
Munich Personal RePEc Archive

Growth Accounting and Endogenous

Technical Change

Angus C., Chu and Guido, Cozzi

University of Liverpool, University of St. Gallen

February 2016

Online at https://mpra.ub.uni-muenchen.de/69406/

MPRA Paper No. 69406, posted 10 Feb 2016 17:57 UTC



Growth Accounting and Endogenous Technical Change

Angus C. Chu Guido Cozzi

February 2016

Abstract

This study examines the validity of two conventional approaches to growth ac-
counting under endogenous technical change. We find that the traditional approach
to growth accounting, pioneered by Solow (1957), is consistent with the lab-equipment
specification for technological progress, whereas the more recent approach, proposed
by Hayashi and Prescott (2002) and Kehoe and Prescott (2002), is consistent with the
knowledge-driven specification. We develop a unified approach to growth accounting,
which in essence takes a weighted average of the Solow approach and the Hayashi-
Kehoe-Prescott approach. We show that our unified approach is consistent with a
more general specification for technological progress under which the degree of capital
intensity in the innovation process determines the relative weight placed on the two
approaches. Finally, we apply our unified approach to data of the Chinese economy
to explore the quantitative importance of capital accumulation on economic growth in
China.
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1 Introduction

The traditional approach to growth accounting, pioneered by Solow (1957), decomposes eco-
nomic growth into the growth rates of factor inputs and technological progress, measured
by the Solow residual; see Barro (1999) for a review of this approach. Interpreting these
accounting relationships as causal relationships however requires an underlying assumption
that the growth rates of factor inputs, e.g., physical capital, are independent from techno-
logical progress. An important result from the seminal Solow growth model is that in the
long run, growth in output and capital is driven by technological progress. Therefore, inter-
preting the accounting relationships from the Solow approach as causal relationships may
overstate the contribution of capital accumulation to economic growth and understate the
contribution of technological progress.1 A more recent approach to growth accounting, pro-
posed by Hayashi and Prescott (2002) and Kehoe and Prescott (2002), addresses this issue
by scaling up the importance of technological progress and measuring the contribution of
capital accumulation by the growth rate of the capital-output ratio, rather than the growth
rate of the capital stock.
This study examines the validity of these two approaches to growth accounting in the pres-

ence of endogenous technical change.2 In particular, we consider the following two common
specifications in the literature for endogenous technological progress: the knowledge-driven
specification, and the lab-equipment specification. We find that the Hayashi-Kehoe-Prescott
approach to growth accounting is consistent with the knowledge-driven specification that fea-
tures labor input in the innovation process. Under this knowledge-driven specification, tech-
nological progress does not require physical capital, so the Hayashi-Kehoe-Prescott approach
that scales down the contribution of capital accumulation and scales up the contribution of
technological progress is valid. However, in the case of the lab-equipment specification that
features final goods as input in the innovation process, the Solow approach is valid because it
captures the contribution of capital accumulation to technological progress via the aggregate
production function.
The abovementioned specifications for technological progress involve restrictive assump-

tions. Specifically, the knowledge-driven specification assumes that innovation does not
require capital, whereas the lab-equipment specification assumes that the degree of capital
intensity in the innovation process is the same as that of the general production process. To
avoid these assumptions, we propose a more general specification for technological progress
under which the degree of capital intensity in innovation can be different from production.
Furthermore, we develop a unified approach to growth accounting that in essence takes a
weighted average of the Solow approach and the Hayashi-Kehoe-Prescott approach. We show
that this weight in our unified approach is determined by the degree of capital intensity in
the innovation process.
Finally, we apply our unified approach to data of the Chinese economy to explore the im-

portance of capital accumulation on economic growth in China. A study by Zhu (2012) finds
that economic growth in China since the late 1970’s has been mainly driven by technological
progress and that capital accumulation has made almost zero contribution to growth of the

1See Aghion and Howitt (2007) for this critique.
2See also Barro (1999) and Aghion and Howitt (2007) who discuss the implications of endogenous tech-

nological progress on growth accounting.
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Chinese economy. We find that the Hayashi-Kehoe-Prescott approach used by Zhu (2012) is
valid only when capital accumulation does not contribute to technological progress. We also
show that the contribution of capital accumulation to economic growth in China is increasing
in the degree of capital intensity in technological progress and that if technological progress
is as capital intensive as production, then capital accumulation would be responsible for as
much as half the growth in China.
The rest of this study is organized as follows. Section 2 briefly reviews the two approaches

to growth accounting. Section 3 explores their validity under endogenous technical change.
Section 4 proposes a unified approach to growth accounting and then applies this approach
to data in China. Section 5 considers an extension of the model. Section 6 concludes.

2 Review of growth accounting

In this section, we briefly review the two conventional approaches to growth accounting.
Let’s start with the following aggregate production function:

Y = Kα(AL)1−α, (1)

where Y denotes output, A denotes technology, K denotes physical capital, and L denotes
effective labor, which includes human capital and raw labor. The parameter α ∈ (0, 1)
determines capital intensity in the production process. In the following subsections, we
present the Solow and Hayashi-Kehoe-Prescott approaches to growth accounting and show
their different implications on the contribution of capital accumulation to economic growth.

2.1 The Solow approach to growth accounting

We take the log of (1) and differentiate it with respect to time to obtain

Ẏ

Y
= (1− α)

Ȧ

A
+ α

K̇

K
+ (1− α)

L̇

L
, (2)

where ẋ/x denotes the growth rate of variable x ∈ {Y,A,K,L}. In other words, (2) decom-
poses the growth rate of output into three components: the growth rate of technology, the
growth rate of physical capital, and the growth rate of effective labor. Given that our focus
is on the relative importance of technological progress and capital accumulation, we start
with a constant effective labor L for simplicity.3

Under the Solow approach to growth accounting, the share of growth that capital accu-
mulation is responsible for is measured by α(K̇/K)/(Ẏ /Y ). On the balanced growth path,
the capital-output ratio is constant, which in turn implies that capital accumulation is re-
sponsible for the share α of growth in output in the long run whereas the rest is due to
technological progress. However, this Solow approach to growth accounting may underesti-
mate the importance of technological progress and overestimate the importance of capital

3In Section 5, we extend the analysis by allowing for growth in effective labor L.
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accumulation. The reason is that the accumulation of physical capital is partly driven by
technological progress. For example, a well-known result from the seminal Solow growth
model is that in the long run, economic growth and capital accumulation are driven by tech-
nological progress. In the next subsection, we consider an alternative approach to growth
accounting that addresses this issue.

2.2 The Hayashi-Kehoe-Prescott approach to growth accounting

Hayashi and Prescott (2002) and Kehoe and Prescott (2002) consider an alternative approach
to account for the sources of economic growth. In essence, they divide both sides of (1) by
Y α to obtain

Y 1−α = A1−α(K/Y )αL1−α. (3)

Then, taking the log of (3) and differentiating it with respect to time yield

Y

Y
=
Ȧ

A
+

α

1− α

·

(K/Y )

(K/Y )
, (4)

where we have applied the assumption L̇/L = 0. An interpretation of (4) is that capital ac-
cumulation is driven by technological progress. Therefore, we should scale up the importance
of A by a factor of 1/(1 − α). If capital accumulation has made an additional contribution
to the growth rate of output, then K should have grown at a faster rate than Y in the short
run. In the long run, the capital-output ratio is constant, so that capital accumulation does
not contribute to growth on the balanced growth path. In the next section, we examine the
merit of each of these two approaches when technological progress is endogenous.

3 Growth accounting under endogenous technical change

In the previous section, we have shown that the two conventional approaches to growth
accounting give rise to drastically different implications on the contribution of capital ac-
cumulation to economic growth. The difference arises for the following reasons. The Solow
approach to growth accounting does not take into consideration the underlying determinant
that drives capital accumulation, whereas the Hayashi-Kehoe-Prescott approach assumes
that capital accumulation is driven by technological progress but not vice versa. In reality,
technological progress is an endogenous process. In this section, we consider two common
specifications in the literature for technological progress and explore the validity of the two
approaches to growth accounting under each specification.

3.1 Knowledge-driven technological progress

We now modify the aggregate production function as follows:

Y = Kα(ALY )
1−α, (5)
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where LY = (1−sA)L denotes production labor and sA ∈ (0, 1) is the share of labor devoted
to improving technology A. The law of motion for technology is given by

Ȧ = θALR, (6)

where LR = sAL denotes R&D labor. The term θ ≡ θ/L denotes R&D productivity,
where θ > 0 is a productivity parameter and 1/L captures a dilution effect4 that removes
a counterfactual scale effect from the model. The term A on the right hand side of (6)
captures an intertemporal externality of knowledge spillovers from existing technologies A
to new technology Ȧ as in the knowledge-driven R&D specification in Romer (1990).5 Let’s
denote the steady-state growth rate of technology as gA ≡ Ȧ/A = θsA.

6

The law of motion for capital accumulation is given by

K̇ = I − δK, (7)

where I denotes capital investment and the parameter δ ∈ (0, 1) denotes the capital depre-
ciation rate. Manipulating (7) yields

K̇

K
=
I

K
− δ. (8)

In the long run, the steady-state capital growth rate gK is constant, which in turn implies
a constant steady-state investment-capital ratio I/K. Together with a constant investment-
output ratio I/Y in the long run, we have established that the steady-state capital-output
ratio K/Y must be constant, which in turn implies that output and capital share the same
steady-state growth rate (i.e., gY = gK). Taking the log of (5) and differentiating the
resulting expression with respect to time yield

Ẏ

Y
= (1− α)

Ȧ

A
+ α

K̇

K
+ (1− α)

L̇Y
LY
. (9)

We assume that sA is constant,
7 which in turn implies L̇Y /LY = 0. Finally, we substitute

the long-run condition gY = gK into (9) to obtain

gY = gK = gA = θsA. (10)

Therefore, although technological progress is endogenous in this model, it is independent of
capital accumulation. In contrast, capital accumulation is driven by technological progress.

4In the appendix, we sketch out a so-called second-generation R&D-based growth model that provides a
microfoundation for this dilution effect; see Dinopoulos and Thompson (1998), Peretto (1998), Young (1998)
and Howitt (1999) for early studies on the second-generation model and also Laincz and Peretto (2006) and
Ha and Howitt (2007) for empirical evidence that supports this model.

5Romer (1990) develops the seminal variety-expanding R&D-based growth model, whereas Aghion and
Howitt (1992), Grossman and Helpman (1991) and Segerstrom et al. (1990) develop the seminal quality-
ladder growth model. Technological progress in our model can be viewed either as quality improvement or
variety expansion.

6Without the dilution effect 1/L, gA would be increasing in L, which is inconsistent with empirical
evidence; see for example Jones (1995).

7Here we assume a constant share sA, which needs not be exogenous. In a market equilibrium, sA is
determined by household preference, market structure and government policies, etc.
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We now examine the validity of the Solow and Hayashi-Kehoe-Prescott approaches to
growth accounting within the context of this model. Under the Solow approach to growth
accounting, we have the following condition in the long run:

Ẏ

Y
= (1− α)

Ȧ

A
+ α

K̇

K
⇒ gY = (1− α)gA + αgK . (11)

As we can see, the Solow approach to growth accounting assigns the share α of growth to
capital accumulation gK , which should in fact be assigned to technological progress gA as
(10) shows.
Under the Hayashi-Kehoe-Prescott approach to growth accounting, we have the following

condition in the long run:

Ẏ

Y
=
Ȧ

A
+

α

1− α

·

(K/Y )

(K/Y )
⇒ gY = gA. (12)

In this case, the Hayashi-Kehoe-Prescott approach to growth accounting correctly assigns
the entire long-run growth in output to technological progress gA. As for the short run, any
growth in K/Y would capture the contribution of capital accumulation.

3.2 Lab-equipment technological progress

We now consider an alternative model of endogenous technological progress. The aggregate
production function is given by

Y = Kα(AL)1−α. (13)

The law of motion for technology is modified to capture the lab-equipment R&D specification
in Rivera-Batiz and Romer (1991) as follows:

Ȧ = θR =
θR

L
, (14)

where R = sAY and sA ∈ (0, 1) is now the share of output devoted to improving technology.
Substituting R = sAY and (13) into (14) yields

Ȧ

A
= θsA

(
K

AL

)α
, (15)

which in turn implies that in the case of a constant steady-state growth rate of technology,
the capital-technology ratio K/A must be constant in the long run.
The law of motion for capital is the same as in (7). For simplicity, we define sK ∈ (0, 1)

as the constant share of output devoted to capital accumulation (i.e., capital investment net
of depreciation). Formally,

sKY ≡ K̇ = I − δK, (16)

which in turn implies that
K̇

K
= sK

Y

K
. (17)
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Therefore, we can now combine (15) and (17) to obtain

Ȧ

A
=
K̇

K
⇔ θsA

(
K

AL

)α
= sK

(
AL

K

)1−α
. (18)

Then, we derive the steady-state capital-technology ratio given by8

K

A
=
sK
θsA

L. (19)

Substituting (19) into (15) yields the steady-state growth rate of technology given by

gA = (θsA)
1−α(sK)

α, (20)

which in turn determines the steady-state growth rate of output and capital as gY = gK = gA.
If we take a log-linear approximation of (20), we have9

ln gA = (1− α) ln(θsA) + α ln(sK)⇒ gA ≈ (1− α)(θsA) + αsK . (21)

In this model, technological progress and capital accumulation follow a two-way process:
technological progress drives capital accumulation (i.e., gK = gA) but capital accumulation
also drives technological progress (i.e., gA depends on sK).
We now evaluate the validity of the two approaches to growth accounting within the

context of this model. Under the Hayashi-Kehoe-Prescott approach to growth accounting,
we have the following condition in the long run:

Ẏ

Y
=
Ȧ

A
+

α

1− α

·

(K/Y )

(K/Y )
⇒ gY = gA, (22)

where gA ≈ (1 − α)(θsA) + αsK depends on the capital-investment rate sK . However, all
the growth in output is wrongly attributed to technological progress gA under the Hayashi-
Kehoe-Prescott approach to growth accounting.
Under the Solow approach to growth accounting, we have the following long-run condi-

tion:
Ẏ

Y
= (1− α)

Ȧ

A
+ α

K̇

K
⇒ gY = (1− α)gA + αgK , (23)

where (1− α)gA + αgK = gA ≈ (1− α)(θsA) + αsK . As we can see, the Solow approach to
growth accounting correctly assigns the share α of growth to capital accumulation gK , which
captures the effect of sK in (21), and the remaining share 1 − α of growth to technological
progress gA, which captures the effect of θsA in (21). Under the lab-equipment specification
that features goods as input in the innovation process, the Solow approach is valid because it
captures the contribution of capital accumulation to technological progress via the aggregate
production function of goods.

8It can be shown that the capital-technology ratio K/A must converge to this steady state.
9Here we use ln(1 + x) ≈ x.
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4 A unified approach to growth accounting

In the previous section, we consider two technological specifications that involve restrictive
assumptions. Specifically, the knowledge-driven specification assumes that innovation does
not require physical capital, whereas the lab-equipment specification assumes that the de-
gree of capital intensity in innovation is the same as in the production of goods. To avoid
these assumptions, this section first considers a more general specification for technological
progress. Then, we show that a unified approach to growth accounting is consistent with
this general specification for technological progress.

4.1 A general specification for technological progress

In this subsection, we consider a more general specification for technological progress. The
aggregate production function is given by

Y = Kα
Y (ALY )

1−α, (24)

where LY = (1− sA)L, KY = (1− sA)K and sA ∈ (0, 1) is now the share of both labor and
capital devoted to improving technology. The law of motion for capital is as before given by

K̇ = sKY = sK(1− sA)K
α(AL)1−α. (25)

The law of motion for technology is generalized to allow for a different degree of capital
intensity β ∈ (0, 1) from the production of goods such that

Ȧ = θKβ
R(ALR)

1−β =
θKβ

R(ALR)
1−β

L
, (26)

where LR = sAL and KR = sAK. Manipulating (26) yields

Ȧ

A
= θsA

(
K

AL

)β
, (27)

which in turn implies a constant steady-state capital-technology ratioK/A. Then, combining
(25) and (27) yields the following long-run condition:

Ȧ

A
=
K̇

K
⇔ θsA

(
K

AL

)β
= sK(1− sA)

(
AL

K

)1−α
. (28)

Therefore, the steady-state capital-technology ratio is given by

K

A
=

[
sK(1− sA)

θsA

]1/(1−α+β)
L. (29)

Substituting (29) into (27) yields the steady-state growth rate of technology given by

gA = (θsA)
(1−α)/(1−α+β) [sK(1− sA)]

β/(1−α+β) . (30)
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Once again, taking a log-linear approximation, we obtain

ln gA =
(1− α) ln(θsA) + β ln sK + β ln(1− sA)

1− α + β
⇒ gA ≈

(1− α)(θsA) + βs̃K
1− α + β

, (31)

where s̃K ≡ sK − sA is the log-linear approximation of sK(1− sA) in (25) which is basically
the share of capital and labor devoted to capital accumulation. Therefore, βs̃K/(1− α+ β)
in (31) captures the importance of capital accumulation on technological progress.

4.2 A unified approach to growth accounting

Previously, we have shown that the two conventional approaches to growth accounting give
rise to different implications on the importance of capital accumulation. Here we propose a
unified approach to nest the two previous approaches as special cases. To begin, we divide
both sides of (1) by Y α−β to obtain

Y 1−α+β = A1−αKβ

(
K

Y

)α−β
L1−α, (32)

where β ∈ (0, 1) also represents a weight parameter here. Taking the log of (32) and differ-
entiating the resulting expression with respect to time yield

Ẏ

Y
=

1− α

1− α + β

Ȧ

A
+

β

1− α + β

K̇

K
+

α− β

1− α + β

·

(K/Y )

(K/Y )
. (33)

If we set β = α, then we have the Solow approach, under which the importance of capital
accumulation is measured by the growth rate of capital K. If we set β = 0, then we have
the Hayashi-Kehoe-Prescott approach, under which the importance of capital accumulation
is measured by the growth rate of the capital-output ratio K/Y . More generally, the value
of β is given by the degree of capital intensity in the innovation process. To see this, we
consider the long-run version of (33) given by

gY =
(1− α)gA + βgK
1− α + β

. (34)

Equation (34) shows that our unified approach to growth accounting correctly assigns the
share β/(1 − α + β) of growth to capital accumulation gK , which captures the effect of s̃K
in (31), and the remaining share (1−α)/(1−α+ β) of growth to technological progress gA,
which captures the effect of θsA in (31).

4.3 Importance of capital accumulation in China

We now consider data of the Chinese economy to explore the quantitative importance of
capital accumulation on economic growth in China. From Brandt, Hsieh and Zhu (2008),
the average value of α in China is about 0.5. From Zhu (2012), the average growth rates of
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output and physical capital have been roughly the same since 1978.10 Therefore, we consider
the following stylized facts for China: α = 1/2, and a constant K/Y since the late 1970’s.
Under the Solow approach to growth accounting, one would conclude that capital accu-

mulation K̇/K has been responsible for about half of the growth in China. To see this,

Solow approach:
αK̇/K

Ẏ /Y
≈ α ≈

1

2
.

In contrast, using the Hayashi-Kehoe-Prescott approach, Zhu (2012) concludes that the
growth rate of output is mainly driven by growth in technology A because K/Y has been
roughly constant since 1978. More formally,

Hayashi-Kehoe-Prescott approach:
α

1− α

·

(K/Y )

(K/Y )

1

Ẏ /Y
≈ 0.

To sum up, according to the Solow approach to growth accounting, capital accumulation has
contributed to about half the growth in China, whereas according to the Hayashi-Kehoe-
Prescott approach, capital accumulation has made almost zero contribution to growth in
China.
We now consider our unified approach to growth accounting for different values of β ∈

[0, α]. Under our approach, the importance of capital accumulation can be expressed as

Unified approach:
β

1− α + β

K̇/K

Ẏ /Y
+

α− β

1− α + β

·

(K/Y )

(K/Y )

1

Ẏ /Y
≈

β

1− α + β
.

Table 1 reports the percent of growth in China for which capital accumulation is responsible
for. As β increases, the importance of capital accumulation increases. In the case of Zhu
(2012), an implicit assumption is that technological progress does not depend on capital
accumulation (i.e., β = 0) in which case capital accumulation has made almost zero contri-
bution to growth. On the other hand, if technological progress turns out to be as capital
intensive as production, then capital accumulation would have been responsible for about
half the growth in China. Even in the conservative case in which technological progress is
half as capital intensive as production (i.e., β = 0.25),11 capital accumulation would have
contributed to one third of economic growth in China over the past decades.

Table 1: Importance of capital accumulation in China

β 0 0.1 0.2 0.3 0.4 0.5
percent 0.0% 16.7% 28.6% 37.5% 44.4% 50.0%

10To be more precise, the average annual growth rate of the capital-output ratio K/Y in China from 1978
to 2007 was 0.04%.
11In the case of an emerging economy like China, technological progress should be viewed more as the

adoption of foreign technology than original domestic innovation. However, even technology adoption re-
quires the use of capital (e.g., setting up manufacturing plants to adopt foreign production methods and
technologies).
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5 Growth in effective labor

In this section, we extend the analysis to allow for growth in effective labor L. Here effective
labor L is the product of human capital h and raw labor l, such that L = hl. Therefore, the
growth rate of effective labor is

L̇

L
=
ḣ

h
+
l̇

l
= n, (35)

where n > 0 is defined as the composite growth rate of human capital and raw labor. The
model is the same as in Section 4.1 except that we now allow for growth in L. In this case,
we modify the definition of sK ∈ (0, 1) to be the share of output devoted to the accumulation
of capital net of both depreciation and effective labor growth; in other words,

sKY ≡ K̇ − nK = I − (δ + n)K, (36)

which in turn implies that
K̇

K
= sK

Y

K
+ n. (37)

From (27), a constant steady-state growth rate of technology A implies a constant steady-
state ratio of K/(AL), which in turn implies

Ȧ

A
+ n =

K̇

K
⇔ θsA

(
K

AL

)β
+ n = sK(1− sA)

(
AL

K

)1−α
+ n. (38)

where the second equality follows from (27) and (37). Manipulating (38) yields (29), which
in turn can be substituted into (27) to obtain (30). Therefore, we have the same result as
before that the steady-state growth rate of technology is given by

gA = (θsA)
(1−α)/(1−α+β) [sK(1− sA)]

β/(1−α+β) ≈
(1− α)(θsA) + βs̃K

1− α + β
, (39)

where s̃K ≡ sK − sA.
As for growth accounting, we first divide both sides of (1) by L to obtain

y = A1−αkα, (40)

where y ≡ Y/L and k ≡ K/L are output and capital per unit of effective labor. Then, we
follow the same procedure as in Section 4.2 to divide both sides of (40) by yα−β to obtain

y1−α+β = A1−αkβ
(
k

y

)α−β
, (41)

which in turn implies that the growth rate of y can be decomposed into

ẏ

y
=

1− α

1− α + β

Ȧ

A
+

β

1− α + β

k̇

k
+

α− β

1− α + β

·

(k/y)

(k/y)
, (42)
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where by definition the growth rate of k/y is the same as the growth rate of K/Y . Therefore,
in the long run, we have

gy =
(1− α)gA + βgk
1− α + β

. (43)

In other words, the unified approach to growth accounting correctly assigns the share β/(1−
α+β) of growth in output per effective labor to capital accumulation gk, which captures the
effect of s̃K in (39), and the remaining share (1 − α)/(1 − α + β) of growth in output per
effective labor to technological progress gA, which captures the effect of θsA in (39). Finally,
growth in output Y can be decomposed into

Ẏ

Y
=
ẏ

y
+ n⇒ gY =

(1− α)gA + βgk
1− α + β

+ n =
(1− α)gA + βgK + (1− α)n

1− α + β
, (44)

where gk = gK − n. Therefore, the share of output growth gY that capital accumulation gK
is responsible for continues to be given by β/(1− α + β).

6 Conclusion

In this study, we have revisited two conventional approaches to growth accounting and ex-
plored their validity under endogenous technical change. We find that the Solow approach
is consistent with the lab-equipment specification for technological progress, whereas the
Hayashi-Kehoe-Prescott approach is consistent with the knowledge-driven specification. We
also develop a unified approach to growth accounting and show that this approach is consis-
tent with a general specification for technological progress under which the degree of capital
intensity in the innovation process is the key parameter for growth accounting. Finally, we
apply our unified approach to data of the Chinese economy and find that capital accumula-
tion has made a quantitatively important contribution to economic growth in China.
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Appendix: Dilution effect and the second-generation R&D-based growth model

In this appendix, we provide a microfoundation for the dilution effect on R&D produc-
tivity using a variant of the second-generation R&D-based growth model. The aggregate
production function of final goods is given by

Y =

∫ N

0

Kα
Y (i)[A(i)LY (i)]

1−αdi, (A1)

where {A(i), KY (i), LY (i)} are the technology level, capital and labor inputs of intermediate
goods i ∈ [0, N ]. The variable N denotes the number of varieties of these intermediate goods.
The law of motion for technology of intermediate goods i ∈ [0, N ] is given by

Ȧ(i) = θ̃Kβ
R(i)[A(i)LR(i)]

1−β, (A2)

where {KR(i), LR(i)} are the capital and labor inputs devoted to improving the technology

of intermediate goods i ∈ [0, N ] and θ̃ > 0 is a productivity parameter.
We consider a symmetric equilibrium in which LR(i) = sAL/N , LY (i) = (1 − sA)L/N ,

KR(i) = sAK/N , KY (i) = (1−sA)K/N and A(i) = A for all i ∈ [0, N ].12 Substituting these
conditions into (A1) and (A2) yields

Y = N

[
(1− sA)K

N

]α [
A(1− sA)L

N

]1−α
= (1− sA)K

α(AL)1−α, (A3)

Ȧ = θ̃

(
sAK

N

)β (
AsAL

N

)1−β
=
θ̃

N
sAK

β(AL)1−β. (A4)

Equation (A4) shows that R&D productivity θ̃/N is diluted by the number of varieties of
intermediate goods. The law of motion for N is given by

Ṅ = φL− δNN , (A5)

where φ > 0 measures the efficiency of the society in creating new varieties and δN > 0 is
the obsolescence rate of varieties. In the steady state, we have N = φL/δN .

13 Substituting
this condition into (A4), we have

Ȧ =
θ

L
sAK

β(AL)1−β, (A6)

where we have defined θ ≡ δN θ̃/φ. Manipulating (A6) yields (27). Taking the log of (A3)
and differentiating the resulting expression with respect to time yield

Ẏ

Y
= (1− α)

Ȧ

A
+ α

K̇

K
. (A7)

The law of motion for capital is given by (25), which in turn implies a constant capital-output
ratio K/Y in the long run. Therefore, the steady-state growth rate of output and capital is
given by gY = gK = gA as before.

12A common assumption in the literature is that newly invented intermediate goods have access to the
technology of existing intermediate goods.
13If labor L increases at the rate n, then the balanced-growth value of N becomes N = φL/(n+ δN ).

14


