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Abstract 

The paper investigates Bayesian approach to estimating generalized true random-

effects model (GTRE) via Gibbs sampling. Simulation results show that under properly defined 

priors for transient and persistent inefficiency components the posterior characteristics of the 

GTRE model are well approximated using simple Gibbs sampling procedure. No model 

reparametrization is required and if such is made it leads to much lower numerical efficiency. 

The new model allows us to make more reasonable assumptions as regards prior inefficiency 

distribution and appears more reliable in handling especially nuisance datasets. Empirical 

application furthers the research into stochastic frontier analysis using GTRE by examining the 

relationship between inefficiency terms in GTRE, true random-effects (TRE), generalized 

stochastic frontier and a standard stochastic frontier model.  
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inference, cost efficiency, firm heterogeneity, transient and persistent efficiency 
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Bayesian inference in generalized true random-effects model and Gibbs sampling 

 

1. INTRODUCTION 

Stochastic frontier application to panel data has led to a great deal of research into ways of 

modeling inefficiency variation. If inefficiency in panel data is not entirely object-specific we should reflect 

its variation from one period to another. This aspect seems particularly important for policymakers and 

managers that may be interested to know what part of overall inefficiency is due to persistent differences 

between companies and what part is due to changes within an organization over time. For example, 

transiency of inefficiency can be viewed as a short-term, within-firm part of inefficiency that resembles 

gains & losses in firm-handling over time. Such inefficiency, if determined, can be fixed relatively fast by 

making adjustments solely within an organization. Persistent inefficiency, however, may be viewed as 

beyond the reach of company management, and thus may require external interventions or even 

regulatory policy changes in order to “even the playing field” between competing companies. 

Furthermore, since we deal with panel data, we also need to worry about possible heterogeneity of the 

symmetric error (Baltagi, 2008). Whether or not we can treat such disturbance in the data as 

homogenous or heterogeneous is in fact an enquiry about the existence of firm-specific effects in the 

model.  

A number of alternatives have been proposed within the stochastic frontier framework (see, e.g., 

Kumbhakar, Lien and Hardaker, 2014; or Colombi, Matini and Vittadini, 2011; for a discussion). We can 

summarize them in three main concepts. The first one represents an unconstraint approach to efficiency1 

modeling. Efficiency is both time and firm-specific effect (Koop Osiewalski and Steel 1999; Makieła, 
2009, 2014). Such models can be further extended, either by adding firm-specific effects as discussed 

by Greene (2005a,b, 2008) or by generalizing inefficiency term (see, e.g., Kumbhakar and Heshmati, 

1995; Kumbhakar and Hjalmarsson, 1995; or ‘Model 5’ in Kumbhakar, Lien and Hardaker, 2014). The 

second concept is usually applied to “short” panels with short time span. It treats efficiency differences 

as time-invariant effects (persistent). Any managerial gains & losses can only be captured by parametric 

specification of the model and thus lose their interpretation as efficiency change (see, e.g., Pitt and Lee, 

1981; van den Broeck, Koop, Osiewalski and Steel, 1994; Koop, Osiewalski and Steel, 1997; 

Osiewalski, Wróbel-Rotter, 2008-9). The third approach tries to find some middle ground between the 

first two, usually by binding efficiency change over time (see, e.g., Battese and Coelli 1992; Kumbhakar 

and Wang, 2005; or Wang and Ho, 2012). The aim is to reduce the number of latent variables while 

maintaining some temporal-flexibility at the same time. This, however, is sometimes either too restrictive 

or simply not enough informative in terms of analyzing differences in efficiency change between firms 

and over time.  

Colombi, Martini and Vittadini (2011) have furthered the unconstraint approach to efficiency 

analysis by adding firm-specific effect as well as generalizing inefficiency component. Thus the model, 

known as generalized true random-effects (GTRE), incorporates firm-specific (persistent), time-firm-

specific (transient) inefficiency terms and a “true” firm-specific effect. It represents the most generalized 

form of a stochastic frontier model for panel data analysis and has caught some attention recently (see, 

e.g., Filippini and Greene, 2015). In a cost function framework it can be written as (Tsionas and 

Kumbhakar, 2014): 

 𝑦𝑖𝑡 = 𝑥𝑖𝑡′ 𝛽 + 𝜀𝑖𝑡 = 𝑥𝑖𝑡′ 𝛽 + 𝜂𝑖+ + 𝑢𝑖𝑡+ + 𝛼𝑖 + 𝑣𝑖𝑡 (1) 

where 𝑦𝑖𝑡 is the cost (in logs), 𝑥𝑖𝑡′  is a k-element vector of independent variables (logs of prices, outputs 

etc.), 𝛽 is a vector of model parameters, i (i=1,...,n) and t (t=1,...,T) are object and time indices. The 

composed error 𝜀𝑖𝑡 contains: i) two types of symmetric disturbances (𝛼𝑖, 𝑣𝑖𝑡), one common to all 

                                                
1 Efficiency is a transformation of inefficiency measure; it is often used, e.g., especially in production frontier 

analysis due to more intuitive interpretation; traditionally: efficiency = exp(−inefficiency) and inefficiency ≥ 0; thus efficiency ∈ (0,1]. In this paper we deal with cost models, so we tend to discuss inefficiency interpretation as the 
“distance” to being fully cost efficient.  
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observations (a “standard” random disturbance 𝑣𝑖𝑡), one firm-specific (random-effect, reflecting firm 

heterogeneity 𝛼𝑖); and ii) two types of nonnegative disturbances labelled “+” (𝜂𝑖+, 𝑢𝑖𝑡+), one common to all 

observations (transient inefficiency 𝑢𝑖𝑡+), one firm-specific (persistent, firm-specific inefficiency 𝜂𝑖+). 

Special cases (simplifications) of the composed error term 𝜀𝑖𝑡 lead to models which are already well 

known in the literature (see, e.g., Colombi, Martini and Vittadini, 2011; for a discussion). The stochastic 

components in 𝜀𝑖𝑡 are, in principle, statistically identifiable. Numerically, however, it can be virtually 

impossible to, e.g., obtain good estimates of 𝛼𝑖, if variance of 𝑣𝑖𝑡 is high and the other way around. 

Furthermore, variances of symmetric disturbances 𝛼𝑖 and 𝑣𝑖𝑡 also impact our ability to make proper 

inference about inefficiency component.  

The remaining part of the paper is as follows. Section 2 presents Bayesian model based on 

Tsionas and Kumbhakar (2014) augmented based on propositions in van den Broeck, Koop, Osiewalski 

and Steel (1994). Section 3 performs a series of simulations similar to the ones in Tsionas and 

Kumbhakar (2014) showing that new Bayesian GTRE model outperforms its predecessors. The section 

also discusses cases of very “noisy” datasets, where GTRE models find it difficult to yield satisfactory 

results and shows that in all cases considered the new model is more reliable. Section 4 presents an 

empirical application and Section 5 concludes with a discussion.  

2. The augmented Tsionas and Kumbhakar model 

Let θ = (𝛽, 𝜎𝑣 , 𝜎𝑢, 𝜎𝜂 , 𝜎𝛼 , 𝑢+, 𝜂+, 𝛼) be a vector of structural parameters (𝛽, 𝜎𝑣 , 𝜎𝑢, 𝜎𝜂 , 𝜎𝛼) and latent 

variables (𝑢+, 𝜂+, 𝛼). The full Bayesian model proposed by Tsionas and Kumbhakar (2014) is: 

 𝑝(𝛽)𝑝(𝜎𝑣−2)𝑝(𝜎𝛼−2)𝑝(𝜎𝑢−2)𝑝(𝜎𝜂−2) 

× ∏ ∏ 𝑓𝑁(𝑦𝑖𝑡|𝑥′𝑖𝑡𝛽 + 𝛼𝑖 + 𝜂𝑖 + 𝑢𝑖𝑡 , 𝜎𝑣2)𝑇
𝑡=1

𝑛
𝑖=1 𝑓𝑁(𝛼𝑖|0, 𝜎𝛼2)𝑓𝑁+(𝜂𝑖|0, 𝜎𝛼2)𝑓𝑁+(𝑢𝑖𝑡|0, 𝜎𝛼2) 

(2) 

where 𝑓𝑁(. |𝑎, 𝑐−1) denotes density function of the Normal distribution with mean 𝑎 and precision 𝑐, 𝑓𝑁+(. |𝑎, 𝑐−1) denotes density function of the half-Normal distribution with mean 𝑎 and precision 𝑐. 

Informative prior on 𝛽 is 𝑝(𝛽) ∝ 𝑓𝑁(𝛽|𝑏, 𝐶−1) with 𝑘-element vector 𝑏 of prior mean and a 𝑘-by-𝑘 prior 

precision matrix 𝐶. Of course, a standard uninformative reference prior on 𝛽 can be used if there is need. 

We focus our attention on priors on the variance components – 𝑝(𝜎𝑣−2)𝑝(𝜎𝛼−2)𝑝(𝜎𝑢−2)𝑝(𝜎𝜂−2). In Tsionas 

and Kumbhakar (2014) we have that prior on inverse variance 𝜎𝑗−2, i.e. precision, is 𝜎𝑗−2𝑄𝑗~𝜒2(𝑁𝑗), and 

that 𝑄𝑗 = 10−4, 𝑁𝑗 = 1 for 𝑗 = 𝑣, 𝑢, 𝜂, 𝛼. Alternatively we can rewrite this as 𝑝(𝜎𝑗−2) ∝ 𝑓𝐺(𝜎𝑗−2|0.5 ∙ 𝑁𝑗 , 0.5 ∙𝑄𝑗), where 𝑓𝐺(. |𝑤, 𝑧) is the density function of the gamma distribution with mean w/z and variance w/z2. 

This formulation, which yields a quite informative prior on the symmetric disturbances2, may not be the 

best choice for prior efficiency. In fact the median of marginal prior density of efficiency is about 0.99, 

quantile 0.25 is 0.976, quantile 0.75 is 0.996, the interquartile range (IQR) is only around 0.02 and the 

95% highest prior density interval is (0.878,1).3 Clearly this very tight informative prior may be strongly 

against information in the data leading to very irregular (e.g., multimodal) posterior. Van den Broeck, 

Koop, Osiewalski and Steel (1994) discuss the problem of efficiency distribution and prior elicitation for 

model-specific parameters. The authors present their findings for several cases of stochastic frontier 

models with Erlang and truncated normal distribution, half-normal being its special case (simplification). 

That is why, following van den Broeck, Koop, Osiewalski and Steel (1994: pp. 286-7) we propose 

different priors on 𝜎𝑢−2 and 𝜎𝜂−2 in order to better reflect our prior knowledge about efficiency. The 

augmented Tsionas and Kumbhakar GTRE model is: 

                                                
2 The reader may find much less informative priors on precision parameters of the symmetric disturbances in 

Bayesian literature, e.g., with prior mean equal 1 and variance 10−2 or even 10−4. Preliminary results have shown, 
however, that such prior can be very “unfavorable” to individual effects 𝛼 in the model, especially when T is small.  

3 The corresponding characteristics of marginal prior inefficiency are: median=0.01, quantile(0.25)=0.004, 

quantile(0.75)=0.024; 95% highest prior density interval is around (1.59 ∙ 10−5, 0.129). Results acquired numerically.  
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 𝑝(𝛽)𝑝(𝜎𝑣−2)𝑝(𝜎𝛼−2)𝑓𝐺(𝜎𝑢−2|5,10 ln2(𝑟𝑢∗))𝑓𝐺(𝜎𝜂−2|5,10 ln2(𝑟𝜂∗)) 

× ∏ ∏ 𝑓𝑁(𝑦𝑖𝑡|𝑥′𝑖𝑡𝛽 + 𝛼𝑖 + 𝜂𝑖 + 𝑢𝑖𝑡 , 𝜎𝑣2)𝑓𝑁(𝛼𝑖|0, 𝜎𝛼2)𝑇
𝑡=1 𝑓𝑁+(𝜂𝑖|0, 𝜎𝛼2)𝑛

𝑖=1 𝑓𝑁+(𝑢𝑖𝑡|0, 𝜎𝛼2) 
(3) 

The new hyperparameters of the model, 𝑟𝑢∗ and 𝑟𝜂∗, are prior medians of transient and persistent 

efficiency. Since it seems intuitive to expect that a greater portion (if not all) of observed inefficiency is 

due to persistent differences between objects we set 𝑟𝑢∗ = 0.85 and 𝑟𝜂∗ = 0.7 in our simulations. This can 

be also interpreted that a priori we give more chances for persistent inefficiency to exist and treat 

transient inefficiency as a less likely, time-varying residual component. Prior elicitation leads to the 

following characteristics of marginal priors for transient and persistent efficiency distribution: 

– transient efficiency: median=0.85; quantile(0.25)=0.755, quantile(0.75)=0.927; IQR=0.172; 

mean=0.83; std.=0.122; 95% highest prior density interval is (0.597,0.9997); 

99%(0.476,0.9997);  

– persistent efficiency: median=0.7; quantile(0.25)=0.54, quantile(0.75)=0.848; IQR=0.308; 

mean=0.683; std.=0.2; 95% highest prior density interval is (0.323,0.9993); 99%(0.196,0.9994).  

It is now obvious that the proposed augmentation provides more flexible priors, which can also be fine-

tuned to better fit the research needs. Moreover, since we control location parameter of the prior 

efficiency we can test different values of 𝑟∗ as we do further in the paper.  

Similarly to Tsionas and Kumbhakar (2014) conditional distributions are relatively straightforward 

to derive in this model and Gibbs sampling procedure can be used. We start with the conditional for a 𝑘-element vector 𝛽 of the cost function parameters:  

 𝑝(𝛽|𝑦, 𝑋, 𝜃−𝛽) ∝ 𝑓𝑁𝑘((𝐶 + 𝜎𝑣−2𝑋′𝑋)−1(𝐶𝑏 + 𝜎𝑣−2𝑋′𝑦̃), (𝐶 + 𝜎𝑣−2𝑋′𝑋)−1) (4) 

or in case of a reference prior: 

 𝑝(𝛽|𝑦, 𝑋, 𝜃−𝛽) ∝ 𝑓𝑁𝑘((𝑋′𝑋)−1(𝑋′𝑦̃), 𝜎𝑣2(𝑋′𝑋)−1) (5) 

where 𝑦̃ = 𝑦 − 𝜄𝑇⨂𝛼 − 𝜄𝑇⨂𝜂 − 𝑢. For precision parameters 𝜎𝑣−2 and 𝜎𝛼−2 the conditionals are:  

 𝑝(𝜎𝑣−2(𝑄𝑣 + 𝑣̃′𝑣̃)|𝑦, 𝑋, 𝜃−𝜎𝑣) ∝ 𝑓𝜒2(𝜎𝑣−2(𝑄𝑣 + 𝑣̃′𝑣̃)|𝑛𝑇 + 𝑁𝑣) (6) 

  𝑝(𝜎𝛼−2(𝑄𝛼 + 𝛼′𝛼)|𝑦, 𝑋, 𝜃−𝜎𝛼) ∝ 𝑓𝜒2(𝜎𝛼−2(𝑄𝛼 + 𝛼′𝛼)|𝑛 + 𝑁𝛼) (7) 

where 𝑣̃ = 𝑦 − 𝑋𝛽 − 𝜄𝑇⨂𝛼 − 𝜄𝑇⨂𝜂 − 𝑢, 𝑄𝑣 = 𝑄𝛼 = 10−4, 𝑁𝛼 = 𝑁𝑣 = 1 and "𝑓𝜒2" denotes  the 𝜒2 density 

function. Conditionals 𝜎𝑢−2 and 𝜎𝜂−2 are: 

 𝑝(𝜎𝑢−2|𝑦, 𝑋, 𝜃−𝜎𝑢) ∝ 𝑓𝐺(𝜎𝑢−2| 𝑛𝑇2 + 5, 𝑢′𝑢2 + 10 ln2(𝑟𝑢∗)) (8) 

  𝑝(𝜎𝜂−2|𝑦, 𝑋, 𝜃−𝜎𝜂) ∝ 𝑓𝐺(𝜎𝜂−2| 𝑛2 + 5, 𝜂′𝜂2 + 10 ln2(𝑟𝜂∗)) (9) 

Moving on to latent variables, the conditional for an 𝑛𝑇-element vector of transient inefficiencies is:4  

 𝑝(𝑢|𝑦, 𝑋, 𝜃−𝑢) ∝ 𝑓𝑁𝑛𝑇(𝑢| 𝜎𝑢2𝜎𝑣2 + 𝜎𝑢2 𝑢̃, 𝜎𝑣2𝜎𝑢2𝜎𝑣2 + 𝜎𝑢2 𝐼𝑛𝑇)𝐼(𝑢 ∈ 𝑅+𝑛𝑇) (10) 

where 𝑢̃ = 𝑦 − 𝑋𝛽 − 𝜄𝑇⨂𝛼 − 𝜄𝑇⨂𝜂. The reader should note that 𝐼𝑛𝑇 is an 𝑛𝑇-by-𝑛𝑇 identity matrix and 

that 𝐼(𝑢 ∈ 𝑅+𝑛𝑇) truncates the normal distribution to only nonnegative values of 𝑢𝑖𝑡. This implicates that 

                                                
4 This is a slightly different conditional than the one reported in Tsionas and Kumbhakar (2014; p. 119). Our 

analytical derivations have shown, however, that this is the appropriate formula for the conditional of 𝑢 in the half-
normal case. Similar conditional is also reported, e.g., in van den Broeck, Koop, Osiewalski and Steel (1994; p. 
281) and Makiela (2014; p. 198).  
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𝑓𝑁𝑛𝑇(. |𝑏, 𝐶−1)𝐼(𝑢 ∈ 𝑅+𝑛𝑇) is an 𝑛𝑇-dimension truncated normal distribution function with mean vector 𝑏 

and diagonal precision matrix 𝐶. For 𝑛-element vector of persistent inefficiencies we have:  

 𝑝(𝜂|𝑦, 𝑋, 𝜃−𝜂) ∝ 𝑓𝑁𝑛(𝜂| 𝜎𝜂2𝜎𝑣2𝑇 + 𝜎𝜂2 𝜂̃, 𝜎𝑣2𝜎𝜂2𝑇𝜎𝑣2𝑇 + 𝜎𝜂2 𝐼𝑛)𝐼(𝜂 ∈ 𝑅+𝑛) (11) 

where 𝜂̃ = 𝑦̿ − 𝑋̿𝛽 − 𝛼 − 𝑢̿ and symbol " ̿ " denotes an 𝑛-element vector of 𝑛 firm-wise averages for 𝑦, 𝑋, and 𝑢. The last but not least is the conditional for an 𝑛-element vector of firm-specific random 

effects 𝛼:  

 𝑝(𝛼|𝑦, 𝑋, 𝜃−𝛼) ∝ 𝑓𝑁𝑛(𝛼| 𝜎𝛼2𝜎𝑣2𝑇 + 𝜎𝛼2 𝛼̃, 𝜎𝑣2𝜎𝛼2𝑇𝜎𝑣2𝑇 + 𝜎𝛼2 𝐼𝑛) (12) 

where this time 𝛼̃ = 𝑦̿ − 𝑋̿𝛽 − 𝜂 − 𝑢̿. Although the changes made may seem cosmetic they are in fact 

very important. Unlike in Tsionas and Kumbhakar (2014), a straightforward “naive” Gibbs sampling 

procedure constructed based on (4-12) has very good mixing properties. As we discuss it further in 

Section 3 the augmentation makes the model numerically much easier and faster to compute. It also 

turns out to be more reliable than the originally proposed model reparametrization discussed in Tsionas 

and Kumbhakar (2014).  

3. Results based on simulation experiments  

In order to analyze the behavior of the newly constructed Gibbs sampler based on (4-12) we 

generate datasets similar to the ones in Tsionas and Kumbhakar (2014: 4.2). Specifically, we set the 

number of observations as n=100 and number of time periods as T=10. We have a constant term and 

a covariate that is generated as independent standard normal and we set 𝜎𝑣 = 0.1, 𝜎𝑢 = 0.2, 𝜎𝛼 =0.2, 𝜎𝜂 = 0.5. The starting values are equal to the true parameter values.5 We run 150,000 iterations, the 

first 50,000 being discarded. Following Tsionas and Kumbhakar proposition we then take every tenth 

draw to decrease autocorrelation in the chain and then calculate the posterior characteristics of model 

parameters and latent variables. The reader should note, however, that according to O’Hagan (1994) 

information about posterior characteristics of the model based on the full MCMC chain will always be 

higher than information based on any of its sub-chains. Even if autocorrelation between subsequent 

MCMC states is high, a new state always yields additional new information about the posterior. For this 

reason in the next section (empirical example) we use the whole MCMC chain. The last thing left to 

determine is the prior on 𝛽. Tsionas and Kumbhakar discuss both, informative as well as reference priors 

and note that they use informative prior in their applications (with 𝑏 = 0𝑘×1 and 𝐶 = 10−4𝐼𝑘). Our 

preliminary results have shown that numerically the biggest obstacle in using “naive” Gibbs sampler for 

model in (2) is the prior on the intercept. If the prior is very informative (has very tight distribution around 

the true value) then “naive” Gibbs handles very well. This, however, is not a reasonable assumption and 

once we move towards less informative prior we run into numerical difficulties when sampling from the 

posterior. For this reason we have decided to use the reference (uninformative) prior on 𝛽 in our 

simulation experiments because numerically it represents the most challenging case for Gibbs samplers 

to handle; we return to informative prior on 𝛽 in the empirical example in Section 4. Also, unlike Tsionas 

and Kumbhakar (2014: 4.2) we do not “re-generate” datasets of the same characteristics in this section 

(e.g., datasets generated M-times using the same values of 𝑇, 𝑛, 𝛽, and 𝜎𝑗 ’s). When estimating such 

M-times generated datasets (generated using the same data generating process – DGP) we have found 

that for a numerically stable sampling procedure with long MCMC runs the posterior estimates exhibit 

hardly any differences, even when MCMC chain autocorrelation is high. Numerical properties of Gibbs 

sampler (stability, mixing speed etc.) have been monitored using cusum path plots (Yu and Mykland, 

1998) and a multivariate potential scale reduction factor MPSRF (Brooks and Gelman, 1998). A more 

                                                
5 We would also initiate the sampler from the prior means to check if the results are dependent on the starting 

points (i.e., too short burn-in phase). 
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practical argument for not using estimates based on M-times generated datasets with long MCMC runs 

is that Gibbs sampler implementation for GTRE model in (2) based on 𝛿 −reparametrization and 𝜂 −reparametrization takes much more time to compute in comparison to other implementations 

discussed here. This makes analyses with long chain runs especially time-consuming in this model with 

no practical gain to it. For the above reasons we have decided to generate several datasets of slightly 

different characteristics each time (slightly different DGP) and use long MCMC runs.6 This has also 

allowed us to explore samplers’ mixing properties under different conditions. Experiments based on 

datasets re-generated 100 times are provided in the Appendix (Table A.1) but are not discussed in this 

section. We do find particularly important, however, to check if the stochastic components (𝑢+, 𝜂+, 𝛼, 𝑣) 

and explanatory variables (in X) that we generate are indeed independent of each other and are not 

“accidentally” correlated. This could have some impact and incidentally change the posterior 

characteristics of the model. Fortunately none of the datasets we generated had this problem.  

Tables 1 and 2 show experiment results for Gibbs samplers constructed for 5 types of models:  

1) GTRE model based on equation (3) – labeled “new GTRE”,  
2) GTRE model based on equation (2) and reparametrized as proposed in Tsionas and 

Kumbhakar (2014) – labeled “TK GTRE”,  
3) Bayesian stochastic frontier true random-effects model, acquired as a simplification of model 

in (1) so that 𝜀𝑖𝑡 = 𝑢𝑖𝑡+ + 𝛼𝑖 + 𝑣𝑖𝑡 – labeled “TRE”,  
4) standard Bayesian SF model, which is a simplification of model in (1) so that 𝜀𝑖𝑡 = 𝑢𝑖𝑡+ + 𝑣𝑖𝑡 

(see, e.g., Koop, Osiewalski and Steel 1999; Makiela 2009, 2014) – labeled “standard SF”,  
5) GTRE model based on equation (2) with no reparametrization – labeled “naive GTRE”.  

For models in 3) and 4) we set 𝑟∗ = 0.7 throughout the paper. Following propositions in Greene 

(2005a,b) we have reported results for true random effects model (TRE). This model, however, does 

not perform as well as a standard SF in identifying overall inefficiency (𝜔𝑖𝑡 = 𝜂𝑖 + 𝑢𝑖𝑡) and thus we do 

not use it further in this section. We return to this model in empirical application where we show that 

TRE inefficiency estimates are more related to transient inefficiency from GTRE model.  

[Table 1 here; basic results] 

[Table 2 here; results for naive GTRE] 

We see that Gibbs samplers for both, new GTRE as well as TK GTRE handle very well. 

Implementation of the new model, however, is numerically much more efficient. The time needed to 

acquire the results in MATLAB is nearly ten times shorter7 and the new sampler appears to have slightly 

better mixing properties, as measured by the multivariate potential scale reduction factor 

(MPRSF=1.0235 vs. 1.0249; see Brooks and Gelman, 1998). Another method to compare samplers’ 
performances (i.e. mixing speeds) is provided in Figure 1, which shows cusum path plot of the intercept 

from the two simulations. We can clearly see that cusum in new GTRE stabilizes more quickly, has 

lower excursions and a more oscillatory path (less smooth path) than its predecessor. This indicates 

that Gibbs sampling for the new model is indeed numerically more efficient (the sampler moves faster 

around parameters space).  

Tsionas and Kumbhakar (2014: 4.1) report that posterior mean of correlation coefficient between 𝜂 and 𝜂(𝑠) is 0.856 and between and 𝑢 and 𝑢(𝑠) is about 0.754.8 Exact replication of the results based 

on Tsionas and Kumbhakar (2014: 4.1) is provided in the Appendix (Table A.2; k=2) where the reader 

                                                
6 All datasets discussed in this section have been generate in MATLAB with restarted random number generator 

(zero seed), which allows their replication. Additional simulations were made using randomized datasets (random 
seed) to check if the simulations results are stable.   

7 In order to minimize the computation time for TK GTRE we used a MATLAB procedure provided by Sky 
Sartorius via MATLAB file exchange that allows us to fully vectorize draws for 𝛿 (no loops required). This greatly 
increases the computation speed of reparametrized model. When we were using only MATLAB’s built-in procedures 
(which require loops) the computation time further increased about 7-9 times.  

8 That is the mean value of correlation coefficient between: “real values of latent variables 𝜂, 𝑣” and “each draw 
from the simulation 𝜂(𝑠), 𝑢(𝑠)”, where 𝑠 = 1, . . . , 𝑆 and 𝑆 is the number of accepted draws.  



BAYESIAN GTRE AND GIBBS SAMPLING   8 

 

Kamil Makieła 

can also view correlation coefficients for other cases considered in this paper (Table A.3: correlations 

for basic results; Table A.4 correlations for cases 1-3). We find the correlation coefficients to be on 

average slightly lower for both GTRE models. Also, even though GTRE models give more in-depth 

analysis of efficiency, standard SF model provides relatively good measures of overall inefficiency (𝜔) 

in the dataset. Correlation between posterior means of 𝜔’s and their true values is 0.78; nearly as good 

as in GTRE models. Thus, a simple SFA model is still quite useful in determining the overall efficiency 

ranking.  

[Figure 1 here; cusum plots] 

We now turn to simulation results from Gibbs sampler based on naive GTRE (Table 2). When we 

set 𝑄𝜂 = 10−4, as in Tsionas and Kumbhakar (2014: p. 116), several marginal posteriors are nowhere 

near the values assumed in the simulation. The intercept estimate is too high, 𝜂 estimate is very low and 

dispersion of posterior distribution of 𝛼 is much larger than we would expect given the known DGP (data 

generating process). Considering very tight informative prior on 𝜂 this result should not be that 

surprising. In fact, once we change 𝑄𝜂 = 10−2 and double the sampling time the marginal posterior 

distributions reach much closer to values assumed in the simulation (see last column in Table 2).9 This 

exercise shows that due to very tight informative priors on transient and persistent inefficiencies we may 

be dealing here with very irregular posterior, which is difficult to sample from (see cusum path plot in 

Figure 2).  

[Figure 2 here; cusum 2] 

In order to fully examine numerical efficiency (i.e., mixing speed) of Gibbs sampler in the new 

GTRE model let us explore other values for 𝜎𝛼 and 𝜎𝑣 in the DGP. As it has been mentioned in the 

introduction, practice shows that variance of 𝛼 and 𝑣 is crucial in acquiring proper estimates of 

inefficiency components. Tables 3-5 report results for model estimates once we increase 𝜎𝛼, 𝜎𝑣 and 

both. For comparability we also present results for TK GTRE and standard SF.  

[Table 3 here; case 1] 

[Table 4 here; case 2] 

[Table 5 here; case 3] 

Two key findings are worth noting here. First, new GTRE better handles extreme cases than its 

predecessors. It is numerically more efficient and stable than TK GTRE, provides more accurate 

estimates of model parameters than both and, on average, its estimates have higher correlation with 

the true values of 𝛼, 𝜂, 𝑢, 𝜔 (especially when 𝜎𝑣 is high; see Table A.4 in the Appendix). Second, relatively 

high values of 𝜎𝑣 and 𝜎𝛼 make it extremely difficult to approximate inefficiency differences regardless of 

the model. For example, new GTRE model identifies average levels of posterior means for 𝛼, 𝜂, 𝑢, 𝜔 

relatively well. However, correlation coefficients between simulated inefficiencies 𝜂, 𝑢, 𝜔 and their true 

values can be very low, especially when 𝜎𝛼 = 1 and 𝜎𝑣 = 0.8, not to mention the fact that estimates from 

TK GTRE also exhibit significant numerical instability (MPSRF=1.8152). In order to help the best model 

(new GTRE) cope with low correlation in the above case one could try to fine-tune hyperparameters 𝑟𝑢∗ 
and 𝑟𝜂∗ of the prior transient and persistent inefficiency. As we explored this concept, however, we found 

that these hyperparameters have little impact on posterior inefficiency estimates and virtually no 

influence as regards relative differences in inefficiency levels between observations.  

The last element that is left to explore deals with our assumptions about prior medians of transient 

(𝑟𝑢∗) and persistent (𝑟𝜂∗) efficiency. These are additional hyperparameters that need to be specified in the 

new GTRE model. In a standard Bayesian stochastic frontier analysis 𝑟∗ should be from 0.5-0.95 

interval. Values around 0.7-0.75 are usually set as reference (Osiewalski, 2000; Marzec  and Osiewalski 

2008), although some studies report much tighter informative priors with prior median 0.875 (Greene, 

                                                
9 𝑄𝜂 = 10−2 still implicates very tight informative prior with prior median efficiency about 0.9, quantile(0.25)=0.78, 

quantile(0.75)=0.96.  
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2008). In those models changing 𝑟∗ only marginally impacts the level of posterior mean inefficiency in 

the sample and has virtually no influence on relative differences in efficiency levels between 

observations (Makieła, 2014). Although we have already mentioned that fine-tuning these 

hyperparameters does not help to increase accuracy of inefficiency estimates it is worth to examine 

what impact different values of 𝑟𝑢∗ and 𝑟𝜂∗ may have. Up to this point our prior assumption about transient 

and persistent efficiency distribution was that transient efficiency is higher and less likely to exist than 

persistent (thus 𝑟𝑢∗ > 𝑟𝜂∗). Although this seems like a reasonable assumption to make, we now set both 

prior medians equal and change them between values from 0.5 to 0.9. Table 6 presents estimation 

results for such cases.  

[Table 6 here; r* sensitivity analysis] 

Simulation experiments show that the results do not change significantly for fairly reasonable 

values of 𝑟𝑢∗ and 𝑟𝜂∗ that oscillate within 0.5-0.9 interval. Once 𝑟𝑢∗ and 𝑟𝜂∗ reach 0.9 the priors on 𝜎𝑣−2 and 𝜎𝜂−2 become very diffused and the sampler’s mixing speed may be low because high values of 𝑟∗ (close 

to 1) give little prior chances that inefficiency terms exist (Koop, Osiewalski and Steel, 1995; Fernandez, 

Osiewalski and Steel, 1997; Ritter 1993). This also seems to be the case with GTRE model based on 

Tsionas and Kumbhakar (2014). Such strong assumption may sometimes be adequate for transient 

inefficiency, which existence, e.g., in “short” panels can be debatable. However, it definitely seems 

unreasonable to assume the same for persistent inefficiency. The overall conclusion and 

recommendation for 𝑟𝑢∗ and 𝑟𝜂∗ does not change in relation to standard Bayesian SF models. Values for 𝑟𝑢∗ and 𝑟𝜂∗ should be set within 0.5-0.95 interval bearing in mind that values close to 0.95 implicate 

considerably tight informative prior and may cause numerical problems if information in the data does 

not support this idea. Furthermore, when setting the two hyperparameters we should try to reflect our 

prior belief about the relation between levels of transient and persistent inefficiency. If we set highly 

unrealistic values for prior medians (e.g., very low prior median for transient and/or very high prior 

median for persistent) the results may turn out either over-optimistic or over-pessimistic with some signs 

of numerical instability (poor mixing properties of the sampler). This is especially important for persistent 

inefficiency which estimates rely only on 𝑛 objects. In this example once we reposition prior median from 

0.8 to 0.9 we notice a sharp decline in 𝜂 estimate and much higher posterior dispersion of 𝛼. In this case 

information in the data seems to be not strong enough in relations to tight informative prior on 𝜂, which 

gives little chances for persistent inefficiency to exist. Fortunately, for reasonable-enough values of 𝑟𝑢∗ 
and 𝑟𝜂∗ we find hardly any impact on the posterior characteristics. Furthermore, the reader should note 

that in new GTRE model we can test different values of 𝑟𝑢∗ and 𝑟𝜂∗ using Bayesian inference. Under equal 

prior odds we can compare competing model specifications with different prior median values using 

marginal data density. Makieła (2014) shows how marginal data density can be estimated in stochastic 

frontier models via harmonic mean estimator with Lenk’s (2009) correction.  

Tsionas and Kumbhakar (2014) also explore other values for 𝑇, 𝑛, 𝜎𝑗’s and shorter Gibbs runs 

(see Tsionas and Kumbhakar, 2014: 4.1 & 4.3). We find that both models give good results for 

reasonable values of 𝑇, 𝑛, and 𝜎𝑗 ’s. However, in all cases considered the new model numerically 

outperforms its predecessor. It takes significantly much less time to compute and it appears more 

reliable when simulating from the posterior. The latter becomes especially evident once we set T=5 and 

consider more regression parameters (e.g., k=3). In such datasets and comparable MCMC iterations 

the sampler based on TK GTRE significantly underscores the intercept and its implementation is 

numerically far less efficient in comparison to the new model (MPSRF=1.45; see Table 7).  

[Table 7 here; for T=5, k=2,3] 

 

4. Empirical application 

Empirical example is based on US banking data from 1998 to 2005 as in Feng and Serletis (2009). 

We use translog specification with eight input variables and a time trend (3 prices and 5 products; see 
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notes in Table 8). Although we focus here on “Group 1” from the dataset (very large banks) the findings 

presented in this section are consistent for other groups as well. Since the example is similar to Tsionas 

and Kumbhakar (2014) we do not comment extensively on the results but focus only on the main findings 

and differences. Economic regularity constraints are imposed at the means (always) and for the entire 

dataset through the support B of the prior density 𝑝(𝛽); if met, 𝐼𝐵(𝛽) = 1, 0.001 otherwise. This means 

that subsequent state of the MCMC chain, which already meets the constraints at the means, is 

accepted with probability 1 if it meets the condition for the entire dataset; if not it is accepted with 

probability 0.001. The simulation is stopped once 100 thousand iterations are accepter – with initial 50 

thousand discarded (sampler’s burn-in phase). Ideally we would set 𝐼𝐵(𝛽) = 0 when regularity conditions 

are not met for all data points and retain only those iterations that meet the requirements. However, 

given information in “Group 1” it is practically impossible to impose such strict regularity conditions for 

the whole dataset and effectively sample from the posterior. A relatively straightforward way to fully 

address this issue in Bayesian approach would be to put much more informative prior on 𝛽, one that 

would allow us to directly satisfy theoretical regularity conditions as guided by microeconomic theory. 

Unfortunately, this undoubtedly may impact the posterior characteristics of the model, thus significantly 

precluding comparability with previous studies. Since it is more important for us to maintain such 

comparability we do not impose such strict (though more direct) regularity conditions via prior. 

Furthermore, since Tsionas and Kumbhakar (2014) find persistent inefficiency to be smaller than 

transient inefficiency, a priori we do not favor any inefficiency component and set both prior medians to 

0.8.  

[Table 8 here: empirical results] 

Table 8 and Figures 3-5 compare results for four models: GTRE, TRE, standard SF and 

a generalized SF model, here labeled GSF (i.e.: 𝜀𝑖𝑡 = 𝑢𝑖𝑡+ + 𝜂𝑖+ + 𝑣𝑖𝑡). Similarly to Feng and Serletis 

(2009) we find overall annual reduction of total cost (technical progress), which is also partially in line 

with results from Tsionas and Kumbhakar (2014). Dependently on the model, posterior estimates of 

returns to scale are between 1.063-1.086 indicating, on average, increasing returns to scale. We also 

find an interesting pattern in terms of modelling inefficiency and individual effects in the analyzed 

models. Since the standard SF model does not have individual effects, posterior estimate of 𝜎𝑣 is 

relatively high. Symmetric individual effects (𝛼) in the TRE model are quite significant, make the posterior 

estimate of 𝜎𝑣 much smaller (in TRE) and there is also less inefficiency found than in standard SF. 

Posterior standard deviation of symmetric individual effect 𝛼 in the GTRE is smaller in comparison TRE 

(Figure 4), which is different to Tsionas and Kumbhakar (2014). This can be attributed to very tight prior 

on 𝜂 in the previous study. Here once we “tighten” the prior on 𝜂 in GTRE the posterior distribution of 𝛼 

also becomes more diffused.10 Inefficiency components in GSF model are very similar to the ones from 

GTRE with only persistent inefficiency being slightly higher. This difference is likely because there are 

no individual effects (𝛼) in GSF.  

In general we find inefficiency terms to be much higher than the ones reported by Tsionas and 

Kumbhakar (2014). The reader should note, however, that the previous model implied very tight 

informative prior on efficiency centered around 0.99 value. Considering the tight prior, reasons for such 

low inefficiency estimates become obvious. Also, unlike in Tsionas and Kumbhakar (2014) we find that 

a posteriori persistent inefficiency distribution (𝜂) is centered considerably higher and much more 

diffused than transient inefficiency (𝑢), and thus the resulting overall inefficiency (𝜔) scores in GTRE 

model are also considerably higher than in in TRE and standard SF (see Figure 5). In fact, inefficiency 

component in TRE model has very similar posterior characteristics to transient inefficiency from GTRE. 

Their density charts from Figures 3 and 5 nearly overlap and their posterior inefficiency rankings are 

almost identical (0.998 correlation between posterior means of inefficiency; see Table A.5 in the 

Appendix). Thus, inefficiency estimates that we acquire using TRE model should be treated as transient 

rather than overall inefficiency scores. Persistent inefficiency is most likely captured via bank effects (𝛼) 

in the TRE model. Furthermore, we find that posterior estimates of inefficiency scores in standard SF 

                                                
10 Posterior standard deviation of 𝛼 is 0.027 if prior median 𝜂 is 0.9, compared to 0.021 for prior median 𝜂 0.8. 
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are quite similar to overall inefficiency scores in GTRE model (0.895 correlation between posterior 

means of inefficiency; see Table A.5 in the Appendix).  

[Table 9 here; sensitivity analysis] 

Since posterior distribution of 𝜂 is relatively diffused and centered around significantly higher 

values than transient inefficiency (𝑢) it is worth exploring how prior median influences posterior 

characteristics of 𝜂 distribution. Sensitivity analysis provided in Table 9 shows that: i) prior median 0.8 

implicates posterior mean of persistent efficiency also around 0.8; ii) for prior median 0.7, the posterior 

mean is around 0.777; iii) if we further lower prior median to 0.6, which implicates a relatively diffused 

prior, the posterior mean is still 0.748 (0.048); and iv) if we set a relatively tight informative prior with 

prior median 0.9 the resulting posterior mean is around 0.852 (0.055). This indicates that for very 

high/low values of prior median information in the data pulls the posterior significantly away from the 

initially centered prior, even if the prior is relatively tight. More importantly, however, correlation 

coefficient of Bank’s persistent inefficiencies between models with prior median 0.6 and 0.9 is 0.993 

(Spearman’s rank correlation is 0.997). This indicates that prior median level has virtually no impact on 

relative differences in persistent inefficiency estimates between banks.  

[Figure 3 here] 

[Figure 4 here] 

[Figure 5 here] 

5. Concluding remarks 

In this paper we have proposed a revised approach to Bayesian inference in generalized true 

random-effects model (GTRE). As we have shown, the revised model (and its numerical 

implementation) significantly outperforms its predecessors. Artificial examples have shown that both 

models handle well in favorable conditions; that is: i) if the dataset is large-enough, ii) symmetric 

disturbances are relatively small in respect to inefficiencies, and iii) we do not have that many regression 

parameters in the model. However, in more nuisance datasets advantages of the new model are evident, 

no doubt due less strict and better-tuned priors on efficiency terms. The new model is not only easier 

and faster to compute but it also allows for more robust analysis. By controlling our prior beliefs about 𝜂 

and 𝑢 we can learn how much information in the data alters the posterior in relation to the prior. This 

becomes especially important in case of firm-specific effects (𝜂, 𝛼), which posterior characteristics in the 

GTRE model are quite diffused and may dependent on 𝜂 prior.  

In empirical application we show that the GTRE specification is interconnected with other models 

already known in the literature. This seems especially interesting because we can acquire these models 

by reducing selected stochastic components of the GTRE and it may impact the remaining components 

of the simplified model. By using GTRE model we can have full view of how each component is relevant 

in describing the given data and we can make more informed decision as to which stochastic frontier 

model should be chosen.   
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FIGURES 

 

 
Figure 1. CUSUM path plots for new GTRE model (solid line) and TK GTRE (dotted line) 

Source: author’s calculations. 
 

 

Figure 2. CUSUM path plot for naive GTRE model (𝑸𝜼 = 𝟏𝟎−𝟐) 

Note: CUSUM path plot is for the intercept. The other (almost flat) line is a benchmark path based on independent sampler with 
the same mean and standard deviation. Source: author’s calculations.  
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Figure 3. Posterior distributions of inefficiency components in the GTRE model 

Source: author’s calculations. 

 
Figure 4. Posterior distribution of bank effects 

Source: author’s calculations. 

 
Figure 5. Posterior distribution of overall inefficiency 𝝎 in GTRE, TRE, GSF and standard SF  

Source: author’s calculations. 
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TABLES 

Table 1. Basic results for new GTRE, TK GTRE, TRE and standard SF 

 True values new GTRE TK GTRE TRE standard SF 

 Value Std 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝛽0 1  1,031 0,051 0,950 0,047 1,401 0,034 1,244 0,035 𝛽1 1  1,004 0,005 1,008 0,005 1,004 0,005 1,004 0,012 𝜎𝛼 0,2  0,187 0,037 0,170 0,030 0,333 0,024   𝜎𝜂 0,5  0,494 0,056 0,512 0,057     𝜎𝑣 0,1  0,109 0,008 0,070 0,009 0,100 0,007 0,271 0,021 𝜎𝑢 0,2  0,189 0,014 0,237 0,014 0,212 0,011 0,406 0,042 𝛼 0,000 0,200 0,000 0,153 0,008 0,146 0,000 0,058   𝜂 0,408 0,274 0,387 0,159 0,419 0,151     𝑢 0,160 0,120 0,151 0,079 0,192 0,067 0,167 0,080 0,325 0,176 𝜔 0,569 0,297 0,538 0,175 0,611 0,162 0,167 0,080 0,325 0,176 

MPSRF 1,0235 1,0249 1,0143 1,0019 

Time 155 1354 103 85 

Note: 𝜎𝑣 = 0.1, 𝜎𝑢 = 0.2, 𝜎𝛼 = 0.2, 𝜎𝜂 = 0.5, 𝛽0 is intercept; 𝛽1 is slope parameter; Std is the standard deviation calculated based on 

true values; E(m) is posterior mean of 𝑚; D(m) is posterior standard deviation of 𝑚; for parameters 𝛼, 𝜂, 𝑢 and 𝜔 we report average 
posterior mean and standard deviation of posterior means; MPSRF is multivariate potential scale reduction factor; time is 
simulation duration given in seconds. Source: author’s calculations.  
 

Table 2. Results for naive GTRE under 𝑸𝜼 = 𝟏𝟎−𝟒 and 𝑸𝜼 = 𝟏𝟎−𝟐  

  
𝑄𝜂 = 10−4  

150 000 draws 

𝑄𝜂 = 10−4  

300 000 draws 

𝑄𝜂 = 10−2  

150 000 draws 

𝑄𝜂 = 10−2  

300 000 draws 

 True values         

 Value Std 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝛽0 1  1,382 0,098 1,405 0,048 1,224 0,134 1,047 0,089 𝛽1 1  1,003 0,005 1,003 0,005 1,003 0,005 1,003 0,005 𝜎𝛼 0,2  0,322 0,040 0,331 0,025 0,275 0,063 0,209 0,057 𝜎𝜂 0,5  0,061 0,113 0,028 0,037 0,254 0,160 0,435 0,109 𝜎𝑣 0,1  0,115 0,011 0,115 0,010 0,115 0,011 0,110 0,009 𝜎𝑢 0,2  0,175 0,022 0,176 0,021 0,175 0,022 0,181 0,018 𝛼 0,000 0,200 -0,001 0,091 -0,002 0,065 -0,001 0,151 0,001 0,162 𝜂 0,408 0,274 0,049 0,106 0,022 0,039 0,203 0,180 0,348 0,177 𝑢 0,160 0,120 0,140 0,079 0,141 0,079 0,140 0,079 0,144 0,078 𝜔 0,569 0,297 0,188 0,136 0,163 0,089 0,343 0,198 0,493 0,192 

MPSRF 1,063 1,005 1,083 1,002 

Time 183 322 163 326 

Note: For 150 000 draws we discard first 50 thousand, for 300 thousand we discard first 100 thousand; see notes in Table 1 for 
notation. Source: author’s calculations. 
  

Table 3. Extreme case 1: estimations results when 𝝈𝜶 = 𝟏 

 True values new GTRE TK GTRE standard SF 

 Value Std 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝛽0 1  0,940 0,131 0,386 0,071 1,186 0,109 𝛽1 1  1,004 0,005 1,005 0,005 1,017 0,033 𝝈𝜶 1,0  0,957 0,085 0,742 0,100   𝜎𝜂 0,5  0,615 0,126 1,226 0,148   𝜎𝑣 0,1  0,109 0,008 0,092 0,008 0,991 0,037 𝜎𝑢 0,2  0,190 0,014 0,208 0,015 0,479 0,131 𝛼 0,000 1,000 -0,010 0,356 0,028 0,507   𝜂 0,408 0,274 0,488 0,355 0,988 0,509   𝑢 0,160 0,120 0,151 0,079 0,167 0,076 0,382 0,299 𝜔 0,569 0,297 0,639 0,364 1,155 0,514 0,382 0,299 

MPSRF   1,0171 1,0540 1,0243 

Time   220 1386 66 
Note: See notes for Table 1. Source: author’s calculations. 
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Table 4. Extreme case 2: estimations results when 𝝈𝒗 = 𝟎. 𝟖 

 True values new GTRE TK GTRE standard SF 

 Value Std 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝛽0 1  0,915 0,076 1,548 0,041 1,202 0,091 𝛽1 1  1,022 0,026 1,021 0,028 1,022 0,028 𝜎𝛼 0,2  0,031 0,041 0,022 0,021   𝜎𝜂 0,5  0,567 0,064 0,019 0,017   𝝈𝒗 0,8  0,795 0,021 0,872 0,020 0,825 0,032 𝜎𝑢 0,2  0,252 0,064 0,025 0,038 0,459 0,109 𝛼 0,000 0,200 0,000 0,050 -0,015 0,026   𝜂 0,408 0,274 0,453 0,201 0,015 0,020   𝑢 0,160 0,120 0,201 0,161 0,020 0,041 0,366 0,277 𝜔 0,569 0,297 0,653 0,254 0,035 0,045 0,366 0,277 

MPSRF   1,0026 1,1076 1,013 

Time   206 1323 64 
Note: See notes for Table 1. Source: author’s calculations.  
 

Table 5. Extreme case 3: estimations results when 𝝈𝜶 = 𝟏 and 𝝈𝒗 = 𝟎. 𝟖 

 True values new GTRE TK GTRE standard SF 

 Value Std 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝛽0 1  0,840 0,172 1,127 0,521 1,201 0,108 𝛽1 1  1,022 0,027 1,025 0,026 1,036 0,041 𝝈𝜶 1  0,933 0,095 0,905 0,099   𝜎𝜂 0,5  0,664 0,160 0,171 0,273   𝝈𝒗 0,8  0,793 0,021 0,731 0,084 1,264 0,037 𝜎𝑢 0,2  0,251 0,063 0,323 0,367 0,461 0,125 𝛼 0,0 1,000 -0,001 0,434 0,047 0,284   𝜂 0,408 0,274 0,530 0,388 0,136 0,273   𝑢 0,160 0,120 0,201 0,160 0,259 0,374 0,368 0,295 𝜔 0,569 0,297 0,731 0,421 0,394 0,556 0,368 0,295 

MPSRF   1,0031 1,8152 1,0249 

Time   173 1180 67 

Note: See notes for Table 1. Source: author’s calculations. 
  

Table 6. Simulation results for different values of 𝒓𝒖∗  and 𝒓𝜼∗  in new GTRE model 

 True values 𝑟𝑢∗ = 𝑟𝜂∗ = 0.5 𝑟𝑢∗ = 𝑟𝜂∗ = 0.6 𝑟𝑢∗ = 𝑟𝜂∗ = 0.7 𝑟𝑢∗ = 𝑟𝜂∗ = 0.8 𝑟𝑢∗ = 𝑟𝜂∗ = 0.9 

 Value Std 𝐸(𝑚) 𝐷(𝑚) 𝜌𝑚̂ 𝐸(𝑚) 𝐷(𝑚) 𝜌𝑚̂ 𝐸(𝑚) 𝐷(𝑚) 𝜌𝑚̂ 𝐸(𝑚) 𝐷(𝑚) 𝜌𝑚̂ 𝐸(𝑚) 𝐷(𝑚) 𝜌𝑚̂ 𝛽0 1  0,914 0,047  0,969 0,049  1,029 0,055  1,118 0,070  1,296 0,050  𝛽1 1  1,007 0,006  1,006 0,005  1,005 0,005  1,004 0,005  1,003 0,005  𝜎𝛼 0,200  0,161 0,033  0,178 0,035  0,201 0,040  0,242 0,047  0,313 0,028  𝜎𝜂 0,500  0,600 0,055  0,528 0,055  0,458 0,060  0,363 0,076  0,169 0,044  𝜎𝑣 0,100  0,078 0,007  0,086 0,007  0,095 0,007  0,104 0,008  0,116 0,009  𝜎𝑢 0,200  0,269 0,010  0,245 0,010  0,223 0,011  0,201 0,013  0,174 0,019  𝛼 0,000 0,200 0,000 0,144 0,521 0,000 0,151 0,537 0,000 0,159 0,552 -0,001 0,162 0,561 -0,001 0,112 0,558 𝜂 0,408 0,274 0,449 0,153 0,806 0,409 0,158 0,803 0,364 0,164 0,799 0,292 0,167 0,796 0,135 0,104 0,797 𝑢 0,160 0,120 0,206 0,077 0,747 0,191 0,079 0,750 0,176 0,080 0,751 0,159 0,080 0,752 0,139 0,078 0,752 𝜔 0,569 0,297 0,655 0,164 0,796 0,600 0,171 0,794 0,540 0,179 0,791 0,452 0,185 0,783 0,274 0,131 0,606 

MPSRF 1,0467 1,0354 1,0346 1,0343 1,0409 

Time 226 214 246 244 222 

Note: See notes for Table 1. Source: author’s calculations. 
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Table 7. Comparison between GTRE models for T=5 and different number of regression 

parameters (k=2,3) 

 True values new GTRE TK GTRE 

 n=100 T=5, k=2 𝛽0 1  0,969 0,048 0,328 0,070 𝛽1 1  1,002 0,008 0,997 0,008 𝜎𝛼 0,2  0,198 0,039 0,142 0,071 𝜎𝜂 0,5  0,557 0,057 1,095 0,103 𝜎𝑣 0,1  0,090 0,015 0,024 0,011 𝜎𝑢 0,2  0,208 0,021 0,263 0,013 𝛼 0,00 0,2 0,001 0,164 0,020 0,156 𝜂 0,418 0,319 0,437 0,171 1,012 0,176 𝑢 0,155 0,119 0,166 0,082 0,216 0,056 𝜔 0,573 0,349 0,603 0,182 1,228 0,172 

MPSRF   1,0541 1,0388 

Time   13,5 108,1 

 n=100 T=5, k=3 𝛽0 1  0,996 0,066 0,216 0,068 𝛽1 1  1,011 0,008 1,009 0,007 𝛽2 1  0,994 0,008 1,001 0,008 𝜎𝛼 0,2  0,206 0,041 0,148 0,082 𝜎𝜂 0,5  0,519 0,066 1,185 0,105 𝜎𝑣 0,1  0,093 0,014 0,024 0,013 𝜎𝑢 0,2  0,220 0,019 0,282 0,014 𝛼 0,00 0,2 0,000 0,169 0,023 0,166 𝜂 0,411 0,301 0,411 0,177 1,114 0,187 𝑢 0,170 0,126 0,175 0,085 0,228 0,061 𝜔 0,582 0,322 0,586 0,190 1,342 0,182 

MPSRF   1,0107 1,4507 

Time   13,7 105,9 

Note: Based on 15 thousand draws with initial 5 thousand discarded; example based on Tsionas and Kumbhakar (2014: p. 120). 
Source: author’s calculations.  
 

Table 8. Empirical results for the four models 

 standard SF TRE GTRE GSF 

 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝐸(𝑚) 𝐷(𝑚) 𝜎𝑣 0,161 0,009 0,085 0,008 0,096 0,009 0,101 0,009 𝜎𝑢 0,271 0,020 0,190 0,017 0,162 0,019 0,159 0,018 𝜎𝛼   0,213 0,021 0,146 0,027   𝜎𝜂     0,280 0,070 0,427 0,064 𝛼   0,008 0,058 -0,001 0,021   𝑢 0,212 0,016 0,147 0,015 0,127 0,016 0,124 0,015 𝜂     0,224 0,067 0,377 0,065 𝜔 0,212 0,016 0,147 0,015 0,351 0,076 0,502 0,073 
         𝐸𝑙(𝑝1) 0,549 0,019 0,543 0,020 0,546 0,020 0,538 0,020 𝐸𝑙(𝑝2) 0,401 0,012 0,378 0,012 0,376 0,011 0,384 0,012 𝐸𝑙(𝑝3) 0,050 0,017 0,079 0,018 0,078 0,018 0,078 0,018 𝐸𝑙(𝑦1) 0,108 0,007 0,086 0,010 0,085 0,010 0,087 0,010 𝐸𝑙(𝑦2) 0,416 0,023 0,472 0,024 0,480 0,024 0,492 0,023 𝐸𝑙(𝑦3) 0,216 0,018 0,213 0,020 0,213 0,020 0,198 0,021 𝐸𝑙(𝑦4) 0,082 0,029 0,082 0,030 0,079 0,029 0,074 0,030 𝐸𝑙(𝑦5) 0,098 0,011 0,083 0,014 0,080 0,014 0,090 0,014 

TC -0,047 0,004 -0,049 0,004 -0,049 0,004 -0,048 0,003 

intercept -0,904 1,040 0,097 0,995 -0,353 0,964 -0,096 0,972 

RTS 1,086 0,008 1,068 0,013 1,069 0,013 1,063 0,012 

MPSRF 1,002 1,014 1,043 1,007 

Note: 𝐸𝑙(𝑚) denotes cost elasticity of m; the table only provides average levels of elasticities due to space constrains; 𝐸(𝑚) and 𝐷(𝑚) are posterior mean and posterior standard deviation respectively; TC is technical change (𝜕 ln 𝐶 /𝜕𝑡); RTS are returns to 
scale; 𝑝1 is wage rate for labor; 𝑝2 is interest rate for borrowed funds; 𝑝3 is price of capital; 𝑦1are consumer loans; 𝑦2 are non-
consumer loans; 𝑦3 are securities; 𝑦4 is financial equity capital; 𝑦5 are non-traditional banking activities; see Feng and Serletis 
(2009) for more details. Source: author’s calculations.  
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Table 9. Prior and posterior distribution of 𝜼 under different prior median values  

prior median 0,6 0,7 0,8 0,875 0,9 

 Efficiency distribution characteristics (exp (−𝜂)) 
 prior posterior prior posterior prior posterior prior posterior prior posterior 

mean 0,595 0,748 0,683 0,777 0,778 0,801 0,856 0,838 0,884 0,852 

st.dev. 0,235 0,048 0,200 0,047 0,152 0,052 0,105 0,051 0,087 0,055 

median 0,6 0,753 0,7 0,782 0,800 0,807 0,875 0,842328 0,900 0,850 

 Inefficiency distribution characteristics (𝜂) 

mean 0,625 0,292 0,436 0,254 0,273 0,224 0,163 0,179 0,129 0,173 

st.dev. 0,513 0,065 0,358 0,061 0,224 0,067 0,134 0,063 0,106 0,066 
median 0,506 0,283 0,352 0,247 0,221 0,214 0,132 0,172 0,104 0,161 
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APPENDIX 

Table A.1. Sampling behavior of Bayes estimator in the new GTRE model 

 𝛼 𝜂 𝑢 𝜔 
 mean median std mean median std mean median std mean median std 

n=50, T=5 

True 0,000222 0,000201 0,003129 0,403 0,400 0,046 0,159 0,158 0,007 0,562 0,561 0,048 

Est. -0,000267 0,000025 0,003167 0,490 0,479 0,069 0,179 0,176 0,018 0,669 0,561 0,072 

n=100, T=5 
True -0,000071 -0,000010 0,002941 0,399 0,394 0,030 0,158 0,158 0,005 0,557 0,554 0,030 

Est. -0,000072 0,000103 0,002162 0,448 0,446 0,049 0,169 0,169 0,014 0,617 0,554 0,050 

n=100, T=5 

True 0,000083 0,000239 0,002886 0,405 0,403 0,028 0,399 0,398 0,014 0,804 0,805 0,031 

Est. -0,000330 -0,000060 0,002270 0,433 0,432 0,035 0,396 0,399 0,034 0,829 0,805 0,051 

n=100, T=10 
True -0,000264 -0,000604 0,002990 0,396 0,394 0,025 0,400 0,399 0,009 0,796 0,794 0,026 

Est. -0,000011 -0,000002 0,000594 0,429 0,430 0,042 0,398 0,397 0,014 0,826 0,794 0,042 

 𝜎𝛼 𝜎𝜂 𝜎𝑣 𝜎𝑢 

True  0,2   0,5   0,1   0,2  

n=50, T=5 
Est. 0,147 0,154 0,083 0,546 0,546 0,052 0,081 0,092 0,029 0,224 0,223 0,028 

n=100, T=5 

Est. 0,154 0,164 0,058 0,560 0,561 0,051 0,091 0,092 0,014 0,212 0,211 0,017 

 

True  0,1   0,5   0,1   0,5  

n=100, T=5 
Est. 0,046 0,027 0,040 0,546 0,544 0,038 0,085 0,085 0,049 0,493 0,494 0,041 

n=100, T=10 

Est. 0,048 0,037 0,034 0,539 0,541 0,046 0,102 0,103 0,014 0,497 0,497 0,018 

Note: “Est.” is posterior estimate; results are mean estimates calculated based on 100 datasets of the same characteristics (re-
generated 100 times); simulation results based on 5000 burn-in and 5000 accepted draws; example similar to Tsionas and 
Kumbhakar (2014: p. 124). Source: author’s calculations. 
  

Table A.2. Correlations between posterior means and true values of latent variables; 

posterior means and standard deviations of the correlation coefficient  

 new GTRE TK GTRE 𝑚 𝜌𝑚̂ 𝐸(𝜌𝑚) 𝐷(𝜌𝑚) 𝜌𝑚̂ 𝐸(𝜌𝑚) 𝐷(𝜌𝑚) 
 n=100, T=5, k=2 𝛼 0,514 0,286 0,089 0,559 0,039 0,101 𝜂 0,862 0,738 0,054 0,824 0,760 0,055 𝑢 0,712 0,535 0,049 0,656 0,609 0,017 𝜔 0,862 0,744 0,047 0,836 0,782 0,049 

 n=100, T=5, k=3 𝛼 0,560 0,328 0,091 0,441 0,026 0,103 𝜂 0,830 0,670 0,077 0,810 0,730 0,068 𝑢 0,732 0,559 0,049 0,721 0,671 0,016 𝜔 0,826 0,678 0,067 0,818 0,754 0,063 

Note: Based on 15 thousand draws with initial 5 thousand discarded; results for two and three regression parameters (k=2,3); 𝜌𝑚̂ 
is correlation coefficient between posterior mean of “m” (𝑚̂) and true value, e.g., for 𝑚 ≔ 𝛼, 𝜌𝛼̂ = 𝜌𝛼(𝛼̂, 𝛼𝑡𝑟𝑢𝑒); 𝐸(𝜌𝑚) is the posterior 
mean of a correlation coefficient, e.g., 𝐸(𝜌𝛼) = 𝐸(𝜌𝛼|𝑑𝑎𝑡𝑎); 𝐷(𝜌𝑚) is the posterior standard deviation of a correlation coefficient; 
example based on Tsionas and Kumbhakar (2014: p. 120). Source: author’s calculations. 
  

Table A.3. Basic results; correlations between posterior means and true values of latent 

variables; posterior means and standard deviations of the correlation coefficient  

 new GTRE TK GTRE naive GTRE TRE standard SF 

 𝜌𝑚̂ 𝐸(𝜌𝑚) 𝐷(𝜌𝑚) 𝜌𝑚̂ 𝐸(𝜌𝑚) 𝐷(𝜌𝑚) 𝜌𝑚̂ 𝐸(𝜌𝑚) 𝐷(𝜌𝑚) 𝜌𝑚̂ 𝐸(𝜌𝑚) 𝐷(𝜌𝑚) 𝜌𝑚̂ 𝐸(𝜌𝑚) 𝐷(𝜌𝑚) 𝛼 0,544 0,313 0,089 0,530 0,270 0,091 0,558 0,535 0,056 0,555 0,550 0,012    𝜂 0,800 0,658 0,071 0,804 0,692 0,053 0,796 0,088 0,190       𝑢 0,752 0,528 0,040 0,744 0,651 0,021 0,752 0,497 0,061 0,752 0,569 0,030 0,283 0,194 0,029 𝜔 0,792 0,647 0,061 0,794 0,693 0,045 0,487 0,252 0,113 0,320 0,242 0,030 0,781 0,534 0,052 

Note: 𝜌𝑚̂ is correlation coefficient between posterior mean of “m” (𝑚̂) and true value, e.g., for 𝑚 ≔ 𝛼, 𝜌𝑚̂ = 𝜌𝑚(𝛼̂, 𝛼𝑡𝑟𝑢𝑒); 𝐸(𝜌𝑚) is 
the posterior mean of a correlation coefficient, e.g., 𝐸(𝜌𝛼) = 𝐸(𝜌𝛼|𝑑𝑎𝑡𝑎); 𝐷(𝜌𝑚) is the posterior standard deviation of a correlation 
coefficient. Source: author’s calculations.  
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Table A.4. Extreme cases 1-3: correlations between posterior means and true values of 

latent variables; posterior means and standard deviations of the correlation coefficient 

 new GTRE TK GTRE standard SF 

 𝜌𝑚̂ 𝐸(𝜌𝑚) 𝐷(𝜌𝑚) 𝜌𝑚̂ 𝐸(𝜌𝑚) 𝐷(𝜌𝑚) 𝜌𝑚̂ 𝐸(𝜌𝑚) 𝐷(𝜌𝑚) 

 when 𝜎𝛼 = 1 𝛼 0,962 0,895 0,034 0,940 0,679 0,071    𝜂 0,239 0,091 0,095 0,242 0,170 0,073    𝑢 0,753 0,531 0,038 0,749 0,591 0,031 0,084 0,024 0,032 𝜔 0,328 0,141 0,083 0,266 0,190 0,065 0,252 0,072 0,036 

 when 𝜎𝑣 = 0.8 𝛼 0,396 0,030 0,108 0,421 0,042 0,105    𝜂 0,660 0,523 0,055 0,653 0,040 0,108    𝑢 0,132 0,024 0,031 0,116 0,002 0,032 0,108 0,0131 0,0313 𝜔 0,605 0,445 0,050 0,553 0,033 0,077 0,323 0,0447 0,0333 

 when 𝜎𝛼 = 1 and 𝜎𝑣 = 0.8 𝛼 0,930 0,826 0,049 0,931 0,896 0,053    𝜂 0,248 0,097 0,095 0,246 0,030 0,109    𝑢 0,140 0,025 0,032 0,119 0,030 0,044 0,060 0,013 0,031 𝜔 0,226 0,085 0,082 0,147 0,034 0,070 0,203 0,045 0,033 

Note: See notes for Table A.3. Source: author’s calculations. 
  

Table A.5. Correlations between inefficiencies from four models 

Correlation between overall inefficiency (𝜔𝑖𝑡) 

 
standard  

SF 
TRE GTRE GSF 

standard SF 1 
0,328 

(0,039) 
0,466 

(0,058) 
0,568 

(0,040) 

TRE 0,606 1 
0,314 

(0,051) 
0,260 

(0,044) 

GTRE 0,895 0,574 1 
0,638 

(0,084) 

GSF 0,845 0,375 0,961 1 

Correlation between transient inefficiency (𝑢𝑖𝑡) 

 
standard  

SF 
TRE GTRE GSF 

standard SF 1 
0,328 

(0,039) 
0,290 

(0,042) 
0,286 

(0,040) 

TRE 0,606 1 
0,502 

(0,058) 
0,478 

(0,059) 

GTRE 0,595 0,998 1 
0,432 

(0,062) 

GSF 0,609 0,987 0,992 1 

Note: Lower triangles in the cross-tables (in italic) contain correlation coefficients between posterior means of inefficiencies in 
different models; upper triangles are posterior means and standard deviations (in brackets) of correlation coefficients between 
inefficiencies in different models; for models standard SF and TRE overall inefficiency is equal to transient. Source: author’s 
calculations.  


