An economic growth model: Evaluating the interaction of market consumption with GDP growth rate in Afghanistan

Mohammad Naim Azimi

Department of Industrial Economics, Rana University

6 January 2016

Online at https://mpra.ub.uni-muenchen.de/69517/
MPRA Paper No. 69517, posted 17 February 2016 12:54 UTC
An Economic Growth Model: Evaluating the Interaction of Market Consumption with GDP Growth Rate in Afghanistan

Mohammad Naim Azimi
1Vice Chancellor and Professor, Industrial Economics Faculty, Department of Business Administration Rana University, Kabul – Afghanistan Tel: +93 7900 600 73 Email: vc@ru.edu.af

Abstract: In this paper, we argue that the market consumption is one of the major and significant elements of Gross Domestic Product driver in Afghanistan for which the competing null hypothesis that consumption drives the GDP growth is tested. The statistical analysis based on Semi-long regression economic growth model shows a significant corresponding probability value of 0.000 which shows that consumption drives GDP growth while the coefficient exhibits 0.1534 or 15.34% growth of GDP driven by consumption throughout the period 2001 to 2014. Further statistical analysis obtained from the Breusch-Godfrey and Breusch – Pegan-Godfrey LM tests for investigating the existence of any serial correlation within the series support us to reject the null hypothesis that there is no serial correlation within the series. On the other hand, the Jarque-Bera test of normality shows a p-value of 0.3099 which is significant and further documents that the residuals are random and normally distributed within the series.

Keyword: Market Consumption; GDP; Homoskedasticity; Heteroskedasticity; Economic Growth

1. INTRODUCTION

From the basic economic theory, we know that shift in the level of market consumption which includes increase or decrease both in the households and organizations’ level of consumption for economic commodities affect the overall GDP growth rate either upward or downward overtime. According to Mofrad (2012) one of the major objective of each country is to achieve a relatively desirable economic growth rate. The improvement in the rate of economic growth depends upon the improvement in the degree of market consumption which improves the productivity, demand and supply in a particular country. Theoretically, growth in GDP is one of major indicator of growth in overall economy of a country (Munir & Mansur, 2009) which has several drivers and one of which is the level of market consumption that leads to overall economic growth in a country. Barro (1991) empirically studies the GDP growth drivers panel in 98 countries and finds that countries with higher human capital and population rolling the market consumption and increases its level of consumption which leads the economy to grow overtime. Bergh (2009) shows that GDP growth is far from a robust indicator of social welfare but the influence of GDP information on economic decisions by firms, consumers, investors and governments is a matter of further consideration. Huang et.al., (2008) argue that some types of market consumption like higher portion of energy has negative impact over the economic growth (see also, Mo, 2001; Mozumder & Marathe, 2007; Ciarreta & Zarraga, 2010; Apergis & Payne, 2010; Stern, 2011). Eris & Ulasan (2013) state that one of the economic driver is the openness of a country’s market to international consumption and this has robust correlation with GDP growth in long run. On the other hand, Cooper (1997) shows that for a given starting level of GDP, the growth rate is enhanced by higher initial schooling and life expectancy, lower fertility, lower government consumption, better maintenance of the rule of law, lower inflation, and improvements in the terms of trade in a particular country. Krausmann et al., (2009) argue that emerging industrial metabolism is a major element of economic growth both in national and international context. Specifically, Afghanistan has come a long way since emerging from major conflict in late 2001 and the economy has recovered strongly, growing by nearly 50% cumulatively in the last two years (Bank, 2005). The GDP growth driven by exceptional harvest constituting local market consumption and export throughout the year 2012 has increased by 11.8% which shows a growth rate of 4.5% within 4 years only (Joya & Nassif, 2013). The reason for immediate GDP growth in the country within the stated period can also be the repatriation and return of more than one million citizen from abroad (Coleman, 2014). In this paper, we study to investigate the economic growth by considering two economic variables GDP (Gross Domestic Product) and Market Consumption for 14 years from 2001 to 2014. The intention is to rationally estimate and evidentially determine the percentage (refers to as ‘rate’) of growth in the country’s GDP throughout the aforementioned period by considering the market consumption only as a significant GDP growth driver, though, there are many other drivers that are intentionally overlooked in this paper.

The remainder of the paper is organized as follow: section 2 discusses about the data and estimation alternative and testing procedures, section 3 presents the data analysis, research findings and discussion, section 4 concludes the paper followed by author’s acknowledgement and list of references.
2. METHODOLOGY

2.1 Data
To study for interaction of two economic variables such as gross domestic product and market consumption for investigating the economic growth in Afghanistan, a set of time series data on Gross Domestic Product (GDP) and the Market Consumption (Consumption) is retrieved from the official website of World Development Indicator (WDI: 2015) covering the period 2001 to 2014 arranged by annual basis.

2.2 Estimation Alternative
For testing the competing hypothesis of economic growth in the country, the following procedure is followed that a brief discussion of which is given below.

2.2.1 Economic Growth Model
The initial step to determine the growth of economic throughout the stated period by considering the GDP as dependent variable and the consumption as the independent variable, we fit following equation:

\[\log(\text{gdp}) = C_1 + C_2(t) + \varepsilon_t \] \hspace{1cm} (1)

where \(\log(\text{gdp}) \) is the GDP which is converted into natural log, \(t \) represents the time period from 2001 to 2014 and \(\varepsilon_t \) is the error terms or the residual. The equation (1) represents a semi-log model as there is only one variable which is converted into natural logarithm.

2.2.2 Breusch – Godfrey LM Test
Estimation of growth by applying the equation (1) can only be valid if the residuals are not serially correlated. To check this, we apply the Breusch-Godfrey LM test that the equation of which fits with our data can be expressed as:

\[\varepsilon_t = X_{\gamma} + \left(\sum_{i=1}^{k} \alpha_i \varepsilon_{t-i} \right) + \nu_t \] \hspace{1cm} (2)

The statistic value for observed R-Squared is major Breusch-Godfrey LM test and this is asymptotically distributed as \(X^2(p) \). The acceptance of null hypothesis that there is no serial correlation in the residual must be followed by testing the normal distribution of the residual within the series (see also, Rois et.al., 2012).

2.2.3 Jarque-Bera Test
The Jarque-Bera test developed by Jarque & Bera (1980) is used to test whether the residuals are normally distributed within the series. By this we test the null hypothesis of normal distribution that the equation of which is written as:

\[JB = \frac{N}{6} \left(S^2 + \frac{(k-3)}{4} \right) \] \hspace{1cm} (3)

Where JB is the abbreviation form of Jarque-Bera, \(S \) is the Skewness and \(K \) is the Kurtosis expressed in this equation (see, Koizumi et.al., 2009).

2.2.4 Q-Statistics Corrologram
We use the Q-Statistic test to check whether the residual distribution is white noise for the purpose of which, we fit the following equation for Q-Statistic as:

\[Q_{LB} = T(T+2) \sum_{j=1}^{\infty} \frac{\tau_j^2}{T-J} \] \hspace{1cm} (4)

where \(k \) is the number of lags, \(\tau_j \) is the \(j-th \) serial correlation and \(T \) stands for the number observation included in the test. The practical problem in selecting the appropriate number of lags remains in but to minimize this problem to an acceptable low level, we compute the test on 10 lags to achieve an optimum result.

2.2.5 Breusch – Pegan – Godfrey Test
As the last step in our testing procedure, we apply the Breusch-Pegan-Godfrey test. We test the null hypothesis that the residuals are homoscedastic against the alternative hypothesis being the residuals are heteroskedastic (see, Breusch & Pagan, 1979). To do so, we fit the following equation:

\[y_t = b_1 + b_2 x_t + b_3 z_t + e_t \] \hspace{1cm} (5)

where \(e \) is the residual and \(b \) are the estimated parameters in the equation. The residuals are further tested for checking the heteroskedasticity of the residuals if there is any. The acceptance of the null hypothesis that there is no serial correlation (autocorrelation) documents that the semi-log model is valid and results obtained are of sufficient validity (see, Breusch & Pagan, 1979; Koenker, 1981).
3. RESULTS AND DISCUSSION

In this section, we present the statistical analysis and research findings obtained by applying the testing alternatives specified in section 2.

Table 1: Semi-log Least Square Regression

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.542527</td>
<td>0.181072</td>
<td>19.56420</td>
<td>0.0000***</td>
</tr>
<tr>
<td>Cons</td>
<td>0.153437</td>
<td>0.011613</td>
<td>13.21304</td>
<td>0.0000***</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.935686</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean dependent var</td>
<td></td>
<td></td>
<td></td>
<td>5.877613</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.930326</td>
<td></td>
<td></td>
<td>0.558982</td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>0.147548</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.D. dependent var</td>
<td></td>
<td></td>
<td></td>
<td>0.558982</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>8.004381</td>
<td></td>
<td></td>
<td>-0.857769</td>
</tr>
<tr>
<td>F-statistic</td>
<td>174.5845</td>
<td></td>
<td></td>
<td>1.429374</td>
</tr>
<tr>
<td>Prob(F-statistic)</td>
<td>0.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***Significant if p-value ≤ 0.05

Table 1 shows that the corresponding probability value of Consumption (Cons) is 0.0000 which is significant while the value for coefficient is 0.1534 meaning that significance of consumption results the GDP to grow by 15.34% throughout the years 2001 to 2014. The statistical value for R-Squared is almost close to 1.0000 which shows the stability of the regression in addition that this is much lower than the Durbin – Watson statistics which exhibits that the model is spurious – free.

Table 2: Breusch – Godfrey Correlation LM Test

<table>
<thead>
<tr>
<th>Variable</th>
<th>F-statistic</th>
<th>Prob. F(2,10)</th>
<th>Obs*R-squared</th>
<th>Prob. Chi-Square(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-statistic</td>
<td>0.033125</td>
<td>0.9675***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs*R-squared</td>
<td>0.092138</td>
<td>0.9550***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***Significant if p-value of ≥ 0.05

The Breusch – Godfrey Correlation Lagrange Multiplier test exhibits probability values of 0.9675 and 0.9550 for F-statistics and observed R-Squared that are significant to accept the null hypothesis that there is no autocorrelation in the residuals generated from the regression model. By this we understand that the test is valid because it is not victimized by serial correlation throughout the series.

The Jarque-Bera exhibits a corresponding probability value of 0.309965 which is more than 0.05 at 95% confidence interval on the basis of which, we fail to reject the null hypothesis rather we accept it and state that the residual is random and it is normally distributed within the series provided that the residual is stationary. To check the stationarity of the residual, we plot it as below:
In the figure above, there are three lines. The red line shows the nonstationarity of the variable which moves alongside the green line which is called the fitted line and both of them have upward trend. On the side, we see the blue line that shows the stationarity of the residual and that is desirable for our test since, this supports the normal distribution of the residuals with a p-value of 0.31 extracted from the Jarque-Bera test in figure 1. To further ensure the validity of this test, we continue to check the Q-statistics of correlogram as below:

Table 3: Q-Statistic Correlogram

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>.</td>
<td>1</td>
<td>0.055</td>
<td>0.055</td>
<td>0.818***</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>2</td>
<td>-0.041</td>
<td>-0.044</td>
<td>0.958***</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>3</td>
<td>-0.055</td>
<td>-0.050</td>
<td>0.986***</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>4</td>
<td>-0.332</td>
<td>-0.330</td>
<td>2.6079</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>5</td>
<td>0.096</td>
<td>0.138</td>
<td>2.8351</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>6</td>
<td>-0.212</td>
<td>-0.300</td>
<td>4.0990</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>7</td>
<td>-0.076</td>
<td>-0.051</td>
<td>4.2816</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>8</td>
<td>0.168</td>
<td>0.042</td>
<td>5.3303</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>9</td>
<td>-0.143</td>
<td>-0.152</td>
<td>6.2463</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>10</td>
<td>-0.010</td>
<td>-0.189</td>
<td>6.2515</td>
</tr>
</tbody>
</table>

***Significant if p-value ≥ 0.05

The residual is further tested by Q-Statistics Correlogram at 10 lags. The probability value of Q-statistics at all 10 lags are more than 0.05 and from this we understand that if the p-value is more than 0.05, we cannot reject the null hypothesis that 1) the residuals are stationary and does not follow unit root and 2) the residual is not autocorrelated (see, Mujica et.al., 2008). The statistical values for autocorrelation function (ACF) and partial correlation function (PACF) also indicate stationarity of the residual at all 10 lags. But still we have test for the heteroskedasticity of the residuals for which the following hypothesis must be tested:

Null: The residual is homoscedastic within the series Vs. Alternative: The residual is heteroskedastic

Table 4: Heteroskedasticity test of Breusch – Pegan – Godfrey

<table>
<thead>
<tr>
<th>F-statistic</th>
<th>0.117603</th>
<th>Prob. F(1,12)</th>
<th>0.7376***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs*R-squared</td>
<td>0.135872</td>
<td>Prob. Chi-Square(1)</td>
<td>0.7124***</td>
</tr>
<tr>
<td>Scaled explained SS</td>
<td>0.071688</td>
<td>Prob. Chi-Square(1)</td>
<td>0.7889</td>
</tr>
</tbody>
</table>

***Significant if p-value is ≥ 0.05
The corresponding p-values for F-statistics and the observed R-Squared are 0.7376 and 0.7124 respectively that are > 0.05 on the basis of which we cannot reject the null hypothesis rather we accept it against the alternative one and we conclude that the residual is homoscedastic (see, Zaman, 2000; Herwartz, 2006).

4. CONCLUSION

Estimation and evidenced based determination of GDP growth rate driven by Consumption can be of high assistance to the policy makers, investors and the consumers of a particular economic market. In this paper, the market consumption as a major driver of GDP growth in Afghanistan is investigated that as a direct consequence of the statistical analysis of a set of data representing the period 2001 to 2014, it is found that market consumption has a direct affect and it is one of the significant element to drive an economic growth in Afghanistan. The semi-log model exhibits a corresponding probability value of 0.000 which is significant while the coefficient presents 15.34% GDP growth driven by market consumption throughout the period under study. Further statistical analysis obtained from the Breusch-Godfrey and Breusch – Pegan-Godfrey LM tests for investigating the existence of any serial correlation within the series support us to reject the null hypothesis that there is no serial correlation within the series. On the other hand, the Jarque-Bera test of normality shows a p-value of 0.3099 which is significant and further documents that the residuals are random and normally distributed within the series.

ACKNOWLEDGEMENT

The author acknowledges the constructive and valuable comments of anonymous editor and reviewer of this paper. It is also to acknowledge the initial editing efforts of the research department of Rana University with regards to this paper.

REFERENCES

