition and preemption, competition between firms to secure either second or first mover advantages results in the dissipation of any potential rents and since leader value increases in imitation cost whereas follower value decreases, it is only when the level of the imitation cost is such that neither of these regimes occurs (case
(ii), $K = \tilde{K}$) that investment thresholds are set optimally from the standpoint of industry profit. Thus all else equal, it is in those industries in which imitation cost approaches this level so that firms do not have an incentive to seek positional advantages of either sort that industry value is maximized.

Proposition 2 Viewed as a function of imitation cost expected industry value is initially constant, single-peaked, and attains its maximum when neither attrition nor preemption occur (at \tilde{K}).

Note that Proposition 2 established there exists a threshold\(^\text{14}\) $\tilde{K} \leq \hat{K}$ such that if $K \leq \tilde{K}$, the expected firm value $E V(\tilde{Y}_1, \tilde{Y}_2) = M(Y_S)$ is unaffected by imitation cost. There is also therefore a range of imitation cost levels $[\tilde{K}, \hat{K}]$ over which greater resource costs are not detrimental but instead strictly beneficial to the industry. That is to say, if fixed costs are sufficiently high to shield an innovator from instantaneous imitation with positive probability, product introduction is more timely and both firms benefit ex-ante. Moreover, beyond its independent interest, Proposition 2 is also instrumental in establishing our main welfare results, Proposition 3 and Proposition 4 below.

3.2 Optimal protection of innovation

We take the view that regulators can influence the relative cost of imitation, at least upward, through their choice of intellectual property protection levels. With this single instrument, the imitation cost K is a decision variable of the regulator, in which case it seems natural to consider a second-best welfare benchmark in which firms are free to select their entry thresholds and product market output or prices.

To provide some intuition for the analysis that follows, expected welfare in this model can be broken down into three parts: expected industry value, consumer surplus from innovator entry, and consumer surplus from imitator entry. The first of these is maximized at the critical imitation cost \hat{K} (Proposition 2) whereas the other two parts both depend on K directly as well as indirectly through the equilibrium innovator and imitator entry thresholds. A higher imitation cost unambiguously accelerates innovator entry which in turn increases consumer surplus, so the second of these welfare components is increasing in K. But the behavior of the last of the three components of welfare is more complex in an attrition regime, since an increase in K may either delay (through its effect on the standalone threshold Y_F at which imitator entry occurs with positive probability over the relevant range of K) or hasten imitator entry (if innovator entry occurs after

\(^{14}\) See Section A.2 for a characterization of $\tilde{K} := \left(\beta \left((\pi_M/\pi_D) - 1\right) / \left((\pi_M/\pi_D)^{\beta} - 1\right)\right)^{1/(\beta - 1)} I$.

15
Y_F so imitator entry is immediate). Conceivably then, even though raising imitation cost from an initially low level \(K < K^* \) increases industry profit and the consumer surplus from innovation, an attrition outcome can be socially desirable if the consumer surplus from imitation weighs heavily enough.

To formalize this intuition, consumer surplus is taken to be scaled by the market size parameter \(Y_t \), as is the case for firm profits. Let \(CS_M \) and \(CS_D \) then denote the unit flow of consumer surplus under monopoly and under duopoly respectively. The social discount rate is assumed to be identical to that of firms. Recall from Proposition 2 that equilibrium stage 1 investment thresholds \(\{\tilde{Y}_1, \tilde{Y}_2\} \) are stochastic in an attrition regime, and that both the distribution of innovator investment thresholds and the follower threshold \(Y_F^* \) are functions of \(K \). Expected social welfare is thus

\[
E_{\tilde{Y}_1, \tilde{Y}_2} W(K) = E_{\tilde{Y}_1, \tilde{Y}_2} \left[2V(\tilde{Y}_1, \tilde{Y}_2) + \frac{CS_M}{r-\alpha} \tilde{Y}_I^{-(\beta-1)}Y_I^\beta + \frac{(CS_D-CS_M)}{r-\alpha} Y_F^{*-(\beta-1)}Y_F^\beta \right].
\]

(7)

The first summand in (7) is the industry value. It is independent of the distribution of \(\tilde{Y}_I \) and equal to \(2 \min \{L(Y_L^*, Y_F^*), F(Y_F^*; K)\} \), which is single-peaked with respect to \(K \) with a maximum at \(K^* \) (Proposition 2). The second term is the consumer surplus that results from innovative investment. The expected value of this term increases with \(K \), since a higher imitation cost shifts the distribution of innovator entry thresholds (which may be degenerate, e.g. under preemption) leftward. The third term is the consumer surplus that results from the imitator’s entry into the market, and encompasses opposing effects in the attrition range, as discussed above. Nevertheless, welfare in the model can be partially characterized as follows (see Section A.5 for the proof the main steps of which are summarized below).

First, within the range of preemption regimes \((K > K^*) \) the innovator and imitator entry thresholds are respectively \(Y_P \) and \(Y_F \) and an explicit form for the local optimum of (7) can be obtained. For a range of parameter values \(\beta \in [\beta_0, \infty) \), \(\beta_0 > 1 \), this optimum is a corner solution \((K_P = \infty) \) signifying that the social planner’s imitation cost instrument is of too limited a reach to attain its welfare objective. The greatest amount of preemption that the social planner can induce in such cases does not generate enough competition to induce firms to enter sufficiently early, and a single firm is active \textit{ex-post} whose entry timing has been determined by the threat of potential entry. On the other hand, if discounting is not too strong so \(\beta \in (1, \beta_0) \) as occurs for instance if volatility is large, \(K_P \) is finite and strictly greater than \(K^* \) so long as consumer surplus under monopoly is positive \((CS_M > 0)\).
Second, within the range of attrition regimes, there is a local maximum of welfare as well. By continuity of (7), to establish its existence it is sufficient to show that social welfare is decreasing to the left of the critical value \hat{K}. For simplicity set $CS_M = 0$ so that the middle term in (7) drops out. Also, note that the expected industry value term $E_\tilde{Y}_1, \tilde{Y}_2 V(\tilde{Y}_1, \tilde{Y}_2)$ reaches a maximum at \hat{K} so $\partial E_\tilde{Y}_1, \tilde{Y}_2 V(\tilde{Y}_1, \tilde{Y}_2) / \partial K \Big|_{\hat{K}} = 0$. Therefore the behavior of social welfare to the left of \hat{K} is determined by the remaining consumer surplus from imitation $(CS_D - CS_M)$ term. In an attrition regime and for the relevant values of K (for $K \in (\tilde{K}, \hat{K})$) this term has two distinct parts depending on whether the innovator invests before Y_S (in which case imitator investment occurs at Y_F) or after (in which case imitator investment occurs immediately afterward). Accounting for the equilibrium distribution of Y_F^* therefore gives this term as

$$\frac{CS_D - CS_M}{r - \alpha} Y_F^{-(\beta - 1)} Y_t^{\beta - 1} \left(G_\wedge (Y_S; K) + \int_{Y_S}^{\infty} (Y_F/s)^{\beta - 1} dG_\wedge (s; K) \right)$$

where $G_\wedge (\cdot; K)$ is the distribution of \tilde{Y}_I. However, $G_\wedge (Y_S; \hat{K}) = 1$ and it is straightforward to show that $\partial G_\wedge (Y_S; \hat{K}) / \partial K = 0$. To the left of the critical value \hat{K} therefore, changes in K have a second-order effect on the distribution of entry thresholds compared with their effect on Y_F. Thus an envelope argument on the welfare expression (7) establishes that $\lim_{K_\rightarrow \hat{K}} \frac{\partial E_\tilde{Y}_1, \tilde{Y}_2 W(K)}{\partial K} < 0$.

Finally, either of the local maxima (under attrition or preemption) can be a global maximum, depending on the relative magnitude of the consumer surplus resulting from innovation and from imitation.

Proposition 3 In a constrained social optimum, (i) there is a lower bound on the optimal imitation cost ($K^* > \hat{K}$); (ii) either attrition or preemption may be socially optimal; (iii) if the social optimum involves preemption, either one or two firms are active in the industry ex-post depending on the magnitude of the discounting term, resulting in innovation at a threshold $Y_F^* = \psi Y_L$, $\psi \in [(\beta - 1) / \beta, 1]$.\(^{15}\)

The upshot of Proposition 3 is that there does not appear to be a “one size fits all” prescription with respect to balancing the incentives of innovating and imitating firms, suggesting that policy is best determined on a case by case basis according to a number of industry conditions. In line with the discussion above two extreme cases can provide an economic intuition for part (ii) of the proposition as follows.

\(^{15}\)See Section A.5 for a characterization of $\psi := \max \left\{ \frac{\beta - 1}{\beta}, \left(\frac{CS_D - CS_M}{\pi_D} + \frac{2}{\beta} \right) / \left(\frac{CS_D}{\pi_D} - \frac{\beta - 1}{\beta} \frac{CS_M}{\pi_M} + \frac{2}{\beta} \right) \right\}$.

17
Corollary 3 If a monopoly innovator can practice perfect price discrimination \((C_S = 0)\) then attrition is socially optimal. If there is either a unit demand or collusion in the product market \((C_S + 2\pi_D = C_S + \pi_M)\) then preemption is socially optimal.

The optimal value of welfare in the preemption range has a straightforward closed form expression but the characterization of the optimal value of welfare in the attrition range is more complex. To obtain our second welfare result we therefore make two further restrictions. For the remainder of this section, suppose that the static entry incentive is socially excessive \((\pi_D \geq (C_S + 2\pi_D) - (C_S + \pi_M)))\). To provide some motivation for this restriction, recall that in a static setting with symmetric firms and homogeneous goods Mankiw and Whinston [24] show that there is excess entry in an industry if total output increases whereas individual outputs decrease with the number of firms (the *business-stealing* effect) and argue that these assumptions characterize a broad range of models of oligopoly. In our dynamic setting, the main effect of this assumption is to bound the welfare associated with the imitator’s entry by the expected value of a duopoly firm, and hence (by Proposition 2), by \(\mathbb{E}_{\tilde{Y}_1,\tilde{Y}_2} V \left(\tilde{Y}_1, \tilde{Y}_2\right)\mid K = \hat{K}\), so as to establish the following.

Proposition 4 Suppose that the static private entry incentive is socially excessive. Then, in a constrained social optimum preemption is optimal if

\[
\frac{C_S}{\pi_M} \geq \Omega(\beta). \tag{9}
\]

The condition (9) in Proposition 4 is satisfied either if there is sufficient discounting, as the right-hand term is decreasing in \(\beta\) with \(\lim_{\beta \to 0} \Omega(\beta) = 0\), or if demand satisfies a generalized convexity property, \(\rho-\text{convexity} (\text{with } \rho = (1/\Omega(\beta)) - 1)\) that holds for common specific forms such as linear and constant elasticity demand function.

4 Endogenous entry barrier, buyout, and licensing

Our framework is readily extended to incorporate further real-world aspects of innovation and imitation. One is the ability of an innovating firm to raise the entry barrier of the imitator, either through technological choices in product development that render reverse engineering more costly or by strengthening the patentability of its product. Another aspect is contracting between the

\[\text{See Section A.6 for a derivation of } \Omega(\beta) := \frac{2}{\beta} \left(\left(\frac{\beta}{(\beta - 1)}\right)^{\beta-1} - 1\right)^{-1}.\]
innovator and the imitator, which typically takes the form of technology transfer that reduces the follower’s imitation cost in a context similar to a licensing agreement, but can also involve a “pay for delay” agreement or a buyout. From a formal standpoint these extensions both add an intermediate stage to the investment game, once the innovator’s entry has occurred and before the imitator invests. Moreover, by raising the standalone value of the innovating firm, they tend to favor first-mover advantage and the emergence of preemption regimes although the implications for imitation timing and welfare generally differ.

4.1 Endogenous entry barrier

Suppose that the innovating firm may rely on a varying degree of either legal or technical protection in order to influence the imitation cost of a subsequent entrant. In case of legal protection, the imitation cost level reflects the breadth of patents, with wider patents implying higher costs for inventing around so as to develop a non-infringing imitation. Moreover, firms may decide to pursue patent protection more or less aggressively, as is the case for pharmaceutical firms as discussed in Section 1.3. In case of technical protection, the imitation costs are imparted by reverse engineering, and increase with the complexity of the copied product. For instance, an innovating firm can expend effort to render its product more difficult to disassemble, or even add misleading complexity (Samuelson and Scotchmer [31]).

Such choices may be incorporated into our model by introducing a decision by the innovating firm at the time of its investment to expend an additional irrecuperable cost, which we denote by ρ, that raises the imitating firm’s fixed cost by an amount $f(\rho)$, where f is taken to be an increasing and weakly concave function, with $f(0) = 0$ for simplicity. The cost ρ is deducted from the innovator payoff $L(Y_1, Y_2^*)$ defined in (1). The investment costs of the innovator and imitator are then redefined as $I(\rho) := I_0 + \rho$ and $K(\rho) := K_0 + f(\rho)$, where I_0 and K_0 represent baseline values where no effort is exerted on raising rival cost. With respect to the sequence of decisions, the choice of ρ arises once the roles of firms are determined, at the moment the innovator enters and before the second firm’s entry so that we have:

- Stage 1’: both firms select initial entry thresholds (Y_1, Y_2) that determine innovator and imitator roles;
- Stage 2’: if a single firm (i) innovates, it selects a degree of patenting effort and product complexity (ρ);
- Stage 3’: the remaining firm (j) then selects its imitator entry threshold.
Proceeding by backward induction, in stage 3' the imitator payoff is a nonincreasing function of $K(\rho)$ and therefore of the innovator’s effort ρ whereas its entry threshold $Y^*_F(\rho) = \max\{Y_i, Y_F(\rho)\}$ is nondecreasing. In stage 2’, with an endogenous barrier to imitation an innovator that enters at Y_i has an adapted expected payoff $L_e(Y_i, \rho)$ and faces the decision problem $\max_{\rho} L_e(Y_i, \rho)$, and at an interior optimum the cost-raising effort satisfies

$$f'(\rho^*) \left(\frac{\beta^3-1}{(\beta-1)^3} \frac{\pi_D}{\pi_M - \pi_D} \left(\frac{r - \alpha}{\pi_D}\right)^{\beta} \right)^{\frac{1}{\beta}} Y_i^{\frac{1}{\beta}}. \quad (10)$$

The reasoning for stage 1’ proceeds as in the model Section 2, save that the innovation and imitation payoffs take the respective forms $L_e(Y_i, \rho)$ and $F(Y^*_F(\rho^*) ; K_0 + f(\rho^*))$. Whenever it is interior (positive) the optimal choice ρ^* results in a higher innovator payoff, whereas the imitator payoff is lower: $(L_e(Y_i, \rho) > L(Y_i, Y^*_F(0))$ and $F(Y_i ; K_0 + f(\rho^*)) < F(Y_i ; K_0))$. The equilibrium is as characterized in Proposition 1, the main differences being that the endogenization of K results in more preemptive strategic investment with a lower critical threshold $\hat{K}_e < \hat{K}$ separating the preemption and attrition regimes.

The endogeneity of entry barriers has some noteworthy economic consequences. To begin with, in those industries in which the cost of imitation is large enough so that entry competition is in the preemption range, as equilibrium payoffs are decreasing in imitation cost (Proposition 2), firms have a lower expected value than when the imitation cost is exogenous. To avoid this penalizing outcome firms would prefer to both commit ex ante not to exert any cost-raising effort in case they happen to lead the investment process as an outcome of stage 1’ (since ex post, raising the imitation cost is a dominant strategy for the firm that happens to enter as an innovator in stage 2’). One way to achieve such a commitment is by agreeing to a common and open technological standard.

Moreover, the first-order condition of the innovator is informative as to the role of the baseline cost of imitation K_0. Since the left-hand side of (10) is a decreasing function that shifts downward as K_0 increases, a straightforward comparative static establishes that the effort to raise the level of entry barriers decreases with the baseline imitation cost, which it supplements $(\partial \rho^*/\partial K_0 < 0)$. The latter property is in line with the biopharmaceutical industry case discussed in Section 1.3 where firms typically place greater reliance on patenting in the medications segment, in which natural entry barriers are low than in the vaccines segment.
4.2 Buyout and licensing

The autonomous investment incentives of innovators and imitators having been described, it is then natural to allow for some common forms of contracting between firms. In the context of innovation and imitation, licensing is a particularly important possibility whenever some of the knowledge developed by the innovator can be transferred to the second firm. Other types of contracts that can be observed include a pay-for-delay agreement or a buyout, if these are allowed and provided that an imitator can commit not to enter the market over a certain period. Such agreements are typically concluded by pharmaceutical firms and generic manufacturers. In this context, a buyout in which the acquiring firm shuts down its rival may be thought of as a limiting case of pay-for-delay.

In order to focus broadly on the effects of contracting on entry timing, we do not propose to study contracting in full generality but instead make the simplifying assumption that firms have the ability to make a single spot transaction, which may involve a transfer either of technology or asset ownership in exchange for a lump sum payment. This simple form of contract suffices to illustrate a diversity of outcomes. We also assume that the contract is written by the innovator, who holds all the bargaining power.

As a result, the entry game has an intermediate stage, which consists of a dynamic agency problem in which the innovator incentivizes the imitating firm’s investment behavior. Let \(K_0 \) denote an incompressible level of imitation cost reflecting such items as distribution and marketing expenses, and \(K_I \) denote that part of the imitator’s product development cost that can be eliminated by a technology transfer from the innovator, so the fixed cost of the imitator is \(K := K_0 + K_I \). The sequence of moves is:

- Stage 1": both firms select initial entry thresholds \((Y_1, Y_2)\) that determine innovator and imitator roles;

- Stage 2": if a single firm \((i)\) innovates, it proposes a contract involving a transfer \((\varphi)\) from the innovator to the imitator \((\varphi > 0\) for a pay for delay or buyout, \(\varphi < 0\) for a technology transfer);

- Stage 3": the remaining firm \((j)\) decides whether or not to accept the contract and selects its entry threshold.

The reservation value of the follower if it rejects any contract with the innovator is the value which results from the equilibrium described in the model of Section 2, \(F(Y^*_F; K_0 + K_I) \). Because
this reservation value is time-dependent until its realization at Stage 3, it is useful to denote its Stage 2 value as $F_0(Y_t)$ and we assume without loss of generality that the contract is proposed at the time either the innovator or the imitator enters, i.e. $Y_t = Y_i$ or $Y_t = Y^*_F$. There are then two cases to consider that depend on the comparative industry profits in monopoly and duopoly.

(i) If the efficiency effect is present ($\pi_M/\pi_D \geq 2$) as occurs in many standard industrial organization settings, if it can do so effectively an innovator prefers to pay the imitator its reservation value at the time of its entry ($\varphi^* = F_0(Y_i)$) in order to delay imitation indefinitely (a buyout). Such an arrangement raises the expected payoff function of the leader and leaves the expected payoff of the follower unchanged, rendering a preemption regime more likely. All else equal, the magnitude of the impact on leader payoff depends on the strength of the efficiency effect, and if it is sufficiently strong or volatility is high enough (if $\pi_M/\pi_D \geq \beta + 1$) attrition does not occur for any level of K. If $K \geq \tilde{K}$ so that the industry is in a preemption regime, then industry profits are pegged at $F_0(Y_F)$ and unaffected by the possibility of buyout, whereas they are weakly higher otherwise. The effect on consumer surplus is ambiguous, as innovation occurs earlier than it otherwise would but this must be balanced against the absence of imitator entry into the product market. Taking two extreme examples, with perfect price discrimination under monopoly ($CS_M = 0$) a takeover may or may not be socially efficient depending on the relative importance of additional innovator value and lost surplus from imitation, whereas if the product market would function as a cartel ($\pi_M/\pi_D = 2$) a buyout increases welfare only to the extent that it economizes on the fixed cost of imitation, K.

If a takeover is not allowed the best option for the innovator is to allow follower entry at the standard threshold Y^*_F, but set its maximum license fee at this moment $\varphi^* = K_I$ so as to recoup revenue from a part of the imitator’s investment cost, thus reducing the duplication of R&D efforts. At the time of innovator entry, the discounted expected value of this fee reduces the innovator’s irreversible cost of investment by the expected licensing revenue $K_I(Y_i/Y^*_F)^\beta$ and the leader payoff in stage 1 shifts up for an unchanged payoff function to the imitator, as in the case of a takeover. As with a buyout, a consequence of licensing is a lower critical imitation cost that separates the preemption and attrition regimes and a weakly increasing industry value. With licensing, the effect on consumer surplus is simpler. Licensing accelerates innovation under both preemption and attrition, leaving the arrival of imitation unchanged at Y_F, and is therefore unambiguously welfare improving.

(ii) If there is sufficient product market complementarity between firms ($\pi_M/\pi_D < 2$), imitation is a positive externality for the industry. The optimal imitator entry threshold for the industry is then $Y^*_{F^*} := \beta (r - \alpha) K_0 / (\beta - 1) (2\pi_D - \pi_M)$. It is greater than the standalone imitator threshold if
the value of transferable technology is relatively small or if product complementarity is not too strong (if \(\pi_M/\pi_D > 2 - (K_0/(K_0 + K_I)) \)) and smaller otherwise, in which case an innovator seeks to accelerate imitator entry. If it enters early enough to have leeway and imitation would occur too late otherwise \((Y_i, Y_F^{**} < Y_F) \), the innovator induces the industry optimum by setting a license fee
\[
\varphi^* = \frac{\pi_D}{r - \alpha} Y_F^{**} - K_0 - F_0(Y_F^{**})
\]
and we find \(\varphi^* < K_I \) in this case. This result is noteworthy because the innovator then subsidizes the licensee to induce imitation at \(Y_F^{**} \).

Returning to the biopharmaceutical example discussed throughout the paper, this result offers a rationalization for observed cooperation in the vaccine industry, when a research-intensive manufacturer transfers knowledge to a local competitor in a developing economy for a lesser payment than the investment that the technology recipient would have made in the absence of agreement (see WHO [39]).

4.3 Synthesis

The richer set of interactions between innovating and imitating introduced in this section firms typically raises first-mover advantage, raising the likelihood that strategic investment dynamics take the form of a preemption race. Where technological choices and contractual alternatives typically have contrasting effects is with respect to the timing of imitator entry, which is naturally delayed when entry barriers are endogenous but which may be either accelerated or entirely eliminated by contractual measures, so that the latter may be thought of as inducing a greater variance in imitation outcomes. To summarize:

Proposition 5 In an extended framework for strategic investment

(i) with endogenous barriers to imitator entry, in a preemption regime firms benefit from agreeing ex-ante to a common standard; the lower the baseline cost of imitation, the higher the entry barrier set by the innovator.

(ii) with contracting between the innovator and the imitator, if the efficiency effect is sufficiently strong industry profits increase with buyouts and only preemption occurs, whereas if buyouts are ruled out licensing increases welfare; if there are significant product market complementarities

17 The use of this simple licensing instrument increases welfare since innovation and imitation occur earlier while industry profit does not decrease, but this result is not robust to other forms of licensing. If \(Y_F^{**} > Y_F \) and the innovator can sign a forcing contract that is contingent on the imitator’s entry threshold, imitation is optimally delayed by licensing and the consequences for welfare are ambiguous.
and imitation occurs late, the innovator may choose to subsidize its rival’s entry in a licensing agreement.

5 Conclusion

We have sought to develop an integrative framework so as to study some long-standing questions regarding the allocation of resources to innovation and to imitation under imperfect competition, in line with both established research on innovation and more recent theory on strategic investment. In the classic work in this field, intellectual property protection, and notably patent policy, is motivated with reference to a trade-off between static and dynamic inefficiencies, as described by Arrow [2] in a setting with monopoly and competition. The analysis of this trade-off under imperfect competition and in a dynamic setting highlights an altogether different channel through which changes in the cost of imitation influence firm choices, by altering the nature of strategic competition (attrition vs. preemption). The broad message that emerges from the study of the duopoly case remains consistent with this seminal work – notably, that some degree of protection should be afforded to innovators when the cost of imitation is relatively small. At the same time, alternative mechanisms such as technological choice and contracting alternatives exist that can, to an extent, substitute for the regulatory protection of innovators so that a natural dynamic allocation need not be less efficient than a regulated one.

Among the extensions of the framework that we have identified but have not pursued here, a possible next step in the analysis is to study incremental innovation (or “versioning”) among existing firms in a market. In this setting, it is more likely that simultaneous investment equilibrium solutions arise, suggesting that firms might coordinate on investment timing. It is not much further to go to examine the possibility of cooperation in product development with these tools as well.

A Proofs

A.1 Reduced form and continuous time games

The market entry game described in Section 2.2 is a reduced form of a game in continuous time in which firms choose (stochastic) stopping times rather than thresholds. A complete specification of the preemption case can be found in Thijssen et al. [36], whereas a recent working paper, Steg
[33], provides a foundation the attrition case in particular. We give a summary description of relevant aspects of the underlying theory here.

In a more general timing game, strategies consist at any moment \(t_0 \) of a pair of functions \((G_{t_0}^i, \alpha_{t_0}^i)\), the first of which is the cumulative distribution function of a firm’s future investment times over the sample space, and the second of which is an investment intensity or “atom function”. The latter allows for coordination between firms at times when simultaneous investment by both firms is not optimal and satisfies a number of consistency conditions. It is such that \(\alpha_{t_0}^i (\cdot) \in [0, 1] \).

At any time \(t \) at which both firms simultaneously attempt to invest, dropping time subscripts and the argument \(K \) for simplicity, firm \(i \)’s probability of investing before its rival is

\[
p(i) = \frac{\alpha_i (1 - \alpha_j)}{\alpha_i + \alpha_j - \alpha_i \alpha_j}
\] (12)

and its expected payoff is

\[
\tilde{V}_i(\alpha_i, \alpha_j) = p(i) L(Y; Y_F^*) + p(j) F(Y_F^*; K) + (1 - p(i) - p(j)) M(Y).
\] (13)

In a symmetric equilibrium in mixed strategies and positive investment intensity \((\alpha_i, \alpha_j) \neq (0, 0)\), \(\alpha_j \) should be such that firm \(i \) is indifferent between different intensities, i.e. \(\partial \tilde{V}_i / \partial \alpha_i = 0 \) where

\[
\frac{\partial \tilde{V}_i}{\partial \alpha_i} = \alpha_j \frac{-\alpha_j (L(Y; Y_F^*) - M(Y)) + (L(Y; Y_F^*) - F(Y_F^*; K))}{(\alpha_i + \alpha_j - \alpha_i \alpha_j)^2}.
\] (14)

The sign of (14) depends on the comparison of \(L(Y; Y_F^*) \) with \(M(Y) \) and \(F(Y_F^*; K) \). For all \(Y < (=) Y_F^* \), we have \(L(Y_i; Y_F^*) > (=) M(Y_i) \). Therefore, a symmetric equilibrium in mixed strategies with positive investment intensity exists only if \(K > \hat{K} \) so that \(L(Y_h; Y_F^*) > F(Y_F^*; K) \). Its support is then \(\{ Y \leq Y_F | L(Y; Y_F^*) > F(Y_F^*; K) \} \), with

\[
\alpha_i^* = \alpha_j^* = \frac{L(Y; Y_F^*) - F(Y_F^*; K)}{L(Y_F^*) - M(Y)}
\] (15)

which, given the investment probabilities (12) yields the tie-breaking rule (the investment probabilities) and the reduced form payoff \(V(Y_i, Y_j) \) in (4).

Aside from the coordination problem that arises when firms seek to invest simultaneously another key aspect of the continuous time game with a stochastic demand shock adopted here is that the process \(Y_t \) exits the region over which attrition occurs with positive probability within any positive time increment \(dt \), so the equilibrium distribution over stopping times must account for this possibility which does not arise in the reduced form game or if the stochastic process is monotonic. Because of the relatively simple payoff structure in our model (in an attrition...
regime with \(K \leq \hat{K} \), the second-mover advantage is global in the sense that \(L(Y; Y^*_F) \leq F(Y^*_F; K) \) for all \(Y \), the equilibrium outcomes in stopping thresholds are not altered and the equilibrium distribution in the attrition range is given by (19) and (24) below.

A.2 Proof of Proposition 1

In this section we first identify and characterize the critical threshold \(\hat{K} \). We then study the innovator value function \(L(Y_i, Y^*_F) \). Finally, we derive the equilibrium strategies in the attrition \((K < \hat{K})\) and preemption regimes \((K \geq \hat{K})\).

Characterization of \(\hat{K} \)

Proposition 6 There exists a unique threshold that separates the attrition and preemption regimes of the investment timing game,

\[
\hat{K} = \left(\frac{1 + \beta ((\pi_M/\pi_D) - 1)}{(\pi_M/\pi_D)^\beta} \right)^{1/(\beta-1)} I. \tag{16}
\]

We first verify that \(\hat{K} \) is well defined. If \(K = 0 \), then \(Y_F = 0 \) so the follower’s investment in stage 2 occurs immediately after innovation, \(Y^*_F = Y_i \). In that case

\[
L(Y_i, Y^*_F) = \left(\frac{\pi_D}{r - \alpha} Y_i - I \right) \left(\frac{Y_i}{Y^*_i} \right)^\beta < \frac{\pi_D}{r - \alpha} Y_i \left(\frac{Y_i}{Y^*_i} \right)^\beta = F(Y_F^*; 0) \tag{17}
\]

for all \(Y_i \geq Y_i \). For any \(K \), any increase in imitation cost shifts \(L(Y_i, Y^*_F) \) upward since \(Y^*_F \) is nondecreasing in \(K \) and \(\partial L(Y_i, Y^*_F) / \partial Y^*_F \geq 0 \). Moreover any increase in imitation cost shifts \(F(Y^*_F; K) \) downward since \(Y^*_F \) maximizes \(F(Y_i; K) \) and \(\partial F(Y_i; K) / \partial K < 0 \). At \(Y_L \) and \(Y_F \) therefore, \(\partial L(Y_L, Y^*_F) / \partial K \geq 0 \) and \(\partial F(Y^*_F; K) / \partial K < 0 \), with \(\lim_{K \to \infty} F(Y^*_F; K) = 0 \). Therefore, there exists a unique level of the imitation cost \(\hat{K} \) such that \(L(Y_L^*, Y^*_F) = F(Y^*_F; \hat{K}) \). As \(L(Y_S, Y_S) = F(Y_F^*; K) \iff K = I \) in which case \(L(Y_L, Y^*_F) > F(Y^*_F; I) \), this threshold is given by the solution in \(K \) to \(L(Y_L, Y_F) = F(Y_F; K) \), and it is direct to verify the expression (16), as well as the property discussed Section 3.1 of the text, \(\hat{K} \leq I \) (see Section B.1 in the supplementary section for derivations).

Characterization of \(L(Y_i, Y^*_F) \)

We next study the function \(L(Y_i, Y^*_F) \) over \([Y_i, \infty)\). There are at most two local maxima, at \(Y_L = \arg \max L(Y_i, Y_F) \) and \(Y_S = \arg \max M(Y_i) \), with \(Y_L \leq Y_S \). For \(K = 0 \), \(Y_F < Y_L \) so \(Y^*_F = \min \{Y_i, Y_F\} \) and \(L(Y_i, Y^*_F) < M(Y_S) \). As argued above, any increase in imitation cost

shifts \(L(Y_i, Y^*_F) \) upward, whereas \(M(Y_S) \) is unchanged. Therefore, there exists a unique level of the imitation cost \(\tilde{K} \) such that \(L(Y_L, Y^*_F) = M(Y_S) \). This threshold is given by the solution in \(K \) to \(L(Y_L, Y_F) = M(Y_S) \), and it is direct to verify that

\[
\tilde{K} = \left(\frac{\beta ((\pi_M/\pi_D) - 1)}{\pi_M/\pi_D^{\beta - 1}} \right)^{1/(\beta - 1)} I. \tag{18}
\]

Then \(Y_L \) (resp. \(Y_S \)) is a unique global maximum of \(L(Y_i, Y^*_F) \) if \(K > \tilde{K} \) (resp. \(K < \tilde{K} \)).

Recall that \(K_l := (\pi_D/\pi_M) I \) denotes the imitation cost such that \(Y_L = Y_F \). Then the critical imitation cost levels that determine different equilibrium properties in the attrition range are ranked as follows:

Proposition 7 The imitation cost levels \(\{K_l, \tilde{K}, \hat{K}\} \) satisfy \(K_l \leq \tilde{K} \leq \hat{K} \) with strict inequalities if \(\pi_M > \pi_D \).

(see Section B.1 for derivation).

Attrition equilibrium

For \(K < \tilde{K} \) we have \(L(Y_i, Y^*_F) < F(Y^*_F; K) \), all \(Y_i \), so firms play a waiting game. There are two subcases to consider, i) \(K < \tilde{K} \) and ii) \(\tilde{K} \leq K < \hat{K} \).

i) \(K < \tilde{K} \) subcase

If \(K < \tilde{K} \), we know from the characterization of \(L \) above that \(L(Y_i, Y^*_F) \) has a unique global maximum at \(Y_S \) and decreases over \((Y_S, \infty) \). Any play in \([Y_L, Y_S) \) is thus dominated by investing at \(Y_S \) (see Figure 1). The choice of stopping thresholds by firms is therefore a standard war of attrition with complete information over \([Y_S, \infty) \). By Theorem 3 of Hendricks et al. [18] and continuity at \(Y_S \) (since \(\partial L(Y_S, Y^*_F) / \partial Y_i = 0 \) there is a unique symmetric equilibrium in which firms randomize entry thresholds over \([Y_S, \infty) \) according to the cumulative distribution

\[
G_0(Y_i; K) = 1 - \exp \int_{Y_S}^{Y_i} \frac{M'(s)}{F(s; K) - M(s)} ds \tag{19}
\]

and that results in an expected payoff of \(M(Y_S) \). Substituting for the functions \(F \) and \(M \) and integrating gives the explicit form

\[
G_0(Y_i; K) = 1 - \left(\frac{Y_i}{Y_S} \right)^{\beta \frac{M'}{F}} \exp \left\{ -\beta \frac{I}{I - K} \left(\frac{Y_i}{Y_S} - 1 \right) \right\}. \tag{20}
\]

Note that as \(Y_F \leq Y_S \), follower entry always occurs immediately after the first investment.
\[ii) \bar{K} \leq K < \bar{K} \text{ subcase} \]

If \(\bar{K} \leq K < \bar{K} \), we know from the characterization of \(L \) above that \(L(Y_i, Y_F^*) \) has a global maximum at \(Y_L \) and a local maximum at \(Y_S \). Because the leader payoff \(L(Y_i, Y_F^*) \) is not monotonic over \([Y_L, Y_S]\) the attrition game is nonstandard. Let \(Y_{S'} \) denote the unique solution in \([Y_L, Y_F]\) to the condition \(L(Y_{S'}, Y_F) = M(Y_S) \). To verify that this threshold is well-defined, note that \(Y_L \leq Y_F \leq Y_S \) since \(K_i \leq \bar{K} \leq K < \bar{K} \leq I \) and that \(L(Y_i, Y_F^*) \) is continuous and weakly decreasing on \([Y_L, Y_F]\) (see Figure 2). To derive the equilibrium, proceed by backward induction.

First, the subgame starting at \(Y_S \) is a standard war of attrition, so conditionally on \(Y_S \) being reached, firms randomize their entry triggers according to the distribution \(G_0 \) given in (19) above.

Next, any play in \((Y_{S'}, Y_S)\) is weakly dominated by investing at \(Y_S \). Therefore, the expected payoff in the subgame that begins at \(Y_{S'} \) is \(M(Y_S) \).

Lastly, consider a truncation of the game at \(Y_{S'} \) so that firms invest over \([Y_L, Y_{S'}]\) with a terminal payoff \(M(Y_S) \) if no firm has invested when \(Y_{S'} \) is reached. This is a standard war of attrition with complete information and by Hendricks et al. there is a unique symmetric equilibrium in which firms randomize their entry triggers over \([Y_L, Y_{S'}]\) with a terminal mass point \(q := \Pr \{Y_i = Y_{S'}\} \). Because expected payoffs are constant over the support of mixed strategies which includes \(Y_i = Y_L \), \(q \) satisfies \(qM(Y_S) + (1 - q) F(Y_F^*; K) = L(Y_L, Y_F^*) \). In the truncated game therefore, firm randomizing entry thresholds over \([Y_L, Y_{S'}]\) according to the cumulative distribution

\[
\overline{G}(Y_i; K) = 1 - \exp \int_{Y_L}^{Y_i} \frac{\partial L(s, Y_F^*)/\partial Y_i}{F(Y_F^*; K) - L(s, Y_F^*)} ds \quad (21)
\]

with an atom \(q(Y_{S'}) = (F(Y_F^*; K) - L(Y_L, Y_F^*)) / (F(Y_F^*; K) - M(Y_S)) \) at \(Y_{S'} \). Evaluating the integral in (21) and noting that \(Y_F^* = Y_F \) here yields

\[
\overline{G}(Y_i; K) = \frac{L(Y_L, Y_F) - L(Y_i, Y_F)}{F(Y_F; K) - L(Y_i, Y_F)} \quad (22)
\]

Substituting \(Y_{S'} \) into (22) directly establishes:

Proposition 8 The probability that there is a positive lag between innovation and imitation is

\[
\overline{G}(Y_{S'}; K) = \frac{\left((\pi_M/\pi_D)^{\beta - 1} - \beta (I/K) \right) - \left((\pi_M/\pi_D)^{\beta - 1} - 1 \right) (I/K)^{\beta - 1}}{(I/K)^{\beta - 1} - 1} \quad (23)
\]

\(^{18}\)Note that for \(K = \bar{K}, Y_L = Y_{S'} \) and \(\overline{G}(Y_{S'}; \bar{K}) = 0 \), whereas at the other extreme \(\overline{G}(Y_{S'}; \bar{K}) = 1 \).
With these elements, the symmetric equilibrium of the unconstrained attrition game over \([Y_L, \infty)\) can be properly described. Note first that if a firm were to play an atom at \(Y_{S'}\), the other would strictly prefer delaying entry until \(Y_S\). In a symmetric equilibrium, entry thresholds are therefore continuously distributed over the disconnected support \([Y_L, Y_{S'}] \cup [Y_S, \infty)\). On this support, the cumulative distribution function

\[
G(Y_i; K) = \begin{cases}
\mathcal{G}(Y_i; K) & \text{if } Y_L \leq Y_i \leq Y_{S'} \\
\mathcal{G}(Y_{S'}; K) & \text{if } Y_{S'} < Y_i < Y_S \\
\mathcal{G}(Y_{S'}; K) + (1 - \mathcal{G}(Y_{S'}; K)) G_0(Y_i; K) & \text{if } Y_S \leq Y_i
\end{cases}
\]

(24)

is the symmetric subgame perfect Nash equilibrium, and results in an expected payoff \(L(Y_L, Y_{F}^*)\).

Preemption equilibrium

For \(K > (\text{resp. } =) \hat{K}, \) \(L(Y_L, Y_{F}^*) > (\text{resp. } =) F(Y_{F}^*; K)\) so there exists a unique \(Y_P \in (Y_0, Y_L)\) (resp. \(Y_P = Y_L\)) such that \(L(Y_P, Y_{F}^*) = F(Y_{F}^*; K)\). We refer to preemption when the inequalities are strict so \(Y_P < Y_L\). Both firms seek to invest at \(Y_P\), with equal probability of being an innovator or of effectively entering as an imitator at \(Y_F\). The structure of the game and the arguments establishing equilibrium are those of a standard preemption game, although two additional points warrant mention.

If \(K < I\), the equilibrium condition \(L(\cdot, Y_{F}^*) = F(Y_{F}^*; K)\) has a root \(Y_{P'} \in (Y_L, Y_F)\). In this case, in contrast with standard preemption games, in a subgame where \(Y_i > Y_{P'}\) firms play a war of attrition resulting in an expected payoff \(L(Y_i, Y_{F}^*)\). As \(\partial L(Y_{P'}, Y_{F}^*)/\partial Y_i < 0\), if \(Y_0 \leq Y_{P'}\) firm prefers to enter before \(Y_{P'}\) and this subgame is never reached on the equilibrium path.

Second, although simultaneous investment is generally not an equilibrium in the standard new market model of strategic investment, the suboptimality of simultaneous investment needs to be verified here because of the difference between leader and follower investment costs. Investment at the optimal simultaneous investment threshold \(Y_S\) results in a payoff \(M(Y_S)\) and evaluating,

\[
\frac{L(Y_L, Y_{F}^*)}{M(Y_S)} = \left(\frac{\pi_M}{\pi_D}\right)^\beta - \beta \left(\frac{\pi_M}{\pi_D} - 1\right) \left(\frac{I}{K}\right)^{\beta-1}.
\]

(25)

This ratio is increasing in \(K\) and therefore over the preemption range for which simultaneous equilibrium might arise, it is minimized at \(\hat{K}\). Substituting \(\hat{K}\) for \(K\) and simplifying gives \(L(Y_L, Y_{F}^*)/M(Y_S) = \left(I/\hat{K}\right)^{(\beta-1)} \geq 1\), with strict inequality if \(\pi_M > \pi_D\). The best response to \(Y_{-i} = Y_S\) is thus \(Y_L\) for all \(K \geq \hat{K}\). Therefore firms seek to preempt one another before the simultaneous investment threshold is reached. \(\square\)
A.3 Proof of Corollary 2

To establish the corollary we characterize the effect of β and π_M / π_D on \hat{K}. Evaluating the relevant partial derivatives and rearranging yields

$$\frac{\partial \hat{K}}{\partial (\pi_M / \pi_D)} = -\beta \left(\frac{\pi_M}{\pi_D} - 1 \right) \left(1 + \beta \left(\frac{\pi_M}{\pi_D} - 1 \right) \right)^{\frac{2-\beta}{\beta-1}} \left(\frac{\pi_M}{\pi_D} \right)^{\frac{1-2\beta}{\beta-1}} \hat{I}$$

so $\partial \hat{K} / \partial (\pi_M / \pi_D) < 0$ directly,\(^\text{19}\) whereas

$$\frac{\partial \hat{K}}{\partial \beta} = -\frac{1}{(\beta-1)^2} \left(\ln \frac{1 + \beta ((\pi_M / \pi_D) - 1)}{\pi_M / \pi_D} - \frac{(\beta - 1) ((\pi_M / \pi_D) - 1)}{1 + \beta ((\pi_M / \pi_D) - 1)} \right) \hat{K}.$$ \quad (27)

The sign of $\partial \hat{K} / \partial \beta < 0$ is the opposite of that of the middle (bracketed) term. Applying the logarithm inequality $\ln x > (x - 1) / x$ for $x > 0, x \neq 1$ with $x = (1 + \beta ((\pi_M / \pi_D) - 1)) / (\pi_M / \pi_D)$ yields

$$\ln \frac{1 + \beta ((\pi_M / \pi_D) - 1)}{\pi_M / \pi_D} > \frac{(\beta - 1) ((\pi_M / \pi_D) - 1)}{1 + \beta ((\pi_M / \pi_D) - 1)}$$

which is sufficient to conclude. □

A.4 Section 3.1 arguments and industry optimum (Proposition 2)

Sensitivity analysis of investment thresholds

Consider first the innovation threshold \bar{Y}_I (where $\bar{Y}_I \equiv Y_P$ under preemption and $\bar{Y}_I \sim G^\wedge := 1 - (1 - G_0)^2$ or $1 - (1 - G)^2$ under attrition). If $K < \bar{K}$ (or $K = \bar{K}$), the hazard rate over first entry thresholds implied by (19) is

$$h_0 (Y_i; K) = \frac{\beta I}{I - K} \left(\frac{1}{Y_S} - \frac{1}{Y_i} \right),$$

so $\partial h_0 / \partial K \geq 0$. For $\bar{K} < K < \bar{K}$, the hazard rate corresponding to (24) is defined by parts. Over $[Y_L, Y_S')$ the hazard rate is

$$\bar{h} (Y_i; K) = \frac{-\partial L(Y_i, Y_F^*)/\partial Y_i}{F (Y_F^*; K) - L(Y_i, Y_F^*)}$$

where the numerator is independent of K, so $\partial \bar{h} / \partial K = - (\partial (F - L) / \partial K) (\partial L / \partial Y_i) / (F - L)^2 \geq 0$. Over $[Y_S', \infty)$ we have $\partial h / \partial K = \partial h_0 / \partial K \geq 0$. The hazard rate is discontinuous at $Y_{S'}$ and

\(^{19}\)Note that since $\bar{K}_{(\pi_M / \pi_D) = 1} = I$ this establishes that $\bar{K} \leq I$.

30
\(Y_S\), but as \(\partial Y_S'/\partial K \geq 0\) and \(\partial Y_S/\partial K = 0\), it increases over the entire range \([Y_S, \infty)\). Finally, for \(K > \hat{K}\), \(Y_P\) decreases with \(K\). Since the first entry threshold of each firm decreases with \(K\) (stochastically in the attrition regime and deterministically in the preemption regime), the minimum of these \(\bar{Y}_I\) decreases as well. We have therefore established:

Proposition 9 In an attrition regime, the hazard rate over innovator entry thresholds increases with \(K\) for all \(K \leq \hat{K}\).

With respect to imitator investment, in the attrition regime the second entry threshold \(Y_F^*\) decreases stochastically with respect to \(K\) over \((Y_F, \infty)\), that is when follower entry is immediate, but increases deterministically otherwise. However, the expected difference between the first and second entry thresholds is monotone in \(K\). For \(K_I \leq K < \hat{K}\), \(Y_F^* - \bar{Y}_I = \max\{0, Y_F - \bar{Y}_I\}\) is distributed over \(\{0\} \cup [Y_F - Y_S', Y_F - Y_L]\) as \(\Pr\{Y_F^* - \bar{Y}_I = 0\} = G_\delta (Y_S; K)\), and \((1 - G_\delta (Y_S; K)) / (1 - G_\delta (Y_F - Y_I; K))\) otherwise. So by Proposition 9 the difference between the second and the first entry thresholds increases with \(K\) (stochastically in the attrition range and deterministically in the preemption range).

Industry optimum

The proposition follows directly from the equilibrium values with rent equalization, that is \(\mathbb{E}_{\bar{Y}_1, \bar{Y}_2} V (\bar{Y}_1, \bar{Y}_2) = \min \{L(Y_L^*, Y_F^*), F(Y_F; K)\}\), and the sensitivity of \(L\) and \(F\) to \(K\). Note that for \(K \leq \hat{K}\) \(\min \{L(Y_L^*, Y_F^*), F(Y_F; K)\} = M(Y_S)\) is independent of \(K\), and that at \(K = \hat{K}\), \(M(Y_S) \leq L(Y_L^*, Y_F^*) = F(Y_F; \hat{K})\). Therefore, \(\mathbb{E}_{\bar{Y}_1, \bar{Y}_2} V (\bar{Y}_1, \bar{Y}_2)\) is constant over \([0, \hat{K})\), increasing over \((\hat{K}, \hat{K})\), and decreasing over \((\hat{K}, \infty)\). □

A.5 Imitation cost, consumer surplus, and welfare (Proposition 3)

The argument is divided into four parts. We first characterize the optimal imitation cost level \(K_F\) in the closure of the preemption regime \((K \geq \hat{K})\). Second, we establish that \(\bar{K}\) constitutes a lower bound for any optimal imitation cost in an attrition regime \((K_A \geq \bar{K})\). Third, we establish the existence of a local optimum of welfare under attrition \((\bar{K} \leq K_A < \hat{K})\). Finally we compare the optimum under preemption with the optimal welfare that is attained in the attrition regime.

Socially optimal imitation cost in preemption regime

Suppose that \(K \geq \hat{K}\), so entry thresholds are \(Y_P\) and \(Y_F\). The social welfare function (7) then
has the form

\[
W(K) = \left(\frac{\pi_M + CS_M}{r - \alpha} Y_P - I \right) \left(\frac{Y_t}{Y_P} \right)^\beta + \left(\frac{2\pi_D + CS_D}{r - \alpha} \right) Y_F - K \left(\frac{Y_t}{Y_F} \right)^\beta.
\]

(31)

Noting that \(Y_P\) and \(Y_F\) are functions of \(K\) with \(Y_P \leq Y_L\) and \(\lim_{K \to \hat{K}} Y_P = Y_L\), and using the preemption equilibrium condition \(L(Y_P, Y_F) = F(Y_F; K)\) which implicitly defines the ratio \((Y_F/Y_P)^\beta\), the derivative of (31) can be expressed as

\[
\frac{dW}{dK} = \left(\frac{CS_M}{\pi_M} \left(\beta \frac{\pi_M}{\pi_D} Y_L - Y_P \right) - (\beta - 1) \frac{Y_P}{Y_L} - \beta \frac{CS_D}{\pi_D} - 2 \right) \left(\frac{Y_t}{Y_F} \right)^\beta.
\]

(32)

If \(CS_M = 0\) the \(Y_L\) and \(Y_P\) terms in (32) vanish and it is straightforward to see that \(dW/dK < 0\), so that \(\hat{K}\) is a maximum. For \(CS_M > 0\), since \(\lim_{K \to \hat{K}} Y_P = Y_L\) satisﬁes \(\lim_{K \to \hat{K}} dW/dK = +\infty\), and is strictly decreasing in \(K\) over its range. So long as \(\lim_{K \to \infty} dW/dK < 0\), there is a unique root \(K_P > \hat{K}\) that constitutes an interior optimum which occurs if

\[
\left(\beta^2 \frac{\pi_M}{\pi_D} - (\beta - 1)^2 \right) \frac{CS_M}{\pi_M} - \beta \frac{CS_D}{\pi_D} - 2 < 0.
\]

(33)

For notational simplicity, in what follows we let \(K_P = \infty\) if (33) does not hold. Taken as a function of \(\beta\) the left-hand side of (33) is a quadratic function, \(\Delta(\beta)\), with \(\Delta(1) = (CS_M - CS_D - 2\pi_D)/\pi_D < 0\) and \(\lim_{\beta \to \infty} \Delta(\beta) = \infty\). Therefore there exists a unique \(\beta_0 > 1\) such that \(\Delta(\beta_0) = 0\). Thus,

Proposition 10 *The constrained optimization problem \(\max_{K \in [\hat{K}, \infty]} W(K)\) has a unique optimum \(K_P\), and there exists a unique \(\beta_0 > 1\) such that \(K_P\) is finite if and only if \(\beta < \beta_0\).*

For the proof of Proposition 4 in the next section it is also useful to note the optimal value of welfare that is realized in the preemption range. Several steps of derivations (available from the authors, see Section B) establish that an optimum preemption threshold has the form \(Y_P^* = \psi Y_L\) where

\[
\psi = \begin{cases}
\frac{CS_D-CS_M+\frac{2}{\beta}}{\pi_D}, & \beta < \beta_0 \\
\frac{CS_D-CS_M+\frac{2}{\beta}}{\pi_D}, & \beta \geq \beta_0
\end{cases}
\]

(34)

We have \(\psi \in \left[\frac{\beta - 1}{\beta}, 1 \right]\), and from (33) \(\psi = (\beta - 1)/\beta\) if \(\beta \geq \beta_0\). Moreover, \(\psi = 1\) if \(CS_M = 0\). The optimal preemption threshold is \(Y_P^* = \psi Y_L\), so \(Y_P^* \in [Y_{NPV}, Y_L]\) where \(Y_{NPV} := (r - \alpha) I/\pi_M\).
is the myopic Marshallian investment trigger. The optimal level of welfare under preemption can then be shown to be

\[W_P(K_P) = \frac{CS_M}{\pi_M} \frac{\psi^{1-\beta} I}{1-\psi} \left(\frac{Y_t}{Y_L} \right)^{\beta}. \]

(35)

Lower bound on socially optimal imitation cost

If \(K < \tilde{K} \) (first attrition subcase in Section A.2 above) so firms randomize investment triggers over \([Y_S, \infty)\) according to the distribution \(G_0(Y_t; K) \) and imitator entry is immediate, then \(W(K) < W(\tilde{K}) \). To see this, note first that by Proposition 2, industry value is lower at \(K \) than at \(\tilde{K} \), so it suffices to show that expected consumer surplus is lower also. But at \(\tilde{K} \), innovator and imitator entry occur at the standalone thresholds \(Y_L \) and \(\tilde{Y}_F := \left(\frac{\beta (r-\alpha) \tilde{K}}{(\beta - 1) \pi_D} \right) \), whereas the lower bound of the entry threshold distribution under attrition is \(Y_S = \left(\frac{\beta (r-\alpha) I}{(\beta - 1) \pi_D} \right) \geq \tilde{Y}_F \). Therefore, both investments occur later if \(K < \tilde{K} \) than they do at the critical imitation cost \(\tilde{K} \) resulting in lower consumer surplus and hence in lower welfare.

Existence of local maximum in attrition regime

Consider the value of \(E_{Y_1, Y_2} W(K) \) just to the left of \(\tilde{K} \). Since \(V(\tilde{Y}_1, \tilde{Y}_2) \) is maximized at \(\tilde{K} \), at this critical value the sign of \(\lim_{K \to \tilde{K}^-} dE_{Y_1, Y_2} W(K) / dK \) depends only on the behavior of the consumer surplus terms. For simplicity consider the third term, consumer surplus from imitation (the argument for the other term is similar). As noted in the text the consumer surplus from imitation is given by

\[
\frac{CS_D - CS_M}{r - \alpha} Y_F^{-(\beta-1)} Y_t^\beta \left(G_\Lambda(Y_{S'}; K) \right)_{\text{lagged imitator entry}} + \int_{Y_S}^{\infty} (Y_F/s)^{\beta-1} dG_\Lambda(s; K). \]

(36)

To determine the value of the left derivative at \(\tilde{K} \) of (36) recall that the distribution of entry thresholds is given by \(G_\Lambda(Y_t; K) = 1 - (1 - G(Y_t; K))^2 \). Consider the first summand in (36). Since \(G(Y_{S'}; \tilde{K}) = 1 \), \(G_\Lambda(Y_{S'}; \tilde{K}) = 1 \). Moreover \(\partial G_\Lambda / \partial s = 2(1 - G) \partial G / \partial s \) so \(\partial G_\Lambda(Y_{S'}; K) / \partial K |_{\tilde{K}} = 0 \). Therefore in (36) only the direct effect of \(K \) on \(Y_F \) matters for welfare at \(\tilde{K} \). A similar argument applies to the consumer surplus from innovation term in (7), except that there is no direct effect since \(Y_L \) is independent of \(K \).

Therefore,

\[
\lim_{K \to \tilde{K}^-} \frac{dE_{Y_1, Y_2} W(K)}{dK} = - (\beta - 1) \frac{CS_D - CS_M}{r - \alpha} Y_F^{-\beta} Y_t^\beta \frac{\partial Y_F}{\partial K} \leq 0. \]

(37)
Since $W(K)$ is continuous, we conclude that if $CS_D > CS_M$, there exists a local optimum imitation cost level K_A in $\left(\tilde{K}, \hat{K}\right)$.

Global welfare optimum

We therefore know that for $CS_D > CS_M$, lim$_{K \to \hat{K}^-} dW(K)/dK < 0$ and that for $CS_M > 0$, lim$_{K \to \hat{K}^+} dW(K)/dK > 0$, so that for $(CS_D - CS_M)CS_M > 0$, welfare has local maxima in both the (upper) attrition and preemption ranges, whereas the local maximum under preemption is $K_P = \hat{K}$ if $CS_M = 0$ and $K_A = \hat{K}$ under attrition if $CS_D = CS_M$. Either type of local maximum can be a global maximum depending on the relative magnitude of the consumer surplus resulting from innovation and imitation. □

A.6 Imitation cost, consumer surplus, and welfare con’t (Proposition 4)

To establish the result, an upper bound is first derived for the level of welfare realized in the attrition regime and then compared with a lower bound of the welfare obtained under preemption. These bounds are tight only in the limit ($\beta = 1$), but have the advantage of resulting in a tractable analytic condition (see (47) below).

Upper bound for welfare under attrition

The optimal value of expected welfare under attrition can be bounded above as follows. Let $\bar{Y}_I = \min \{\bar{Y}_1, \bar{Y}_2\}$ and $\bar{Y}_F = Y_F^* (\bar{Y}_I; K)$ denote the (stochastic) innovation and imitation thresholds for a given imitation cost K. The expected social welfare under attrition (7) is

$$W_A(K) = \mathbb{E}_{\bar{Y}_1, \bar{Y}_2} \left(\frac{CS_M + \pi_M \bar{Y}_I - I}{r - \alpha} \right) \left(\frac{Y_t}{\bar{Y}_I} \right)^\beta + \mathbb{E}_{\bar{Y}_1, \bar{Y}_2} \left(\frac{(CS_D + 2\pi_D) - (CS_M + \pi_M)\tilde{Y}_F - K}{r - \alpha} \right) \left(\frac{Y_t}{\bar{Y}_F} \right)^\beta. \hspace{1cm} (38)$$

To bound the first term, note that the integrand is quasiconcave and $\bar{Y}_I \geq Y_L \geq (\beta (r - \alpha) I)/(((\beta - 1)(CS_M + \pi_M))$ where the rightmost term is the global maximizer. The first integrand in (38) is thus decreasing in Y_I over the relevant range so

$$\mathbb{E}_{\bar{Y}_1, \bar{Y}_2} \left(\frac{CS_M + \pi_M \bar{Y}_I - I}{r - \alpha} \right) \left(\frac{Y_t}{\bar{Y}_I} \right)^\beta \leq \left(\frac{CS_M + \pi_M Y_L - I}{r - \alpha} \right) \left(\frac{Y_t}{Y_L} \right)^\beta \leq \left(\frac{CS_M}{\pi_M} + 1 \right) \left(\frac{I}{\beta - 1} \right) \left(\frac{Y_t}{Y_L} \right)^\beta. \hspace{1cm} (39)$$

For the second term in (38), using the assumption that the static entry incentive is excessive...
\((CS_D + 2\pi_D) - (CS_M + \pi_M) \leq \pi_D\),

\[
E_{\tilde{Y}_1, \tilde{Y}_2} \left(\frac{(CS_D + 2\pi_D) - (CS_M + \pi_M) \tilde{Y}_F - K}{r - \alpha} \right) \left(\frac{Y_t}{\tilde{Y}_F} \right)^\beta \leq E_{\tilde{Y}_1, \tilde{Y}_2} \left(\frac{\pi_D}{r - \alpha} \tilde{Y}_F - K \right) \left(\frac{Y_t}{\tilde{Y}_F} \right)^\beta.
\]

(40)

The term on the right-hand side is simply the expected follower payoff in equilibrium, that is \(E_{\tilde{Y}_i} F(Y_F^* (\tilde{Y}_i; K)) = E_{\tilde{Y}_1, \tilde{Y}_2} V(\tilde{Y}_1, \tilde{Y}_2)\). Moreover, by Proposition 2, \(E_{\tilde{Y}_1, \tilde{Y}_2} V(\tilde{Y}_1, \tilde{Y}_2)\) is maximized for \(K = \hat{K}\). Therefore (40) holds if

\[
E_{\tilde{Y}_1, \tilde{Y}_2} \left(\frac{(CS_D + 2\pi_D) - (CS_M + \pi_M) \tilde{Y}_F - K}{r - \alpha} \right) \left(\frac{Y_t}{\tilde{Y}_F} \right)^\beta \leq \frac{\hat{K}}{\beta - 1} \left(\frac{Y_t}{\tilde{Y}_F} \right)^\beta.
\]

(41)

Then note that \(\tilde{Y}_F = \left(\frac{\hat{K}}{I} \right) (\pi_M/\pi_D) Y_L\) and substitute for \(\left(\frac{\hat{K}}{I} \right)^{1-\beta}\) (see (16)) to obtain the equivalent condition

\[
E_{\tilde{Y}_1, \tilde{Y}_2} \left(\frac{(CS_D + 2\pi_D) - (CS_M + \pi_M) \tilde{Y}_F - K}{r - \alpha} \right) \left(\frac{Y_t}{\tilde{Y}_F} \right)^\beta \leq \frac{1}{1 + \beta \left(\frac{\pi_M}{\pi_D} - 1 \right) \beta - 1} \left(\frac{Y_t}{\tilde{Y}_L} \right)^\beta.
\]

(42)

Combining (39) and (42) yields the upper bound

\[
W_A(K) \leq \left(\frac{\beta \pi_M}{\pi_M} + 1 + \frac{1}{1 + \beta \left(\frac{\pi_M}{\pi_D} - 1 \right) \beta - 1} \right) \frac{I}{\beta - 1} \left(\frac{Y_t}{\tilde{Y}_L} \right)^\beta.
\]

(43)

Sufficient condition for preemption optimum to be global

The optimal value of expected welfare under preemption is \(W_P(K_P)\) (see Section B for derivation and equation (35)):

\[
W_P(K_P) = \frac{CS_M}{\pi_M} \psi^{1-\beta} \frac{I}{\beta - 1} \left(\frac{Y_t}{\tilde{Y}_L} \right)^\beta.
\]

(44)

It is straightforward to check that taken as a function of \(\psi\) over \((0, 1)\), \(\psi^{1-\beta}/(1 - \psi)\) is strictly convex and minimized at \(\psi_0 := (\beta - 1)/\beta\). Substituting \(\psi_0\) for \(\psi\) in (44) and simplifying thus yields

\[
W_P(K_P) \geq \frac{CS_M}{\pi_M} I \left(\frac{\beta}{\beta - 1} \right)^\beta \left(\frac{Y_t}{\tilde{Y}_L} \right)^\beta = W_P(\infty).
\]

(45)

Therefore, a sufficient condition for the preemption optimum to be a global optimum of welfare is \(W_A(K) \leq W_P(\infty)\). Combining (43) and (45) and simplifying the common \((I/(\beta - 1))(Y_t/Y_L)^\beta\) terms yields the condition

\[
\beta \frac{CS_M}{\pi_M} + 1 + \frac{1}{1 + \beta \left(\frac{\pi_M}{\pi_D} - 1 \right) \beta - 1} \leq \beta \frac{CS_M}{\pi_M} \left(\frac{\beta}{\beta - 1} \right)^{\beta - 1}.
\]

(46)
Rearranging and using \(1/(1 + \beta(\cdot)) \leq 1\), a sufficient condition for (46) to hold is

\[
\frac{CS_M}{\pi_M} \geq \frac{2}{\beta} \left(\frac{1}{\beta - 1}\right)^{-1} : = \Omega (\beta).
\] (47)

To characterize the right-hand side of (47), note first that using l'Hôpital’s rule, \(\lim \left(\frac{1}{\beta - 1}\right)^{-1} = 1\) and \(\lim_{\beta \to \infty} \left(\frac{\beta}{\beta - 1}\right)^{-1} = e\), so \(\Omega(1) = \infty\) and \(\lim_{\beta \to \infty} \Omega(\beta) = 0\). Moreover, \(2/\beta\) is decreasing and \(d\left(\frac{1}{\beta - 1}\right)^{-1}/d\beta = \left(\frac{1}{\beta - 1}\right)^{-1} \left(-\frac{1}{\beta} + \ln \frac{\beta}{\beta - 1}\right)\) which is positive since \(\ln (\beta/(\beta - 1)) > 1/\beta\) by the logarithm inequality, so \(\Omega (\beta)\) is decreasing over this range.

Moreover if product market competition has the form of homogeneous goods oligopoly with constant unit cost and \(\rho\)–convex demand \((\rho > -1)\), then \(CS_M/\pi_M \geq 1/(1 + \rho)\) (Anderson and Renault [1], Proposition 3). Therefore, for a given \(\beta\) (47) holds if demand is sufficiently convex \((\rho < (1/\Omega (\beta)) - 1)\). This requirement is satisfied for instance by the constant elasticity inverse demand function \(P = AQ^{-\alpha}\), \(\alpha \in (0, (1/\Omega (\beta)) - 1)\) (for \(\beta \geq 2\)), by the linear inverse demand function \(P = A - BQ\) (for \(\beta \geq 3.14\)), and in the limit as \(\beta \to \infty\) it is satisfied by any quasiconvex demand. □

A.7 Endogenous entry barrier

In stage 3’, the imitator payoff depends on the cost-raising effort \(\rho\):

\[
F (Y_i; K) = \left(\frac{\pi_D}{r - \alpha} Y_i - K_0 - f(\rho)\right) \left(\frac{Y_i}{Y'}\right)^{\beta}.
\] (48)

The optimal standalone imitator threshold is \(Y_F (\rho) = \beta (r - \alpha) (K_0 + f(\rho)) / ((\beta - 1) \pi_D)\), yielding an optimal choice \(Y_{F*} (\rho) = \max \{Y_i, Y_F (\rho)\}\. In stage 2’, an innovator having entered at the threshold \(Y_i\) chooses a level of effort that maximizes:

\[
L_e (Y_i, \rho) = \left(\frac{\pi_M}{r - \alpha} Y_i - I_0 - \rho\right) + \frac{\pi_M}{r - \alpha} Y_{F*} (\rho) \left(\frac{Y_i}{Y_{F*} (\rho)}\right)^{\beta}.
\] (49)

Note that term \(Y_{F*} (\rho)\) generally introduces a kink in the innovator’s stage 2’ payoff. For example with \(K_0 \leq ((\beta - 1)/\beta) (\pi_D/\pi_M) I_0\), \(Y_F (0) \leq Y_{NPV}\) so that \(Y_{F*} (\rho) = Y_i\) in both in attrition and preemption regimes for some range of effort \(\rho \in [0, \overline{\rho}]\). In such cases the innovator’s stage 2’ decision problem may present a corner solution. Moreover in an attrition regime, since the innovator threshold is random, the optimal endogenous entry barrier is itself a random variable in stage 1’. However, to determine the critical imitation cost \(\hat{K}_e\) that separates the two regimes, it is sufficient to
consider the case in which innovator entry occurs at the threshold at which there are no positional rents, i.e. \(Y_{L,e}(\rho^*) = \beta (r - \alpha) (I_0 + \rho^*) / ((\beta - 1) \pi_M) \) where \(\rho^* \) solves \(\max_{\rho} L_e (Y_{L,e}, \rho) \) such that
\[
L_e (Y_{L,e}, \rho^*) = F \left(Y_F; \bar{K}_e \right).
\]
Since at \(K = \bar{K}_e \), \(\left(\frac{Y_i}{Y_{L,e}(\rho^*)} \right)^\beta L_e (Y_{L,e}(\rho^*), \rho^*) \geq \left(\frac{Y_i}{Y_L} \right)^\beta L_e (Y_{L,e}(\rho^*), 0) = L (Y_L, Y_F) = F \left(Y_F; \bar{K} \right) \), it immediately follows that \(\bar{K}_e = K_0 + f (\rho^*) \leq \bar{K} \). \(\square \)

A.8 Buyout and licensing

Depending on the effect of entry on industry profit, there are two cases to consider.

Case i: efficiency effect \((\pi_M/\pi_D \geq 2)\)

Suppose that the innovator, at the time of investment, can offer a payment of \(\varphi \) to buy its rival’s option on duopoly profits. The innovator’s decision in stage 2’ in this case is \(\max_{\varphi \geq F_0(Y_i)} L_b (Y_i, \varphi) \) where
\[
L_b (Y_i, \varphi) := \left(\frac{\pi_M}{r - \alpha} Y_i - I - \varphi \right) \left(\frac{Y_i}{Y_L} \right)^\beta
\]
and \(\varphi \geq F_0(Y_i) \) is the rival firm’s participation constraint. As imitator entry reduces industry flow profit, a takeover is always efficient for the firms and it is straightforward to verify that at an optimum \(L_b (Y_i, F_0(Y_i)) > L (Y_i, Y_P^*) \).

To establish that a buyout can increase welfare, consider the case where imitator entry would leave the consumer surplus unchanged, as occurs if \(2\pi_D = \pi_M \) (i.e., a unit demand or a cartel in a homogeneous product market). If \(K \geq \bar{K} \), preemption occurs, and industry value is pegged to \(F_0(Y_i) \) regardless of whether takeovers are allowed or not. A buyout is efficient in this case if the first firm enters earlier. This occurs when the innovator can make a purchase offer to its rival, i.e. if the lower root of \(L_b (Y_i, F_0(Y_i)) = F (Y_F; K) \) is lower than \(Y_P \), which holds since \(L_b (Y_i, F_0(Y_i)) > L (Y_i, Y_P^*) \).

To establish that attrition can be eliminated, consider the limiting case \(K = 0 \). In this case, follower entry is immediate for all \(Y_i \), so \(F_0(Y_i) = \pi_D Y_i / (r - \alpha) \) and the stage 1’ leader payoff is therefore
\[
L_b (Y_i, F_0(Y_i)) := \left(\frac{\pi_M - \pi_D}{r - \alpha} Y_i - I \right) \left(\frac{Y_i}{Y_L} \right)^\beta.
\]
Let \(Y_b := \beta (r - \alpha) I / ((\beta - 1) (\pi_M - \pi_D)) \) denote the maximum of the latter function. Solving \(L_b(Y_b, F_0(Y_b)) \geq F_0(Y_b)(Y_i/Y_b)^\beta \) gives the condition under which preemption arises even with a maximal second mover advantage \((K = 0)\) as \(\pi_M/\pi_D \geq \beta + 1 \).
If a buyout is not possible then the innovator may license its technology to the imitator when it enters. The innovator’s decision in stage 2” takes the form $\max_{\varphi \leq K_i} V_i(\varphi)$ where

$$V_i(\varphi) = \left(\varphi - \frac{\pi_M - \pi_D}{r - \alpha} Y_F^*(\varphi) \right) \left(\frac{Y_i}{Y_F^*(\varphi)} \right)^{\beta}$$

(52)

and the rival’s participation constraint is $F(Y_F^*; K_0 + \varphi) \geq F_0(Y_F^*)$. In (52), $Y_F^*(\varphi)$ is the follower’s investment threshold generally a function of the fee φ (if $\varphi < K_I$), although at an optimum $\varphi^* = K_I$ and $Y_F^*(\varphi) = Y_F^*$. In stage 1” then, the leader value is

$$L_1(Y_i, Y_F^*) := \left(\frac{\pi_M - \pi_D}{r - \alpha} Y_i - I \right) \left(\frac{Y_i}{Y_F^*} \right)^{\beta} + \left(\frac{\pi_D - \pi_M}{r - \alpha} Y_F^* + K_I \right) \left(\frac{Y_i}{Y_F^*} \right)^{\beta}$$

(53)

so licensing simply has a level effect on the leader payoff if $Y_i < Y_F$. Setting $L_1(Y_L, Y_F) = F(Y_F; K)$ defines the critical threshold $\hat{K}_1 < \hat{K}$ that separates the attrition and preemption regimes. To establish the effect of licensing on welfare, there are three cases to consider: 1) If $K \geq \hat{K}$, the industry is preemptive whether licensing occurs or not. Industry value and the timing of imitation are then unaffected by licensing, whereas the preemption threshold decreases since $L_1(Y_i, Y_F^*) > L(Y_i, Y_F^*)$ so innovation occurs earlier and welfare increases. 2) Alternatively, if $K \in (\hat{K}_1, \hat{K})$, then the industry switches from an attrition regime to preemption when licensing is allowed. As compared with the previous case, the increase in welfare is also due to an increase in industry value and earlier imitation. 3) Finally, if $K \leq \hat{K}_1$, the industry is in an attrition regime whether licensing occurs or not. Industry value is pegged on the optimal leader value, which increases in comparison to the baseline model, and the imitation is either unaffected (if $Y_i \leq Y_F$) or occurs earlier if innovation occurs earlier. What remains to be verified is that the distribution of innovation thresholds shifts left with licensing. We do this in the case that K is not too small, $\hat{K}_1 < K \leq \hat{K}_1$, (the argument for $K \leq \hat{K}_1$ is similar).

Note first that the support of the mixed strategy distribution, $[Y_L, Y_{S,1}] \cup [Y_{S,1}, \infty)$, is larger with licensing. Y_L is unaffected by licensing, whereas $Y_{S,1} = \beta (r - \alpha) (I - K_I) / ((\beta - 1) \pi_D) < Y_S$. Finally, for $Y_i < Y_F$ licensing shifts $L(Y_i, Y_F)$ upward by $K_I (Y_i/Y_F)^{\beta}$, which is weakly larger than the upward shifts of $M(Y_i) (K_I (Y_i/Y_i)^{\beta})$, so $Y_{S,1} > Y_S$ (see the graphic construction of Y_S in Figure 2).

Next, it is necessary to examine the impact of licensing on the hazard rate of Y_i. Over $[Y_S, \infty)$, the hazard rate implied by (19), adapted to the licensing specification, becomes

$$h_{0,1}(Y_i; K_0 + \varphi^*) = \beta \frac{I - K_I}{I - K_I - K} \left(\frac{1}{Y_{S,1} - 1} \right).$$

(54)
Comparing with \(h_0 \) in (29), we find
\[
\frac{h_{0,1}(Y_i; K_0 + \varphi^*)}{h_0(Y_i; K)} = \frac{(I - K_I)(I - K)}{I(I - K_I - K)} \frac{1}{Y_{S1}} - \frac{1}{Y_i} > 1. \tag{55}
\]
Over \([Y_L, Y_{S'}]\), the hazard rate implied by (21), adapted to licensing, becomes
\[
\overline{h}_1(Y_i; K_0) = -\frac{\partial L_1(Y_i)/\partial Y_i}{F(Y_{F}^*; K) - L_1(Y_i)} \tag{56}
\]
and since the slope of \(L_1 \) is independent of \(\varphi \) so that licensing only has a positive level effect, \(\overline{h}_1(Y_i; K_0) > \overline{h}(Y_i; K) \).

Case ii: product market complementarity (\(\pi_M/\pi_D < 2 \))

If the second firm’s entry increases industry profit, there is an optimal imitator entry threshold for the industry \(Y_{F}^{**} := \beta(r - \alpha)K_0/(\beta - 1)(2\pi_D - \pi_M) \), which may be either greater or smaller than \(Y_F \) as noted in the text. With a simple flat license fee instrument an innovator cannot induce imitation beyond \(Y_F \) (it could with a forcing contract or a combination of a flat fee and a royalty payment but we do not pursue this further here) so the most interesting case to consider is if imitation occurs too late from an industry standpoint and the innovator has some leeway regarding imitator entry i.e. \(Y_i, Y_{F}^{**} < Y_F \). Otherwise, the optimal license fee is \(K_I \), imitation occurs at \(Y_{F}^{*} \), and the outcome is comparable to the previous case. If these inequalities do hold, then in stage 2”, the innovator’s problem with the forcing contract is \(\max_{\varphi \leq K_I} V_1(\varphi) \) where
\[
V_1(\varphi) = \left(\varphi - \frac{\pi_M - \pi_D}{r - \alpha} Y_F^{**} \right) \left(\frac{Y_I}{Y_{F}^{**}} \right)^\beta \tag{57}
\]
and the follower’s participation constraint is \(F(Y_{F}^{**}; K_0 + \varphi) \geq F_0(Y_{F}^{**}) \). An optimal license fee satisfies this constraint with equality, i.e. at the optimal imitation threshold \(Y_{F}^{**} \),
\[
\frac{\pi_D}{r - \alpha} Y_F^{**} - K_0 - \varphi^* = \left(\frac{\pi_D}{r - \alpha} Y_F - K_0 - K_I \right) \left(\frac{Y_{F}^{**}}{Y_F} \right)^\beta \tag{58}
\]
whereas if \(\varphi = K_I \),
\[
\frac{\pi_D}{r - \alpha} Y_F^{**} - K_0 - \varphi < \left(\frac{\pi_D}{r - \alpha} Y_F - K_0 - K_I \right) \left(\frac{Y_{F}^{**}}{Y_F} \right)^\beta
\]
so \(\varphi^* < K_I \) if \(Y_{F}^{**} < Y_F \).
References

40

Figure 1: Attrition regime, $K \in \left[0, \tilde{K}\right)$. Y_S is a global maximum of the leader payoff, innovator entry thresholds are distributed over $[Y_S, \infty)$, and imitator entry occurs immediately after. Note that if $K < K_l$, then $Y_F < Y_L$.

Figure 2: Attrition regime, $K \in \left[\tilde{K}, \bar{K}\right)$. The leader payoff has two local maxima (Y_L, Y_S), innovator entry thresholds are distributed over $[Y_L, Y_{S'}] \cup [Y_S, \infty)$, and imitator entry occurs either at Y_F (if $\min\{\tilde{Y}_i, \tilde{Y}_j\} \in [Y_L, Y_{S'}]$) or immediately otherwise (if $\min\{\tilde{Y}_i, \tilde{Y}_j\} \in [Y_S, \infty)$).
Figure 3: Critical case, $K = \hat{K}$. The innovator and imitator enter at Y_L and Y_F respectively.

Figure 4: Preemption regime, $K \in (\hat{K}, I)$. The innovator enters at Y_P and the imitator at Y_F. There is war of attrition off the equilibrium path (over (Y_P, ∞)).
Figure 5: Preemption regime, $K \in [I, \infty)$. The innovator enters at Y_P and the imitator at Y_F. Note that the dotted curve represents $F(Y_i; K)$ whereas the corresponding solid curve is the concentrated follower payoff $F(Y_F^*; K)$.
B Supplementary section (for refereeing)

This section details intermediate steps of some of the lengthier derivations in the appendix.

B.1 Derivation of \hat{K}, \tilde{K}, and $K_l \leq \tilde{K} \leq \hat{K}$ ranking

To find \tilde{K}, set $L(Y_L, Y_F) = F(Y_F; \tilde{K})$ i.e.

$$
\left(\frac{\pi_M}{r - \alpha} Y_L - I \right) \left(\frac{Y_t}{Y_L} \right)^{\beta} + \frac{\pi_D - \pi_M}{r - \alpha} Y_F \left(\frac{Y_t}{Y_F} \right)^{\beta} = \left(\frac{\pi_D}{r - \alpha} Y_F - \tilde{K} \right) \left(\frac{Y_t}{Y_F} \right)^{\beta}
$$

(59)

or, substituting for Y_L and $\tilde{Y}_F = \beta (r - \alpha) \tilde{K} / (\beta - 1) \pi_D$ (at $K = \tilde{K}$)

$$
\frac{I}{\beta - 1} \left(\frac{Y_t}{Y_L} \right)^{\beta} + \frac{\beta}{\beta - 1} \left(1 - \frac{\pi_M}{\pi_D} \right) \tilde{K} \left(\frac{Y_t}{Y_F} \right)^{\beta} = \frac{\tilde{K}}{\beta - 1} \left(\frac{Y_t}{Y_F} \right)^{\beta}.
$$

(60)

Then multiply by $\left(\frac{\tilde{Y}_F}{Y_t} \right)^{\beta}$ and note that $\tilde{Y}_F / Y_L = \left(\frac{\pi_M}{\pi_D} \right) \left(\frac{\tilde{K}}{I} \right)$ to get

$$
\frac{I}{\beta - 1} \left(\frac{\pi_M}{\pi_D} \right)^{\beta} \left(\frac{\tilde{K}}{I} \right)^{\beta - 1} + \frac{\beta}{\beta - 1} \left(1 - \frac{\pi_M}{\pi_D} \right) \tilde{K} = \frac{\tilde{K}}{\beta - 1}.
$$

(61)

Multiplying by $(\beta - 1) / \tilde{K}$ and regrouping terms,

$$
\left(\frac{\pi_M}{\pi_D} \right)^{\beta} \left(\frac{\tilde{K}}{I} \right)^{\beta - 1} = 1 + \beta \left(\frac{\pi_M}{\pi_D} - 1 \right)
$$

(62)

so

$$
\tilde{K} = \left(1 + \beta ((\pi_M / \pi_D) - 1) / (\pi_M / \pi_D)^{\beta} \right)^{1/(\beta - 1)} I.
$$

(63)

To find \hat{K}, set $L(Y_L, Y_F) = M(Y_S)$ i.e.

$$
\left(\frac{\pi_M}{r - \alpha} Y_L - I \right) \left(\frac{Y_t}{Y_L} \right)^{\beta} + \frac{\pi_D - \pi_M}{r - \alpha} Y_F \left(\frac{Y_t}{Y_F} \right)^{\beta} = \left(\frac{\pi_D}{r - \alpha} Y_S - I \right) \left(\frac{Y_t}{Y_S} \right)^{\beta}.
$$

(64)

Substituting for Y_L, Y_F, and Y_S gives

$$
\frac{I}{\beta - 1} \left(\frac{Y_t}{Y_L} \right)^{\beta} + \frac{\beta}{\beta - 1} \left(1 - \frac{\pi_M}{\pi_D} \right) \hat{K} \left(\frac{Y_t}{Y_F} \right)^{\beta} = \frac{I}{\beta - 1} \left(\frac{Y_t}{Y_S} \right)^{\beta}.
$$

(65)

Multiply by $\left(Y_F / Y_t \right)^{\beta}$ and note that $Y_F / Y_L = (\pi_M / \pi_D) \left(\tilde{K} / I \right)$ and $Y_F / Y_S = \tilde{K} / I$ to get

$$
\frac{I}{\beta - 1} \left(\frac{\pi_M}{\pi_D} \right)^{\beta} \left(\frac{\tilde{K}}{I} \right)^{\beta} + \frac{\beta}{\beta - 1} \left(1 - \frac{\pi_M}{\pi_D} \right) \hat{K} = \frac{I}{\beta - 1} \left(\frac{\tilde{K}}{I} \right)^{\beta}.
$$

(66)
Regrouping terms on either side,
\[
\frac{I}{\beta - 1} \left(\left(\frac{\pi_M}{\pi_D} \right)^\beta - 1 \right) \left(\frac{\tilde{K}}{T} \right)^\beta = \frac{\beta}{\beta - 1} \left(\frac{\pi_M}{\pi_D} - 1 \right) \tilde{K}
\]
and multiplying by \((\beta - 1)/\tilde{K}\),
\[
\left(\left(\frac{\pi_M}{\pi_D} \right)^\beta - 1 \right) \left(\frac{\tilde{K}}{T} \right)^{\beta - 1} = \beta \left(\frac{\pi_M}{\pi_D} - 1 \right)
\]
so
\[
\tilde{K} = \left(\beta \left(\frac{\pi_M}{\pi_D} - 1 \right) / \left(\left(\frac{\pi_M}{\pi_D} \right)^\beta - 1 \right) \right)^{1/(\beta - 1)} I.
\]

The different critical imitation cost levels are ranked as \(K_l \leq \tilde{K} \leq \hat{K}\), with strict inequalities if \(\pi_M > \pi_D\). Indeed, straightforward calculations show that \(\tilde{K} \geq K_l\) if and only if
\[
(\beta - 1) \left(\frac{\pi_M}{\pi_D} \right)^\beta - \beta \left(\frac{\pi_M}{\pi_D} \right)^{\beta - 1} + 1 \geq 0,
\]
and that \(\hat{K} \geq \tilde{K}\) if and only if
\[
\left(\frac{\pi_M}{\pi_D} \right)^\beta - \beta \left(\frac{\pi_M}{\pi_D} \right) - 1 \geq 0.
\]
Both of these conditions hold for all \(\beta, \pi_M/\pi_D \geq 1\) (it suffices to evaluate them at \(\pi_M/\pi_D = 1\) and to observe that the derivative with respect to \(\pi_M/\pi_D\) is non-negative).

B.2 Welfare under preemption

Characterization of \(Y_P (K)\)

Over \((\tilde{K}, \infty)\) the condition \(L (Y_P, Y_F) = F (Y_F; K)\) implicitly defines the preemption threshold \(Y_P\) as a \(C^1\) function of \(K\) (see Section A.2):
\[
\left(\frac{\pi_M}{r - \alpha} (Y_P - I) \right) \left(\frac{Y_I}{Y_P} \right)^\beta + \frac{\pi_D}{r - \alpha} Y_F \left(\frac{Y_I}{Y_F} \right)^\beta = \left(\frac{\pi_D}{r - \alpha} Y_F - K \right) \left(\frac{Y_I}{Y_F} \right)^\beta.
\]
Dividing by \(Y_I^\beta\) and moving \(Y_F\) terms to the right-hand side gives
\[
\left(\frac{\pi_M}{r - \alpha} (Y_P - I) \right) Y_P^{-\beta} = \left(\frac{\pi_M}{r - \alpha} Y_F - K \right) Y_F^{-\beta}
\]
or, substituting \((\beta (r - \alpha) K) / ((\beta - 1) \pi_D)\) for \(Y_F\) and factoring \(K^{1-\beta}\),
\[
\left(\frac{\pi_M}{r - \alpha} (Y_P - I) \right) Y_P^{-\beta} = \left(\frac{\beta}{\beta - 1} \frac{\pi_M}{\pi_D} - 1 \right) \left(\frac{\beta}{\beta - 1} \frac{r - \alpha}{\pi_D} \right)^{-\beta} K^{1-\beta}.
\]
The condition (74) has the form \(f(Y_P) = g(K) \) and thus defines \(dY_P/dK = g'(K)/f'(Y_P) \) where

\[
f'(Y_P) = \left(- (\beta - 1) - \frac{\pi_M}{r - \alpha} Y_P + \beta I\right) Y_P^{\beta - 1}
\]

and

\[
g'(K) = - (\beta - 1) \left(\frac{\beta \pi_M}{\beta - 1 \pi_D} \right) - \frac{\beta}{\beta - 1} \frac{\pi_M}{r - \alpha} Y_P - \frac{\beta}{\beta - 1} \frac{\pi_M}{r - \alpha} I - \frac{\beta}{\beta - 1} \frac{\pi_M}{r - \alpha} Y_P - \frac{\beta}{\beta - 1} \frac{\pi_M}{r - \alpha} I - \frac{\beta}{\beta - 1} \frac{\pi_M}{r - \alpha} Y_P - \frac{\beta}{\beta - 1} \frac{\pi_M}{r - \alpha} I.
\]

The sign \(g'(K) < 0 \) is direct whereas for any preemption threshold \(Y_P, Y_P < Y_L \), and therefore \(f'(Y_P) > 0 \). Finally note that from (75) and (76), using the identity \(f(Y_P) = g(K) \) and simplifying the numerator and the denominator by \(Y_P - \beta \),

\[
dY_P = \frac{\beta - 1}{K} - (\beta - 1) \left(\frac{\pi_M}{r - \alpha} Y_P - I \right).
\]

Interior preemption optimum \(K_P \)

Suppose that condition (33) holds so that the preemption optimum is interior. In a preemption equilibrium innovator and imitator entry occur at \(Y_P \) and \(Y_F \) so social welfare is

\[
W(K) = \left(\frac{CS_M + \pi_M}{r - \alpha} Y_P - I \right) \left(\frac{Y_t}{Y_P} \right)^\beta + \left(\frac{CS_D + 2 \pi_D}{r - \alpha} Y_F - K \right) \left(\frac{Y_t}{Y_F} \right)^\beta.
\]

Substituting for \(Y_F \) in the second term and factoring \(K \),

\[
W(K) = \left(\frac{CS_M + \pi_M}{r - \alpha} Y_P - I \right) \left(\frac{Y_t}{Y_P} \right)^\beta + \left(\frac{\beta}{\beta - 1} \frac{CS_D + 2 \pi_D}{\pi_D} - (CS_M + \pi_M) \right) \left(\frac{\beta}{\beta - 1} \frac{r - \alpha}{\pi_D} \right)^\beta Y_t \beta K^{1-\beta}.
\]

In a constrained social optimum the planner’s problem over the preemption range is \(\max_{K \geq K} W(K) \).

The derivative of (79) is

\[
W'(K) = \left(- (\beta - 1) \frac{CS_M + \pi_M}{r - \alpha} Y_P + \beta I \right) \left(\frac{Y_t}{Y_P} \right)^\beta \frac{1}{Y_P} dY_P \frac{1}{dK} - (\beta - 1) \left(\frac{\beta}{\beta - 1} \frac{CS_D + 2 \pi_D}{\pi_D} - (CS_M + \pi_M) \right) \left(\frac{\beta}{\beta - 1} \frac{r - \alpha}{\pi_D} \right)^\beta Y_t \beta K^{-\beta}.
\]

At an interior optimum the socially optimal imitation cost \(K_P \) satisfies the first-order condition \(W'(K_P) = 0 \), but it is more convenient to obtain an expression for the corresponding socially optimal preemption threshold \(Y_P^* \) from the first-order condition. Substituting for \(dY_P/dK \) (expression
\[(77)\) in the first-order condition and multiplying by \(K / (\beta - 1) Y^\beta_t\) gives

\[
\begin{align*}
- & \left(- (\beta - 1) \frac{CS_M + \pi_M Y^*_P}{r - \alpha} Y^*_P + \beta I \right) \left(\frac{\pi_M}{r - \alpha} Y^*_P - I \right) Y^{* - \beta}_P \\
- & \left(- (\beta - 1) \frac{\pi_M Y^*_P}{r - \alpha} Y^*_P + \beta I \right) \\
- & \left(- \frac{\beta}{\beta - 1} \frac{(CS_D + 2\pi_D) - (CS_M + \pi_M)}{\pi_D} - 1 \right) \left(\frac{\beta}{\beta - 1} \frac{r - \alpha}{\pi_D} \right)^{-\beta} K^{* - \beta} = 0. (81)
\end{align*}
\]

From the preemption condition \((74)\),

\[
\left(\frac{\beta}{\beta - 1} \frac{r - \alpha}{\pi_D} \right)^{-\beta} K^{* - \beta} = \frac{\left(\frac{\pi_M}{r - \alpha} Y^*_P - I \right) Y^{* - \beta}_P}{\frac{\beta}{\beta - 1} \frac{\pi_M}{\pi_D} - 1}. (82)
\]

Substituting into the second term in \((81)\), cancelling \(\left(\frac{\pi_M}{r - \alpha} Y^*_P - I \right) Y^{* - \beta}_P\) terms which appear in both parts, and rearranging yields an equivalent condition in terms of \(Y^*_P\) only,

\[
\begin{align*}
\left(\beta - 1 \right) & \left(\frac{CS_M + \pi_M Y^*_P}{r - \alpha} Y^*_P - \beta I \right) \\
- & \left(\beta - 1 \right) \left(\frac{\pi_M Y^*_P}{r - \alpha} Y^*_P + \beta I \right) \left(\frac{\beta}{\beta - 1} \frac{r - \alpha}{\pi_D} \right)^{-\beta} K^{* - \beta} = 0. (83)
\end{align*}
\]

There is a unique solution to \((83)\) which can be expressed as \(Y^*_P = \psi Y^* = \psi (\beta (r - \alpha) I) / ((\beta - 1) \pi_M)\),

in which case the numerator and denominator of the left hand side simplify yielding, after rearrangement of the right-hand side also,

\[
\frac{CS_M + \pi_M \psi - 1}{\pi_M} = \frac{(CS_D + 2\pi_D) - (CS_M + \pi_M)}{\pi_D} - 1 - \psi
\]

and it is straightforward to check that the unique solution is

\[
\psi = \frac{CS_D - CS_M + 2}{\frac{CS_D}{\pi_D} - \frac{\beta - 1}{\beta} \frac{CS_M}{\pi_M} + 2 \frac{\beta}{\beta}}. (84)
\]

Note that setting \(Y^*_P > Y^*_{NPV}\) is equivalent to setting \(\psi > (\beta - 1) / \beta\) and yields condition \((33)\) in the text.

It is now possible to return to the social welfare expression \((79)\) and obtain an explicit form for the value of social welfare at the optimum. First, the identity \((82)\) can be used to substitute terms in the second summand of \(W (K_P)\) so as to obtain an expression in terms of \(Y^*_P\) only,

\[
W_P (Y^*_P) = \left(\frac{CS_M + \pi_M Y^*_P}{r - \alpha} Y^*_P - I \right) \left(\frac{Y^*_P}{Y^*} \right)^{\beta} + \left(\frac{\beta}{\beta - 1} \frac{(CS_D + 2\pi_D) - (CS_M + \pi_M)}{\pi_D} - 1 \right) \frac{\frac{\pi_M}{r - \alpha} Y^*_P - I}{\frac{\beta}{\beta - 1} \frac{\pi_M}{\pi_D} - 1} \left(\frac{Y^*_P}{Y^*} \right)^{\beta}. (86)
\]

49
Regressing terms

\[W_P (Y_P^*) = \frac{\left(\frac{CS_M + \pi_M}{r-\alpha} Y_P^* - I \right)}{\frac{CS_D + 2\pi_D}{\pi_D} - (CS_M + \pi_M)} \left(\frac{\pi_M Y_P^* - I}{Y_P^*} \right)^\beta. \]

(87)

Substituting for \(Y_P^* = \frac{(\beta (r - \alpha) \psi I)}{((\beta - 1) \pi_M)} = \psi Y_L \) and factoring \(I \),

\[W_P (Y_P^*) = \frac{\left(\frac{CS_M + \pi_M}{\pi_M} \psi - 1 \right)}{\frac{CS_D + 2\pi_D}{\pi_D} - (CS_M + \pi_M)} \left(\frac{\beta - 1}{\beta - 1} \psi I \right)^{(Y_L)} \beta. \]

(88)

It is straightforward to check that after substituting the expression for \(\psi \) given by (85) and some algebra,

\[W_P (Y_P^*) = \frac{CS_M}{\pi_M} \frac{I}{1 - \psi \beta - 1} \left(\frac{Y_L}{Y_L} \right)^\beta. \]

(89)