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Abstract

This paper studies the problem of identifying and estimating the normal-form payoff pa-

rameters of a simultaneous, discrete game of complete information where the equilibrium

concept employed is correlated equilibrium rather than Nash equilibrium. We show that

once we extend the equilibrium concept from Nash equilibrium to correlated equilibrium,

the identification and estimation of game-theoretic econometric models becomes simpler,

since this extension avoids the usual requirement of computing all the equilibria of a given

game. To deal with the presence of multiple equilibria, unlike most other work on empir-

ical games, we make use of the moment inequality restrictions induced by the underlying

game-theoretic econometric models without the need to make any equilibrium selection as-

sumptions. The resulting identified features of the model are sets of parameters such that

the choice probabilities predicted by the econometric model are consistent with the em-

pirical choice probabilities estimated from the data. The importance sampling technique

is used to reduce computational burden and overcome the non-smoothness problems. We

also show that the model selection tests for moment inequality models can be used to test

equilibrium concepts such as correlated equilibrium versus Nash equilibrium.
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1 Introduction

Game theory is one of the cornerstones of modern economic theory, and much progress

has been made in clarifying the nature of strategic interaction in economic models. It is

the benchmark theoretical model for analyzing strategic interactions among a few players.

Given the importance of gaming in economic theory, the empirical analysis of games has

been the focus of much recent literature in econometrics and industrial organization. Since

the seminal work of Bresnahan and Reiss (1990, 1991), it is common to assume, as in a

standard discrete choice model, that each player’s utility or payoff is a linear function

of covariates and a random preference shock. However, unlike a discrete choice model,

utility also depends on the actions of other agents.

Although there are numerous studies on the empirical estimation of a wide range

game-theoretic econometric models, the most widely studied is the class of incomplete in-

formation games (both static and dynamic1. Complete information games have received

less attention due to their computational complexity, since estimation involves multidi-

mensional integrals. Moreover, complete information will generally induce the presence

of multiple equilibria (Morris and Shihn (2003)). Dealing with multiple equilibria is a

difficult task because a particular realization of observables and a particular set of payoffs

may be consistent with different model outcomes. To address the problem presented by

the requirement to compute multidimensional integrals, Bajari, Hong, and Ryan (2010)

and Ciliberto and Tamer (2009) provide simulation-based estimators for static complete

information games. Bajari, Hong, and Ryan (2010) outline three main alternatives to ad-

dress the presence of multiple equilibria. The first approach is to introduce an equilibrium

selection mechanism that determines which equilibrium will be played among several equi-

libria. Bajari, Hong, and Ryan (2010) and Jia (2008) are examples of such an approach.

1Studies of incomplete information static games include Sweeting (2005), Seim (2006), Aradillas-
Lopez (2007, 2010) and Bajari, Hong, Krainer, and Nekipelov (2010), while the studies of dynamic game
includes Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler (2008) among others.
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While an equilibrium selection mechanism allows for identification the underlying game,

in general, we have limited knowledge about the equilibrium selection mechanism, and

any misspecification about it will lead to inconsistent estimation. The second approach

which was first used by Bresnahan and Reiss (1990) is to map the sets of equilibrium

action profiles associated with a particular set of payoff profile to some other variable

that is constant over each set. In Bresnahan and Reiss (1990), for example, the variable

used is the number of entrants in the market. Of course, this is a useful method only as

long as such a variable can be found. The last approach, proposed by Tamer (2003), is

to partially identify parameters and thus, eliminate the need to make assumptions about

any underlying equilibrium selection mechanism. Berry and Tamer (2007) and Ciliberto

and Tamer (2009) are examples of this approach. Although each of these approaches

can make inferences in the presence of a multiplicity of equilibria, a common practical

issue is that all of them require computation of all the Nash equilibria of the underlying

game. This heavy computational burden will make estimation extremely difficult, if not

impossible, when dealing with large games2.

Here, we depart from the commonly used equilibrium concept – Nash equilibrium,

and assume that the outcome of the game is generated by a broader rationality rule

proposed by Aumann (1974, 1987)– correlated equilibrium. A most interesting feature of

this alternative equilibrium concept is that the identification and estimation of empirical

games become simpler, even though it enlarges the corresponding equilibrium set3. Yang

(2007) also uses the concept of correlated equilibrium to estimate simultaneous-move,

discrete game of complete information4. In contrast to his paper, our error structure is

more general, as will be discussed in section 2. As a result, the moment conditions used

2Mckelvey and Mclennan (1996) analyze the different computational methods for computing the set
of Nash equilibria for general games and point out the difficulty associated with this issue.

3Chwe (2007) also studies the identification of games based on correlated equilibrium in a deterministic
environment.

4We were unaware of this research until our own work was completed, and are grateful to Zhou Yang
for bringing it to our attention.
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for estimation differ between the two papers. The advantages of correlated equilibrium in

the context of identification comes from its convexity, that is, any convex combination of

correlated equilibria is also a correlated equilibrium, a property not held by the set of Nash

equilibria. This property reduces the computation burden associated with estimation.

We also adopt the partial identification approach to deal with the presence of multiple

equilibria following Berry and Tamer (2007) and Ciliberto and Tamer (2009), where the

identified set is characterized by moment inequality restrictions. However, our approach

does not require the computation of all the equilibria (either correlated or Nash), but only

needs to compute some ”extreme” equilibria–equilibria that realize a particular outcome

least or most, which can be obtained from simple linear programming. This does not

mean that computing the required set of correlated equilibria is simple5, the key feature

is that it does not need the whole set of equilibria. The importance sampling technique

is used to approximate the multi-dimensional integrals associated with these extreme

equilibria. Given the existing research on empirical games based on Nash equilibrium,

and the results established in this paper based on correlated equilibrium, we also provide

a framework for testing equilibrium concepts based on the moment inequality model

selection test developed by Shi (2010). The nested relationship between Nash equilibrium

and correlated equilibrium makes this test similar to the famous Hausman test (Hausman,

1978).

The paper is organized as follows. In section 2 we outline the general discrete, static,

complete information game to be estimated and formulate the implied equilibrium condi-

tions associated with the concept of correlated equilibrium. Several important properties

of correlated equilibrium are also presented. In section 3 we discuss the problem of partial

identification of the model. Section 4 describes the procedure for estimating the identified

set which is formulated in section 3, and also describes how importance sampling is used

5Papadimitriou and Roughgarden (2008) develop a polynomial-time algorithm for finding correlated
equilibria and also discuss the difficulty in computing the complete set of correlated equilibria.
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to approximate the evaluation of multiple integrals and the computation of “extreme”

correlated equilibria. Section 5 introducing a test procedure for testing the behavioral

hypothesis of correlated equilibrium versus Nash equilibrium. A simple Monte Carlo

experiment is conducted in section 6. Section 7 concludes the paper.

2 The Model

We use the strategic environment of Bajari, Hong, and Ryan (2010) to develop our es-

timation method. There are T independent repetitions of a simultaneous-move (normal

form) discrete game of complete information. In each game there are i = 1, ..., N play-

ers. In each repetition of this game, each player i chooses an action ai from the finite

set of actions Ai simultaneously. Define AN = ×iAi and let a = (a1, ..., aN) denote a

generic element of A. Player i’s von Neumann-Morgenstern (vNM) utility is a mapping

ui : A
N → R, where R is the real line. We will follow the convention of Bajari, Hong, and

Ryan (2010) and sometimes drop the subscript t for simplicity when no ambiguity would

arise.

The vNM utility of player i is assumed to be:

ui(a, xi, ϵi; θ1) = Πi(xi, a; θ1) + ϵi(a) (1)

where a ∈ AN . In Equation (1), player i’s vNM utility from outcome a is the sum of two

terms. The first term Πi(xi, a; θ1) is a function which depends on the vector a of actions

taken by all of the players, the covariates x, which are observed by the econometrician, and

parameters θ1. The second term ϵi(a), is a random preference shock which reflects all the

information about utility that is common knowledge to the players but not observed by the

econometrician. Unlike most other study on empirical games, here the preference shocks

depend on the entire vector of actions a, not just the actions taken by player i. As argued
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by Bajari, Hong, and Ryan (2010), this is a more general error structure than normally

assumed in the literature, for example Tamer (2003). As a simple example, consider a

simple two-firm entry game. This structure allows for the information unobserved by

the econometrician about a firm’s payoffs to depend not only on his choice of whether

or not to enter a market but also on the choice of the other firm. Let ϵi denote the

vector of the individual shocks ϵi(a) and ϵ denote the vector of all preference shocks,

ϵi(a) are assumed to be independent with a density gi(ϵi(a)|θ2) and joint distribution

g(ϵ|θ2) =
∏

i

∏

a∈A

gi(ϵi(a)|θ2), where θ2 denotes the parameters of the distribution.

For each repetition t ∈ {1, . . . , T} of the game with the above structure, the researcher

observes covariates xt and the outcome at (a vector of the actions chosen by the players

in period t). Unlike most other studies of empirical games (e.g., Bajari, Hong, and Ryan

(2010) and Ciliberto and Tamer (2009)), we assume that observed outcomes are consistent

with the concept of correlated equilibrium rather than Nash equilibrium. As a general-

ization of Nash equilibrium, Aumann (1974, 1987) shows that correlated equilibrium is

the appropriate solution concept if players do not know the beliefs of other players but

that in every state of the world each player’s rationality is common knowledge. The most

notable feature of correlated equilibrium is that it does not require explicit randomization

on the part of the players. Rather the equilibrium can be interpreted as a set of (possibly)

correlated signals that players receive that determine a unique optimal choice.

Formally, assume the game structure defined above, and let (Ω, π) be a probability

space, Pi be a partition of Ω, i = 1, ..., N , and let

Qi = {qi : Ω → Ai|qi is Pi measurable.} (2)

If we refer to the partition as Pi = {Pi(ω)}ω∈Ω, where Pi(ω) is the element of the partition

containing ω, then correlated equilibrium can be defined as6:

6This following definitions and discussion of correlated equilibrium follow Bergin (2005). Similar
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Definition 2.1 (Correlated Equilibrium) The collection (Ω, π, {Pi}Ni=1, {qi}Ni=1) is a

correlated equilibrium if ∀i,

∑

ω

ui(q−i(ω), qi(ω))π(ω) ≥
∑

ω

ui(q−i(ω), τi(ω))π(ω), ∀τi ∈ Qi (3)

where for each i, qi is constant on each member of Pi.

Intuitively, given the information received through the partitioning of Ω and the real-

ized state ω, players choose actions to maximize their expected utility. Thus, (3) define

sufficient conditions for this utility maximization.

The formulation of a correlated equilibrium in Definition 2.1 allows for complete flex-

ibility in defining the elements of the state space of a correlated equilibrium and, thus,

leads to a broad range of interpretations of a correlated equilibrium (e.g. sunspot equilib-

ria). However, from a computational point of view, it is more useful to restrict attention

to canonical correlated equilibria, correlated equilibria where the state space is identified

with the space of pure strategies, that is Ω = AN and, for each player, the partition Pi of

Ω is generated by Ai.

The following proposition states the strategic equivalence between correlated equilib-

rium and canonical correlated equilibrium7.

Proposition 2.1 Let (Ω, π, {P}Ni=1, {qi}Ni=1) be a correlated equilibrium. Then there is a

canonical correlated equilibrium yielding the same distribution on actions and the same

expected payoff to each player.

Based on this strategic equivalence, we will restrict attention to the concept of canonical

correlated equilibrium and, without ambiguity, refer to it as correlated equilibrium for

the remainder of the paper.

treatments can be found in Osborne and Rubinstein (1994), Forges (2009) and Sorin (1997).
7Proofs of all of the following propositions regarding correlated equilibrium can be found in Bergin

(2005) or Osborne and Rubinstein (1994).
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The following properties of correlated equilibrium will also be useful in identifying and

estimating the underlying parameters of our model:

Proposition 2.2 The set of Nash equilibrium payoffs is a subset of the set of correlated

equilibrium payoffs.

Proposition 2.3 The set of correlated equilibrium payoffs is a convex set.

Proposition (2.2) shows that the set of probability distributions over outcomes induced

by the set of Nash equilibria is equivalent to the set of probability distributions over

correlated equilibrium that are the product of independent probability distributions over

each player’s actions. The convexity of the set of correlated equilibrium payoffs will

facilitate the computation of correlated equilibrium, the resulting identified region will

allow us to restrict attention to “extreme” correlated equilibria–for each outcome, the

equilibria that attach the least and the most probability to that outcome.

The nested relationship between correlated equilibrium and Nash equilibrium makes

our test of equilibrium concepts similar to the famous Hausman test (Hausman, 1978).

If the outcomes of the underlying game are consistent with Nash equilibrium, but the

researcher estimates the parameters of the game based on the concept of correlated equi-

librium, then the estimate are consistent but inefficient, while if the outcomes are consis-

tent with correlated equilibrium, but the researcher estimates the game based on Nash

equilibrium, then the estimates are inconsistent.

Given the structure of the discrete normal form game described above, assume that

the observed outcomes of such a game are consistent with the concept of correlated equi-

librium, i.e., there exists a distribution π over the set of outcomes AN such that:

∑

a−i

ui(a−i, ai, xi, ϵi; θ1)π(a−i|ai) ≥
∑

a−i

ui(a−i, a
′
i, xi, ϵi; θ1)π(a−i|ai), ∀a′i ∈ Ai, i = 1, ..., N

(4)
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Our task is to estimate and draw an inference about the parameters of the payoff functions,

θ1, and the parameters of the distribution of random preference shocks, θ2, from the

observed outcomes aot , and some exogenous covariates which affect the payoffs, xt. Note

that the actual payoff levels are unobserved, i.e., they are latent variables. To aid the

discussion, let Sπ(u(x, ϵ; θ1)) denote the collection of distributions over outcomes which

satisfies the equilibrium condition (4), i.e., any distribution over outcomes associated with

a correlated equilibrium of the underlying game, given the payoffs associated with the

outcomes of the game. These payoffs, in turn, are determined by the set of covariates, x,

the set of random shocks, ϵ and the parameters of the utility function θ1. Let π(u(x, ϵ; θ1))

denote a generic elements of the set Sπ(u(x, ϵ; θ1)). For the purposes of exposition, we

will sometimes simply refer to it as π, or π ∈ Sπ(u(x, ϵ; θ1)).

3 Identification

The general strategy to identify the structural parameters of a game-theoretic econometric

model is to match the choice probabilities predicted by the model with the empirical

choice probabilities observed from the data (see Bajari, Hong, Krainer, and Nekipelov

(2010), Bajari, Hong, and Ryan (2010) and Ciliberto and Tamer (2009)). The empirical

choice probabilities can usually be obtained from the data nonparametrically. However,

the multiplicity of equilbria associated with a solution concept generally, and correlated

equilibrium in particular, in addition to the absence of an observed equilibrium selection

mechanism makes obtaining the choice probabilities predicted by the game structure

problematic. To solve this problem, we follow Ciliberto and Tamer (2009), who use the

restrictions on the distribution of the selection mechanism over the set of Nash equilibria

implied by the laws of probability to partially identify the model parameters. We use these

same restrictions over the set of correlated equilibria. This is in contrast to the approach of

Bajari, Hong, and Ryan (2010) who introduce an explicit equilibrium selection mechanism

9



over the set of Nash equilibria to achieve point identification of structural parameters.

First enumerate the elements of A from a = {1, ...,#A}. A is the set of pure strategy

profiles and a ∈ A. Given a correlated equilibrium π ∈ Sπ(u(x, ϵ; θ1)) is a distribution

over A, we have

π = (π(1), ..., π(a), ..., π(#A))′ (5)

and
#A
∑

a=1

π(a) = 1;0 ≤ π(a) ≤ 1;∀a ∈ A (6)

Let Y be the set of potentially observable outcomes. Since we assume that the observable

outcome of the game is the equilibrium actions chosen by all the players, then Y = A.

Let Pr(y = a|x; θ) denote the the probability that action profile a be the equilibrium

action profile predicted by the model, where θ = (θ1, θ2), and let Pr(y = a|x) be the

empirical choice probability identified from the data which is independent of the values

of the structural parameters.

Identification requires the following assumptions:

Assumption 1 The parameter space Θ is compact. Assumption

Assumption 2 The payoffs of one action for each player are fixed at a known constant.

Assumption 3 The joint distribution of ϵ = (ϵi(a)), G(ϵ|θ2) is independent, indepen-

dent of x, and known to all agents and the econometrician, and let g(ϵ|θ2) be the

corresponding density.

Assumption 4 (Identification of Pr(y|x)) The econometrician observes data that

identifies Pr(y = a|x), ∀a ∈ A.

Assumption 1, compactness of the parameter space is critical for the construction the

large sample property of our estimator (Chernozhukov, Hong, and Tamer (2007)). As-

sumptions 2 and 3 are common in the literature (see Berry (1992) and Ciliberto and Tamer
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(2009)). Similar to the model environment, the phrasing we use here is taken from Bajari,

Hong, and Ryan (2010). One can clearly see from the equilibrium condition (4) that any

affine transformation of all deterministic payoffs does not change the set of equilibria.

Thus, the need for the location normalization of Assumption 2. The scale normalization

is included as part of Assumption 3. Assumption 4 requires that the empirical choice

probabilities can be identified from the data. Clearly, this is necessary since identification

relies on matching this probability with the choice probability predicted by the model.

As discussed before, the set of correlated equilibria, Sπ(u(θ, x, ϵ)) will usually be an

uncountably infinite set. If Sπ(u(θ, x, ϵ)) is non-singleton, in order to derive the choice

probability predicted by the model, Pr(y = a|x; θ), we need to introduce an equilibrium

selection mechanism:

ψ(·|x, ϵ) : Sπ(u(x, ϵ; θ1)) → [0, 1]d[Sπ(u(x,ϵ;θ1))] (7)

such that

ψ(·|x, ϵ) ≥ 0 and (8)

∑

π∈Sπ(u(x,ϵ;θ1))

ψ(π|x, ϵ) = 1 (9)

where d[Sπ(u(x, ϵ; θ1))] is the dimension of Sπ(u(x, ϵ; θ1)). This equilibrium selection

mechanism specifies the probability, ψ(π|x, ϵ), that any correlated equilibrium π ∈

Sπ(u(x, ϵ; θ1)) be the chosen equilibrium. Since the d[Sπ(u(x, ϵ; θ1))] is, in general, infinite,

we should use a continuous distribution to express this equilibrium selection mechanism,

but for purposes of exposition, we use the discrete distribution.

Given the equilibrium selection mechanism (7), the choice probabilities implied by the
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model can be written as:

Pr(y = a|x; θ) =
∫




∑

π∈Sπ(u(x,ϵ;θ1))

ψ(π|x, ϵ)π(a)



 dG(ϵ|θ2) (10)

where π(a) is the probability that action profile a is selected (or realized) if the correlated

equilibrium is π, and ψ(π|x, ϵ) is the probability that π is the selected equilibrium. Thus,

ψ(π|x, ϵ)π(a) is the joint probability that action profile a and correlated equilibrium π are

selected. Clearly, action profile a may be associated with other correlated equilibria, thus

the summation of these probabilities,
∑

π∈Sπ(u(x,ϵ;θ1))
ψ(π|x, ϵ)π(a), is the probability that

action profile a is the selected equilibrium action profile. Based on the choice probabilities

implied by equation (10), we can define the sharp identified set for the parameter θ =

(θ1, θ2).

Definition 3.1 (Sharp Identified Set) The sharp identified set for the parameter vec-

tor θ ∈ Θ is given by:

ΘI =







∃ψ, ∀a ∈ Y

θ ∈ Θ : such that: E[Pr(y = a|x)] = E[Pr(y = a|x; θ)]

= E





∫



∑

π∈Sπ(u(x,ϵ;θ1))

ψ(π|x, ϵ)π(a)



 dG(ϵ|θ2)











(11)

Inference on the set ΘI based on (11) is not practically feasible since one needs to deal

with the infinite dimensional nuisance parameters ψ(·|x, ϵ) that result from the multiplic-

ity of equilibria. Note further that the equilibrium selection mechanism also depends on

the unobserved random preference shock ϵ. It is possible to follow the approach of Bajari,

Hong, and Ryan (2010) here and specify a parametric equilibrium selection mechanism

that is characterized by a finite number of parameters. In general, however, we do not

have sufficient information to specify a particular equilibrium selection mechanism, and
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any misspecification of this mechanism will induce inconsistent estimation. For particular

model settings one may instead use a more refined equilibrium concept, such as per-

fect correlated equilibrium (Dhillon and Mertens, 1996) or maximum entropy correlated

equilibrium (Ortiz, Schapire, and Kakade, 2007). However, for general models such refine-

ments do not guarantee a unique equilibrium. In the spirit of Ciliberto and Tamer (2009),

we leave the equilibrium selection mechanism unspecified but, instead, exploit the fact

that the equilibrium selection mechanism ψ(π|x, ϵ) is a probability and hence bounded

between zero and one to derive a outer identified set for the structural parameters.

Since the equilibrium selection mechanism ψ(π|x, ϵ) is a probability distribution, then

0 ≤ ψ(π|x, ϵ) ≤ 1, ∀π ∈ Sπ(u(x, ϵ; θ1)) (12)

Based on this natural property of probability, we can derive an outer identified set for

the parameter θ. Formally, let Ha
1 (θ,X) denote the lower bound of the choice probability

of action profile a implied by the model, Pr(y = a|x; θ), and Ha
2 (θ,X) the upper bound,

then:

Ha
1 (θ,X) = min

∫



∑

π∈Sπ(u(x,ϵ;θ1))

ψ(π|x, ϵ)π(a)



 dG(ϵ|θ2) (13)

Ha
2 (θ,X) = max

∫



∑

π∈Sπ(u(x,ϵ;θ1))

ψ(π|x, ϵ)π(a)



 dG(ϵ|θ2) (14)

Given the exogenous covariates, X, and payoff parameter θ1, define R
π
1 (θ1, X) as the set

of random preference shocks ϵ such that the game admits π as the unique equilibrium
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Rπ
2 (θ1, X) as the complement of Rπ

1 (θ1, X) Thus we have:

Ha
1 (θ,X)

= min

∫



∑

π∈Sπ(u(x,ϵ;θ1))

ψ(π|x, ϵ)π(a)



 dG(ϵ|θ2) (15)

=

∫

Rπ

1
(θ,X)

π(a)dG(ϵ|θ2)

︸ ︷︷ ︸

(1)

+

∫

Rπ

2
(θ,X)

min{π(a) : π ∈ Sπ(u(x, ϵ; θ1))}dG(ϵ|θ2).

︸ ︷︷ ︸

(2)

The last equality of equation (15) separates the calculation of the lower bound of the choice

probability of a into an integral over the support of the preference shocks that admits a

unique equilibrium and an integral over the support of the preference shocks that admits

multiple equilibria. The integrand of the first integral π(a) is the choice probability of the

unique correlated equilibrium π implied by the model over this support. The integrand of

the second integral is the probability of a associated with the correlated equilibrium that

realizes a with the lowest probability. The true equilibrium selection mechanism must

select outcome profile a with at least this probability. Thus, we identify the lower bound

of Pr(y = a|x; θ). Similarly, the upper bound Ha
2 (θ,X) can be derived as:

Ha
2 (θ,X)

= max

∫



∑

π∈Sπ(u(x,ϵ;θ1))

ψ(π|x, ϵ)π(a)



 dG(ϵ|θ2) (16)

=

∫

Rπ

1
(θ,X)

π(a)dG(ϵ|θ2)

︸ ︷︷ ︸

(1)

+

∫

Rπ

2
(θ,X)

max{π(a) : π ∈ Sπ(u(x, ϵ; θ1))}dG(ϵ|θ2)

︸ ︷︷ ︸

(2)

In an equivalent fashion to equation (15), the integrand of the second integral on the

last line of (16) is the probability of a associated with the correlated equilibrium that

realizes a with the highest probability. The true equilibrium selection mechanism can
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select outcome profile a with no more than this probability. Thus, we identify the upper

bound of Pr(y = a|x; θ).

Based on the lower bound and upper bound of the choice probabilities implied by the

model, we have:

Ha
1 (θ,X) ≤ Pr(y = a|x; θ) ≤ Ha

2 (θ,X) (17)

And when θ ∈ ΘI

E[Pr(y = a|x)] = E[Pr(y = a|x; θ)] (18)

Thus we can define the outer identified set for the model parameter θ as:

Definition 3.2 (Outer Identified Region) The outer identified set for model param-

eter θ = (θ1, θ2) ∈ Θ is

ΘO =







∀a ∈ Y

θ ∈ Θ : such that:

E[Ha
1 (θ,X)] ≤ E[Pr(y = a|x)] ≤ E[Ha

2 (θ,X)]







(19)

By introducing the following definitions:

H1(θ,X) = (H1
1 (θ,X), ..., Ha

1 (θ,X), ..., H#A
1 (θ,X))′

H2(θ,X) = (H1
2 (θ,X), ..., Ha

2 (θ,X), ..., H#A
2 (θ,X))′

and

Pr (y|x) = (Pr(y = 1|x), ...,Pr(y = a|x), ...,Pr(y = #A|x))′,

conditions that define the outer identified set can be stated as:

E[H1(θ,X)] ≤ E[Pr(y|x)] ≤ E[H2(θ,X)] (20)
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Note that the outer identified set ΘO is broader than the sharp identified set ΘI . Given

that we do not have enough information about the equilibrium selection mechanism, the

outer identified set ΘO is the most we can learn about parameter θ from the underlying

game and observed data. In general, the set is not a singleton, as it is characterized by the

moment inequality restrictions. Such a model is called a partially identified econometric

model, in contrast to the usual point identified case.

4 Estimation

The estimation problem is based on the moment inequality (20)

E[H1(θ,X)] ≤ E[Pr (y|x)] ≤ E[H2(θ,X)]. (21)

We follow Chernozhukov, Hong, and Tamer (2007) which provide a general framework for

moment inequality models to build a consistent estimator for the outer identified set ΘO.

Since the upper and lower bounds in moment conditions (21) contain multi-dimensional

integrals, we first provide a simulation procedure to approximate these integrals. Due to

the discreteness problem associated with simple Monte Carlo integration, we make use

instead of importance sampling Monte Carlo integration, in the spirit of Ackerberg (2009)

and Bajari, Hong, and Ryan (2010)8.

4.1 Importance Sampling Approximation

Importance sampling is most noted for its ability to reduce simulation error and com-

putational burden, and was first used in game-theoretic models by Bajari, Hong, and Ryan

(2010). From the derivation (15) of Ha
1 (θ,X) and (16) of Ha

2 (θ,X) it is easily seen that

π(a|u) and the set of correlated equilibria Sπ(u(x, ϵ; θ1)) are both determined by the payoff

8McFadden (1989) noted the ability to use importance sampling to smooth simulations which is
extended by Ackerberg (2009).
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level u, and are influenced by θ1 only through its effect on u. Thus, we can change the

variable of integration in (15) and (16) from ϵ to u. Let h(u|X, θ) denote the density of u,

conditional on x and θ. Based on the utility function ui(a, xi, ϵi; θ1) = Πi(xi, a; θ1) + ϵi(a)

and the density for ϵ, g(ϵ|θ2), h(u|X, θ) can be derived as:

h(u|X, θ) =
∏

i

∏

a∈A

g(ui(a)− Πi(xi, a; θ1)|θ2) (22)

Thus,

Ha
1 (θ,X)

=

∫

Rπ

1
(θ,X)

π(a|u)dG(ϵ|θ2) +
∫

Rπ

2
(θ,X)

min{π(a|u) : π ∈ Sπ(u(x, ϵ; θ1))}dG(ϵ|θ2) (23)

=

∫

R′

1

π(a|u)h(u|X, θ)du+
∫

R′

2

min{π(a|u) : π ∈ Sπ(u)}h(u|X, θ)du

and

Ha
2 (θ,X)

=

∫

Rπ

1
(θ,X)

π(a|u)dG(ϵ|θ2) +
∫

Rπ

2
(θ,X)

max{π(a|u) : π ∈ Sπ(u(x, ϵ; θ1))}dG(ϵ|θ2) (24)

=

∫

R′

1

π(a|u)h(u|X, θ)du+
∫

R′

2

max{π(a|u) : π ∈ Sπ(u)}h(u|X, θ)du

where R′
1 is the set of u such that the game admits a unique equilibrium, and R′

2 is the

set of u such that the game admits multiple equilibria. By introducing an importance
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density q(u), we can rewrite (23) and (24) as:

Ha
1 (θ,X)

=

∫

R′

1

π(a|u)h(u|X, θ)
q(u)

q(u)du+

∫

R′

2

min{π(a|u) : π ∈ Sπ(u)}
h(u|X, θ)
q(u)

q(u)du (25)

and

Ha
2 (θ,X)

=

∫

R′

1

π(a|u)h(u|X, θ)
q(u)

q(u)du+

∫

R′

2

max{π(a|u) : π ∈ Sπ(u)}
h(u|X, θ)
q(u)

q(u)du (26)

We can then simulate Ha
1 (θ,X) and Ha

2 (θ,X) by drawing random variables

(u1, ..., uns, ..., uNS) from the importance density q(u). Note that here uns is a vector;

a vector of utilities for all of the players of the underlying game. Based on these simu-

lated utility values, the importance sampling simulators for Ha
1 (θ,X) and Ha

2 (θ,X) are

H̃a
1 (θ,X) and H̃a

2 (θ,X), respectively.

H̃a
1 (θ,X) = 1

NS

∑

ns

I(uns ∈ R′
1)π(a|uns)h(u

ns|X,θ)
q(uns)

+

1
NS

∑

ns

I(uns ∈ R′
2)min{π(a|uns) : π ∈ Sπ(u

ns)}h(uns|X,θ)
q(uns)

(27)

H̃a
2 (θ,X) = 1

NS

∑

ns

I(uns ∈ R′
1)π(a|uns)h(u

ns|X,θ)
q(uns)

+

1
NS

∑

ns

I(uns ∈ R′
2)max{π(a|uns) : π ∈ Sπ(u

ns)}h(uns|X,θ)
q(uns)

(28)

From the theory of importance sampling, H̃a
1 (θ,X) and H̃a

2 (θ,X) are unbiased simulators

forHa
1 (θ,X) andHa

2 (θ,X), respectively. Most importantly, these simulators will generally

be continuous in the parameter θ since they only depend on θ through h(u|x, θ) which is

continuous in θ given that g(ϵ|θ2) is continuous.
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The theory of importance sampling proves H̃a
1 (θ,X) and H̃a

2 (θ,X) that are smooth and

unbiased simulators for any choice of the importance density q(u) which has sufficiently

large support. However, as noted by Bajari, Hong, and Ryan (2010), as a practical matter,

it is important to make sure that the tails of the importance density are not too thin in a

neighborhood of the parameter which optimizes the objective function in our estimation

procedure. We suggest using some pre-estimated θ̊ to construct the importance density

q(u) = h(u|X, θ̊), (29)

which can be obtained from the estimates of the game with incomplete information de-

veloped by Bajari, Hong, Krainer, and Nekipelov (2010), or through the generalized

maximum entropy estimator for static games of complete information (Golan, Karp, and

Perloff, 2000). Note that these two studies on empirical games are both based on the

concept of Nash equilibrium.

4.2 Estimation

Given the simulators obtained from the importance sampling, H̃a
1 (θ,X) and H̃a

2 (θ,X),

for Ha
1 (θ,X) and Ha

2 (θ,X), respectively, define

H̃1(θ,X) = (H̃1
1 (θ,X), ..., H̃a

1 (θ,X), ..., H̃#A
1 (θ,X))′

H̃2(θ,X) = (H̃1
2 (θ,X), ..., H̃a

2 (θ,X), ..., H̃#A
2 (θ,X))′

From (21) we get the following simulated moment inequality restrictions:

E[H̃1(θ,Xt)] ≤ E[Pr(y|xt)] ≤ E[H̃2(θ,Xt)] (30)
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According to Chernozhukov, Hong, and Tamer (2007), our inferential procedure uses the

objective function9:

min
θ∈Θ

Q(θ) ≡
∫ ∥

∥
∥(Pr(y|x)− H̃1(θ,X))−

∥
∥
∥

2

+
∥
∥
∥(Pr(y|x)− H̃2(θ,X))+

∥
∥
∥

2

dFx (31)

to estimate the unknown parameters associated with (30). If Pr(y|x) < H̃1(θ,X),

then
∥
∥
∥(Pr(y|x)− H̃1(θ,X))−

∥
∥
∥

2

is strictly positive, and if Pr(y|x) > H̃2 (θ,X), then
∥
∥
∥(Pr(y|x)− H̃2(θ,X))+

∥
∥
∥

2

is strictly positive. It is easy to see that Q(θ) ≥ 0 for all

θ ∈ Θ and that Q(θ) = 0 if and only if θ ∈ ΘO.

To estimate the outer identified set ΘO, we need to take a sample analog of Q(θ).

First replace Pr(y|x) with a
√
T consistent estimator PT (X)10. The sample analog for

Q(θ) is

QT (θ) =
1

T 2

T∑

t=1

[∥
∥
∥((PT (Xt)− H̃1(θ,Xt))−

∥
∥
∥

2

+
∥
∥
∥PT (Xt)− H̃2(θ,Xt))+

∥
∥
∥

2
]

. (32)

Our estimation for ΘO is any solution that minimizing (32), which can be obtained from:

Θ̂O = {θ ∈ Θ : TQT (θ) ≤ vT} (33)

where vT → ∞ and vT
T

→ 0, Chernozhukov, Hong, and Tamer (2007) propose a resampling

method to obtain a suitable vT .

Proposition 4.1 Let Assumption 3 hold. Suppose that the regularity conditions of The-

orem 3.1 in Chernozhukov, Hong, and Tamer (2007) hold. Then we have that Θ̂O is a

Hausdorff consistent estimator for ΘO, that is, dH(Θ̂O,ΘO) = 0 with probability one.

9Let ∥ x ∥+=∥ (x)+ ∥ and ∥ x ∥−=∥ (x)− ∥, where (x)+ := max(x, 0), (x)− := max(−x, 0) and ∥ · ∥
is the Euclidian norm.

10The convergence rate of nonparametric estimates for PT (X) are slower than
√
T when there are

continuous variables in x, a useful method is to discretize all the variables in x and use nonparametric
frequency estimation.
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The proof of Theorem 4.1 is the same as that for Theorem 3.1 in Chernozhukov, Hong,

and Tamer (2007). To conduct inference about the above moment inequalities model, we

use the methodology of Chernozhukov, Hong, and Tamer (2007) and Ciliberto and Tamer

(2009), which requires construction of a set CT for a prespecified α ∈ (0, 1) such that

lim
T→∞

(θO ∈ CT ) ≥ α for any θO ∈ ΘO. (34)

Our construction is as follows. Let

CT (c) =
{

θ ∈ Θ : T
(

QT (θ)−min
z
QT (z)

)

≤ c
}

. (35)

We iterate once over the following steps:

1. Compute an initial estimate for ΘO as CT (c0), for example CT (c0) = CT (0), then sub-

sample the statistic T (QT (θ)−minz QT (z)) for θ ∈ CT (0) and obtain the estimate

of its α-quantile, c1(θ0).

2. Update c through c1 = supθ0∈CT (c0) c1(θ0) and return to step 1, but replace c0 with

c1.

Thus, CT (c2) is our confidence region for Θ̂O. See Chernozhukov, Hong, and Tamer (2007)

and Ciliberto and Tamer (2009) for more detail on this. Such a confidence region not only

has the desired coverage property, but is also consistent in the sense of Theorem 4.1.

4.3 Computation of the Equilibria

The simulated lower and upper bounds, H̃a
1 (θ,X) and H̃a

2 (θ,X), contain the following

equilibrium computations:

I(u ∈ R′
1)π(a|u) (36)

I(u ∈ R′
2)min{π(a|u) : π ∈ Sπ(u)} (37)

21



and

I(u ∈ R′
2)max{π(a|u) : π ∈ Sπ(u)} (38)

where u is a vector which contains the utility levels of all the players for each action

profile. We first discuss the computation of (37) and (38), where the corresponding game

admits multiple equilibria. First note that if once we identify the regions R′
1 and R′

2,

then we only need to compute the correlated equilibrium which realizes action profile a

with the lowest probability and compute the correlated equilibrium which realizes action

profile a with the highest probability Both of these can be obtained through simple linear

programming. The first correlated equilibrium solves

min
π

π(a)

s.t.







∑

a−i

ui(a−i, ai)π(a−i, ai) ≥
∑

a−i

ui(a−i, ãi)π(a−i, ai), ∀i, ai and ãi ̸= ai

∑

a∈A

π(a) = 1, π(a) ≥ 0,

(39)

and the second solves

max
π

π(a)

s.t.







∑

a−i

ui(a−i, ai)π(a−i, ai) ≥
∑

a−i

ui(a−i, ãi)π(a−i, ai), ∀i, ai and ãi ̸= ai

∑

a∈A

π(a) = 1, π(a) ≥ 0.

(40)

If the game has a unique equilibrium, then the solution for the system of linear inequalities:

∑

a−i

ui(a−i, ai)π(a−i, ai) ≥
∑

a−i

ui(a−i, ãi)π(a−i, ai), ∀i, ai and ãi ̸= ai

∑

a∈A

π(a) = 1, π(a) ≥ 0
(41)
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is unique. Thus, this unique equilibrium solves both linear program (39) and (40), which

means that, in practice, we do not need to identify payoffs based on whether or not they

admit multiple equilibria. The only computation required is linear program (39) or (40).

Clearly, the computation of equilibria in our procedure is very simple. Studies which focus

on empirical estimation of complete information games based on Nash equilibrium, need

to compute all the Nash equilibrium of underlying game, which will, in general, induce a

heavy computational burden. See for example, Berry and Tamer (2007), Bajari, Hong,

and Ryan (2010) and Ciliberto and Tamer (2009).

5 Test of Equilibrium Concepts

In this paper, we use correlated equilibrium to empirically identify and estimate a static

complete information game. Of course, it is an open question which equilibrium concept

most appropriately model strategic choices. A non-exhaustive of solution concepts used

in the literature include pure strategy Nash equilibrium, mixed strategy equilibrium,

correlated equilibrium and evolutionary equilibrium. In this section we outline a formal

empirical test of the suitablility of Nash equilibrium as a solution concept as compared

to correlated equilibrium.

Formally, let CE denote the set of parameter estimates of a static complete information

game using correlated equilibrium as the solution concept and NE the set of parameter

estimates of the same game using Nash equilibrium as the solution concept. Since both

solution concepts can be characterized by moment inequality restrictions, then

CE =
∪

θ∈Θ

CEθ; NE =
∪

β∈B

NEβ, (42)

where

CEθ = {CE : ECEmj(Xi, θ) ≥ 0, j ∈ JCE} (43)
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and

NEβ = {NE : ENEgj(Xi, β) ≥ 0, j ∈ JNE}. (44)

If {Xi ∈ X}ni=1 is the sample generated from distribution µ, and mj(Xi, θ) and gj(Xi, β)

are moment functions characterized by finite dimensional parameter θ and β, respec-

tively, then ECEmj(Xi, θ) ≥ 0 is equivalent to the moment inequalities (20), while

ENEgj(Xi, β) ≥ 0 is equivalent to the moment conditions in Ciliberto and Tamer (2009)11.

Given the above structure, we want to test which of the two distributions CE and NE ,

is closer to the true distribution µ. Since both solution concepts are defined in terms of

moment inequality restrictions, we can make use of the test for moment inequality models

developed by Shi (2010). Consider the null hypothesis:

H0 : d(CE , µ) = d(NE , µ) (45)

where

d(CE , µ) = inf
CE∈CE

d(CE, µ); d(NE , µ) = inf
NE∈NE

d(NE, µ). (46)

The distance d(P, µ) is defined as the Kullback-Leibler divergence measure:

d(P, µ) =

∫

pµ log pµdµ, (47)

where pµ is the density of P with respect to µ. We now construct the test statistics. For

a data distribution µ, define the Lagrange multipliers:

γ∗µ(θ) = argmin
γ

exp(γ′m(Xi, θ)) (48)

λ∗µ(β) = argmin
λ

exp(λ′g(Xi, β)) (49)

11The moment conditions in Ciliberto and Tamer (2009) are based on pure strategy Nash equilibrium,
to obtain the moment conditions for Nash equilibrium, one needs to extend that result. Berry and Tamer
(2007) briefly discuss the problems that arise when allowing for mixed strategies.
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and criterion functions:

Mµ(γ, θ) = Eµ exp(γ
′m(Xi, θ)) (50)

Gµ(λ, β) = Eµ exp(λ
′g(Xi, β)) (51)

Shi (2010) prove that the null hypothesis (45) can be stated as:

H0 : max
θ∈Θ

Mµ(γ
∗
µ(θ), θ) = max

β∈B
Gµ(λ

∗
µ(β), β) (52)

The sample analog of Mµ(γ
∗
µ(θ), θ) and Gµ(λ

∗
µ(β), β) are:

M̂n(γ, θ) =
1

n

n∑

i=1

exp(γ′m(Xi, θ)); Ĝn(λ, β) =
1

n

n∑

i=1

exp(λ′g(Xi, β)) (53)

where

γ̂n(θ) = argmin
γ

M̂n(γ, θ), λ̂n(β) = argmin
λ

Ĝn(λ, β)

Θ̂n = argmax
θ∈Θ

M̂n(γ̂n(θ), θ) B̂n = argmax
β∈B

Ĝn(λ̂n(β), β)
(54)

Then we can use the quasi-likelihood ratio statistic

QLRn = max
θ∈Θ

M̂n(γ̂n(θ), θ)−max
β∈B

Ĝn(λ̂n(β), β) (55)

to test the null hypothesis, equation(52).

With several regularity conditions, Shi (2010) proves that under H0:

QLRn
d
⇝ N(0, ϖ2

n) (56)

where ϖ2
n = Eµ[exp(γ

∗
µ(θ

∗)′m(Xi, θ
∗)) − exp(λ∗n(β

∗)′g(Xi, β
∗))]2, θ∗ ∈

argmaxθ∈Θ Mµ(γ
∗
µ(θ), θ), β∗ ∈ argmaxβ∈B Gµ(λ

∗
µ(β), β). In practice, ϖ2

n can be
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replaced with its sample analog ϖ̂2
n:

ϖ̂2
n = sup

θ∈Θ̂n,β∈B̂n

1

n

∑

µ

[exp(γ̂n(θ)
′m(Xi, θ))− exp(λ̂n(β)

′g(Xi, β))]
2. (57)

The test criterion is

Test of Correlated Equilibrium versus Nash Equilibrium Let bn be a sequence of

positive numbers such that b−1
n + n−1bn → 0. Given the nominal size α and the

(1− α/2) quantile of the standard normal distribution, zα/2.

(1) If nϖ̂2
n > bn and n

1

2QLRn/ϖ̂n > zα/2, then reject H0 in favor of the hypothesis that

correlated equilibrium is the appropriate equilibrium concept.

(2) If nϖ̂2
n > bn and n

1

2QLRn/ϖ̂n < −zα/2, then reject H0 in favor of the hypothesis

that Nash equilibrium is the appropriate equilibrium concept.

(3) If ϖ̂2
n and n

1

2QLRn/ϖ̂n do not satisfy the condition in (1) and (2), then do not reject

the null H0.

This test criterion is based on the nested model selection test of Shi (2010). Recall

Proposition 2.2, which states that the set of Nash equilibrium payoffs is a subset of the

set of correlated equilibrium payoffs. An interesting case is when the test does not reject

the null hypothesis. This implies that correlated equilibrium and Nash equilibrium are

equally effective in explaining the observed data, or, put differently, the set of Nash

equilibria is (approximately) equal to the set of correlated equilibria. Finally, the nesting

of Nash equilibrium with correlated means that using correlated equilibrium to estimate

empirical games is robust to the true state being that the appropriate solution concept

is Nash equilibrium, but inefficient in this state. If instead, the true equilibrium concept

is correlated equilibrium, then except in the special case that all correlated equilibria of

the game are Nash equilibria , using Nash equilibrium to estimate the game will produce
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inconsistent estimates. This is similar to the choice between fixed effect and random effect

in panel data models.

6 Monte Carlo Simulation

To demonstrate the performance of our estimates in finite samples, we conduct a Monte

Carlo experiment using a simple static 2× 2 entry game. In each of the T repetitions of

the static complete information game, each has the following structure:

0 1

0 (0, 0) (0, ϵ2(0, 1))

1 (ϵ1(1, 0), 0) (θ1 + ϵ1(1, 1), θ2 + ϵ2(1, 1))

The action set of each player is Ai = {0, 1}, where 0 means no entry and 1 means entry.

The utility function for player i is defined as:

ui(a, ϵi(a); θ) = I(ai = 1)(θ1a−i + ϵi(a)) (58)

As a simple experiment, we have not included any exogenous covariates x here. In accor-

dance with the location and scale normalization requirement for identification, we set the

utility of no entry equal to 0 and the variance of the random preference shock equal to 1.

Thus, we only need to estimate the strategic effect parameters θ1 and θ2.

All random preference shocks ϵ1t(1, 0), ϵ2t(0, 1), ϵ1t(1, 1) and ϵ2t(1, 1) are independently

drawn from a standard normal distribution. The parameter space Θ is set to Θ = [−5, 5]2,

and the true values are

θ1 = −0.5; θ2 = −1 (59)

Thus, entry by player i will decrease the payoff of player j given entry by player j. Given
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these random shocks and parameters, we generate the outcome of each game, i.e., the

observed action profiles, by a simple maximum entropy equilibrium selection mechanism

that solves

max
π

−
∑

a∈A

π(a) ln π(a)

s.t.







∑

a−i

ui(a−i, ai)π(a−i, ai) ≥
∑

a−i

ui(a−i, ãi)π(a−i, ai), ∀i, ai and ãi ̸= ai

∑

a∈A

π(a) = 1, π(a) ≥ 0.

(60)

Obviously, this maximum entropy equilibrium selection mechanism will generate the most

dispersive correlated equilibrium π∗ among all correlated equilibria. We use simple random

sampling on π∗ to determine which action profile will be played. Based on the maximum

entropy equilibrium selection mechanism, with a sample size of 500,

E[Pr(yt)] = (0.291058, 0.274005, 0.35475, 0.080187). (61)

We use the following procedure to estimate Equation (33). First, we use a simulated

annealing algorithm to find a solution to the minimization of Equation (32), which we

denote by θ̃. Then we use rich directions12 to grid search within the parameter space Θ

until it condition (33) is satisfied.

We generate 1000 samples of size T = 500, 1000 to assess the finite sample properties

of our estimator. We first use the importance sampling simulator to get simulated bounds

of choice probabilities, then, based on the above numerical procedure compute the final

estimates. The interval estimates are reported in Table 1, and the set estimators for

T = 500 and T = 1000 are compared in Figure 1. Since we lack information regarding the

true range of the outer identified set, we can not say much about the performance of our

12In this experiment, we choose 402 directions, which are randomly chosen according to a uniform
distribution over [0, 2π].
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Table 1: The Results of the Monte Carlo Simulations
Initial Value For Set Estimation Interval Estimates

T = 500
θ1 −0.5677 [−2.3142, 0.9580]
θ2 −1.0273 [−2.8319, 0.4027]

T = 1000
θ1 −0.5659 [−2.2794, 0.9370]
θ2 −1.0267 [−2.8184, 0.3816]

Monte Carlo Repetitions: 1000
Importance Sampling Repetitions: 999

estimator, except that the true value of the parameter lies in our estimated set. Moreover,

from Figure 1 we see that when the sample size increase, the range of Θ̂O decreases, which

is similar to convergence in the point identified case, but that the size of the set remains

large at this sample size.

7 Conclusion

In this paper, we propose a framework for identifying and estimating the normal-form

payoff parameters of a discrete, static, complete information game where the equilibrium

concept employed is correlated equilibrium. Compared with existing studies based on

Nash equilibrium, this extension of the equilibrium concepts simplifies the identification

and estimation of game-theoretic econometric models, since our approach does not require

the computation of the full set of equilibria, it only needs to compute some ”extreme”

equilibria which can be obtained through linear programming. We deal with the pres-

ence of multiple equilibria, by making use of the moment inequality restrictions induced

by the underlying game-theoretic econometric models, rather than making any assump-

tions regarding equilibrium selection Thus we avoid the potential for misspecification of

the equilibrium selection mechanism.This leads to the estimation of a partially identi-

fied model. Given the outer identified set characterized by moment restrictions, the set
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Figure 1: The estimated outer identified set Θ̂O for different sample sizes.

estimator developed by Chernozhukov, Hong, and Tamer (2007) is used to obtain its esti-

mates. The importance sampling technique is used to reduce computational burden and

overcome the non-smoothness problems. We also show that the model selection tests for

moment inequality models developed by Shi (2010) can be used to test equilibrium con-

cepts such as correlated equilibrium versus Nash equilibrium. The greatest limitation of

our estimation method is that it requires the distribution of random preference shocks to

be known by the researcher. Estimation of such models in ignorance of the the distribution

of random preference shocks is an important topic for future research. Another possible

extension is to update our estimator to one based on conditional moment restrictions.
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