Gerunov, Anton (2016): Modeling Economic Choice under Radical Uncertainty: Machine Learning Approaches.
Preview |
PDF
MPRA_paper_69199.pdf Download (655kB) | Preview |
Abstract
This paper utilizes a novel data on consumer choice under uncertainty, obtained in a laboratory experiment in order to gain substantive knowledge of individual decision-making and to test the best modeling strategy. We compare the performance of logistic regression, discriminant analysis, naïve Bayes classifier, neural network, decision tree, and Random Forest (RF) to discover that the RF model robustly registers the highest classification accuracy. This model also reveals that apart from demographic and situational factors, consumer choice is highly dependent on social network effects.
Item Type: | MPRA Paper |
---|---|
Original Title: | Modeling Economic Choice under Radical Uncertainty: Machine Learning Approaches |
Language: | English |
Keywords: | choice, decision-making, social network, machine learning |
Subjects: | D - Microeconomics > D1 - Household Behavior and Family Economics > D12 - Consumer Economics: Empirical Analysis D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D81 - Criteria for Decision-Making under Risk and Uncertainty |
Item ID: | 69199 |
Depositing User: | Dr. Anton Gerunov |
Date Deposited: | 04 Feb 2016 05:38 |
Last Modified: | 20 Oct 2019 12:48 |
References: | Akinci, S., Kaynak, E., Atilgan, E., & Aksoy, S. (2007). Where does the logistic regression analysis stand in marketing literature? A comparison of the Market Positioning of Prominent Marketing Journals. European Journal of Marketing, 41(5/6), 537-567. Allais, M. (1953), 'Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes de l’Ecole Americaine', Econometrica 21(4), 503–546. Bahamonde, A., Díez, J., Quevedo, J. R., Luaces, O., & del Coz, J. J. (2007). How to learn consumer preferences from the analysis of sensory data by means of support vector machines (SVM). Trends in food science & technology, 18(1), 20-28. Bi, J. (2012). A review of statistical methods for determination of relative importance of correlated predictors and identification of drivers of consumer liking. Journal of Sensory Studies, 27(2), 87-101. Breiman L., Friedman J. H., Olshen R. A., and Stone, C. J. (1984) Classification and Regression Trees. Wadsworth. Cheung, K. W., Kwok, J. T., Law, M. H., & Tsui, K. C. (2003). Mining customer product ratings for personalized marketing. Decision Support Systems, 35(2), 231-243. Cortes, C. & Vapnik, V. (1995). Support-vector network. Machine Learning, 20, 1-25. Ellsberg, D. (1961), 'Risk, Ambiguity, and the Savage Axioms', Quarterly Journal of Economics 75(4), 643–669. Gan, Christopher, Visit Limsombunchai, Mike Clemes, and Amy Weng. "Consumer Choice Prediction: Artificial Neural Networks versus Logistic Models." Journal of Social Sciences 1, no. 4 (2005): 211-219. Hansen, T. (2005). Consumer adoption of online grocery buying: a discriminant analysis. International Journal of Retail & Distribution Management, 33(2), 101-121. Hastie, T., Tibshirani, R., & Friedman, J. (2011). The Elements of Statistical Learning. NY: Springer. Hu, M. Y., Shanker, M., & Hung, M. S. (1999). Estimation of posterior probabilities of consumer situational choices with neural network classifiers.International Journal of Research in Marketing, 16(4), 307-317. Hu, M. Y., Shanker, M., Zhang, G. P., & Hung, M. S. (2008). Modeling consumer situational choice of long distance communication with neural networks. Decision Support Systems, 44(4), 899-908. Huang, B., Kechadi, M. T., & Buckley, B. (2012). Customer churn prediction in telecommunications. Expert Systems with Applications, 39(1), 1414-1425. Hyman, M. R., & Yang, Z. (2001). International marketing serials: a retrospective. International Marketing Review, 18(6), 667-718. Kahneman, D. & Tversky, A. (1972), 'Subjective probability: A judgment of representativeness', Cognitive Psychology 3(3), 430–454. Kahneman, D. & Tversky, A. (1979), 'Prospect theory: An analysis of decisions under risk', Econometrica 47(2), 263–291. Kim, J. W., Lee, B. H., Shaw, M. J., Chang, H. L., & Nelson, M. (2001). Application of decision-tree induction techniques to personalized advertisements on internet storefronts. International Journal of Electronic Commerce, 5(3), 45-62. Kruppa, J., Schwarz, A., Arminger, G., & Ziegler, A. (2013). Consumer credit risk: Individual probability estimates using machine learning. Expert Systems with Applications, 40(13), 5125-5131. Lee, T. S., Chiu, C. C., Chou, Y. C., & Lu, C. J. (2006). Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis, 50(4), 1113-1130. Lewis, D. D. (1998). Naive (Bayes) at forty: The independence assumption in information retrieval. In Machine learning: ECML-98 (pp. 4-15). Springer Berlin Heidelberg. Li, S. T., Shiue, W., & Huang, M. H. (2006). The evaluation of consumer loans using support vector machines. Expert Systems with Applications,30(4), 772-782. Mengov, G. (2014). Person-by-person prediction of intuitive economic choice. Neural Networks, 60, 232-245. Neumann, J. v. & Morgenstern, O. (1944), Theory of Games and Economic Behavior, Princeton University Press, Princeton, NJ. Razi, M. A., & Athappilly, K. (2005). A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Systems with Applications, 29(1), 65-74. Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge University Press. Thaler, R. (1980). Toward a positive theory of consumer choice. Journal of Economic Behavior & Organization, 1(1), 39-60. Tregear, A., & Ness, M. (2005). Discriminant analysis of consumer interest in buying locally produced foods. Journal of Marketing management, 21(1-2), 19-35. Xu, K. S., Wang, W., Ren, J., Xu, J. S., Liu, L., & Liao, S. (2012). Classifying consumer comparison opinions to uncover product strengths and weaknesses. Organizational Efficiency through Intelligent Information Technologies, 1. Ye, Q., Zhang, Z., & Law, R. (2009). Sentiment classification of online reviews to travel destinations by supervised machine learning approaches.Expert Systems with Applications, 36(3), 6527-6535. Zhao, X., Shi, Y., Lee, J., Kim, H. K., & Lee, H. (2014). Customer Churn Prediction Based on Feature Clustering and Nonparallel Support Vector Machine. International Journal of Information Technology & Decision Making,13(05), 1013-1027. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/69199 |