Quantum strategy synthesis by Alphabet Inc

Dimitri O. Ledenyov and Viktor O. Ledenyov

James Cook University, Townsville, Queensland, Australia

8 February 2016

Online at https://mpra.ub.uni-muenchen.de/69348/
MPRA Paper No. 69348, posted 8 February 2016 14:45 UTC
Quantum strategy synthesis by Alphabet Inc

Dimitri O. Ledenyov and Viktor O. Ledenyov

Abstract – We make the business at the time of great transition from the digital disruption to the quantum disruption, when the multiple quantum inventions in the natural/social sciences lead to the quantum leaps realization by the modern firms in the hi-tech industries in the quantum creative economies of the scales and scopes in the quantum disruption age. At this opportunities/challenges time period, a chairman of the board of directors must take a personal responsibility for the creation and execution of the quantum strategy - a most effective winning virtuous organizational strategy - toward the optimal business model design/discovery for the prosperous effective organization in the quantum creative economies of the scales and scopes in the quantum disruption century. The quantum strategy uses the quantum strategy search algorithm, applying the quantum logic (the probabilistic logic) on the top of the inductive, deductive and abductive logics (the value based logics) with the purpose to create the most effective optimal winning virtuous organizational strategy by the chairman of the board of directors with the interlocking interconnecting directors in the modern firms in the quantum creative economies of the scales and scopes in the quantum disruption time. We study the case on the quantum strategy formulation and execution by a chairman of the boards of directors with the interlocking interconnecting directors in the modern firms such as Alphabet Inc, expressing a great confidence that the quantum strategies will continue to be implemented by the prosperous organizations to increase their valuations in the quantum creative economies of the scales and scopes in the quantum disruption century.

JEL code: C0, G21, G24, G30, G34, L1, L4, M2.

PACS numbers: 89.65.Gh, 89.65.--s, 89.75.Fb.

Keywords: fundamental strategy theory, classical philosophical views on the fundamental strategy theory, digital philosophical views on the fundamental strategy theory, quantum philosophical views on the fundamental strategy theory, quantum strategy, quantum strategy search algorithm, quantum (probability)/inductive/deductive/abductive strategy selection logics, strategy decision/optimization problems, most effective strategy search, chairman of board of directors, composition / interlocking directors networks / seats accumulation number at boards of directors, Centrality, Freeman degree, Betweenness, destructive coordination, information flows measurements, information absorption, theory of firm, microeconomics, Schrodinger wave function, quantum mechanics, quantum physics, probability, econophysics.
Introduction

The fundamental strategy theory - a pink diamond, which shines brightly and colorfully in a spectrum of illuminating lights of the business administration science, the microeconomics science, and the macroeconomics science – continues to attract a considerable scientific interest among the leading strategy thinkers and undergoes a natural evolution by making a chain of the scientific evolutionary visions transitions/transformations in the best minds of the leading strategy thinkers from:

1. The classical philosophical views on the fundamental strategy theory, which consider the continuous-time processes in the analogue economies of the scales and scopes in the analogue disruption century in Chandler (1962, 1998; 1977, 1993; 1994; 2001; 2005); further to

2. The digital philosophical views on the fundamental strategy theory, which deal with the discrete-time processes in the digital creative economies of the scales and scopes in the digital disruption century in Ledenyov D O, Ledenyov V O (2015b); and further to

3. The quantum philosophical views on the fundamental strategy theory, which focus on the discrete-time quantum processes in the quantum creative economies of the scales and scopes in the quantum disruption century in Ledenyov D O, Ledenyov V O (2015b, n, o).

At present time, one of the most interesting research problems to understand in the fundamental strategy theory is: Why do a chairmen of the boards of directors with the interlocking interconnecting directors in the modern firms need to change their approaches to the creation of the most effective optimal winning virtuous organizational strategies in the frames of the fundamental strategy theory, shifting their focus from:

1. The classical philosophical views on the fundamental strategy theory, which consider the continuous-time processes in the analogue economies of the scales and scopes in the analogue disruption century in Chandler (1962, 1998; 1977, 1993; 1994; 2001; 2005); further to

2. The digital philosophical views on the fundamental strategy theory, which deal with the discrete-time processes in the digital creative economies of the scales and scopes in the digital disruption century in Ledenyov D O, Ledenyov V O (2015b); and further to

3. The quantum philosophical views on the fundamental strategy theory, which focus on the discrete-time quantum processes in the quantum creative economies of the scales and scopes in the quantum disruption century in Ledenyov D O, Ledenyov V O (2015b, n, o)?

The most significant problem is that the process of the strategies creation and execution by a chairmen of the boards of directors with the interlocking interconnecting directors in the modern organizations takes place in the time of constant introduction of the disruptive innovations in the natural/social sciences, including the market-creating innovations, sustaining innovations and efficiency innovations, in the modern economies of the scales and scopes on a global scale in Christensen, Raynor, McDonald (December 2015), Christensen, Denning (December 2015), Rodin (2015), Dobbs, Woetzel, Flanders (2015), Barber (2015).

The disruptive innovations, having a considerable impact on the economy of scale and scope, are introduced at the certain moments of time in the time domain sharply, hence the disruptive innovations can be classified as the discrete – time processes. In agreement with the
business administration science, we think that these disruptive innovations may divided into the two big classes in Ledenyov D O, Ledenyov V O (2015b, n, o):

1. The **natural sciences disruptive innovations**, which trigger the multiple abrupt changes in the different industrial processes, because of introduction of the new advanced discoveries and technologies to design/develop the new products/services in the modern economies of the scales and scopes globally;

2. The **social sciences disruptive innovations**, which trigger the multiple sharp changes in the different social processes, because of introduction of the new advanced discoveries and technologies to manage the social interactions/processes in the modern economies of the scales and scopes globally.

Considering the natural/social sciences disruptive innovations, we would like to explain that the natural/social sciences disruptive innovations relate to a group of the discrete – time processes. Presently, we can observe that there are the great transitions from

1. a period of the analog natural/social sciences disruptive innovations, when the multiple analog inventions in the natural/social sciences lead to the analog devices/technologies introduction and the subsequent analog leaps realization by the modern firms in the hi-tech industries in the analog creative economies of the scales and scopes, further to

2. a period of the digital natural/social sciences disruptive innovations, when the multiple digital inventions in the natural/social sciences lead to the digital devices/technologies introduction and the digital leaps realization by the modern firms in the hi-tech industries in the digital creative economies of the scales and scopes, and further to

3. a period of the quantum natural/social sciences disruptive innovations, when the multiple quantum inventions in the natural/social sciences lead to the quantum devices/technologies introduction and the subsequent quantum leaps realization by the modern firms in the hi-tech industries in the quantum creative economies of the scales and scopes.

Researching the quantum strategy synthesis by the chairman of the board of directors at modern firm in the quantum creative economy of scale and scope in the quantum disruption century, we would like to concentrate our attention on the following propositions:

1. We think that, at this opportunities/challenges transition period, a chairman of the board of directors with the interlocking interconnecting directors must take a personal responsibility for the creation and execution of the quantum strategy - a most effective winning virtuous organizational strategy - toward the optimal business model design/discovery for the prosperous effective organization in the quantum creative economies of the scales and scopes in the quantum disruption century.
2. We believe that, at this opportunities/challenges transition period, a chairman of the board of directors with the interlocking interconnecting directors must understand that the disruptive quantum innovations may have multiple direct/indirect impacts on an professional ability/capacity by the chairman’s of the board of directors with the interlocking interconnecting directors to synthesis the quantum strategy - a most effective winning virtuous organizational strategy - toward the optimal business model design/discovery for the prosperous effective organization in the quantum creative economies of the scales and scopes in the quantum disruption century.

In this research article, we would like to discuss a process of the quantum strategy synthesis by the chairmen of the boards of directors with the interlocking interconnecting directors at the modern firm in the quantum creative economy of scale and scope in the quantum disruption century comprehensively. More clearly, we would like to focus on the following key research points toward the quantum strategy creation and implementation in details:

1. The quantum strategy synthesis, which is an organizational strategy, which can be formulated with the use of the quantum strategy search algorithm (QSCA) in the fundamental strategy theory by the chairman of the board of directors with the interlocking interconnecting directors in the modern firms at the time of quantum disruption;

2. The quantum strategy search algorithm, which applies the quantum logic (the probabilistic logic) on the top of the inductive, deductive and abductive logics (the value based logics), aiming to create the most effective optimal winning virtuous organizational strategy by the interlocking interconnecting directors in the board of directors in the modern organization in the quantum creative economy of scale and scope in a quantum information century in Ledenyov D O, Ledenyov V O (2015n).

We hope that our research will formulate and greatly improve the quantum strategy theory, which was proposed for the first time in Ledenyov D O, Ledenyov V O (2015n, o), moving the frontiers of the business administration science and the microeconomics science forward. At the same time, we would like to comment that our innovative research on the strategy creation and implementation in Ledenyov D O, Ledenyov V O (2015b, n, o), attracted a considerable scientific interests among the academicians and the practitioners at the leading universities / corporations in the World, namely a statement that the knowledge is a new currency by Faust (2015) was made, and a new course on the disruptive strategy by Christensen (2015) for the senior executives at Harvard Universities in the USA was compiled.

In this connection, we think that the innovations can be disruptive, because of their disruptive nature. At the same time, we believe that it is better to say that the quantum strategy
is a most effective winning virtuous organizational strategy, because of its quantum nature. However, we think that the term: “the disruptive strategy” by Christensen (2015) is not scientific, because any strategy must be aimed to create something rather than to disrupt something. In our opinion, a chairman of the board of directors with the interlocking interconnecting directors works to create and execute the quantum strategy - a most effective winning virtuous organizational strategy - toward the optimal business model design/discovery for the prosperous effective organization in the quantum creative economies of the scales and scopes in the quantum disruption century.

Completing a short insightful introduction, let us begin a more detailed scientific discussion and present our original research thoughts on the subject of scientific interest in this research article.

Quantum strategy synthesis by chairman of board of directors at modern firm in quantum creative economy of scale and scope in quantum disruption century

We prefer to begin our scientific discussion by stating that the quantum strategy synthesis has to be performed by a chairman of the board of directors at the modern firm in the quantum creative economy of scale and scope in a quantum disruption century.

As we know the chairman chairs the board of directors in the modern firm at a certain time moment could be mathematically represented as a two dimensions matrix in Ledenyov D O, Ledenyov V O (2015b, n, o):

\[
\text{Chairman}_{c,t} = \left[\begin{array}{cc}
\text{Board of Directors}_{c,t} &=& \left[\begin{array}{c}
d_{1,1}d_{1,2}d_{1,j} \\
d_{2,1}d_{2,2}d_{2,j} \\
d_{i,1}d_{i,2}d_{i,j}
\end{array}\right]
\end{array}\right],
\]

where \(d_{i,j}\) is the position of a director’s seat in the matrix.

The change of the composition of the board of directors in the modern firm over the time could be mathematically described as an integer in Santella, Drago, Polo (November 11, 2007), Ledenyov D O, Ledenyov V O (2015b, n, o):

\[
\text{Chairman}_{c,t} = \left[\begin{array}{c}
\text{board}_{c,t} = \text{board}_{c,t-1} + \int_{t}^{t_{+}} (en - ex) dt
\end{array}\right],
\]

where

\[
\frac{en(t)}{dt} = en \cdot t = en, \quad en(t) \text{ is the number of directors entrants at time } t,
\]

\[
\frac{ex(t)}{dt} = ex \cdot t = ex,
\]

\[
\text{where}
\]

\[
\text{board}_{c,t} = \text{board}_{c,t-1} + \int_{t}^{t_{+}} (en - ex) dt,
\]

\[
\text{en}(t) \text{ is the number of directors entrants at time } t,
\]

\[
\text{ex}(t) \text{ is the number of directors exits at time } t.
\]
$ex(t)$ is the number of directors exits at time t_i,

$\text{board}_{c,i}$ is the board of directors size at time t_i,

c is the company,

i is the director.

The inductive logic, deductive logic, abductive logic, quantum logic (the probability logic) have been described in Ledenyov D O, Ledenyov V O (2015n):

1. **Inductive logic** – the logic of what is operative — reasons from the specific to the general. Induction allows inferring \(a \) entails \(b \) from multiple instantiations of \(a \) and \(b \) at the same time.

2. **Deductive logic** – the logic of what must be — reasons from the general to the specific. Deduction allows deriving \(b \) as a consequence of \(a \). In other words, deduction is the process of deriving the consequences of what is assumed.

3. **Abductive logic** – the logic of what could possibly be true – reasons through successive approximation. Abduction allows inferring \(a \) as an explanation of \(b \), because of this, abduction allows the precondition \(a \) to be inferred from the consequence \(b \).
4. **Quantum logic (Probability logic)** – the logic of what may occur – reasons through computing of events probabilities distributions. Quantum logic allows a and b to be realized, depending on a and b events probabilities distributions equal to square of the Schrödinger’s wave function.

The practical realization of the **Quantum Strategy Search Algorithm** has been discussed for the first time in Ledenyov D O, Ledenyov V O (2015n):

1. **the interlocking interconnecting director** absorbs the information of interest on the particular business events/processes/ecosystems,

2. **the interlocking interconnecting director** applies the creative imperative integrative intelligent conceptual co-lateral adaptive logarithmic thinking process to analyze the particular business events/processes/ecosystems,

3. **the interlocking interconnecting director** uses the inductive, deductive and abductive logics (the value based logic, the binary logic) to come to a certain logical conclusion on the desirable corporate strategy of the choice during the strategic choice structuring process in Ledenyov D O, Ledenyov V O (2015b),

4. **the interlocking interconnecting director** applies the quantum logic (the probability logic) to evaluate the corporate strategy of the choice, with the ultimate purpose to create the quantum strategy or to disregard the corporate strategy of the choice during the strategic choice structuring process, and then

5. **the chairman of the board of directors** with the interlocking interconnecting directors in the board of directors thinks on a set of the proposed strategies by the directors and creates / implements the quantum strategy in the quantum creative economies of the scales and scopes at the selected time period.

Quantum strategy synthesis by Alphabet Inc in quantum creative economy of scale and scope in quantum disruption century

The **Alphabet Inc organizational structure** in 2016 is well presented in Grant (2016), including the following organizational divisions:

- Google, which would comprise search, advertising, maps, YouTube, and Android;
- Calico, an anti-aging biotech company;
- Sidewalk, a company focused on smart cities;
- Nest, a maker of Internet connected devices for the home;
- Fiber, high speed Internet service in a number of American cities;
• Investment arms such as Google ventures and Google capital;
• Incubator projects, such as Google X, which is developing self-driving cars and delivery drones.”

The Alphabet Inc has been classified as a conglomerate, going from its organizational structure in Reeves (2015) Rosoff (2015), Waters, Platt (2015), Grant (2016).

The Alphabet Inc corporate strategy has been comprehensively discussed and analyzed in Reeves (2015) Rosoff (2015), Waters, Platt (2015), Grant (2016).

In our opinion, the quantum strategy synthesis by Alphabet Inc means that a set of most innovative successful unrelated R&D strategies has been created and implemented by a chairman of the board of directors at Alphabet Inc in the quantum creative economy of scale and scope in the quantum disruption century.

The Alphabet Inc transformation into some kind of conglomerate can be merely considered as the optimization efforts, aiming to successfully execute a set of most innovative successful unrelated R&D strategies, by a chairman of the board of directors at Alphabet Inc in the quantum creative economy of scale and scope in the quantum disruption century.

We think that the quantum strategy synthesis by a chairman of the board of directors at Alphabet Inc in the quantum creative economy of scale and scope in the quantum disruption century resulted in a situation, when the Alphabet Inc became a most valuable company with the market valuation of about US$533.4 billion in the World in La Monica (February 1 2016), of about $546.50 billion in Ghosh, Mukherjee (February 2 2016).

We would like to state that the chairmen of the boards of directors with the interlinking interlocking directors in the modern firms will greatly benefit by creating and by implementing the quantum strategies, pursuing the ultimate goal to build the prosperous organizations in the digital creative economies of the scales and scopes at the time of the disruptive changes and opportunities by the globalization.

Conclusion

We live and make business at the time of great transition from the digital disruption to the quantum disruption, when the multiple quantum inventions in the natural/social sciences create all the necessary conditions for the quantum leaps realization by the modern firms in the hi-tech industries in the quantum creative economies of the scales and scopes in the quantum disruption age.
We think that, at this opportunities/challenges time period, a chairman of the board of directors must take a personal responsibility for the creation and execution of the quantum strategy - a most effective winning virtuous organizational strategy - toward the optimal business model design/discovery for the prosperous effective organization in the quantum creative economies of the scales and scopes in the quantum disruption century.

The quantum strategy uses the quantum strategy search algorithm, applying the quantum logic (the probabilistic logic) on the top of the inductive, deductive and abductive logics (the value based logics) with the purpose to create the most effective optimal winning virtuous organizational strategy by the chairman of the board of directors with the interlocking interconnecting directors in the modern firms in the quantum creative economies of the scales and scopes in the quantum disruption time.

We study the real-life cases on the quantum strategy formulation and execution by the chairman of the board of directors with the interlocking interconnecting directors in the modern firm such as Alphabet Inc in the quantum creative economies of the scales and scopes in the quantum disruption period.

We express a great confidence that the quantum strategies will continue to be created and implemented by the prosperous organizations with the aim to increase the modern firms’ valuations and outperform the competitors in the quantum creative economies of the scales and scopes in the quantum disruption century.

Acknowledgement

The scientific thinking school in Bunyakovsky (1825a, b, c, 1846) influenced the authors’ strategic scientific vision creation and helped to develop the authors’ tactical approaches to the scientific problems solutions search. The authors acknowledge the multiple scientific discussions on the quantum strategy with Oleg P. Ledenyov in Kharkiv, Ukraine in 1988 – 2016. The first author appreciates many hours of the research discussions on the computing modeling techniques for the accurate characterization of the scientific phenomena with Janina E. Mazierska at James Cook University in Townsville, Australia in 2000 - 2016.

*E-mails: dimitri.ledenyov@my.jcu.edu.au, ledenyov@univer.kharkov.ua.
References:

Economics Science, Finance Science, Economic History Science:

7. Menger C 1871 Principles of Economics (Grundsätze der Volkswirtschaftslehre) Ludwig von Mises Institute Auburn Alabama USA
8. Bagehot W 1873, 1897 Lombard Street: A description of the money market Charles Scribner's Sons New York USA.
10. von Böhm-Bawerk E 1884, 1889, 1921 Capital and interest: History and critique of interest theories, positive theory of capital, further essays on capital and interest Austria; 1890 Macmillan and Co Smart W A (translator) London UK
13. Schumpeter J A 1906 Über die mathematische methode der theoretischen ökonomie ZfVSV Austria.
15. Schumpeter J A 1911; 1939, 1961 Theorie der wirtschaftlichen entwicklung; The theory of economic development: An inquiry into profits, capital, credit, interest and the business cycle Redvers Opie (translator) OUP New York USA.
19. Slutsky E E 1915 Sulla teoria del bilancio del consumatore Giornale degli economisti e rivista di statistica 51 no 1 pp 1 – 26 Italy.
27. Ellis H, Metzler L (editors) 1949 Readings in the theory of international trade Blakiston Philadelphia USA.
28. Friedman M (editor) 1953 Essays in positive economics Chicago University Press Chicago USA.
34. Minsky H P 2015 Minsky archive The Levy Economics Institute of Bard College Blithewood
 Bard College Annandale-on-Hudson New York USA
 http://www.bard.edu/library/archive/minsky/.
41. Scornick-Gerstein F May, 1996 Private communications on economics strategies by the
 European governments, the financial strategies by European governments, and the land value
 taxation theory by Henry George Royal Automobile Club London UK.
42. Scornick-Gerstein F 1999 The future of taxation: The failure of the poll tax in the UK
46. Stiglitz J E 2015 The great divide Public Lecture on 19.05.2015 London School of
 Economics and Political Science London UK
 http://media.rawvoice.com/lse_publiclecturesandevents/richmedia.lse.ac.uk/publiclecturesand
 events/20150519_1830_greatDivide.mp4.
49. Dodd N 2014 The social life of money Princeton University Press NJ USA

Juglar Economic Cycle in Macroeconomics:
50. Juglar C 1862 Des crises commerciales et de leur retour périodique en France en Angleterre
 et aux États-Unis Guillaumin Paris France.

Kondratiev Economic Cycle in Macroeconomics:

53. Tugan-Baranovsky M 1894 Industrial crises in contemporary England: Their causes and influences on the life of the people *St Petersburg/Moscow* Russian Federation.
56. Kondratieff N D 1925 The big cycles of conjuncture *The problems of conjuncture* 1 (1) pp 28 – 79.
60. Kondratieff N D 1984 The Long wave cycle *Richardson & Snyder* New York USA.
64. Kowal L 1973 The market and business cycle theories of M I Tugan-Baranovsky *Revista Internazionale di Scienze Economiche e Commercial* vol 20 part 4 Padova Italy.

74. Van Duijn J J 1983 The long wave in economic life *Allen and Unwin* Boston MA USA.

78. Tinbergen J 1981 Kondratiev cycles and so-called long waves: The early research *Futures* **13** (4) pp 258 – 263.

87. Freeman C, Louçã F 2001 As time goes by: From the industrial revolutions to the information revolution *Oxford University Press* Oxford UK.

88. Goldstein J 1988 Long cycles: Prosperity and war in the modern age *Yale University Press* New Haven CT USA.

90. Berry B J L 1991 Long wave rhythms in economic development and political behavior *Johns Hopkins University Press* Baltimore MD USA.

96. Modelski G, Thompson W R 1996 Leading sectors and world politics: The co-evolution of global politics and economics *University of South Carolina Press* Columbia SC USA.

100. Perez C 2002 Technological revolutions and financial capital – The dynamics of bubbles and golden ages *Edward Elgar* Cheltenhem UK.

Kitchin Economic Cycle in Macroeconomics:

Kuznets Economic Cycle in Macroeconomics:

110. Kuznets S 1924 Economic system of Dr. Schumpeter *M. Sc. Thesis under Prof. Wesley Clair Mitchell* Columbia University NY USA.

111. Kuznets S 1930 Secular movements in production and prices *Ph. D. Thesis under Prof. Wesley Clair Mitchell* Columbia University NY USA.
112. Kuznets S 1930 Secular movements in production and prices. Their nature and their bearing upon cyclical fluctuations *Houghton Mifflin* Boston USA.

118. Kuznets S 1968 Toward a theory of economic growth, with reflections on the economic growth of modern nations.

119. Kuznets S 1971 Economic growth of nations: Total output and production structure.

Accurate Characterization of Properties of Economic Cycles in Macroeconomics:

139. Hicks J R 1950 A contribution to the theory of the trade cycle *Oxford University Press* Oxford UK.

158. Sussmuth B 2003 Business cycles in the contemporary World Springer Berlin Heidelberg Germany.

159. Hirooka M 2006 Innovation dynamism and economic growth: A nonlinear perspective Edward Elgar Cheltenham UK Northampton MA USA.

164. Jourdon Ph 2008 La monnaie unique Europeenne et son lien au developpement economique et social coordonne: une analyse cliometrique *Thèse Universite Montpellier* France.

173. Uechi L, Akutsu T 2012 Conservation laws and symmetries in competitive systems
Progress of Theoretical Physics Supplement no 194 pp 210 – 222.

174. Central Banking Newsdesk 2013 Swiss board member supports counter-cyclical capital buffer

175. Union Bank of Switzerland 2013 UBS outlook Switzerland

176. Da Costa 2015 Weak first-quarter growth due to seasonal issues after all, SF Fed says
The Wall Street Journal New York USA.

177. Federal Reserve Bank of St Louis 2015 US Federal Reserve Economic Data (FRED)
Federal Reserve Bank of St Louis
http://research.stlouisfed.org/fred

178. Desai M, King St, Goodhart Ch 2015 Hubris: why economists failed to predict the crisis and how to avoid the next one Public Lecture on 27.05.2015 London School of Economics and Political Science London UK

179. Desai M 2015 Do we need a new macroeconomics? Public Lecture on 09.07.2015
London School of Economics and Political Science London UK (the presentation was made after the publication of an initial version of our research article at the MPRA and SSRN)

http://projects.wsj.com/econforecast/#ind=gdp&r=20

http://projects.wsj.com/econforecast/#ind=gdp&r=28

182. Wikipedia (English) 2015c Business cycle Wikipedia California USA

Firm Theory Science, Business Administration Science:
183. Babbage Ch 1832 On the economy of machinery and manufacturers Charles Knight 13 Pall Mall East London UK.

189. Ohlin B 1933 Interregional and international trade Harvard University Press Cambridge Massachusetts USA.

206. Fogel R 1964 Railroads and American economic growth: Essays in econometric history *Johns Hopkins Press* Baltimore USA.

208. Stigler G 1968 The organization of industry *Richard Irwin Inc* Homewood USA.

238. Perrow C 1986 Complex organizations Random House New York USA.

Board of Directors Science, Interlocking Directors Networks Science, Firms Networks Science, Social Networks Science:

250. Brandeis L D 1933 Other people’s money-and how the bankers use it *Jacket Library* Washington National Home Library Foundation USA.

255. Hopkins T K 1964 The exercise of influence in small groups *Bedminster Press* Totawa New Jersey USA.

260. Harary F 1969 Graph theory *Addison-Wesley* Reading MA USA.

263. Mace M L 1971 Directors: Myths and reality *Harvard University Press* Cambridge Massachusetts USA.

283. Tukey J W 1977 Exploratory data analysis Addison-Wesley USA.
285. Freeman L 1979b Visualizing social networks School of Social Sciences University of California Irvine California USA.

300. Mizruchi M S 1992 The structure of corporate political action *Harvard University Press* Cambridge USA.

306. Barnes J A 1983 Graph theory in network analysis Social Networks vol 5 pp 235 – 244.

312. American Bar Association 1984 Section on Antitrust Law Monograph 10 Interlocking Directorates under Section 8 of Clayton Act. Task force on interlocking directorates Washington USA.

313. American Bar Association 2011 Interlocking directorates Handbook on Section 8 of the Clayton Act Washington USA.

317. USEM M 1984 The inner circle Oxford University Press New York USA.

361. Demb A, Neubauer F F 1992 The corporate board: Confronting the paradoxes Oxford University Press NY USA.

421. Park S, Rozeff M 1996 The role of outside shareholders, outside boards, and management entrenchment in CEO selection Working Paper SUNY Buffalo NY USA.

Bianco M, Pagnoni E 1997 I Legami creati tra le società quote da interlocking directorates: Il caso delle banche *Quaderni di Moneta e Credito* Banca Nazionale del Lavoro Italy.

Elms H, Berman S L, Rowley T J 2000 Network influences on CEO compensation *Proceedings for the 11th Annual International Association for Business & Society* Vermont USA.

444. Miller G T March 26 1997 Interlocking directorates and the antitrust laws *Colorado Lawyer* 53.

448. Collin S-O 1998 Why are these islands of conscious power found in the ocean of ownership? Institutional, governance hypotheses explaining the existence of business groups in Sweden *Journal of Management Studies* 35 pp 719 – 746.

475. Watts D J 1999a Small worlds *Princeton University Press* Princeton New Jersey USA.

481. Borgatti S P 2002 Basic social network concepts *AoM PDW* Denver CO USA.

488. Davies A 1999 A strategic approach to corporate governance *Gower* Cambridge UK.

494. Maman D 2001 The organizational connection: Social capital, the career expansion of directors of business groups in Israel *Social Science Research* 30 pp 578 – 605.

Fich E 2000 Do directors who are CEOs of other firms enhance firm performance? *UNC Working Paper* University of North Carolina NC USA.

Miwa Y, Ramse yer M 2000 The value of prominent directors: Lessons in corporate governance from transition Japan *University of Tokyo, Harvard University* Japan, USA.

Ferri G, Masciandaro D, Messori M 2001 Corporate governance, board turnover and performance: The case of local banks in Italy *Paolo Baffi Centre Working Paper no 01-150* Italy.

525. Tomka B 2001 Interlocking directorates between banks and industrial companies in Hungary at the beginning of the twentieth century *Business History* 43 (1) pp 25 – 42.

532. Carver J 2002 Corporate boards that create value: Governing company performance from the boardroom *Jossey-Bass USA*.

548. Ong Ch H, Wan D, Ong K-S October 2003 An exploratory study on interlocking
directorates in listed firms in Singapore Corporate Governance: An International Review
vol 11 pp 322 – 334

549. Ornstein M 2003 The Canadian corporate network in comparative perspective
Comparative Sociology Brill Academic Publishers USA.

552. Yeo H-J, Pochet C, Alcouffe A 2003 CEO reciprocal interlocks in French corporations

University Olin Discussion Paper no 491.

Economics 78 pp 409 – 433.

Bureau of Economic Research Cambridge USA pp 1 – 62

Bureau of Economic Research Cambridge USA pp 1 – 54

Bureau of Economic Research Cambridge USA pp 1 – 49

558. Battiston S, Catanzaro M 2004 Statistical properties of corporate board and director

pp 98 – 106.

560. Hakansson H, Lind J 2004 Accounting and network coordination Accounting,
Organizations and Society 29 pp 51 – 72.

561. Heinze T 2004 Dynamics in the German system of corporate governance? Empirical
findings regarding interlocking directorates Economy and Society 33 pp 218 – 238.

568. Stablein R, Cleland P, Mackie B, Reid D 2004 New Zealand exchange limited (nzx) boards and directors: It is a small world after all Working Paper.

572. Charan R 2005 Boards that deliver: Advancing corporate governance from compliance to competitive advantage Jossey-Bass USA.

574. Hanneman R A, Riddle M 2005 Introduction to social network methods University of California Riverside California USA http://faculty.ucr.edu/~hanneman/.

582. Batagelj V, Mrvar A 2006 *Pajek* University of Ljubljana.

588. Farina V 2008 Banks' centrality in corporate interlock networks: Evidences in Italy Sefemeq Department University of Rome “Tor Vergata” Italy *MPRA Paper no 11698* Munich University Germany pp 1 – 31 http://mpra.ub.uni-muenchen.de/11698/.

590. Chhaochharia V, Grinstein Y 2006b Executive compensation and board structure Working Paper Cornell University USA.

604. Prinz E 2006 Corporate governance and the uncertain role of interlocking directorates
605. Silva F, Majluf N, Paredes R D 2006 Family ties, interlocking directorates, performance
of business groups in emerging countries: The case of Chile Journal of Business Research 59
pp 315 – 321.
606. Soon Moon Kang May 23 2006 Equi-centrality and network centralization: A micro-
macro linkage Netsci Conference.
607. Welch J, Welch S 2006 The boardroom bunker The Welch way on Business Week
Business Week USA
http://www.businessweek.com/mediacenter/podcasts/welchway/welchway_12_17_06.htm .
pp 217 – 250.
609. Adams R B, Hermalin B E, Weisbach M S 2010 The role of boards of directors in
corporate governance: A conceptual framework and survey Journal of Economic Literature
Boringhieri Torino Italy.
611. Enriques L, Volpin M Winter 2007 Corporate governance reforms in continental Europe
612. Gerber B M 2007 Enabling interlock benefits while preventing anticompetitive harm:
Toward an optimal definition of competitors under section 8 of the Clayton Act Yale Journal
on Regulation vol 24 I p 107.
613. Ibarra H 2007 What you know or who you know? INSEAD Knowledge-casts INSEAD
France.
UK
www.ft.com/cms/s/e5406470-860a-11dc-b00e-0000779fd2ac.html .
615. Ledenyov V O 2007b Think like a leader The Globe and Mail Toronto Canada
http://www.reportonbusiness.com/servlet/story/RTGAM.20071121.wmartindiscuss1128/BN
Story/Business/home/?pageRequested=2 .
616. Malloy Chr 2007 Social networks Public Lecture London School of Economics and
Political Science London UK.
617. Murray A S 2007 Revolt in the boardroom: The new rules of power in corporate America
Collins USA.
http://www.tinbergen.nl.

http://ssrn.com/abstract=971189,
http://mpra.ub.uni-muenchen.de/2288/.

http://mpra.ub.uni-muenchen.de/2265/,

624. Santella P, Drago C, Polo A, Gagliardi E 2009 A comparison among the director networks in the main listed companies in France, Germany, Italy, and the United Kingdom MPRA Paper no 16397 Munich University Germany pp 1 – 19
http://mpra.ub.uni-muenchen.de/16397/.

630. Vermeulen Fr 2008 How companies can get lucky and succeed Public Lecture London School of Economics and Political Science London UK.
632. Tutelman H 2008 The balance point: New ways business owners can use boards Famille Press USA.

649. Schifeling T, Mizruchi M S August 27 - 28 2012 The decline of the American corporate network 1960-2010 Corporate Networks in the 20th century Conference University of Lausanne USA.

20150115_1830_corporateBoardsFactsMyths_sl.pdf

654. Wikipedia January 15 2015 Board of directors USA

Strategy Science, Strategic Governance Science, Management Science:

664. Andrews K R 1971a The concept of corporate strategy Richard D Irwin Homewood USA.

models and economics Taylor T H (editor) *North-Holland Publishing Company* Amsterdam The Netherlands.

http://hbr.org/1985/07/how-information-gives-you-competitive-advantage/ar/1

696. Porter M E 2001b The technological dimension of competitive strategy in Research on technological innovation, management and policy vol 7 Burgelman R A, Chesbrough H (editors) *JAI Press* Greenwich CT USA.

706. Yelle L E 1979 The learning curve: Historical review and comprehensive survey
Decision Sciences 10 (2) pp 302 – 328.

group membership and organizational performance Academy of Management Journal 27 (3)
pp 467 – 488.

708. Schwenk C R 1984 Cognitive simplification processes in strategic decision making

710. Palepu K G 1985 Diversification strategy, profit performance and the entropy measure
Strategic Management Journal 6 pp 239 – 255.

711. Barney J B 1986 Strategic factor markets: Expectations, luck, and business strategy
Management Science 32 (10) pp 1231 – 1241.

712. Barney J B 1991 Firm resources and sustained competitive advantage Journal of
Management 17 (1) pp 99 – 120.

empirical examination with American data, Part I: Testing Porter Organization Studies 7
pp 37 – 55.

empirical examination with American data, Part II: Performance implications Organization

715. Miller D 1988 Relating Porter’s business strategies to environment and structure:

Management vol 13 no 2 p 211.

717. Hill C W L, Snell S A 1988 External control, corporate strategy, and firm performance in
research intensive industries Strategic Management Journal 9 pp 577 – 590.

718. Baysinger B D, Hoskisson R E 1989 Diversification strategy and R&D intensity in large

McGraw-Hill Singapore; Sage Beverly Hills California USA.

and innovation Administrative Science Quarterly 35 pp 128 – 152.

726. Yip G 1992 Total global strategy: Managing for worldwide competitive advantage *Prentice Hall* NY USA.

734. McKiernan P 1997 Strategy past, strategy futures *Long range planning* vol 30 no 5 p 792.

739. Moldoveanu M, Martin R L 2001 Agency theory and the design of efficient governance mechanisms Joint Committee on Corporate Governance Meeting Rotman School of Management University of Toronto Ontario Canada pp 1 – 57.

740. Martin R L 2004 Strategic choice structuring: A set of good choices positions a firm for competitive advantage Rotman School of Management University of Toronto Canada pp 1 – 14

742. Martin R L 2007 Designing the thinker Rotman Magazine Rotman School of Management University of Toronto Ontario Canada pp 4 – 8.

746. Martin R L 2013 Strategy award Thinkers50 London UK

www.thinkers50.org.

748. Laffont J-J, Tirole J 1999 Competition in telecommunications MIT Press USA.

753. Drejer A 2002 Strategic management and core competencies 1st edition Quorum Books Westport Connecticut USA.

765. Murphy T, Galunic Ch 2007 Leading in the age of talent wars INSEAD Leader-casts INSEAD France.

769. Sull D 2007c Closing the gap between strategy and execution: Making hard choices
Public Lecture London School of Economics and Political Science London UK.

770. Sull D 2007d Closing the gap between strategy and execution: The strategy loop in action
Public Lecture London School of Economics and Political Science London UK.

771. Sull D 2008 An iterative approach to the strategy Public Lecture London School of
Economics and Political Science London UK.

772. Teece D J, Winter S 2007 Dynamic capabilities: Understanding strategic change in
organizations Blackwell Oxford UK.

773. Samuels R 2008 Japan's grand strategy Public Lecture on 13.10.2008 London School of
Economics and Political Science London UK
http://www.lse.ac.uk/collections/LSEPublicLecturesAndEvents/events/2008/20080819t1316
z001.htm
http://richmedia.lse.ac.uk/publicLecturesAndEvents/20081013_1830_japansGrandStrategy.m
p3

774. Chamberlain G P 2010 Understanding strategy Create Space Charleston South Carolina
USA.

776. Heracleous 2013 Quantum strategy by Apple Inc Organizational Dynamics 42 pp 92 – 99
www.elsevier.com/locate/orgdyn.

777. Ive J, Foulkes N March 6 2015 The man behind the Apple watch How to Spend It
Financial Times London UK

778. Ledenyov D O, Ledenyov V O 2015b Winning virtuous strategy creation by interlocking
interconnecting directors in boards of directors in firms in information century MPRA Paper
no 61681 Munich University Munich Germany, SSRN Paper no SSRN-id2553938 Social
Sciences Research Network New York USA pp 1 – 108
http://mpra.ub.uni-muenchen.de/61681/,

779. Ledenyov D O, Ledenyov V O 2015n Quantum strategy creation by interlocking
interconnecting directors in boards of directors in modern organizations at time of
globalization MPRA Paper no 68404 Munich University Munich Germany, SSRN Paper no
SSRN-id27044417 Social Sciences Research Network New York USA pp 1 – 104
http://mpra.ub.uni-muenchen.de/68404/,
Disruptive Innovation in Technology, Economics and Finances:

780. Schumpeter J A 1911; 1939, 1961 Theorie der wirtschaftlichen entwicklung; The theory of economic development: An inquiry into profits, capital, credit, interest and the business cycle Redvers Opie (translator) OUP New York USA.

796. Christensen C M April 1999c Teradyne: The Aurora project & Teradyne: Corporate management of disruptive change, TN Harvard Business School Teaching Note 399 - 087.

799. Christensen C M 1999a Innovation and the general manager Irwin McGraw-Hill Homewood IL USA.

800. Christensen C M 1999b Impact of disruptive technologies in telecommunications in Bringing PC economies to the telecommunications industry PulsePoint Communications.

805. Christensen C M, Craig Th, Hart S March April 2001 The great disruption Foreign Affairs 80 no 2.

817. Shah Ch D, Brennan T A, Christensen C M April 2003 Interventional radiology: Disrupting invasive medicine.

818. Christensen C M March April 2003 Beyond the innovator's dilemma *Strategy & Innovation* 1 no 1.

1244. Dobbs R, Woetzel J, Flanders St 2015 No ordinary disruption: The four global forces breaking all the trends Public Lecture on 08.06.2015 London School of Economics and Political Science London UK

839. Reeves M 2015 Google couldn’t survive with one strategy Harvard Business Review Cambridge USA

840. Rosoff M 2015 What is Alphabet, Google's new company? Business Insider USA

842. Faust D G 2016 Proposition that the knowledge is a new currency World Economic Forum Davos Switzerland.

843. Ghosh S, Mukherjee S February 2 2016 Alphabet overtakes Apple in market value - for now Reuters USA
http://www.reuters.com/article/us-apple-alphabet-research-idUSKCN0VB1KD.

845. La Monica P R February 1 2016 Alphabet, aka Google, briefly worth more than Apple CNN Money USA
http://money.cnn.com/2016/02/01/investing/google-apple-most-valuable-alphabet/.

Information Absorption in Economics, Finances, Business Administration Sciences and Information Asymmetry in Economics, Finances, Business Administration Sciences:

854. Farina V 2008 Network embeddedness, specialization choices and performance in investment banking industry *University of Rome Tor Vergata* Italy *MPRA Paper no 11701* Munich University Munich Germany pp 1 – 26 http://mpra.ub.uni-muenchen.de/11701/.

Selected Research Papers in Macroeconomics, Microeconomics & Nanoeconomics Sciences:

873. Ledenyov D O, Ledenyov V O 2014f MicroLBO software program with the embedded optimized near-real-time artificial intelligence algorithm to create winning virtuous strategies toward leveraged buyout transactions implementation and to compute direct/reverse leverage buyout transaction default probability number for selected public/private companies during private equity investment in conditions of resonant absorption of discrete information in diffusion - type financial system with induced nonlinearities ECE James Cook University Townsville Australia, Kharkov Ukraine.

72

http://mpra.ub.uni-muenchen.de/67162/ ,

73

890. Ledenyov D O, Ledenyov V O 2015q MicroID software program with the embedded optimized near-real-time artificial intelligence algorithm to create the winning virtuous business strategies and to predict the director’s election / appointment in the boards of directors in the firms, taking to the consideration both the director’s technical characteristics and the interconnecting interlocking director’s network parameters in conditions of the resonant absorption of discrete information in diffusion - type financial economic system.
with induced nonlinearities ECE James Cook University Townsville Australia, Kharkov Ukraine.

891. Ledenyov D O, Ledenyov V O 2015 MicroITF operation system and software programs: 1) the operation system to control the firm operation by means of the information resources near-real-time processing in the modern firms in the case of the diffusion - type financial economic system with the induced nonlinearities; 2) the software program to accurately characterize the director’s performance by means of a) the filtering of the generated/transmitted/received information by the director into the separate virtual channels, depending on the information content, and b) the measurement of the levels of signals in every virtual channel with the generated/transmitted/received information by the director, in the overlapping interconnecting interlocking directors networks in the boards of directors in the firms during the Quality of Service (QoS) measurements process; and 3) the software program to create the winning virtuous business strategies by the interlocking interconnecting directors in the boards of directors in the modern firms in the case of the diffusion - type financial economic system with the induced nonlinearities, using the patented recursive artificial intelligence algorithm ECE James Cook University Townsville Australia, Kharkov Ukraine.

892. Ledenyov D O, Ledenyov V O 2015 MicroIMF software program: the MicroIMF software program to make the computer modeling of 1) the interactions between the information money fields of one cyclic oscillation and the information money fields of other cyclic oscillation(s) in the nonlinear dynamic economic system, 2) the interactions between the information money fields of cyclic oscillation and the nonlinear dynamic economic system itself, and 3) the density distributions of the information money fields by different cyclic oscillations (the economic continuous waves) in the nonlinear dynamic economic system ECE James Cook University Townsville Australia, Kharkov Ukraine.

893. Ledenyov D O, Ledenyov V O 2015 MicroSA software program 1) to perform the spectrum analysis of the cyclic oscillations of the economic variables in the nonlinear dynamic economic system, including the discrete-time signals and the continuous-time signals; 2) to make the computer modeling and to forecast the business cycles for a) the central banks with the purpose to make the strategic decisions on the monetary policies, financial stability policies, and b) the commercial/investment banks with the aim to make the business decisions on the minimum capital allocation, countercyclical capital buffer creation, and capital investments ECE James Cook University Townsville Australia, Kharkov Ukraine.
Ledenyov D O, Ledenyov V O 2015 \textit{DNACode} software program 1) to model the Digital DNA’s complex knowledge base structure for the selected economy of the scale and scope in the case of the G20 nations; 2) to accurately forecast the generation/propagation of the Ledenyov discrete time digital waves of GIP(t)/GDP(t)/GNP(t)/PPP(t) (the discrete-time digital business cycles of GIP(t)/GDP(t)/GNP(t)/PPP(t)) in the G20 economies of the scales and scopes \textit{ECE James Cook University} Townsville Australia, Kharkov Ukraine.

894. Huygens 1657 De ratiociniis in aleae ludo (On calculations in games of chance).
895. Bernoulli J 1713 Ars conjectandi (The art of guessing).
897. De Moivre 1730 Miscellanea analytica supplementum (The analytic method).
899. Fourier J-B J 1824 Mémoires de l'Académie Royale des Sciences de l'Institut de France \textbf{VII} pp 570 – 604
901. Bunyakovsky V Ya 1825 Rotary motion in a resistant medium of a set of plates of constant thickness and defined contour around an axis inclined with respect to the horizon \textit{Ph D Thesis no 1} under Prof. Augustin - Louis Cauchy supervision \textit{École Polytechnique} Paris France.

908. Chebyshev P L 1846 An experience in the elementary analysis of the probability theory Crelle’s Journal für die Reine und Angewandte Mathematik.

915. Markov A A 1906 Extension of law of big numbers on variables, depending from each other Izvestiya Fiziko-Matematicheskogo Obschestva pri Kazanskom Universitete 2nd series vol 15 (94) pp 135 – 156 Russian Federation.

917. Markov A A 1908, 1912, 1971 Extension of limit theorems of calculation of probabilities to sum of variables, connected in chain Zapiski Akademii Nauk po Fiziko-Matematicheskomu
Otdeleniyu 8th series vol 25 (3); Ausdehnung der Satze uber die Grenzwerte in der Wahrscheinlichkeitsrechnung auf eine Summe verketteter Grossen Liebmann H (translator) in Wahrscheinlichkeitsrechnung Markov A A (author) pp 272 – 298 Teubner B G Leipzig Germany; Extension of the limit theorems of probability theory to a sum of variables connected in a chain Petelin S (translator) in Dynamic probabilities systems Howard R A (editor) vol 1 pp 552 – 576 John Wiley and Sons Inc New York USA.

928. Slutsky Е Е 1913 On the criterion of goodness of fit of the regression lines and the best method of fitting them to the data Journal Royal Statistics Society vol 77 part I pp 8 – 84.

929. Slutsky Е Е 1914 Sir William Petty: Short overview of his economic visions with attachment of his several important research works Kiev Commerce Institute Bulletin 18 pp 5 – 48 Kiev Ukraine.
930. Slutsky E E 1915 Sulla teoria sel bilancio del consumatore *Giornale degli economisti e rivista di statistica* 51 no 1 pp 1 – 26 Italy.

932. Slutsky E E 1922b To the question of logical foundations of probability calculation *Statistics Bulletin* 9 - 12 pp 13 – 21.

939. Slutsky E E 1927a The summation of random causes as sources of cyclic processes *Problems of Conjuncture (Voprosy Kon’yunktury)* vol 3 issue 1 pp 34 – 64 Moscow Russian Federation.

943. Slutsky E E 1937a Quelche propositione relative alla teori a delle funzioni aleatorie *Giornale dell Istituto Italiano degli Attuari* 8 no 2 pp 3 – 19.

944. Slutsky E E 1937b The summation of random causes as the source of cyclical processes *Econometrica* 5 pp 105 – 146.

950. Kolmogorov A N 1947 The contribution of Russian science to the development of probability theory *Uchenye Zapiski Moskovskogo Universiteta* no 91.

957. Cramer H 1946 Mathematical methods of statistics *Princeton University Press* USA.

970. Mandelbrot B B 1967a The variation of some other speculative prices *Journal of Business* vol 40 pp 393 – 413.
980. Mandelbrot B B 1977 Fractals: Form, chance and dimension *W H Freeman* San Francisco USA.

981. Mandelbrot B B 1982 The fractal geometry of nature *W H Freeman* San Francisco USA.

982. Mandelbrot B B 1997 Fractals and scaling in finance *Springer* New York USA.

983. Gnedenko B V, Khinchin A Ya 1961 An elementary introduction to the theory of probability *Freeman* San Francisco USA.

990. Shiryaev A N 1967 Two problems of sequential analysis *Cybernetics* 3 pp 63 – 69.

1008. Peskir G, Shiryaev A N 2006 Optimal stopping and free-boundary problems *Lectures in Mathematics ETH Zürich Birkhäuser* Switzerland MR2256030

1011. du Toit J, Peskir G, Shiryaev A N 2007 Predicting the last zero of Brownian motion with drift *Cornell University* NY USA pp 1 – 17

1018. Karatzas I, Shiryaev A N, Shkolnikov M 2011 The one-sided Tanaka equation with drift *Cornell University* NY USA

1019. Shiryaev A N, Zhitlukhin M V 2012 Optimal stopping problems for a Brownian motion with a disorder on a finite interval *Cornell University* NY USA pp 1 – 10

1025. Lamperti J 1966 Probability Benjamin New York USA.

1031. Breiman L 1968 Probability Addison-Wesley Reading MA USA.

1038. Box G E P, Jenkins G M 1970 Time series analysis: Forecasting and control Holden Day San Francisco California USA.

Irwin Homewood USA.

1058. Powell J L 1986 Censored regression quantiles Journal of Econometrics 32 (1)
pp 143 – 155.

1059. Taylor S 1986 Modeling financial time series John Willey and Sons Inc New York USA.

1061. Tornqvist L, Vartia P, Vartia Y February 1985 How should relative change be measured?

1062. Sharkovsky A N, Maistrenko Yu L, Romanenko E Yu 1986 Differential equations and
their applications Naukova Dumka Kiev Ukraine pp 1 – 280.

1063. Newey W, West K 1987 A simple positive semi-definite, heteroskedasticity and

 autoregressive models Biometrika 75 pp 491 – 499.

 practice of econometrics 2nd edition John Wiley and Sons Inc New York USA.

 Cambridge University Press Cambridge UK.

1067. Lancaster T 1990 The econometric analysis of transition data Cambridge University
 Press Cambridge UK.

 Oxford UK.

1069. Johansen S 1992 Cointegration in partial systems and the efficiency of single equation

1070. Banerjee A, Dolado J J, Galbraith J W, Hendry D F 1993 Cointegration, error correction,
 and the econometric analysis of nonstationary data Oxford University Press Oxford UK.

1071. Cleveland W S 1993 Visualizing data Hobart Press Summit New Jersey USA.

1072. Pesaran M H, Potter S M (editors) 1993 Nonlinear dynamics, chaos and econometrics
 John Willey and Sons Inc New York USA.

1074. Peters E E 1994 Fractal market analysis: Applying chaos theory to investment and
 economics John Willey and Sons Inc New York USA.

 USA.

Moore G E 2003 No exponential is forever – but we can delay forever ISSCC.

Campbell J, Lo A, MacKinlay C 1997 The econometrics of financial markets Princeton University Press Princeton NJ USA.

Hasem P M, Pesaran B 1997 Working with Microfit 4.0: Interactive econometric analysis Oxford University Press Oxford UK.

Hubbard B B 1998 The world according to wavelets A K Peters Wellesley MA USA.

Mallat S A 1998 Wavelet tour of signal processing Academic Press San Diego CA USA.

Teolis A 1998 Computational signal processing with wavelets Birkhauser Switzerland.

Hasem P M, Shin Y 1999 An autoregressive distributed lag modelling approach to cointegration analysis in Econometrics and economic theory in the 20th century: The Ranger
Frisch centennial symposium Strom S, Holly A, Diamond P (editors) *Cambridge University Press* Cambridge UK

1097. Hayashi F 2000 Econometrics *Princeton University Press* Princeton NJ USA.

1103. Tufte E R 2001 The visual display of quantitative information 2nd edition *Graphics Press* Cheshire CT USA.

1106. Woolridge J M 2002 Econometric analysis of cross section and panel data *MIT Press* Cambridge MA USA.

1107. Koop G 2003 Bayesian econometrics *John Wiley and Sons Inc* New York USA.

Quantum Physics, Quantum Electronics, Quantum Computing, Quantum Mechanics:

1118. Planck M 1900a Über eine Verbesserung der Wienschen Spektralgleichung On an improvement of Wien's equation for the spectrum *Verhandlungen der Deutschen Physikalischen Gesellschaft* 2 pp 202 – 204
http://archive.org/stream/verhandlungende01goog#page/n212/mode/2up .

http://archive.org/stream/verhandlungende01goog#page/n246/mode/2up .

1120. Planck M 1900c Entropie und Temperatur strahlender Wärme Entropy and temperature of radiant heat *Annalen der Physik* 306 (4) pp 719 – 737
http://adsabs.harvard.edu/abs/1900AnP...306..719P ,
https://dx.doi.org/10.1002%2Fandp.19003060410 .

http://adsabs.harvard.edu/abs/1900AnP...306..69P ,
https://dx.doi.org/10.1002%2Fandp.19003060105 .

1123. Planck M 1903 Treatise on thermodynamics *Longmans, Green & Co* London UK
 http://archive.org/stream/treatiseonthermo00planuoft/page/n7/mode/2up,
 http://openlibrary.org/books/OL7246691M.

1124. Planck M 1906 Vorlesungen über die Theorie der Wärmestrahlung *JA Barth* Leipzig Germany
 http://lccn.loc.gov/07004527.

1125. Planck M 1914 The theory of heat radiation 2nd edition *P Blakiston's Son & Co*
 http://openlibrary.org/books/OL7154661M.

 http://adsabs.harvard.edu/abs/1943NW.....31..153P,
 https://dx.doi.org/10.1007%2FBF01475738.

1128. Einstein A 1905 Zur Elektrodynamik bewegter Körper On the electrodynamics of moving bodies *Annalen der Physik* Berlin Germany (in German) 322 (10) pp 891 – 921
 http://onlinelibrary.wiley.com/doi/10.1002/andp.19053221004/pdf,
 http://adsabs.harvard.edu/abs/1905AnP...322..891E),
 http://dx.doi.org/10.1002%2Fandp.19053221004.

1129. Einstein A 1917 Zur Quantentheorie der Strahlung On the quantum mechanics of radiation *Physikalische Zeitschrift* (in German) 18 pp 121 – 128
 http://adsabs.harvard.edu/abs/1917PhyZ...18..121E.

 http://echo.mpiwg-berlin.mpg.de/MPIWG:DRQK5WYB.

 http://journals.aps.org/pr/pdf/10.1103/PhysRev.47.777,
 http://adsabs.harvard.edu/abs/1935PhRv...47..777E,
https://dx.doi.org/10.1103%2FPhysRev.47.777 .

http://www.cond-mat.physik.uni-mainz.de/~oettel/ws10/bks_PhilMag_47_785_1924.pdf,
https://dx.doi.org/10.1080%2F14786442408565262 .

1136. de Broglie L 1926 Ondes et mouvements Waves and motions Gauthier-Villars Paris France.

1137. de Broglie L 1927 Rapport au 5e Conseil de Physique Solvay Brussels Belgium.

1138. de Broglie L 1928 La mécanique ondulatoire Wave mechanics Gauthier-Villars Paris France.

https://www.worldcat.org/oclc/1871779 .

1140. Compton A; Allison S K 1935 X-Rays in theory and experiment D Van Nostrand Company Inc New York USA
https://www.worldcat.org/oclc/853654 .

1141. Schrödinger E 1926 Quantisierung als Eigenwertproblem Annalen der Phys 384 (4) pp 273 – 376
http://adsabs.harvard.edu/abs/1926AnP...384..361S ,
https://dx.doi.org/10.1002%2Fandp.19263840404 .

1143. Fermi E 1934 Radioattivitá indotta da bombardamento di neutroni La Ricerca scientifica 1 (5) p 283 (in Italian)
http://adsabs.harvard.edu/abs/1934RSPSA.146..483F,
https://dx.doi.org/10.1098%2Frspa.1934.0168.

1145. Townes Ch 1939 Concentration of the heavy isotope of carbon and measurement of its nuclear spin *PhD thesis* Caltech California USA
http://thesis.library.caltech.edu/4202/.

http://adsabs.harvard.edu/abs/1955PhRv...99.1264G,
https://dx.doi.org/10.1103%2FPhysRev.99.1264.

http://adsabs.harvard.edu/abs/1956PhRv..102.1308S,
https://dx.doi.org/10.1103%2FPhysRev.102.1308.

1150. Townes Ch H 1964 Nobel Prize in Physics Stockholm Sweden

1151. Townes Ch H 1966 Obtaining of coherent radiation with help of atoms and molecules *Uspekhi Fizicheskikh Nauk (UFN)* vol 88 no 3.

1152. Townes Ch H 1969 Quantum electronics and technical progress *Uspekhi Fizicheskikh Nauk (UFN)* vol 98 no 5.

1169. Schawlow A 1963 Modern optical quantum generators Uspekhi Fizicheskii Nauk (UFN) vol 81 no 12.

1179. Petersen A 1968 Quantum physics and philosophical tradition MIT Press Cambridge USA.

1189. Mygind J 1997 Private communications on the new sources of noise in the single electron transistors Department of Physics Technical University of Denmark Lyngby Denmark.

Wave Function in Schrödinger Quantum Mechanical Wave Equation in Quantum Mechanics:

1231. Laloe F 2012 Do we really understand quantum mechanics Cambridge University Press

1232. Rylov Y A 2015 What is the wave function and why is it used in quantum mechanics?
pp 1 – 18

1233. Wikipedia 2015i Erwin Schrödinger Wikipedia USA

1234. Wikipedia 2015j Schrödinger equation Wikipedia USA

Artificial Intelligence Science, Computer Science:

1235. Turing A October 1950 Computing machinery and intelligence Mind LIX 236

1237. Winston P H 1984 Artificial intelligence Addison-Wesley Reading Massachusetts USA

1238. Haugeland J 1985 Artificial intelligence: The very idea MIT Press Cambridge MA USA

0464-7.

filter algorithm Proceedings of the 9th National Conference on Artificial Intelligence AAAI-
91 pp 762 – 767.

1241. Sun R, Bookman L (editors) 1994 Computational architectures: Integrating neural and
symbolic processes Kluwer Academic Publishers Needham MA USA.

The 11th Conference on Uncertainty in Artificial Intelligence.

1243. Dowe D L, Hajek A R 1997 A computational extension to the Turing test Proceedings of

no 1-2 pp 272 – 324.

Continuous Time Signal, Analog Signals, Discrete Time Signal, Digital Signals, Spectrum of Signals, Electromagnetic Field, Gravitation Field, Calibrating Field, Information Field

Theories in Physics and Engineering Sciences:

1254. Maxwell J C 1890 Introductory lecture on experimental physics in Scientific papers of J C Maxwell Niven W D (editor) vols 1, 2 Cambridge UK.

1256. Walsh J L 1923b A property of Haar’s system of orthogonal functions Math Ann 90 p 3845.

1260. Bose R C, Shrikhande S S 1959 A note on a result in the theory of code construction
Information and Control 2 (2) pp 183 – 194 doi:10.1016/S0019-9958(59)90376-6
CiteSeerX: 10.1.1.154.2879
http://dx.doi.org/10.1016%2FS0019-9958%2859%2990376-6

University Press Princeton USA.

1262. Yuen C-K 1972 Remarks on the ordering of Walsh functions IEEE Transactions on
Computers 21 (12) p 1452 doi:10.1109/T-C.1972.223524
http://dx.doi.org/10.1109%2FT-C.1972.223524.

New York USA.

New York USA.

1265. Orfanidis S J 1995 Introduction to signal processing Prentice-Hall Englewood Cliffs NJ
USA.

1266. Anceau F 1986 The architectures of microprocessors Addison-Wesley Wokingham
England.

UK.

Englewood Cliffs NJ USA.

Englewood Cliffs NJ USA.

1271. Van de Goor A J 1989 Computer architecture and design Addison-Wesley Wokingham
England.

1273. Jeruchim M C, Balaban Ph, Shanmugan K S 1992 Simulation of communication systems
Plenum Press New York USA.

Upper Saddle River NJ USA, 2nd edition Noble Pub Corp Atlanta GA USA
1292. Ledenyov D O, Ledenyov V O 2015a Nonlinearities in microwave superconductivity
8th edition Cornell University NY USA pp 1 – 923