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CES Function, Generalised Mean and Human Poverty Index:

Exploring Some Links

Abstract
The Sennian capability approach has facilitated to capture poverty in its multi-
dimensional incidence and thus to raise a new aggregate poverty index — the UNDP’s
Human Poverty Index (HPI). The UNDP has found power mean of order & > 1 as
possessing some of the most desirable properties in describing the distribution of
deprivation dimensions and hence as the most appropriate aggregate index of multi-
dimensional deprivation. The UNDP elevates power mean of order ¢ > 1 (PM) in
comparison with arithmetic mean (AM) commonly used for averaging, leaving out
others. It would hence be worthwhile to look into the links among the means, both the
known and the potential ones, and their strengths and weaknesses in terms of their
properties in comparison with each other. The present paper is a preliminary attempt at
this. We find that the means we commonly use, the AM, the geometric mean (GM) and
the harmonic mean (HM), along with the PM, are special cases of the CES function. We
acknowledge the possibility of an inverse CES function, and hence, that of an inverse
power mean (IPM) also. Among these means, the AM is an average, typical of all the
components, but its infinite elasticity of substitution renders it less desirable. To the
extent that we need an average typical of the components, we seek for one that is closer
to the AM, so that this second best choice will have the minimum deviations next to the
AM. And we find this basic criterion is satisfied by the IPM only. Hence, while the PM
captures the multi-dimensional deprivation, its inverse, the IPM, seems to offer a multi-

dimensional development index.

JEL Classification: C43; 132.
Key Words: Generalised mean, CES function, Human Poverty Index, Deprivation,

development.



CES Function, Generalised Mean and Human Poverty Index:

Exploring Some Links

1. Introduction

Poverty — A Multi-dimensional Concept

Poverty was traditionally measured uni-dimensionally in terms of inadequate income.
Following Amartya Sen, however, it has come to be recognised as multidimensional in
terms of deprivation of capability to fulfil essential functions in human life. These
functions concern not only the possibility to adequately feed and clothe oneself, and to
have a shelter, but also the possibility to avoid preventable diseases and to have a long
and healthy life, to have an education, and to join society through work, political
participation and social relations (Sen 1999). It goes without saying that reaching these
goals depends on the available economic resources, as well as on: who we are, the
characteristics we possess, and the economic, social and cultural environment we are in.
In other words, affluence (or poverty, for that matter) is not describable in terms of
possession of economic resources alone; it also depends on what an individual can do
and be, on the set of doings and beings, or simply on functionings. This in turn suggests
that assessing the quality of life amounts to evaluating these functionings and capability
to function. In this sense, poverty is seen as a capability deprivation, as a condition
where the people are deprived of the capability for certain vital functionings. These

diverse functionings make poverty multi-dimensional.

Asserting that “Poverty must be addressed in all its dimensions, not income alone”
(UNDP 1997: 5), the eighth Human Development Report, 1997, introduced the human
poverty index in addition to the human and gender development indices. Whilst the
Human Development Index (HDI) measures the progress of the country in achieving

development, the Human Poverty Index (HPI) “combines basic dimensions of poverty



and reveals interesting contrasts with income poverty” (ibid.)." The HPI focuses on
deprivation in three essential elements of human life already reflected in the HDI —
longevity, knowledge and a decent standard of living. Deprivation in the first dimension
relates to survival, that is, the vulnerability to death at a relatively early age, and that in
the second dimension relates to exclusion from the world of knowledge in terms of
education. Deprivation in the third dimension relates to the lack of access to overall
economic provisioning. Two HPI indices are there in currency: HPI-1 is a measure of
absolute poverty in Less Developed Countries and HPI-2 is a measure of relative

poverty in More Developed Countries.

A major problem involved in HPI methodology relates to weighting and aggregation.
This problem arises on account of the possibility for overlapping of the poverty
dimensions. Suppose for a particular country, we find 30 percent of the people in each
of the (say) 3 fields of deprivations, that is X; = X> = X3 = 30 percent. Three possibilities
are here in this distribution. 1) Non-disjointness: the same 30 percent of the people
suffer from all the three deprivations together, so that only 30 percent in the country are
affected by poverty, but they are deprived in respect of all the three fields. 2)
Disjointness: the 30 percent is entirely different in each field, so that a total of 90
percent of the population are in poverty, but each 30 percent group is deprived in
respect of only one field. 3) Overlapping: a combination of the two extremes.
“However, when it comes to constructing an index, it is not easy to decide whether 30
percent of people with inadequacies of all three types represents larger social poverty
than 90 percent of people having one deficiency each. It is a matter of the importance to
be given to depth vis-a-vis breadth. For the purpose of the HPI, the two cases have been
treated as equivalent, so that in some sense depth and width have been equally
considered.” (UNDP 1997: 20). This assumption facilitates averaging of all the
dimensions to represent aggregate poverty. But in averaging, there comes the problem

of choice of an average and of weighting.

' Rightly, “by combining in a single poverty index the concerns that often get pushed aside when the
focus is on income alone, the HPI makes a useful addition to the measures of poverty” (UNDP 1997: 5).
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The UNDP has found power mean of order ¢ > 1 as possessing some of the most
desirable properties in describing the distribution of deprivation dimensions (UNDP
1997: 117-121), and hence as the most appropriate aggregate index of multi-
dimensional deprivation. UNDP has selected power mean (PM) of order 3 for some
obvious reasons, detailed in the Technical Note 1 in UNDP (1997: 117-121), over the
usual, everyday-means of arithmetic (AM) and geometric mean (GM). Remember AM
is the only summary measure typical of a set of data, in the sense that it is the
coordinate of the centre of gravity, balancing the values on either side of it, and the sum
of squared deviations of the values from it is the minimum — the minimum variance
property. It is this representativeness that makes it a good measure of averaging.
Similarly, GM is theoretically considered the best average in the construction of index
numbers as well as for ratios and percentages (in which units empirical deprivation
measures are usually expressed) as also for their rate of changes. The other less used
mean, harmonic mean (HM), is useful in cases where the values of a variable are
compared with a constant (or unit) quantity of another variable, for example, distance

covered within certain time and quantity purchased or sold per unit price.

The power mean of order « is usually considered the generalised mean®, and is given

for, say, three dimensions, X, X, and X3 by: X(a) = [lela +w2X§’ +w3X3a]l/“,

where w; +wy +w3 =1 and o may be any real number except zero. The arithmetic,

quadratic and harmonic means are its special cases when, respectively, =1, o= 2, and
a = —1. The UNDP (ibid.) elevates power mean of order & > 1 in comparison with
arithmetic mean, leaving out others. It would hence be worthwhile to look into the links
among the means, both the known and the potential ones, and their strengths and
weaknesses in terms of their properties in comparison with each other. The present

paper is a preliminary attempt at this. We take in this paper the power mean of order o

? See, for example, Abramowitz and Stegun (1965: 10).



> 1 (this special case is hereafter called PM) as one of an array of special cases,
distributed in the continuum of the domain of a function, more popularly known in
economics as the Constant Elasticity of Substitution (CES) function. This array of
special cases of means includes the 4 known means: PM, arithmetic mean (AM),
geometric mean (GM), and harmonic mean (HM) as well as 3 potential means which
we call CES proper mean (CPM), inverse CES mean (ICM) and inverse power mean
(IPM). It should, however, be noted that the power mean (function) in its entire domain
(— o to + o) can still be regarded as a generalised mean with all the seven means we
consider here being its special cases. In this sense power mean and CES mean are

substitutable.

What follows is divided into two sections: the next section reexamines the means: we
find that the means we commonly use, the AM, the GM and the HM, along with the
PM, are special cases of the CES function. We acknowledge the possibility of an
inverse CES mean, and hence, that of an inverse power mean (IPM) also. Next we
analyse the links among these means and attempts to bring out their properties on a
comparative plane. In the last section, we sum up our results where we argue that the
inverse power mean (of order 2) can be a good second best alternative to the arithmetic

mean, useful as a representative average to index development.

2. The Means Reexamined

CES Function as Generalised Mean

Needless to say, averages are functions, but all functions are not averages. The two
well-known functions, Cobb-Douglas (CD) and Constant Elasticity of Substitution
(CES), commonly used in economic analysis, are averages. While the CD function
generalises geometric mean (GM), the CES function does generalise all the means as

well as the CD function.



Given two variable inputs (or dimensions, as in this case), X; and X, the CD function
is: AX;“X,'™“,0<a <1, and 4 is a constant. Taking 4 =1, and a = 0.5, we have the

geometric mean (GM) of the two dimensions: X1X2)'", Similarly, for the two inputs,
the CES function is given by: A(lel_p + szZ_p)_l/p, wy +wp = 1. Taking 4 = 1,
this function represents a generalised mean of wider range, which we call the CES mean
(or CM): X(p) = (Wle—p + W2X2_p)_1/’0 , wi + wy = 1. It can be seen that the power

mean of order > 1 (PM) is a special case of it (with p = —a): (lela + szg)l/a.

We have also the arithmetic mean (AM: (wX| +wpX,), with p = — 1) and the
harmonic mean (HM: (0.5)(1_1 + 0.5X2_1)_1, with p = 1) as its special cases. Again, it

can be seen, using L'Hopital's rule, that, with w; = w, = 0.5, and p= 0, the GM also is a

special case of the CM.

Still another condition also generates the three means directly from the CES mean.

Using proportionate weights, w; = X; /ziX ;i » we can see that the CM yields AM

when p=1, GM, when p =2, and (approximately) HM when p =3 (see Table 1).

Now defining p > 1, X(p) may be taken as a ‘CES proper mean’ (CPM) and hence we
can also have an ‘inverse CES mean’ (ICM) of order y with p = 1/, that is, X(1/y) =

_ _ —7 .
(Wle Vry W2X21/7) ,for > 1, (or 0 < p<1) and hence an ‘inverse power mean’

(IPM) of order # with p=—1/p, that is X(-1/p) = w XV Py, x )t P , for f>1, (or
14 2449

—1 < p<0). Note that for 0 < y< 1, the former is identical with the CPM (with p> 1),
and for 0 < B < 1, the latter is identical with the power mean (with &> 1). Thus we can

think of seven different means as special cases of the CES function (or CES mean) as

3 The proofs are very simple and hence are not reported; however, they will be available from the author
upon request.



the parameter p varies in its domain: PM, AM, IPM, GM, ICM, HM and CPM, as given
in the following figure (Fig. 1), which shows the distribution of the means in the

continuum of the domain of the CES function from — oo to + 0. (also see Table 1).

— o -1 0 1 o0
I I I I I
“ | W_J \——W_J g —
PM IPM ICM CPM
Max AM GM HM Min
Xi Xi

Fig. 1: Distribution of the means in the domain of the CES function
as p varies from — oo to + oo.

Links among the Means

The seven means, distributed in the continuum of the number line, are expected to
exhibit some regular pattern of links among them. Though the following we prove for a
two variable case with an order of 2 for the general means of PM, IPM, ICM and CPM,

the same is true in general

1. It is easy to see that we have the following order of relationship among them, as p

varies from — o to + c. This is true in general for the means (irrespective of the

number of variables).

Max {X;}>PM > AM > IPM > GM > ICM > HM > CPM > min {X;}.

2. It follows from the above that the sum of the deviations of the components from the

PM is negative (remember that from the AM is zero), and that from each of the

other means is positive. This also is a general result.



3. Given the above relationship among the means, we can also find that the AM lies

much farther from the PM than from the IPM:

In general we find that among these 7 means, as special cases of the CES function
distributed in the continuum of its domain, PM and CPM mark respectively the upper
and lower extremes and lie farther from their immediate neighbour means. Moreover,
the means are by no means symmetric about GM, which is though obtained as the

generalised mean (CM) approaches its centre of gravity of its domain, that is, zero.

Properties of the Means

We consider the following properties (Table 2).

1. Additivity: By this property we mean that a mean exists even if one or more, but not
all, components (or dimensions, X;) are zero. This is possible only if the components
are expressed in the mean in a meaningfully additive way, such as in arithmetic
mean, power mean and inverse power mean. The CES proper and the inverse CES
means along with the harmonic mean, though additive, are not defined when any
component, X;, is zero. So is the geometric mean. Additivity need not be a necessary
property of an average, since in most cases the zero value may be just ignored as a
non-entity; however, where absences are involved in multi-dimensional contexts,
additivity is an essential property and a mean devoid of it is meaningless, unless the
components have a combined existence, as in a production function.* As long as the
dimensions (as in the case of deprivation, say) are considered independent in
averaging, only the arithmetic mean, power mean and inverse power mean come out

qualified here.

* For example, in a production function with two factors, X; and X, we have the following combined

existence condition: f{X}, 0) =f0, X;) = 0.



2. Additional Weight: The three means, AM, GM and HM have no provision for any
additional weights to the components. It should, however, be noted that GM gives
less weight to large components and more to small ones than does the AM; this
leaves the GM never larger than the AM. Since the components are taken in terms
of their reciprocals in the HM, the component with the least absolute value will have
the maximum impact on the mean value, and this leaves the HM never greater than
the GM. This is so in the case of the CES proper and the inverse CES means also
though with additional weights from power term. This weighting has much
relevance in the marginalist approach in the demand and production analysis of
economics, where a scarce variable has higher importance, and these means are thus
useful for indexing such economic variables. On the other hand, the components are
expressed in positive power terms in the PM and its inverse (IPM) and this results in
greater contribution to the mean from larger components, and in the case of
deprivation, this is a desirable property. Because the usual assumption here is that as
the deprivation in a certain field increases, the weight to be put on removing
deprivation in that dimension should also increase. That is, that particular
deprivation field should have higher additional weight. This is achieved through o >
1 in PM and > 1 in IPM. However, it should be noted that the weight structure
differs in these cases, with > 1 for PM, (=1 for AM) and 0 < o < 1 (equivalent
to > 1) for IPM.’

3. Slope (first derivative): It goes without saying that the mean should vary directly
with the component, that it is monotonic increasing in each X;. That is, its first

derivative be positive. And it is so in all the cases we consider here.

4. Curvature (second derivative): While the first derivative of a function tells us about

its rate of change, or the slope of its graph, the second derivative indicates its

> Such weight structure explains why we have PM > AM > IPM > GM > ICM > HM > CPM.
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curvature, which in turn describes concavity/convexity of the function. If the second
derivative of a function is negative (positive) for all its argument, then that
(primitive) function must be a strictly concave (convex) function. AM is a linear
function, and is hence out of consideration here. And we find that all other functions
except the PM are concave; there is a ‘law of diminishing returns’ at work in these
cases. It should be noted that the IPM is concave subject to the permissible domain
of #> 1 only; as already mentioned, for 0 < £ < 1, it is identical with the PM (with
a > 1), which is convex. Thus the function is increasing at an increasing rate
(‘increasing returns’) only in the case of PM (for ¢ > 1). UNDP (1997: 213)
prescribes that a poverty index be convex with respect to each of its deprivation
dimensions, X;; “This is equivalent to saying that [the poverty index] decreases with
reductions in [X;], and at a diminishing rate.” (ibid.) In this light, it is as well
reasonable to assume that a development index exhibit ‘diminishing returns’; it rises
with increases in a development indicator but at a diminishing rate, reflecting the
tension and friction that set in as more and more development accumulates. Hence
all the 5 concave functions (IPM, GM, ICM, HM and CPM) are possible candidates
for a development index. However, the ‘marginalist’ weighting of all but the first of
these means makes them less desirable. IPM, on the other hand, attaches only

fractional weights compared with PM (and AM).

Linear Homogeneity: A function is homogeneous of degree one (linear), if a certain
proportionate change in its arguments alters the function also by the same
proportion. For example, if all the X;s are increased by 10 percent, then the function
also increases by 10 percent. This is a desirable property of an average, and all the

means we consider here are linearly homogeneous.

Elasticity of Substitution: The elasticity of substitution (denoted by o) is the rate at
which substitution between, say, X; and X, along an iso-X(«) curve, keeping X3

constant, takes place, and is defined as the percentage change in (Xi/X) for a unit
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percentage change in the slope of the tangent along this curve, projected onto X;-X>
space at the given value of X3 (UNDP 1997: 121). For the PM of order ¢, it is given
by o= 1/(a— 1). The elasticity of substitution (o) between any two X;s, given the
other dimension(s), is infinite for AM (with a = 1). In such perfect substitutability
case, that is, with AM, the impact on the mean of a unit change in any of the
dimensions is the same (since there is no additional weight attached to the
dimension), regardless of the level of deprivation implied in them. However, this
goes against the usual assumption that as the deprivation in a certain field increases,
the weight to be put on removing deprivation in that dimension should also increase.
That is, that particular deprivation field should have higher additional weight. This
necessitates & > 1, as for the PM. However, as the order « increases infinitely from
unity, the elasticity of substitution for the PM decreases monotonically from infinity
to zero. that is, in zero substitutability case, the aggregate index tends to the
maximum of the given dimensions, leaving the changes in the other dimensions
with no effect at all on the index; poverty in effect just becomes uni-dimensional.
Hence this case also is untenable. Hence the selection by the UNDP of o = 3, where
we have a reasonable intermediate case of o = 1/2, and this puts greater weight on
that dimension with higher deprivation.. For the CD function and hence GM, it is
unity, and for HM, one-half. For the CES proper mean, it lies between one-half and

zero, as p moves from unity to infinity. In the case of the inverse CES mean, for

which o=/ = ! , as for the CES one, the opposite movement holds: as y

7+1_p+1

increases from unity, the elasticity measure rises from one-half to unity. For the

1 .
P = , and as f increases

-1 1-p

from unity, the elasticity falls from infinity to unity.

IPM, with > 1, implying p < 1, we have o =

12



To recap: the minimum to maximum values of the elasticity of substitution in the
case of CPM: zero to one-half; HM: one-half; ICM: one-half to unity; GM: unity;
IPM: unity to infinity; AM: infinity; and PM: zero to infinity.

Now for a = 3, the UNDP’s choice, the PM has a limited substitution elasticity of
one-half. This choice implies an absolute value of p = 3, and for the CES function,
then, the elasticity is 1/4, and for the inverse CES function, it is 3/4 for y= 3. In the
case of the IPM for = 3, the elasticity of substitution is 1.5.

7. Impact Multiplier: In the case of power mean, for any ¢, the relative impact® on the

aggregate index of a unit change in X; compared with that in X, is given by

(X;/X 7_)“—1 . For arithmetic mean, when o = 1, the relative impact is unity: impact

is the same for any dimension, whatever be the level of deprivation. On the other
hand, as « tends to infinity (for the PM) the impact from a unit increase in X,
becomes infinitely larger, so that it becomes the only determinant of the index. For
GM, it is always given by the ratio of the two dimensions, and for HM, by the
square of the ratio. In the case of IPM, the weight of the relative impact, given by
the reciprocal of the elasticity of substitution, is always less than unity, giving the
lightest impact among the means, and in ICM, greater than unity. The greatest
impact is experienced in the case of CPM. An example will illustrate the points
clearly.” Let X; = 50 percent and X> = 25 percent (with X3 = 40 percent, being kept

constant). In the case of PM, for any ¢, the relative impact on the mean of a unit

change in X; compared with that in X, is then given by 2471 For AM, it is unity,

% Note that the impact of any dimension X; on the power mean is given by its first derivative with respect
to that dimension. The above result is obtained by putting i = 1 and 2, and taking the ratio of the two

derivatives (assuming equal weights).

7 Also see UNDP (1997: 121).
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GM: 2, HM: 4, IPM: 277 [CM: 2(7”)/7; and for CPM: 2”1 For an absolute
order of 3 (as used by the UNDP for ), the relative impact for PM is 4; for I[PM:
0.67; ICM: 1.33; and for CPM: 16.

3. To Sum Up

The power mean as an aggregate index of multi-dimensional deprivation has thus a
number of desirable properties, but it too has its own limitations, just as the other means
do.® For example, the PM fails as a representative average. Remember AM is the only
summary measure representative of a set of data, with the least variance property. PM,
being much farther on the upper end from AM, is thus entirely atypical of its
components in the above sense. Similarly, GM is theoretically considered the best
average in the construction of index numbers as well as for ratios and percentages.
Again, where scarce factors command higher marginal importance, HM along with
CPM and ICM, the last two with additional weights, deserves consideration. However,
none goes unblemished; all these have their own limitations too. AM is a linear
function, incapable of further differentiation and has an infinite elasticity of substitution

that render it less desirable, and the others violate the additivity condition.

IPM, on the other hand, has some additional qualities. We have seen that AM is much
closer to IPM than to PM. To the extent that we need an average typical of the
components in the face of an unacceptable AM, we may seek for one that is closer to
the AM, so that this second best choice will have the minimum deviations next to the
AM, but is free from its unacceptable blemishes. And we find this basic criterion is

satisfied by the IPM only.

¥ The originators themselves admit, this index also is not without failings. “Like all measures, the HPI has
weaknesses — in data and in concept. Like all measures, it cannot capture the totality of human poverty.”
(ibid.).
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Given that the IPM, as compared with the PM, is typical, in a second best sense of being
closer to the AM, of all the components considered, we now turn to its other properties.
Along with the PM, it also enjoys additional weight on each component, the larger
component contributing a greater effect to the mean, desirable for a deprivation index.
With an order of 2, the PM has an elasticity of substitution of 1 (unity) and the IPM, 2,
much limited compared with the infinity of the AM. It should be noted that as the order
falls, both the PM and the IPM approach the AM, the latter much closer than the
former; in both the cases, 2 is the minimum possible order that keeps the measures
closer to the AM with a limited substitution elasticity. The IPM, however, differs from
the PM in respect of convexity and impact multiplier. But as we have already noted
earlier, the ‘diminishing returns’ property of the IPM appears appropriate for a
development index. Thus while the PM captures the multi-dimensional deprivation, its

inverse, the IPM seems to offer a multi-dimensional development index.

In Table 3, we compare these 7 means and their ranks in respect of the reported
deprivation in three dimensions of longevity, knowledge and economic provisioning of
78 countries, as given in UNDP (1997). An order of 2 is taken for the general means of
PM, IPM, ICM and CPM. Note that the ranks of the countries must remain the same,
irrespective of the order of « in the case of the power mean, though the ranks of some
of the countries given in Table 3 are different from those in UNDP (1997). This is just
because we use the data as given in the UNDP Report, which may be different from the

actual fractionally enough to distort some ranks.

We find that the mean values are distributed in a descending order from PM to CPM
and AM is much closer to IPM than to PM, and HM much closer to ICM than to CPM.
The rank of the countries by AM is equal in 20 cases to that by PM and in 28 cases to
that by IPM. Number of cases of rank equality among the different means are as
follows: (i) PM with AM: 20; with IPM: 14; with GM: 10; with ICM: 9 with HM: 5;
and with CPM: 5; (ii) AM with IPM: 28; with GM: 20; with ICM: 17; with HM: 12; and

15



with CPM: 5; (iii) GM with IPM: 29; with ICM: 34; and (iv) HM with ICM: 32; with
CPM: 23.

The proximity of IPM to AM compared with that of PM to AM is further evident from
the following: that is, the sum of the squares of the deviations between the ranks by PM
and by AM is 520, whereas that by AM and by IPM is only 188. The same for the other
paired consecutive means are: (i) IPM—GM:188.5; (i1)) GM-ICM: 156; (iii)) ICM—-HM:
110; and (iv) HM—-CPM: 227.5. It is interesting to compare this result with our
conclusion in Appendix 5 that (PM — AM) > (AM - IPM) = (IPM - GM) > (GM -
ICM) > (ICM — HM) < (HM - CPM).

16



-1/p
n
Table 1: The Special Cases of the Generalised (CES) Mean: X (p) = [Z w; X l_—p J
i

1. lim X(p)=min {X;},i=1,2,...,n.
p—>
2. | X(p) = CES Proper Mean, p> 1.
3. | X(1) = Harmonic Mean (p=1).
4. | X(1/y) = Inverse CES Mean, y>1.(0< p<1)
5. lim X ()= Geometric Mean
p—0
6. | X(—1/p) = Inverse Power Mean, > 1. (-1 < p<0)
7. | X(-=1) = Arithmetic Mean (p=—1).
8. | X(—a)=Power Mean, a>1. (p<-1)
9. lim X(p) =max {X;},i=1,2,...,n.
p—>—»
With Proportionate Weights: w; = X; /£X;
10. | X(1) = Arithmetic Mean
11. | X(2) = Geometric Mean
12. | X(3) ~ Harmonic Mean
Note: Zwl- =1.

1
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Table 2: Properties of the Means

When any [Additional Weight| Slope |[Curvature| Degree of | Elasticity of Impact
Xi=0, of each Xi Homogeneity | Substitution Multiplier
AM =0 No Positive| Zero Linear Infinity 1
GM =0 No Positive | Concave Linear Unity (X4IX3)
HM Not No Positive | Concave Linear 1/2 (X1/X2)2
defined
PM of order #0 MaX|mL.|m with | Positive| Convex Linear 1 (Xl /Xz)a_l
a>1 the maximum Xi a—1
IPM of order 0 Maximum with |Positive | Concave Linear -1/
. . B (X, /X2)(ﬁ ) B
B> 1 the maximum Xi p-1
CPM of order Not Maximum with |Positive | Concave Linear 1 +1
. » . — (X1/X2)”
p>1 defined | the minimum Xi p+1
ICM of order Not Maximum with |Positive | Concave Linear +1)/
. m . e (Xl/Xz)(y )y
y>1 defined | the minimum Xi y+1

18



Table 3: Comparison of the Different Averages of Deprivation and Their Ranks of 78 Countries, 1997.

Deprivation in Ranks
Longevi|Knowled| Eco. | PM | AM | IPM | GM | ICM | HM | CPM [PM|AM [IPM|GM |ICM|HM | CPM
ty ge Prov

Trinidad & 54 21 3 3.77 1350 | 337|324 (312|302 (2841 |1 1 1 1 1 1
Tobago
Cuba 6.2 4.6 4 5024934891485 481 (477|470 2 | 2| 2 |2 | 2|2 5
Chile 4.6 5 6 523 1520|518 | 517 | 515|514 511 | 3 |3 | 3 | 3| 4 |5 6
Singapore 3.2 9 5 6.22 | 573 | 548 | 524 | 502 (481|447 | 4 | 4| 4 (4| 3|3 3
Costa Rica 4.1 5.3 9 648 | 6.13 597 | 580 |565|552(528| 5|5 |5 |5 |5 |7 7
Colombia 6.3 8.9 14 110.25(9.73 1948 | 9221898 (876|836 |6 |9 [10 (11|11 |12 12
Jordan 9.2 14.5 5 10.33|1 957 | 915 (874 (833 | 794 | 728 | 7 |7 | 8 | 9| 9 |10 11
Uruguay 54 29 17 11043843 | 738|643 | 567|509 |438| 8 | 6| 6 | 6| 6 |4 2
Panama 6.2 9.5 15 |110.86(10.23| 9.91 [ 9.60 | 9.29 [ 9.00 | 850 | 9 |11 |12 12|12 |13 | 13
Mexico 8.3 10.8 13 [10.87|10.70|10.61|10.52(10.43(10.34|10.17| 10 | 14 | 14 [ 14 | 15 |16 | 17
Thailand 8.9 6.5 16 [11.22|10.47|10.10| 9.75 | 942 [ 913 | 864 | 11|13 | 13 [ 13 | 13 |14 | 14
Jamaica 4.3 15.6 11 |11.30(10.30| 9.69 | 9.04 | 837 | 7.74 | 6.72 |12 | 12|11 |10 | 10 | 8 9
Mauritius 6.2 17.6 6 11321993 | 9.27 | 868 | 819 | 780|725 (13|10 9 [ 8 | 8 | 9 | 10
United Arab 3.6 21.4 4 12.741 9.67 | 8.07 | 6.75 [ 582 | 522|460 (14| 8 | 7 | 7 | 7 | 6 4
emirates
Ecuador 9.9 104 20 (14.21(13.43|13.06|12.72|12.41 (1214 {1169 15| 15| 16 | 17 | 20 [ 21 | 21
Mongolia 16 17.8 12 |15.46(15.27|15.17(15.06|14.96(14.85|14.63| 16 | 18 | 20 [ 22 | 24 | 25 | 28
Philippines 12.8 5.6 24 116.03(14.13|13.06(11.98|10.96(10.05| 869 [ 17|16 | 16 | 16 | 16 | 15| 15
China 9.1 19.1 20 (16.81(16.07|15.63|15.15|14.65(14.13[{13.16| 18 | 20 | 22 | 23 | 22 | 23 | 23
Zimbabwe 18.4 15.3 18 |17.29(17.23|17.21{17.18|17.15({17.12|17.06| 19 | 23 | 26 | 28 | 30 | 32 | 32
Libyan Arab 16.2 25 4 17.35(15.07|13.51(11.74|10.00| 853 | 6.65 [ 20 |17 | 17 [ 15| 14 | 11| 8
Jamahiriya
Dominican Rep 10.2 18.5 22 |17.61(16.90|16.50(16.07|15.63(15.19|14.33[ 21 |22 | 24 | 25| 25 |26 | 25
Sri Lanka 7.9 9.9 29 (18.27(15.60|14.29|13.14|12.19(11.45(10.46| 22 | 19| 18 | 18 | 17 | 19| 20
Syrian Arab Rep 10.3 30.2 12 [19.68|17.50|16.45|15.51(14.71(14.05|13.11| 23 | 25| 23 | 24 | 23 | 22| 22
Indonesia 14.8 16.8 27 120.25(19.53|19.19(18.86|18.56(18.28|17.79( 24 | 30 | 31 [ 32 | 33 |33 | 34
Paraguay 9.2 8.1 33 |20.32(16.77{15.01|13.50|12.31|11.43(10.36( 25 (21| 19 |19 | 19 | 18 | 185
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Deprivation in

Ranks

Longevi|Knowled| Eco. | PM | AM | IPM | GM | ICM | HM | CPM [PM|AM [IPM|GM |ICM|HM | CPM
ty ge Prov

Iran, Islamic Rep | 11.7 314 13 [20.75|18.70|17.72|16.84 [ 16.08 | 15.44 |14.52| 26 | 27 | 27 | 26 | 27 | 27 | 26
of
Peru 134 11.7 32 |21.14(19.03(18.03|17.12|16.33|15.68(14.72| 27 | 28 | 28 | 27 | 28 | 28 | 29
Honduras 10.8 28 21 [21.15[19.93|19.24|18.52|17.78(17.05({15.74| 28 | 31 | 32 | 31| 31 [ 31| 31
Botswana 15.9 31.3 11 121.24119.40|18.49|17.62|16.84|16.15(15.05{ 29 | 29| 29 [ 30|29 | 29| 30
Tunisia 10.5 34.8 7 21.37|17.43|15.43|113.68(12.28(11.241 995 |30 |24 |21 |20 | 18 | 17| 16
Bolivia 19.6 175 28 12217121.70(|21.47|21.26(21.05(20.85({20.49( 31|33 |33 |35 | 35|36 | 38
Viet Nam 12.1 7 37 122.84(18.70(16.56(14.63(13.07(11.88|10.36| 32 |27 | 25 | 21| 21 |20 | 18.5
Algeria 10.6 40.6 12 125.20121.07119.04|17.29|15.88|14.83(13.50({ 33 | 32| 30 [ 29| 26 |24 | 24
Kenya 22.3 23 31 |25.74(25.43(25.29(25.15(25.01|24.88|24.64| 34 | 38| 38 | 38 | 39 |40 | 41
Nicaragua 13.6 34.7 25 125.91|24.43|23.61(22.77(21.91(21.08({19.57( 35|35 | 36 | 37 | 37 | 37 | 37
El Salvador 11.7 29.1 34 126.71(24.93(23.83(22.62(21.35(20.10(17.91| 36 36| 37 |36 | 36 | 35| 35
Lesotho 23.9 29.5 28 [27.24(27.13|27.08|27.03|26.97(26.92(26.81|37 | 39| 39 |40 | 42 |42 | 44
Iraq 15.4 43.2 14 |27.69|24.20|22.53|21.04|19.80(18.81(17.45({38 |34 | 34 |34 | 34 | 34| 33
Congo 221 26.1 36 |28.67(28.07(27.77|27.49|27.21|126.94|26.45( 39 |41 | 41 | 42 | 43 |43 | 42
Myanmar 25.6 17.3 41 [29.64|27.97|27.12|26.28(25.49(24.74|23.44|1 40 | 40| 40 [ 39 | 40 | 39| 40
Egypt 16.6 49.5 10 |30.69|25.37|22.63|20.18|18.17|16.63|14.62( 41 |37 | 35 |33 | 32 |30 | 27
Cameroon 254 37.9 28 [30.91(30.43|30.20|29.98|29.77(29.57(29.19| 42 | 42 | 44 | 44 | 45 | 45| 45
Papua New 28.6 28.8 37 |31.71(31.47(31.35|31.24|31.13|31.02|30.82( 43 |44 | 46 | 46 | 46 | 47 | 52
Guinea
Ghana 24.9 36.6 34 132.23(31.83(31.62(31.41|31.19|30.96(30.50( 44 |45 | 47 | 47 | 47 | 46 | 49
Guatemala 14.5 44.3 35 [33.65(31.27(29.81(28.22(26.58(24.98|22.21|45 (43| 42 |43 | 41 |41 | 39
Zambia 35.1 234 42 |34.37133.50(33.03|32.55|32.06|31.57(30.60| 46 | 48 | 48 | 48 | 48 | 48 | 50
India 19.4 48.8 29 (34.64(32.40|31.27|30.17|29.13|28.16(26.52| 47 |46 | 45 | 45 | 44 | 44 | 43
Rwanda 421 40.8 28 |37.51|36.97|36.67|36.37|36.05(35.72(35.06(48 | 50 | 51 | 53 | 565 | 57 | 57
Morocco 12.3 57.9 28 |37.81(32.73|29.91|27.12|24.55(22.34(19.15(49 | 47 | 43 | 41| 38 | 38| 36
Togo 284 49.6 33 138.10(37.00(36.47(35.96(35.47|35.02|34.201 50 | 51| 50 | 51 | 52 | 55| 56
Zaire 30 23.6 55 138.65(36.20(35.01(33.89(32.87(31.95|30.44| 51 (49| 49 |49 | 49 | 49| 48
Tanzania, U Rep | 30.6 33.2 50 [38.90(37.93(37.47(37.03(36.62(36.23|35.54|52 52| 52 |55| 56 | 58| 58
of
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Deprivation in Ranks
Longevi|Knowled| Eco. | PM | AM | IPM | GM | ICM | HM | CPM |PM|AM |IPM|GM |ICM|HM | CPM
ty ge Prov

Lao People's 32.7 44 .2 42 139.95(39.63|39.47(39.30|39.13(38.95|38.60| 53 | 55| 57 | 58 | 60 | 62 | 64
Dem Rep
Sudan 25.2 55.2 35 [40.44)|38.47(37.48|36.51(35.60|34.73(33.22| 54 | 53 | 53 | 54 | 54 | 54 | 55
Uganda 39 38.9 45 141.07(40.97|40.92|40.87|40.82(40.78|40.69| 55|58 | 61 |62 | 66 |66 | 70
Nigeria 33.8 44 4 45 141.39(41.07|40.90(40.72|140.54{40.36|39.98| 56 | 59 | 60 | 61 | 64 | 65 | 67
Central African 35.4 42.8 46 |41.64|41.40|41.28|41.15(41.03(40.90|40.64| 57 | 61| 62 | 64 | 67 | 68 | 69
Rep
Namibia 211 60 37 |42.48|39.37(37.71|36.05(34.44|32.94(30.36| 58 | 54 | 55 | 52 | 51 | 51 | 47
Guinea-Bissau 43.2 46.1 41 |43.48|43.43|143.41|43.38|43.36(43.33|43.28(59|65|69 [ 70| 70 | 71| 73
Pakistan 22.6 62.9 36 [43.83|40.50(38.79|37.13(35.56|34.12(31.72| 60 | 57 | 56 | 56 | 53 | 52 | 53
Cote d'lvoire 23.1 60.6 40 |43.99(41.23|39.75(38.26|36.79(35.38|32.90| 61 |60 | 58 | 57 | 58 | 56 | 54
Senegal 25.3 67.9 26 |44.45(39.73|37.49(35.48|33.76(32.36|30.34| 62 | 56 | 54 | 50 | 50 | 50 | 46
Mauritania 31.7 63.1 31 [44.53|41.93(40.71|39.58(38.56|37.66(36.22| 63 |62 | 59 | 60 | 59 [ 59 | 59
Bhutan 33.2 58.9 38 [44.78|43.37(42.69|42.04|41.43|40.86(39.86| 64 |64 | 66 | 68 | 68 | 67 | 66
Haiti 271 55.9 47 |44.97143.33|142.42|41.45|40.45(39.44|37.49| 65|63 | 64 | 66 | 63 | 63 | 62
Malawi 38.3 44 .2 53 |45.57|45.17|44.97 |44.77|44.57|44.38|44.00|66 |69 | 71 |71 | 72 | 72| 74
Yemen 25.6 58.9 47 145.95(43.83|142.64|41.38|40.09(38.80|36.38| 67 |67 | 65 | 65| 62 | 61| 60
Bangladesh 26.4 62.7 42 146.16|43.70|142.41(41.12|39.85(38.64|36.47| 68 | 66 | 63 | 63 | 61 | 60 | 61
Burundi 33.8 65.4 33 [46.58|44.07(42.88|41.78(40.79|39.90(38.47| 69 | 68 | 68 | 67 | 65 | 64 | 63
Guinea 41.3 65.2 30 [47.81|45.50(44.35|43.23(42.16|41.16(39.40| 70|70 | 70 | 69 | 69 [ 69| 65
Madagascar 32.1 54.2 56 |48.66|47.43(46.74|46.01|45.25|44.47(4290( 71|72 |72 |72 |73 |73 | 71
Mozambique 43.8 60.5 42 |49.47|48.77|48.43|48.10|47.79|47.49|146.94| 72 |73 | 75 |75 | 75 | 75| 75
Cambodia 31.9 65 50 [50.80|48.97(47.98|46.98(45.96|44.96(43.04|73 |74 | 74 |74 |74 |74 | 72
Mali 28.4 70.7 49 152.30|49.37|47.78|46.16 (44.56(43.00|40.20| 74 | 75| 73 |73 | 71 | 70| 68
Burkina Faso 36.1 81.3 21 |52.77|46.13|42.72|39.50|36.65(34.24|30.68| 75 | 71 | 67 | 59 | 57 | 53 | 51
Ethiopia 35.7 65.5 59 [54.91|53.40(52.56|51.67(50.75|49.81(47.95|76 |76 | 76 | 76 | 76 | 76 | 76
Sierra Leone 52.1 69.7 52 |58.53|57.93|57.65|57.37|57.10|56.85|56.37 | 77 |77 | 77 | 78 | 78 | 78 | 78
Nigeria 43.2 86.9 50 [63.03|60.03|58.60|57.26(56.01|54.89(52.99|78 |78 | 78 |77 |77 |77 | 77

Source: The first three columns are from UNDP (1997).
Note: Eco. Prov. = Economic Provisioning; PM = Power Mean of order 2; AM = Arithmetic Mean; IPM = Inverse Power Mean of order 2; GM = Geometric Mean;
ICM = Inverse CES Mean of order 2; HM = Harmonic Mean; and CPM = CES Proper Mean of order 2.




(These appendices are not meant for publication with the main text)

APPENDIX 1

Here we prove that the CES mean (CM) becomes the GM as p — 0, when the weights
(w;) are equal, (just as the CES function becomes the Cobb-Douglas function for p =0
(with unitary elasticity of substitution), by virtue of L ’Hopital’s rule).

Consider the CM with two components of equal weights: X(p) =

0.5x, 7 +o.5X2‘P)‘” P . The L’Hopital’s rule states that if lim f(y)=0 and
y—)a

lim g(y)=0, then lim pAC)] = lim & (see Apostol 1967: 292 — 295).
y—a y—ag(y) y->ag'(y)

Taking the natural logarithm of the X(p), given above, we have

—In(0.5X7 +05X57)  f(p)
glp)

In X(p) =

Evidently, as p — 0, we have f{p) —» 0, and g(p) — 0. Taking the derivatives of the

denominator and the numerator,

, , 0.5X, ”InX; +0.5X,” InX,
g'(p)=1,and f'(p)= - — ,
0.5X, 7 +05x,7

which converges to 0.5In X +0.5In X, as p— 0. Hence, the limiting case is

InX(p)=0.5InX;+0.5InX,, or

CM =X(p) = (X1X,)!'?=GM.

22



APPENDIX 2

Here we prove that PM > AM > IPM > GM > ICM > HM > CPM.

Let a and b be two positive numbers such that a # b. We consider power mean (PM),

inverse power mean (IPM), inverse CES mean (ICM) and CES proper mean (CPM) all
of order 2 only.

-1
-1 -1
We have AM = a;b,GMz Jab , HM = [ﬁJ _ 2ab

2 Ca+b’
-1/2 -2
a2 +b? \/Eab a_l/2 +b_1/2 dab
CES=|—"—| =5 54 -1CES= = :
2 (a® +b%) 2 (a +b)

1/2 2
2 2 1/2 1/2
PMz{a ;b J ,andIPMZ{%J

1. First we prove PM > AM.

1/2
2 2
a” +b J >a+b.Or

Suppose it is true, that is, PM > AM. Then, {

a’ +b? . a+b 2_a2+b2+2ab
2 2 4 '
Bringing the RHS terms to the LHS, we get

a? +b?
4

—2ab a-b) ) . .
= 5 > (. Since the square of any real quantity is always positive,

2
[a ;bj > ( 1s true, and hence PM > AM also is true.

2. Now we proceed to prove AM > IPM.
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2
) ) a+b_[a"?+p!?
We start with the assumption that AM > IPM, so that 5 > . Or

2
172 ,1/2)? 2
a+b> a +b 3 \/Z+\/Z
2 2 2 '
That is, a+b>a+b+2@'

4
Bringing the RHS terms to the LHS, we get

a+b-2yab :(J;_@Jio_

4 2

Since the square of any real quantity is always positive, > 0 is true, and

Ja-bY
2

hence AM > IPM also is true.

3. We now prove IPM > GM.

@@JZ

S22 )
Starting with the assumption IPM > GM, we have I — = >

Vab .

That is, ﬂ— \/% > 0. Or,

4 2

a+b_zm:(¢z_ﬂ2>o_

2
Since the square of any real quantity is always positive, (%\/EJ >01istrue, and

hence IPM > GM also is true.
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4. Next we prove GM > ICM.

Proceeding with the assumption that GM > ICM, we have Jab >
12 17272
[a +b ) 4ab
=—— . 0Or
: (Va + V5 )
a+b+2ab > 4/ab , which gives
a+b-2yab>0.0r (Wa—+b)?>0.

. o .- 2 .
Since the square of any real quantity is always positive, (\/Z b ) >0 is true, and
hence GM > ICM also is true.

5. Now we prove ICM > HM.

)
_”2+b_1/2) B 4ab

: o

Let us assume that ICM > HM, then we have [a

a_l +p! - 2ab
= .Or
2 a+b

a+h> %(\/Z+\/Z)2, which gives

a+b-2ab >0.0r (Va-+b)>>0.

2
Since the square of any real quantity is always positive, (\/Z ~Jb ) >0 1s true, and
hence ICM > HM also is true.

6. Finally we prove HM > CPM.

25



-1
—1, -1
Starting with the assumption that HM > CPM, we have [a b J = 2ab >

2 a+b

Or

-1/2
{a_z +b_2J \/Eab

B _(a2+b2)1/2 ‘

2(a® +b%) > (a+b)?, which gives

a’ +b>-2ab>0. Or (a—b)> >0.

Since the square of any real quantity is always positive, (a —b)2 >0 1is true, and

hence HM > CPM also is true.

From the above it follows that PM > AM > IPM > GM > ICM > HM > CPM.

If @ and b are equal, then PM = AM = IPM = GM = ICM = HM = CPM.

Thus we have PM > AM > IPM > GM > ICM > HM > CPM.

Since a mean lies between the maximum and the minimum of the components, it

follows that max {X;} is greater than PM and min {X;} is lower than CPM.

APPENDIX 3

Here we show that the sum of the deviations of the components from the AM is zero,

that from the PM is negative and that from each of all other means, positive:

1. Sum of the deviations of the components from the AM is zero:

) = 1
Given the components X;, i = 1, ..., n, we have the AM: X:_Z?Xi- Now let
n

Zf(X ; —a) =0, where « is a constant. Then, Zf X; =na . Therefore, o must be the
AM.
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2. Sum of the deviations of the components from the PM is negative:
Suppose Z{l (X;—a)= Z?X ;—na<0, where a 1s a constant. This then

gives  AM (or X ) <a. Since in our case AM < PM, a must be the PM here.

3. Sum of the deviations of the components from all the means other than AM and PM

is positive:
Let Zf(X i —b)= Z? X;—nb>0, where b is a constant. This then gives

AM (or X ) > b. Since we have AM > IPM and all other means below that, 5 must be
any of the means other than AM and PM.

APPENDIX 4.

Let a and b be two positive numbers such that a # b. We consider CES proper mean
(CPM), inverse CES mean (ICM), power mean (PM), and inverse power mean (IPM) of

order 2.

-1
-1 -1
We have AM = “*2 GM = Vab.HM= | &0 | _ 290
2 2 a+b

-1/2 -2
-2, .-2 —-1/2  ,-1/2
CPM = a “+b _ 2«/2612b1/2’ICM: a +b _ 4ab ’
2 (@ +b%) 2 (Va +bf

1/2 2
2 2 1/2 1/2
PM{“ b J ,andIPMz[—a b ]

2 2

Appendix 4(a)
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1. First we show that the absolute deviation of the AM from the PM is greater than that
from the IPM. This results from the following proofs: (i) the deviation between the
AM and the GM is twice that between the AM and the IPM, that is, AM — GM =
2(AM — IPM); and (i) the deviation between the squared PM and the squared GM
is twice that between the squared PM and the squared AM, that is, PM? — GM? =
2(PM? — AM?).

1) The deviation between the AM and the GM is twice that between the AM and
the IPM, that is, AM — GM = 2(AM - IPM).

Suppose AM — GM = m, a constant. That is,

a+b a+b—2@_(\/2—\/3)2
2 - ab 2 )

ab = =m. (1)

And let AM — IPM = ¢, a constant. That is,

2 2
a+b_[a1/2+b1/2J _a+b a+b+2@:[\/g—\/3] _y

2 2 2 4 2 ()
From (1) and (2), we have m = 2¢. That is,

AM — GM = 2(AM — IPM), which also implies that

AM —IPM = IPM — GM, which in turn also implies that
AM - GM = 2(IPM — GM).

That is, the absolute deviation of the IPM from the AM is as much as that from the GM.
This, together with the relationship that AM > IPM > GM, then suggests that the three
measures are equi-distant! This also suggests that IPM = (AM + GM)/2; that is, [PM is

the arithmetic mean of AM and GM.
i1) Now we prove that the deviation between the squared PM and the squared GM
is twice that between the squared PM and the squared AM, that is, PM? — GM” =

2(PM? — AM?).
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Let PM? — GM? = £, a constant. This then gives

2 2 2
a+b bk or (a=b)" _

k. .03)

Also assume PM? — AM? = r, a constant. Thus we have

2 2
j = r, which gives ("Tj = (@)

a’ +b? B (a +b
2 2

From (3) and (4), we have k = 2r. That is,

PM? — GM? = 2(PM? — AM?), which also implies that

PM? — AM? = AM? — GM?, which in turn also implies that

PM? — GM? = 2(AM? - GM?).

That is, the absolute deviation of the squared AM from the squared PM is as much as

that from the squared GM. That is, (given PM > AM > GM), the squared values of these

three measures are equi-distant! This together with the relationship that PM > AM >

IPM > GM and the above proof (in 1) that AM, IPM, and GM are equi-distant then

suggests that the PM is much farther from the AM than the IPM.

Also note from the above that AM = {(PM* + GM?)/2}"*. That is, AM is the quadratic

mean (power mean of order 2) of PM and GM.

Appendix 4(b)
For the particular case of two variables (or dimensions), we have a number of

interesting results, as reported below:

1. By definition, we have
i) AM = GM*/HM;
iiy ~ PM=GM?*CPM; and
iiiy  IPM=GMYICM.

Then it follows obviously that
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1) PM/AM = HM/CPM,;

i1) AM/IPM = ICM/HM,;
iii)  PM/IPM = ICM/CPM,;
iv) PM/GM = GM/CPM,;

V) AM/GM = GM/HM; and
vi) IPM/GM = GM/ICM.

The last three suggests that GM is the geometric mean of i) PM and CPM; i1) AM and

HM; and ii1) IPM and ICM.

2. AM-GM >GM - HM.
Proof:

We have AM — GM = a+b—\/a_=£\/z;2\/gﬁand

2

GM — HM = ab - 290 _ */E(\/Z—\/Z)z.

a+b a+b

a+b

24Jab

. ) b)
Now \/Z—\/Ezzmm lies (a+ > 1.
( ) P

Hence AM — GM = (GM — HM)

Therefore the result: AM — GM > GM — HM.

3. IPM-GM > GM - ICM

2 2
1/2 4 1/2 B
We have IPM - GM = {%J - \/E = (@] , and

4ab Va b
_ dab _Jw _
(Va ++b)? b(J;+J3)2

GM — ICM = Jab —
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Ja +bf

Therefore IPM — GM = (GM - ICM)

Now Ja+b > 1 (since, (\/E—\/Z)ZZO

4+ ab
Hence the result: IPM — GM > GM — ICM.

4. GM-ICM = ICM - HM.

We have GM — ICM = Jab — _+ab

4Jab

(a+b)
24 ab

implies

_aplla=b)

(Va ++/b)?

ICM — HM = 4ab 2ab 2ab

(abF
G

Wa+vp)? (a+b) (a+bh)

a+b

2ab

Therefore GM — ICM = (ICM — HM)

Since

2\/__

5. ICM — HM < HM? — CPM>.

2ab (\/_ \/_)
(a+b)( +\/_)

We have ICM — HM =

HM? - CPM? =

s}

> 1, the result follows: GM — ICM > ICM — HM.

, and

4a*b?  24%b*  24%b* (a—b)?

(a+b)? a®+b>  a® +b2 (a+b)?

Comparing the two, we have the above result.

6. PM>— AM?> AM — IPM.

>1; and

(a+D)

4lab

> 1/2).
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2
We have seen above that PM* — AM? = (a ;bj , and

2

JZ—JZT_

AM —IPM = [
. v
Since (a — b)2 > (\/Z ~Jb ) , we have the above result.

7. PM? - GM?* > GM? - CPM?.

We have from (1) above, PM? - GM? = ~———

2,2
GM? - CPM? = qb— 25 ab__(4—p)

a2 +b2

Therefore, PM? — GM? = (GM? — CPM?) o
a

a2 +b2

Since (a — b)2 >0 > > 1, we get the result: PM* — GM? > GM” — CPM".

8. Finally, GM* — CPM® < 2(GM? — HM?).

From the above, we have GM* — CPM* = 2ab 5 (a— b)2 , and
(a”+b7)
2,2 2
GM? - HM? = ab - da”h 5 :ab(a b)2 .
(a+b) (a+b)
2
Therefore, GM® — CPM? = (GM? — HM?) ("2+ b) = (GM” ~ HM’) [1 + 22“b 5 j .
a“+b a” +b
Since (a —b)2 >0 > 2ab 5 < 1, the result follows: GM? — CPM? < 2(GM? — HM?),
a”+b

which in turn also implies that HM? — CPM* < GM* — HM™.
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(a) All the above results together give the following relationship:

(PM? — AM?) = (AM? — GM?) > (AM — IPM) = (IPM — GM) > (GM — ICM) >
> (ICM — HM) < (HM® — CPM?) < (GM? — HMY).

From this we have the following conclusion:

(PM — AM) > (AM — IPM) = (IPM — GM) > (GM — ICM) >

> (ICM — HM) < (HM — CPM).

(b) We also have PM? - GM? > GM? — CPM?,
So that we may conclude: PM — GM > GM — CPM.

From this it follows that in the case of only two variables, with an order of 2 for the
general means,

1) AM, IPM, and GM are equidistant;

i1) AM is farther from PM than from IPM;

1i1) GM is farther from IPM than from ICM;

iv) ICM is farther from GM than from HM;

V) HM is farther from CPM than from ICM; and

vi) GM is farther from PM than from CPM.

For example, consider the mean values and successive differences in the following
Table for a = 35 and b = 60; the parameter values of p of the CES function correspond

to the special means:

Means |PM  |AM  |[IPM  |GM ICM HM  [CPM
P -2 1 05 |0 05 1 2
Values |49.12 |47.5 |46.663 |45.826 |45.004 [44.211 |42.755
Difference 162 |0.84 |0.84 [0.82 |0.79 |1.46
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