
Munich Personal RePEc Archive

Borrowers’ Participation in Group

Borrowing

Tutlani, Ankur

Jawaharlal Nehru University (JNU), New Delhi

12 February 2016

Online at https://mpra.ub.uni-muenchen.de/69506/

MPRA Paper No. 69506, posted 13 Feb 2016 12:36 UTC



 

1 

 

Borrowers’ Participation in Group 

Borrowing* 

Ankur Tutlani 

Jawaharlal Nehru University (JNU) 

 

February 2016 

 

Abstract 

Borrowers’ participation in MFI group lending credit market is not insured because of the 

alternative sources of credit available. The question arises what is the ideal MFI interest rate to 

ensure borrowers’ participation which at the same time being financially viable for MFI. The paper 

attempts to answer this question and analyzes the borrowers’ trade-off of borrowing from MFI or 

from moneylender (ML). Results show that borrowers may find comparative advantage in 

borrowing individually from ML as compared to borrowing in a group from MFI if the transaction 

cost burden is high and their credit requirement is low. 
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1. Introduction 

The concept of microfinance and group lending was popularized by the Grameen Bank of 

Bangladesh in response to the problems faced by poor and marginal borrowers who are in need for 

small credit and who are unable to pledge any collateral to secure credit. Under a typical Grameen 

Bank lending contract, lending happens in groups with joint liability, regular repayment schedule 

and dynamic incentive clause. This model proved to be very successful as shown by repayment 

rates of over 95% (Besley and Coate, 1995). The success of microfinance group lending has led to 

an extensive and growing literature on the subject.  The models of Stiglitz (1990), Besley and 

Coate (1995), Ghatak (1999) , Aghion (1999) and Aghion and Gollier (2000) show how Grameen 

type group lending with joint liability  helps to mitigate the effect of information asymmetry 

between the lender and the borrower by exploiting the local information about the borrowers. This 

is made possible through borrowers’ participation in group formation, peer monitoring, and 

imposing social sanctions on the defaulting borrowers, among others.   

Notwithstanding the extensive and still growing literature on microfinance and group lending, 

most theoretical literature has approached the group based lending from the lenders’ perspective. 

It shows how group lending contracts with joint liability help to solve lenders’ agency problems 

like adverse selection, ex-ante moral hazard and ex-post moral hazard. On the other hand, the 

borrowers’ perspective considers the additional burden to the borrowers in the form of transaction 

costs when borrowing happens in a typical group lending contract with joint liability and regular 

repayment schedule. Transaction costs include the opportunity cost of attending weekly repayment 

meetings, cost of travelling to attend meetings, cost of monitoring the group member etc. The 

problem of borrowers’ transaction costs in group lending has been discussed by Chung (1995), 

Bhatt and Tang (1998) (who term these costs as ‘hidden beasts’), Pal (2002), Karduck and Seibel 

(2004), Dehem and Hudon (2013), among others. However there is very limited theoretical 

literature which has explicitly incorporated this information in the MFI’s decision framework.   

Against this background, we attempt to provide a theoretical framework around the borrowers’ 

trade-off of group borrowing from MFI versus individual borrowing from ML when both MFI and 

ML co-exist in the credit market and when both are equally competent to meet the borrowers’ 

funding requirements. We assume that borrowing from MFI comes at lower interest cost but with 
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the additional transaction cost while borrowing from ML comes at higher interest cost without 

incurring any transaction cost.  

We solve the MFI’s optimization problem (profit maximization) considering borrowers’ 

participation constraint and repayment feasibility constraint to produce threshold or optimum MFI 

interest rate. The threshold MFI interest rate is interpreted as the maximum rate which an MFI can 

charge to ensure borrowers’ participation in the group lending contract while at the same time 

maximizing its profits. To extend this further, we perform numerical simulations. The parameter 

estimates to perform simulations are taken from transaction cost estimation studies done in the 

Indian context, primarily Karduck and Seibel (2004), Shankar (2007) and Dehem and Hudon 

(2013). 

Results show that the increased transaction cost burden negatively impacts poor and marginal 

borrowers who are believed to have lower credit requirement. It posits the possibility of poor and 

marginal borrowers being excluded from the MFI credit market even if it does not require them to 

offer any collateral as in the other sources of financing from the formal sector. This also partly 

explains the relative stable dependence of borrowers’ funding requirements on ML as observed in 

many developing countries.  

The paper contains six sections. This introductory section talks about the objective and also gives 

a brief mention of results. Section 2 talks about the MFI group lending contract and ML individual 

lending contract. It sets up the expressions for expected utility function of representative borrower 

when she borrows from MFI and when she borrows from ML. Section 3 lists some of the necessary 

assumptions deployed to derive optimum MFI interest rate. Section 4 solves the MFI’s 

optimization problem by maximizing its profit function subject to borrowers’ participation 

constraint and repayment feasibility constraint. The solution to MFI’s optimization problem results 

in threshold/optimum MFI interest rate. Also, it lists some of the parameter restrictions and the 

results on comparative statics. The next section presents the simulation results performed on 

optimum MFI interest rate. Section 6 concludes the paper.  

 

2. MFI and ML contracts 
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We assume there are two borrowers and are considering of investing in a project.  They do not 

have initial wealth and hence cannot offer any collateral. Therefore, the borrowers are credit 

rationed from commercial banking sources. They have a choice of borrowing from MFI as a group 

(group of 2 people) or borrowing from ML individually.  The interest rate charged by MFI is lower 

than that of ML. However, there are additional costs that the members have to bear when they 

borrow from MFI. This includes costs associated with joint liability, transaction costs like weekly 

repayment, monitoring the other member, opportunity cost of time to attend weekly meeting, 

among others. There is no additional burden in the form of transaction cost when borrowing 

happens from ML.  

It is assumed that there is an indivisible project which requires an investment of amount K (K > 0) 

at the beginning of period 1. The indivisibility of the project implies project will not produce any 

returns when there is an investment of amount lower than K. When successful, it will realize 

positive returns of amount Y at the end of period 2. The probability of project being successful 

(generating sufficiently high returns to repay MFI and ML) is p, where p (0,1) . Returns realized 

Y depends upon the ability factor α and amount borrowed K (Gine, 2011). The ability factor α (α 

> 0) presents the ability of the individual borrower to convert capital invested into successful 

realization of returns. A representative borrower requires a loan of amount K at the beginning of 

period 1.  

Case I: When borrower partners with the other borrower and takes a group loan from MFI 

 Borrower forms a group with the other member and takes a joint or group loan of amount 

2K from MFI at an interest rate of r in the beginning of period 1. Borrowers divide the loan 

equally and invest in the project individually.  

 The representative borrower needs to repay some amount, s,  to MFI with interest r (r > 0) 

as an installment at the end of period 1, and the remaining (K - s) with interest at the end 

of period 2 (Jain and Mansuri, 2003). MFI is assumed to charge interest rate on flat rate 

basis, implies fixed proportion of the amount borrowed. 

 Since returns are only realized at the end of period 2, therefore she needs to borrow from 

ML to repay the MFI installment at the end of period 1. It is assumed that among the 

informal sources of lending, moneylenders constitute the largest share (Pradhan, 2013). 

Suppose ML gives loans at an interest rate of m (m > 0), where m > r.  The borrower 
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borrows an amount of  s 1 r  from ML at the end of period 1 and needs to repay an amount 

of   s 1 r 1 m   to ML at the end of period 2.  

 The amount due to MFI at the end of period 2 for the individual borrower reduces to

 (K s) 1 r  .  

 When both the borrower and her partner are successful (happens with probability
2p ), there 

is no joint liability payment. However, when one partner is unsuccessful while the other 

borrower is successful (happens with probability p*(1-p)), the successful member needs to 

repay an additional amount of  (K s) 1 r  to MFI on behalf of her unsuccessful peer. 

This is because the MFI offers loans involving dynamic incentive clause, implies future 

loans are made only when current dues are fully paid.  

 There are fixed transaction costs Tc (Tc > 0) involved when borrower borrows from MFI. 

Tc is transaction cost burden per member.     

The expected utility function of each borrower takes the following form: 

 
 

2
cMFI

c

EU Y s(1 r)(1 m) (K s)(1 r) T p

Y s(1 r)(1 m) 2(K s)(1 r) T p(1 p)

       

        
                          

Assuming Y= αK (Gine, 2011), the above expression is re-written as: 

 
 

2
cMFI

c

EU K s(1 r)(1 m) (K s)(1 r) T p

K s(1 r)(1 m) 2(K s)(1 r) T p(1 p)

        

         
                        (1) 

The first expression inside square bracket denotes the case when both members in the group are 

successful (happens with probability
2p ), and hence there is no joint liability payment. The second 

expression represents the case when the representative borrower is successful while her peer is 

unsuccessful (which happens with probability p*(1-p)) and involves an extra joint liability cost of 

(K s)(1 r)   at the end of period 2. Joint liability share is assumed to be 100 percent (Aghion, 

1999; Aghion and Gollier, 2000) and project returns (when successfully realized) are assumed to 

be sufficiently high. 

Case II: When borrower borrows from ML 
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 A representative borrower borrows individually an amount of K at an interest rate of m in 

the beginning of period 1.  

 The borrower needs to repay K with interest at the end of period 2.  

 As in the MFI case, p is the probability of successful return realization.  

The expected utility in this case takes the following form: 

 MLEU K K(1 m) p                                          (2) 

As in the MFI case, Y is assumed to be equal to αK. 

 

3. Some Assumptions 

We deploy some of the assumptions in an attempt to analyze group lending contracts from the 

borrowers’ perspective while at the same time keeping MFI’s group lending contracts financially 

viable. Borrowers are assumed to be risk-neutral and identical (Stiglitz, 1990; Ghatak, 1999), 

however their projects returns are not correlated. Probability of success (p) is assumed to be same 

for both borrowers by the positive assortative matching argument put forth in Ghatak (1999). It is 

assumed that borrowers have limited options in terms of number of projects and, hence the 

opportunity cost of putting effort is assumed to be zero.  

MFI is assumed to be profit maximizer (Jain, 1999; Aghion, 1999), while ML is assumed to break 

even (Gine, 2011). Additionally, MFI is assumed to be profit maximizer period by period which 

implies repayments happen with interest both at the end of first and second period. It is assumed 

that MFI and ML are in direct competition with each other and are equally competent to meet 

borrowers’ capital requirement. Also, borrowers’ outside options in terms of competing MFIs are 

assumed to be limited (Field and Pande, 2008). We have assumed perfectly elastic supply of 

loanable funds to refrain from the possibility of any equilibrium credit rationing (Ghatak, 1999). 

The cost of funds is assumed to be negligible for both MFI and ML (Aghion, 1999). 

The assumptions of positive assortative matching (Ghatak, 1999) and MFI’s observability over the 

borrowers’ capital requirement (Gine, 2011) ensure there is no adverse selection problem. The 

assumptions on ML being the principal source of lending among informal sources (Pradhan, 2013), 
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borrowers’ inability to offer any collateral (Bose, 1998), and no compulsory savings deposits in 

case of MFI borrowing (Pal, 2002) cumulatively imply borrowers have to take recourse to ML to 

repay MFI installments. Since ML is assumed to enjoy better monitoring capabilities and lend only 

when borrowers invest in safe projects (Jain and Mansuri, 2003), this ensures there is no ex-ante 

moral hazard problem for the MFI. The assumption of negligible enforcement costs ensures 

borrowers cannot engage in strategic default and implies there is no ex-post moral hazard problem 

(Ghatak, 1999).  These assumptions imply MFI is aware of borrowers’ characteristics like 

probability of project being successful, borrowers’ transaction cost and their ability to produce 

returns through ML involvement.  

 

4. Solving for threshold/optimum MFI interest rate 

The MFI profit function takes the following form: 

 22 s(1 r) 1 (1 p) (K s)(1 r) K                                    (3) 

The first term, s(1+r) , represents the amount of first installment at the end of period 1 which is 

received with full certainty, because of borrowing from ML. The second term, (K - s)(1+r) , is the 

remaining amount to be received from borrower at the end of second period provided returns are 

realized successfully for at least one member (happens with probability of [1-(1-p)2]. The third 

term, K, is the amount of funds lent. Since there are two borrowers in the group, hence the three 

terms are multiplied by 2. 

To solve for the threshold MFI interest rate or the optimum MFI interest rate r at which the 

representative borrower becomes indifferent between borrowing from MFI versus from ML, the 

expected utility functions, EUMFI and EUML are equated. Also, while determining the optimum 

interest rate, MFI needs to ensure that repayment is feasible. Therefore, the MFI’s optimization 

problem is solved subject to the following two constraints: 

 Borrower’s participation/indifference constraint which ensures that borrower is indifferent 

between borrowing from MFI and ML i.e. 

MFI MLEU EU  or, 
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2
c cK s(1 r)(1 m) (K s)(1 r) T p K s(1 r)(1 m) 2(K s)(1 r) T p(1 p)

K K(1 m) p

                 

   
 

  cK (1 r)(p 2) (1 m) s(1 r)(p m 1) T 0                                   (4)  

 Repayment feasibility constraint which implies that returns (when successfully realized) 

are high enough to repay MFI and ML i.e. 

Y s(1 r)(1 m) 2(K s)(1 r)       

The first term on the right side of the inequality s(1+r)(1+m) represents the payment due to ML 

and the second term (K-s)(1+r) is the payment due to MFI at the end of period 2. The second term 

is multiplied by 2 because of the assumption of full joint liability. 

Putting Y = αK, the repayment feasibility inequality is re-written as: 

K s(1 r)(1 m) 2K(1 r) 2s(1 r)         ,or 

 K 2(1 r) s(1 r)(1 m) 0                                 (5) 

MFI will maximize its profit function π and determines optimum interest rate r* and optimum 

installment amount s* subject to the borrower’s indifference constraint and the repayment 

feasibility constraint. The MFI’s optimization problem is written as: 

Max r,s    22 s(1 r) 1 (1 p) (K s)(1 r) K            subject to:  

  cK (1 r)(p 2) (1 m) s(1 r)(p m 1) T 0                                                        

 K 2(1 r) s(1 r)(1 m) 0                                                                                           

The optimum r* and s* are as follows: 

  c(p m 1)K (1 m) (1 m)T
r r*

pK(1 m)

     
 


                         (6) 

c

c

K (p 2) 2K(1 m) 2T
s s* K

K (p m 1) (1 m)K(1 m) (1 m)T

     
           

                       (7) 
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Proof: See Appendix 1 

The r* obtained can be interpreted as the threshold MFI interest rate at which borrower is 

indifferent between borrowing from MFI and from ML while maximizing MFI’s profits. For any 

r greater than r*, the expected utility of borrowing from MFI will become lower than the expected 

utility of borrowing from ML and the opposite holds true in the case of r being lower than r* i.e. 

EUMFI > EUML if r < r*                             (8) 

EUMFI < EUML if r > r*                            (9) 

Therefore, r* can also be interpreted as the maximum interest rate that an MFI can charge to ensure 

borrowers’ participation ( MFI MLEU EU ) in the MFI credit market. The r* and s* obtained can 

also take negative values under some parameter combinations. Therefore, for r*, s* to be positive 

and satisfying the conditions of r* m  (Jain and Mansuri, 2003; Gine, 2011) and s* K  (Jain and 

Mansuri, 2003), the following restrictions are imposed upon parameters m, p, α, K and Tc: 

1. p(1 m) 1   

2. p(1 m)(2 p) 2   , m 1  

3.   c(p m 1)K (1 m) (1 m)T       

4.   c(p m 1)K (1 m) mpK(1 m) (1 m)T         

5. 
 

c

K (p 2) 2(1 m)
T

2

   
  

6. (1 m)    

7. 
2(1 m)

(2 p)


 


 

8. K, m, α, Tc all > 0 

9. p (0,1)  

Proof: See Appendix 2 

The parameter restriction of p(1+m) > 1 ensures p to be sufficiently high (> 1/2) when ML interest 

rate is less than 100%. This is in consonance with some of the empirical studies like Ahmed (1989) 

and Pradhan (2013). Ahmed (1989) gave empirical evidence of ML interest rate of nearly 40% in 
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Bangladesh while Pradhan (2013) showed empirical evidence of ML interest rate of around 25-

30% on an average in the Indian context. The parameter restriction 2 ensures borrowers’ 

participation constraint to be binding in the MFI’s optimization problem. Conditions 1 and 2 are 

derived from the assumption of MFI being profit maximizer and determine its optimum interest 

rate considering both borrowers’ participation constraint and repayment feasibility constraint. The 

inequalities in 3 and 4 are expected to hold true when K is sufficiently high relative to transaction 

cost, Tc and α is sufficiently high relative to per unit cost of borrowing from ML (1+ m). Similarly, 

Condition 5 is derived to satisfy the requirement of MFI interest rate to be lower than ML interest 

rate in conjunction with the requirement of maximum installment size of K. Restrictions on ability 

factor (conditions 6, 7), α ensures expected utility of borrowing from ML and transaction costs are 

positive. The last two conditions, 8 and 9, ensure meaningful values of all the parameters.  

The parameter restrictions listed above help to determine how the threshold MFI interest rate r* 

changes when there is a marginal change in one of the parameter, keeping other parameters 

constant. We derive the following lemmas: 

Lemma 1: With the increase in amount borrowed K, threshold interest rate r* also increases when 

p is sufficiently high (p > 1/2).  

Lemma 2: r* falls with the increase in transaction costs Tc when p > 1/2. 

Lemma 3: With the increase in ability factor α, threshold interest rate r* increases. 

Lemma 4: There is a positive relation between p and r*.  

Lemma 5: The relation between ML interest rate m and threshold interest rate r* is ambiguous. 

Proof: See Appendix 3 

The above lemmas establish that threshold MFI interest rate r* increases with the amount borrowed 

K, probability of successful return realization p, and the ability factor α, keeping other parameters 

constant. With the increase in transaction cost, threshold MFI interest rate goes down to keep the 

borrower indifferent between borrowing from MFI and from ML. The comparative statics results 

are largely dependent on the threshold level of probability of 1/2. This indicates the possibility of 

having one member’s project as successful out of the two member group. With the assumption of 

full joint liability and project returns (when successful) being sufficiently high, the repayment to 
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MFI happens with full certainty if at least one member’s project is successful. An interesting case 

is of lemma 5 wherein the relation between r* and m could be positive or negative. At lower values 

of m the relationship is expected to be positive, however after a particular threshold of m, the 

relationship becomes negative. This is explained better with the help of numerical simulations in 

next section. 

 

5. Simulation results on threshold MFI interest rate 

We perform simulations on the threshold MFI interest rate, changing one of the parameters among 

p, α, K, m and Tc while keeping others at some constant value. The range of parameter estimates 

are taken from Karduck and Seibel (2004), Banerjee and Duflo (2010), Dehem and Hudon (2013), 

Pradhan (2013) and Ahlin (2013). In particular, we consider K to vary between 3800 and 6800, Tc 

to vary between 150 and 400, and m to vary between 0.2 and 0.6. The estimates on the ability 

factor and probability of successful return realization are limited. The estimates around marginal 

productivity of capital (MPK) are taken as a proxy for the ability factor (α). Banerjee and Duflo 

(2010) peg the MPK estimates at 75%-90% of net and gross returns respectively while Ahlin 

(2013) in his simulation study use a wider range of 60%-100%. Since we have made the 

assumption of ML borrowing to repay MFI installments and ML is expected to have better 

monitoring capabilities, hence borrowers are expected to invest in projects having higher 

probability of success. In consonance with Banerjee and Duflo (2010) and Ahlin (2013), we use α 

range of (1.6, 2) and p range of (0.5, 0.99). We review the simulation results below. The graphs 

below put threshold MFI interest rate on Y-axis and the parameter considered on X-axis. 

We consider five cases in total described in Table 1 and 2. These five cases are shown in figures 

1 till 5. We fix four parameters at a time and change any one of the parameters among m, K, Tc, p 

and α. This is shown under header Fixed (parameters fixed at a particular value) and Variable 

(parameter changing value in a continuous range) in the tables below. We consider four to six 

parameter combination values for each case. 

 

Table 1: Parameter combinations considered in simulation results  
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Figure 1 Figure 2 Figure 3 

Fixed Variable Fixed Variable Fixed Variable 

p, α, K, Tc m (0.2, 0.6) m, α, K, Tc p (0.5, 0.99) m, p, K, Tc α (1.6, 2) 

a) K = 3900, Tc = 350, p = 

0.85, α = 1.7 

a) K = 3900, Tc = 350, m = 

0.3, α = 1.7 

a) K = 3900, Tc = 350, m = 

0.3, p = 0.85 

b) K = 3900, Tc = 290, p = 

0.85, α = 1.7 

b) K = 3900, Tc = 160, m = 

0.3, α = 1.7 

b) K = 3900, Tc = 290, m = 

0.3, p = 0.85 

c) K = 6700, Tc = 350, p = 

0.85, α = 1.7 

c) K = 6700, Tc = 350, m = 

0.3, α = 1.7 

c) K = 6700, Tc = 350, m = 

0.3, p = 0.85 

d) K = 6700, Tc = 290, p = 

0.85, α = 1.7 

d) K = 6700, Tc = 160, m = 

0.3, α = 1.7 

d) K = 6700, Tc = 290, m = 

0.3, p = 0.85 

e) K = 6700, Tc = 160, p = 

0.85, α = 1.7 

 e) K = 6700, Tc = 160, m = 

0.3, p = 0.85 

Source: The author 

Figure 1 represents threshold MFI interest rate as a function of ML interest rate m. We observe a 

concave relationship between r* and m as supported by the comparative statics results derived. 

Initially, with the increase in ML interest rate m, there is an increase in threshold MFI interest rate. 

However, beyond a certain level of ML interest rate, the threshold MFI interest rate goes down to 

keep the borrower indifferent in borrowing from two sources and to ensure repayments of the 

borrowed debt.  

 

Figure 1: Threshold MFI interest rate as a function of ML interest rate m 
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Source: The author 

For the given values of K, p and α, a higher transaction cost amount shifts the r* curve downwards. 

This is shown by the graph for case a lying below the graph for case b at lower values of K (3900) 

and graph for case c lying below the graph for case a and b. Higher values of K result in higher 

level of threshold interest rate as compared to the case when K is lower as shown in the graphs for 

cases c, d and e lying above the graphs for cases a and b. 

Figure 2 shows threshold MFI interest rate as a function of probability p. The threshold interest 

rate is positive for sufficiently high p values. A lower transaction cost (Tc = 160) combined with 

higher amount borrowed (K = 6700) leads to positive r* when probability of success is at least of 

the level of 74% (case d), while for higher transaction costs (Tc = 350), the corresponding 

probability level got increased up to 79% (case c). 

 

Figure 2: Threshold MFI interest rate as a function of probability p 

 

Source: The author 
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For lower values of K (3900), the probability level beyond which r* is positive increases to 86% 

in case a and 77% in case b. These results are in consonance with Jain and Mansuri (2003) wherein 

the ML is expected to lend to borrowers to repay MFI installments only when they invest in safe 

projects having higher probability.   

Figures 3 shows the threshold MFI interest rate curve as a function of ability factor α. With the 

increase in transaction cost (keeping K, m and p fixed), ability factor α level also increases beyond 

which threshold r* is positive. 

 

Figure 3: Threshold MFI interest rate as a function of ability factor α 

 

Source: The author 

Threshold r* is positive when α crosses the threshold of 1.72 in case a and 1.65 in case b. If the 

amount borrowed is high enough (K = 6700), threshold r* is positive in the entire range of α 

considered (1.6, 1.99) in all the three cases (c, d and e). 

The graphs in figure 4 show the relation between the threshold MFI interest rate and amount 

borrowed K. We observe that with the lower transaction cost (Tc = 290), the rate of change in r* 

with respect to K is smaller (the curve is flatter) as compared to the case when transaction cost is 

high (Tc = 350) keeping rest of the parameters at some constant level. This is shown for graphs in 

cases d, e and f have relatively lower slope than the graphs in cases a, b and c for the given level 

of m, p and α. 

Table 2: Parameter combinations considered in simulation results (contd.) 
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Figure 4 Figure 5 

Fixed Variable Fixed Variable 

m, α, p, Tc K(3800,6800) m, α, p, K Tc (150, 400) 

a) m = 0.3, p = 0.85, α = 1.7, Tc = 350 a) m = 0.3, p = 0.85, α = 1.7, K = 6700 

 
b) m = 0.3, p = 0.85, α = 1.8, Tc = 350 b) m = 0.3, p = 0.85, α = 1.8, K = 6700 

c) m = 0.35, p = 0.85, α = 1.7, Tc = 350 c) m = 0.35, p = 0.85, α = 1.7, K = 6700 

d) m = 0.3, p = 0.85, α = 1.7, Tc = 290 d) m = 0.3, p = 0.85, α = 1.7, K = 3900 

e) m = 0.3, p = 0.85, α = 1.8, Tc = 290 e) m = 0.3, p = 0.85, α = 1.8, K = 3900 

f) m = 0.35, p = 0.85, α = 1.7, Tc = 290 f) m = 0.35, p = 0.85, α = 1.7, K = 3900 

Source: The author 

Figure 4: Threshold MFI interest rate as a function of amount borrowed K 

 

Source: The author 

An increase in ML interest rate or ability factor shifts the r* curve upwards keeping rest of the 

parameters fixed at particular level. This is shown by the graphs for cases b and c lying above the 

graph for case a when Tc is fixed at 350. 

Figure 5 shows the threshold interest rate r* curve with respect to transaction cost. With the given 

level of K and p, a higher ability factor or higher ML interest rate shifts the threshold interest rate 

curve upwards. However, the extent of increase in threshold r* is higher in the case of higher 

ability factor as compared to the case of higher ML interest rate. This is shown in the graphs for 
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case b and c lying above the graph of case a (assume K = 6700), however graph for case b is still 

above the graph for case c. 

Figure 5: Threshold MFI interest rate as a function of transaction cost Tc 

 

Source: The author 

Threshold r* is positive for each value of Tc when K is higher at 6700 (cases a, b and c). At lower 

K (3900), r* is positive in the entire range of Tc considered (150, 400) when either α is high (1.8) 

as in case e or m is high (0.35) as in case f. In case d, r* is positive if Tc lies in the range of (150, 

330). 

6. Conclusion 

To conclude, results show that with increased transaction costs, and relative lower credit 

requirement combined with low average productivity (ability factor), threshold MFI interest rate 

and the corresponding MFI profit becomes negative and hence becomes unviable to offer group 

lending contract. This is due to the assumption of MFI being profit maximizer. However, if MFI 

wants to offer such a contract, it needs to raise its interest rate above the threshold interest rate. 

When the actual interest rate charged is higher than the threshold MFI interest rate, the effective 

cost of borrowing from ML becomes relatively lower and the objective of reducing dependence 

on ML gets diluted. 

Therefore, to begin with both MFI and ML are equally competent to meet borrowers’ credit 

requirement, but with the inclusion of borrowers’ participation constraint, MFI lending becomes 

feasible only under certain conditions. Results show there is higher probability of MFI lending to 

be feasible when there is relative higher credit requirement or higher ability of borrowers to 
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produce returns or lower transaction costs of borrowers. The additional transaction cost burden 

involved in MFI borrowing works against the poor borrowers in particular, who are believed to 

have lower ability to produce returns and also have small credit requirement. Therefore, from the 

policy standpoint, these results reiterate the importance of reducing transaction costs to enhance 

borrower welfare as Bhatt and Tang (2001), Field and Pande (2008), Laureti (2012) and several 

other authors have pointed out. 

 

 

Appendix 1 

Deriving optimum MFI interest rate r* (equation 6) and optimum installment amount s* (equation 

7) 

Lagrange function L is written as: 

 
 
 

2

1 c

2

L 2 s(1 r) 1 (1 p) (K s)(1 r) K

K (1 r)(p 2) (1 m) s(1 r)(p m 1) T

K 2(1 r) s(1 r)(1 m)

         
           
        

 

 2
1 2

L
2s 2(2p p )(K s) K(p 2) s(p m 1) 2K s(1 m)

r
 
 


            


 

 2
1 2

L
2(1 r) 2(2p p )(1 r)( 1) (1 r)(p m 1) (1 r)(1 m)

s
 
 


             


 

Putting 
L

0
r





 and 

L
0

s





 

Getting λ1 from both equations, 

   2
1 2K(p 2) s(p m 1) 2s 2(2p p )(K s) 2K s(1 m)              

 2
1 2(1 r)(p m 1) 2(1 r) 2(2p p )(1 r) (1 r)(1 m)             or , 

2
1 2(p m 1) 2 2(2p p ) (1 m)          
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Equating the two equations for λ1 and solving for λ2, 

 
2

2(p 2) 1 p(1 m)

(p mp)

  
 


 

The Kuhn- Tucker conditions for constrained maximization ensure λ2 > 0 for repayment feasibility 

constraint to be binding at the optimum solution. This implies p(1+m) > 1.  

Solving for λ1 using λ2 equation yields the following: 

2
1 2(p m 1) 2 2(2p p ) (1 m)           

 2
1

1 p(1 m)
(p m 1) 2 2(2p p ) (1 m).2(p 2)

(p mp)

 
         


 

 
1

2 p(1 m)(2 p) 2

p(1 m)

  
 


 

λ1 is Lagrange multiplier for equality constraint, and hence it can take any real number. However 

for constraint to be binding, λ1 should be non-zero which implies p(1+m)(2-p) ≠ 2 

Solving for r and s using the following two constraint equations; 

  cK (1 r)(p 2) (1 m) s(1 r)(p m 1) T 0           and 

 K 2(1 r) s(1 r)(1 m) 0       

From 1st equation getting the value of s and putting in 2nd equation, 

  c
1

s(1 r) K (1 r)(p 2) (1 m) T
(p m 1)

         
 

From 2nd equation, 

    c
(1 m)

K 2(1 r) K (1 r)(p 2) (1 m) T 0
(p m 1)


           

 

Since (p+m-1) ≠ 0, therefore, 

    cK(p m 1) 2(1 r) (1 m) K (1 r)(p 2) (1 m) T 0               
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Solving for r, 

cK (p m 1) (1 m)K(1 m) (1 m)T
(1 r)

pK(1 m)

       
 


 

  c(p m 1)K (1 m) (1 m)T
r r*

pK(1 m)

     
 


 

Putting the value of (1+r) in s equation and solving for s yields, 

  c
1

s(1 r) K (1 r)(p 2) (1 m) T
(p m 1)

         
 

c

c
c

K (p m 1) (1 m)K(1 m) (1 m)T
s(p m 1)

pK(1 m)

K (p m 1) (1 m)K(1 m) (1 m)T
K(p 2) K(1 m) T

pK(1 m)

        
    

        
     

 

c

c

K (p 2) 2K(1 m) 2T
s s* K

K (p m 1) (1 m)K(1 m) (1 m)T

     
           

 

Since there are two equations to solve (borrower’s participation constraint and repayment 

feasibility constraint) with two unknowns (r, s), hence the first order conditions with constraints 

on Lagrange multipliers as shown above are sufficient conditions for constrained maximization 

(Kim, n.d.) 

 

Appendix 2 

Restrictions on parameters K, α, p, m, Tc (Section 4): 

Following are the restrictions imposed on parameters values to establish r* 0 , s* 0 , r* m  , 

s* K , λ2 > 0 and λ1≠0 

From λ2 equation, 

 
2

2(p 2) 1 p(1 m)

(p mp)
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Since (p-2) is negative, therefore  1 p(1 m)  has to be negative as well which implies,  

p(1+m) > 1                              (1) 

From the above inequality, we have
(1 p)

m
p


 . For m < 1, it should satisfy (1-p)/p < 1 which 

implies p > 1/2.  

From λ1 equation, 

 
1

2 p(1 m)(2 p) 2

p(1 m)

  
 


 

For λ1 to be non-zero, it should satisfy, 

p(1 m)(2 p) 2                               (2) 

From r* >= 0 

  c(p m 1)K (1 m) (1 m)T
r* 0

pK(1 m)

     
 


 

  c(p m 1)K (1 m) (1 m)T                                                                                              (3) 

From r*<=m 

  c(p m 1)K (1 m) (1 m)T
r* m

pK(1 m)

     
 


               

  c(p m 1)K (1 m) mpK(1 m) (1 m)T                            (4) 

From s*>=0 

c

c

K (p 2) 2K(1 m) 2T
s* K 0

K (p m 1) (1 m)K(1 m) (1 m)T

     
          

 

  cK (p 2) 2(1 m) 2T                             (5) 

The above inequality is established since, the denominator of s* is positive by inequality (3) above. 
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From s*<=K 

c

c

K (p 2) 2K(1 m) 2T
s* K K

K (p m 1) (1 m)K(1 m) (1 m)T

     
          

 

c cK (p 2) 2K(1 m) 2T K (p m 1) (1 m)K(1 m) (1 m)T               

 c(1 m) K K(1 m) T 0       

  cK (1 m) T                                                                                                                   (5ʹ) 

For EUML to be positive, it should satisfy the following 

α > (1+m)                               (6) 

From inequality (6) and assumption of Tc > 0, inequality (5ʹ) is always satisfied and hence 

superfluous. 

From inequality (5) in this appendix, we have, 

 
c

K (p 2) 2(1 m)
T

2

   
  

Since Tc is assumed to be strictly positive, therefore it must satisfy 

 K (p 2) 2(1 m)
0

2

   
  which implies, 

2(1 m)

(2 p)


 


                         (7) 

The above parameter restrictions are valid for K, α, m, Tc all strictly positive and p (0,1)  

 

Appendix 3 

Comparative statics results of r* (Section 4) 

1. 
r

K
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    c

2

K(p m 1) (1 m) K(p m 1) (1 m) (1 m)Tr 1

K p(1 m) K

           
     

 

c

2

r (1 m)T

K p(1 m)K

 


 
 

Therefore, 

r
0

K





if m < 1 and, 

r
0

K





if m > 1 

m < 1 implies p > 1/2 and vice-versa from inequality (1) in Appendix 2 

 

2. 
c

r

T




 

c

r (1 m)

T p(1 m)K

  


 
 

c

r
0

T





if m < 1 and, 

c

r
0

T





if m > 1  

m < 1 implies p > 1/2 and vice-versa from inequality (1) in Appendix 2  

 

3. 
r


 

r (p m 1)

p(1 m)

  


 
 >0  

This is unambiguously positive because of p(1+m) > 1 , inequality (1) in Appendix 2 
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4. 
r

p
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2

pK (1 m) (p m 1)K (1 m) (1 m)Tr 1

p K(1 m) p

          
       

  c

2

(1 m) K (1 m) Tr

p p K(1 m)

       
 

 

The expression   cK (1 m) T     is positive from s<=K condition. Hence the sign of partial 

derivative is dependent upon if (1-m) is positive or negative. Therefore, 

r
0

p





 if m < 1 and  

r
0

p





 if m > 1 

m < 1 implies p > 1/2 and vice-versa from inequality (1) in Appendix 2  
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r
0

m





if 2

c2T K (2 p) K(1 m)      , and 

r
0

m





if 2

c2T K (2 p) K(1 m)      
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