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Abstract

We develop a general theory of epistemic democracy in large societies, which
subsumes the classical Condorcet Jury Theorem, the Wisdom of Crowds, and other
similar results. We show that a suitably chosen voting rule will converge to the
correct answer in the large-population limit, even if there is significant correlation
amongst voters, as long as the average correlation between voters becomes small as
the population becomes large. Finally, we show that these hypotheses are consistent
with models where voters are correlated via a social network, or through the DeGroot
model of deliberation.
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1 Introduction

The epistemic approach to social choice theory originates with Condorcet (1785). Suppose
a group of people want to obtain the correct answer to some dichotomous (yes/no) question.
The question has an objectively correct answer, and everyone has an opinion, but nobody
has perfect information. The group could be, for example, a jury trying to determine the
guilt or innocence of a defendant in a criminal trial, or a committee of engineers trying to
determine whether a bridge is structurally safe. Condorcet’s insight was that such a group
could efficiently aggregate their private information by voting. The famous Condorcet Jury
Theorem (CJT) consists of two statements:

• A decision made by a committee using majority vote will be more reliable than the
opinion of any single individual. Furthermore, larger committees are more reliable
than smaller committees.

• Majority vote will converges in probability to the correct answer as the committee
size becomes arbitrarily large.

∗33 Boulevard du Port, 95011 Cergy-Pontoise cedex, France. email: marcuspivato@gmail.com

1



The first statement is sometimes called the nonasymptotic part of the CJT, while the second
statement is the asymptotic part. Although it was originally stated only for dichotomous
decisions made by majority vote, the CJT has been generalized to polychotomous decisions
made by the plurality rule (Ben-Yashar and Paroush, 2001; List and Goodin, 2001), and
even other voting rules such as the Kemeny rule and the Borda rule (Young, 1986, 1988,
1995, 1997). Furthermore, in these contexts, the “nonasymptotic” part of the CJT can be
refined: under certain conditions, the output of the voting rule is a maximum likelihood

estimator of the correct answer (see Pivato (2013b) for a general formulation of these
results).

A closely related result is the “Wisdom of Crowds” (WoC) principle of Galton (1907):
if a large number of people estimate some numerical quantity, then the average of their
estimates will converge, in probability, to the true value. However, the WoC, the CJT,
and all of its polychotomous generalizations depend on the assumption that the errors
made by different voters are independent random variables. This is obviously unrealistic:
in reality, the opinions of different voters will be strongly correlated, both because they
rely on common sources of information and because they influence one another through
deliberation and discussion. The goal of this paper is to extend the asymptotic part of the
CJT, WoC, and similar theorems to an environment with correlated voters.

It has been understood for a long time that the “independence” assumption in the
CJT is problematic. Starting in the 1980s, a series of papers gauged the seriousness of this
problem and proposed possible solutions. Nitzan and Paroush (1984) demonstrated the
sensitivity of the CJT to the independence assumption, while Shapley and Grofman (1984)
showed that, with certain patterns of correlations, a nonmonotonic rule could actually be
more reliable than majority vote. Owen (1986) argued that, if the voters can be divided
into subgroups such that voters within each subgroup are correlated, then an “indirect”
majority vote (like an electoral college) could be more reliable than direct majority vote.
Meanwhile, Ladha (1992) showed that the asymptotic CJT remained true as long as the
“average” correlation between the voters was sufficiently small. (This is a special case of
Theorem 5.3 in the present paper.) Berend and Sapir (2007) found general conditions for
the nonasymptotic part of the CJT to hold in a committee of correlated voters. Kaniovski
(2009, 2010) modeled the joint probability distribution of a population of homogeneous
correlated voters using a representation by Bahadur, and studied the nonasymptotic part of
the CJT in this context. Building on this work, Kaniovski and Zaigraev (2011) showed that
a special case of the Bahadur representation admits a quota voting rule which neutralizes
the effect of the correlations. Finally, Peleg and Zamir (2012) gave a number of necessary
conditions and sufficient conditions for a population of correlated voters to satisfy the CJT.

One natural source of voter correlation is “contagion” of opinions (e.g. due to deliber-
ation). Berg (1993a,b) and Ladha (1995) supposed that the voters’ errors were correlated
according to hypergeometric or Pólya-Eggenberger urn processes, which is a simple model
of such “contagion”. They showed that the asymptotic CJT holds for the former, but does
not hold for the latter (although a group is still more reliable than an individual). See
Berg (1996) for a summary.
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Another possible cause of voter correlation is a common source of information. For
example, in a criminal trial, all jurors observe exactly the same evidence. In a committee
of engineers, everyone reads the same technical reports and has access to the same data. In
other situations, the voters might all be influenced by an “opinion leader”. Boland (1989)
and Boland et al. (1989) developed a version of the CJT with such an opinion leader.
Later, Berg (1994) extended this to a setting with weighted voting rules. Estlund (1994)
also considered a model with opinion leaders, but he showed that, under certain conditions,
such opinion leaders could actually improve the reliability of majority vote. Meanwhile,
Ladha (1993, Proposition 1) proved a version of the CJT when the voter errors are not
independent, but are exchangeable random variables. By a theorem of de Finetti, this is
equivalent to a model where all the voters are independent Bernoulli random variables with
a common parameter α, which is itself another random variable; thus, α can be interpreted
as representing a common information source. (The hypergeometric distributions studied
by Berg (1993a,b) and Ladha (1995) are also examples of exchangeable distributions.)
Peleg and Zamir (2012, Theorem 5) also proved a version of the CJT for exchangeable
random variables. Dietrich and List (2004) demonstrated that if all voters draw only on
a small set of (unreliable) information sources, then the asymptotic part of the CJT fails:
even a very large population of voters cannot be any more reliable than the (small) set of
information sources on which they all base their opinions. Dietrich and List represented
this situation as a Bayesian network; this approach was further developed by Dietrich
and Spiekermann (2013a,b), who showed that, in the presence of common causes, the
asymptotic reliability of a large committee can be good, but less than perfect.

A third possible cause of correlation is strategic voting. Even if all voters want the
group to get the correct answer, they may have incentives to vote strategically (Austen-
Smith and Banks, 1996). However, McLennan (1998, Theorem 1) has shown that any
profile of voting strategies which maximizes the probability that the group gets the right
answer will be a Bayesian Nash equilibrium (BNE). This holds even if the voters’ types
(i.e. their private information) are correlated. As observed by Peleg and Zamir (2012),
this means that we only need to prove the existence of some pattern of voting behaviour
which satisfies the CJT; it then follows that the CJT will also hold in BNE. Thus, we do
not need to explicitly consider strategic behaviour in our analysis.

All of the aforementioned papers deal only with dichotomous decision problems and
majority rule. In contrast, the asymptotic results of this paper are applicable to a poly-

chotomous decisions and a large class of epistemic voting rules, including majority rule,
plurality rule, the Kemeny rule, the median rule, the average rule, the Borda rule, and
other scoring rules. To obtain this level of generality, we will introduce a single broad class
of voting rules which includes all of the aforementioned rules as special cases: the class of
mean partition rules. Furthermore, we will provide a concrete illustration of the economic
relevance of our general results, by connecting them with the theory of social networks and
the DeGroot (1974) model of consensus formation.

The remainder of this paper is organized as follows. Section 2 introduces notation
and terminology which will be maintained throughout the paper. Section 3 defines the
class of mean partition rules and gives several examples, including majority rule, plurality
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rule, the median rule, and other scoring rules. Section 4 describes a special case of our
model, which we call a populace: this is a family of probability distributions, describing
a society where voters make independent random errors. It contains special cases of our
main result (Propositions 4.1 and 4.3), which state that, if the populace satisfies certain
mild conditions, then an appropriate mean partition rule will select the correct answer
with very high probability in a large population.

Section 5 describes a general case of the model, which we call a culture: this is a family
of probability distributions, describing a society where the errors of the voters are correlated
random variables. It then states the general version of our main result (Theorem 5.3): if the
culture is sagacious (meaning that it satisfies certain mild conditions —in particular, the
“average correlation” between voters is not too large), then an appropriate mean partition
rule will select the correct answer with very high probability in a large population.

The rest of the paper explores applications. Section 6 considers cultures based on
social networks, and contains results (Propositions 6.2 and 6.5) stating that, as long as
the social network is not too richly connected, the resulting culture will be sagacious, so
that Theorem 5.3 applies. Finally, Section 7 considered the effects of deliberation on an
already sagacious culture, and contains a result (Proposition 7.1) saying that, as long as
no individuals are too “influential” in this deliberation, the culture will remain sagacious
after deliberation. All proofs are in the Appendix.

2 Notation and terminology

We now fix some notation which will be maintained throughout the paper. Let N :=
{1, 2, . . .} denote the set of natural numbers. Let R denote the set of real numbers, and
let R+ denote the set of nonnegative real numbers. Let I denote a finite set of voters,
and let I := |I|. (We will typically assume that I is very large; indeed, we will mainly be
interested in asymptotic properties as I→∞.)

We will assume throughout the paper that the set of possible states of the world is
a topological space (for example, a subset of some Euclidean space). If S is a finite set,
then we will just use the discrete topology, where every singleton set is open. We will also
assume that the possible votes sent by the voters are elements of a vector space equipped
with a norm or an inner product. If V is a vector space, then a norm on V is a function
‖•‖ : V−→R+ such that, for any v,w ∈ V and r ∈ R: (1) ‖r v‖ = |r| · ‖v‖; (2) ‖v‖ = 0
if and only if v = 0; and (3) ‖v + w‖ ≤ ‖v‖ + ‖w‖. Such a norm defines a metric
d on V by d(v,w) := ‖v − w‖. For example, the Euclidean norm on R

N is defined by
‖v‖ :=

√
v21 + · · ·+ v2N .

An inner product on V is a function 〈•, •〉 : V × V−→R such that, for any v,w ∈ V:
(1) The functions 〈v, •〉 : V−→R and 〈•,w〉 : V−→R are linear; (2) 〈v,w〉 = 〈w,v〉; and
(3) 〈v,v〉 ≥ 0, and furthermore, 〈v,v〉 = 0 if and only if v = 0. An inner product defines
a norm by setting ‖v‖ :=

√
〈v,v〉. For example, if V = R, then we could simply take

〈r, s〉 := r · s for any r, s ∈ R. If V = R
N , then we could use the standard dot product:

〈v,w〉 = v1 w1 + · · ·+ vN wN for any v,w ∈ R
N .

Let ρ be a probability measure on a vector space V. The expected value of a ρ-random
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Figure 1: A mean partition rule. (a) V is a subset of the vector space V. (b) C is the convex hull of V.
(c) f−1{s} is a convex subset of C, for each s ∈ S. (d) The continuity set C′.

variable is defined E[ρ] :=
∫
V
v dρ[v]. If V has a norm ‖.‖, then the variance is defined

var[ρ] :=

∫

V

‖v − v‖2 dρ[v], where v := E[ρ].

3 Mean partition rules

Let I be a set of individuals. Let S be a topological space of social alternatives. An
(anonymous) mean partition rule on S is a voting rule defined by a data structure F :=
(V,V , f) with three properties:

(M1) V is a normed vector space, and V ⊆ V (as shown in Figure 1(a)).

(M2) If C is the convex hull of V (as in Figure 1(b)), then f : C−→S is a surjective
function, such that for all s ∈ S, the preimage set f−1{s} is a convex subset of C (as
in Figure 1(c)).

(M3) There is a relatively open subset C ′ ⊆ C (as in Figure 1(d)) such that f is continuous
and surjective when restricted to C ′.
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In this model, V is the set of possible votes which could be sent by each individual. Given
any set finite I of individuals, and any profile V = (vi)i∈I of votes (where vi ∈ V for
all i ∈ I), the output of the rule is obtained by applying f to the average of the vectors
{vi}i∈I . Formally,

F (V) := f

(
1

|I|

∑

i∈I

vi

)
.

A few remarks are in order. First, note that the voting rule F is anonymous by construction
(i.e. the outcome is invariant under permutation of the voters). Second, if f is injective (so
that f−1{s} is a singleton for all s ∈ S), then the convexity condition (M2) is automatically
satisfied, while the continuity condition (M3) simply says that f is a continuous function.
At the other extreme, if S is finite, then (M2) says that f defines an S-labelled partition
of C into convex subsets. Third, given condition (M2), we can (and will) assume without
loss of generality that the set C ′ in (M3) has been chosen to also satisfy:

(M2′) For any s ∈ S, the f -preimage of s inside C ′ is convex. (See Figure 1(d).)

Finally, note that the norm on V and the topology on S are only needed to state condition
(M3). Furthermore, the content of (M3) is really determined by the norm topology, rather
than the norm itself. Thus, if V = R

N with the standard topology, then we can assume
without loss of generality that (M3) invokes the Euclidean norm. If V is some other N -
dimensional vector space, then we can define a norm via any linear isomorphism from
V to R

N . If V is infinite-dimensional, then the issue is more subtle, as there are many
topologically non-equivalent norms to choose from. Note that (M3) does not require f to
be continuous everywhere on C. (Indeed, if S was a discrete set, this would be impossible.)
We will refer to C ′ as the continuity set of F .

-1 +10

-1 +1
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f

-1 +1

0
-1 +1

C−1

f

C+12ε

(a) (b)

Figure 2: Simple majority vote as a mean partition rule.

Example 3.1. (a) (Simple majority rule) Let S := {±1}. Let Vmaj := R. Let Vmaj :=
{±1}, so that C = [−1, 1], as shown in Figure 2(a). Define fmaj : C−→S by setting
fmaj(r) := sign(r) for all nonzero r ∈ [−1, 1], while fmaj(0) := 1 (an arbitrary tie-breaking
rule). Then Fmaj = (Vmaj,Vmaj, fmaj) is the simple majority rule. Now, fix ǫ > 0, and let
C ′ := C−1 ⊔ C+1, where C−1 := [−1,−ǫ) and C+1 := (ǫ, 1], as shown in Figure 2(b). Then
(M3) (and (M2′)) are satisfied.

Throughout the remaining examples, let P(S) be the power set of S, and let τ : P(S)−→S
be some function; we will use τ as a “tiebreaker” in the definition of the following rules.
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Figure 3: The plurality rule as a mean partition rule.

(b) (Plurality rule) Let N ≥ 2, and let S := {1, 2, . . . N} (a set of N alternatives). Let
Vplu := R

N . For all n ∈ [1 . . . N ], let vn := (0, . . . , 0, 1, 0, . . . , 0), where the 1 appears in
the nth coordinate. Let Vplu := {v1, . . . ,vN} (a subset of RN). If C is the convex hull of V ,
then C is the unit simplex in R

N , as shown in Figure 3(a). For any c ∈ C, let Sc := {s ∈ S;
cs ≥ ct for all t ∈ S} be the set of maximal coordinates. Define fplu : C−→S by setting
fplu(c) := τ(Sc), for all c ∈ C. Then Fplu = (Vplu,Vplu, fplu) is the plurality rule. Fix ǫ > 0,
and for all s ∈ S, define Cs := {r ∈ R

N ; rs > rt + ǫ for all t 6= s}, as shown in Figure 3(b).
Let C ′ := C1 ⊔ C2 ⊔ · · · ⊔ CN ; then (M3) (and (M2′)) are satisfied.

(c) (The average rule) Let N ≥ 2, and let S be a convex subset of RN . Let C = V = S,
and let fave : C−→S be the identity function. This represents the rule where each voter
declares an “ideal point” in S, and the outcome is the arithmetic average of these ideal
points. Note that (M2) and (M3) are satisfied (with C ′ := S), because the identity function
is continuous, and the preimage of each point is a singleton.

(d) (The median rule) Let (S, <) be a finite or countable linearly ordered set. Represent
S as a subset of R in an order-preserving way. Let Vmed := R

S . For all s ∈ S, define
vs := (vst )t∈S ∈ V, by setting vst := |s − t| for all t ∈ S. Let Vmed := {vs}s∈S (a subset of
Vmed), and let C be the convex hull of V . For any c ∈ C, let Sc := {s ∈ S; cs ≤ ct for all
t ∈ S} be the set of minimal coordinates of c—in effect, these are the element(s) of S which
minimize the average distance to the points chosen by the voters. It is easy to see that
Sc is always a closed interval inside S. Define fmed : C−→S by setting fmed(c) := τ(Sc),
for all c ∈ C. In other words, each voter chooses a point s in S (represented by vs), and
Fmed chooses a point in S which minimizes the average distance to the points chosen by
the voters (using τ to break ties). As is well-known, this point will be a median of the
points chosen by the voters.
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(e) (The generalized median rule) Let (S, d) be a metric space.1 Let Vmed := R
S . For all

s ∈ S, define vs := (vst )t∈S ∈ V, by setting vst := d(s, t) for all t ∈ S. Let Vmed := {vs}s∈S
(a subset of Vmed), and let C be the convex hull of Vmed. For any c ∈ C, let Sc := {s ∈ S;
cs ≤ ct for all t ∈ S}, as in example (d). Define fmed : C−→S by setting fmed(c) := τ(Sc),
for all c ∈ C. As in example (d), each voter chooses a point s in S (represented by vs),
and Fmed selects a point in S which minimizes the average distance to the points chosen
by the voters (using τ to break ties).

(f) (The Kemeny rule) Let A be a finite set of social alternatives. Let S be the set of
all linear orders over A. The Kendall metric on S is defined by declaring d(s, r) to be
the number of pairwise comparisons where the orders s and r disagree. In this case, the
generalized median rule from example (e) is the Kemeny rule for preference aggregation.

(g) (Any scoring rule) Let S be a set of alternatives. Let Vscr := R
S , and let V be any

subset of V. Intuitively, an element v = (vs)s∈S in V represents a vote which assigns a
“score” of vs to each alternative in S. Let C be the convex hull of V . For any c ∈ C, let
Sc := {s ∈ S; cs ≥ ct for all t ∈ S} be the set of maximal coordinates. Define fscr : C−→S
by setting fscr(c) := τ(Sc), for all c ∈ C. Then Fscr = (Vscr,V , fscr) is called a scoring rule.
All of the examples above are special cases of scoring rules. Other well-known scoring rules
include the Borda rule and the approval voting rule.

(h) (Mean proximity rules) Let S be a finite set of alternatives, and for each s ∈ S, let
rs ∈ R

N . Let V be another finite subset of RN . Let C be the convex hull of V . For
any c ∈ C, let Sc := {s ∈ S; ‖rs − c‖ is minimal}. Define fmpr : C−→S by setting
fmpr(c) := τ(Sc), for all c ∈ C. Then Fmpr = (Vscr,V , fmpr) is called a mean proximity rule.
♦

When V and S are finite, Zwicker (2008, Theorem 4.2.1) has shown that an anonymous
voting rule is a scoring rule (as in Example 3.1(g)) if and only if it is a mean proximity rule
(as in Example 3.1(h)).2 So these two classes are equivalent. However, not every mean
partition rule is a mean proximity rule, even when V and S are finite.3

When V and S are finite and the voting rule is both anonymous and neutral (i.e. it
treats all elements of V the same, in a certain sense), Myerson (1995) has shown that it is
a scoring rule if and only if it satisfies two axioms. The first, Consistency (also called Rein-

forcement) means, roughly, that given two profiles (v1, . . . ,vI) and (w1, . . . ,wJ), we have
F (v1, . . . ,vI ,w1, . . . ,wJ) = F (v1, . . . ,vI) ∩ F (w1, . . . ,wJ) whenever this intersection is
nonempty. The second axiom, Continuity (which Myerson called Overwhelming majority)
says, roughly, that a sufficiently small change to a sufficiently large population profile can-
not change the outcome. Pivato (2013a, Theorem 2) proved a generalization of Myerson’s
result which keeps neutrality but relaxes the Continuity condition, by allowing the score

1A metric space is a set S together with a function d : S × S−→R+ such that, for any r, s, t ∈ S: (1)
d(s, t) = d(t, s); (2) d(s, t) = 0 if and only if s = t; and (3) d(r, t) ≤ d(r, s) + d(s, t).

2Zwicker’s model is slightly different: instead of using a tiebreaker rule, he allows voting rules to be
multivalued in the case of a tie.

3Mean proximity rules correspond to the special case when the partition of C into F -preimages is the
Voronoi partition induced by the set {rs}s∈S .
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vectors to take “infinitesimal” values. The axiom of Consistency alone characterizes the
class of balance rules, which are almost the same as mean partition rules except for more
precisely specified behaviour in the case of ties (Pivato, 2013a, Theorem 1). However, there
is not yet any axiomatic characterization of the class of mean partition rules itself.

4 Epistemic social choice with independent voters

Let S be the topological space of the possible states of the world (the true state being
unknown). Let (V,V , F ) be a mean partition rule taking outcomes in S. Let I be a finite
set of individuals, and let I := |I|. We suppose that each individual’s vote is a random
variable, which is dependent on the true state of nature. The idea is that each individual
obtains some information about the state of nature (possibly incomplete and/or incorrect),
combines it with her own pre-existing beliefs, and formulates a belief about the state of
nature, which she expresses using her vote. Our goal is to use the pattern of these votes
to estimate the true state of nature.

Formally, for each individual i ∈ I, we posit a behaviour model ρi : S−→∆(V); if the
true state is s ∈ S, then the probability distribution of individual i’s vote will be ρi(s). For
any v ∈ V , we will write ρi(v|s) for the value of ρi(s) evaluated at v —i.e. the probability
that individual i votes for v, given that the true state is s.

Different voters may have different behaviour models (due to differing competency,
different prior beliefs, or access to different information sources). Furthermore, it is not
realistic to suppose that we have precise knowledge of the behaviour model of every voter
(or even of any voter); in general, we only know some broad qualitative properties of their
behaviour models. Thus, we will suppose that there is some set P of possible behaviour
models (i.e. functions from S into ∆(V)), and all we know is that ρi ∈ P for all i ∈ I.
We will refer to P as a populace. We will say that P is sagacious for a mean partition rule
F = (V,V , f) if it satisfies two conditions:

Identification. For any ρ ∈ P and any s ∈ S, the expected value of a ρ(s)-random
variable lies in the f -preimage of s inside the continuity set C ′. In other words,
if E[ρ(s)] denotes the mean value of the distribution ρ(s), then E[ρ(s)] ∈ C ′ and
f (E[ρ(s)]) = s.

Minimal reliability. There is some M ≥ 0 such that var[ρ(s)] ≤ M for all ρ ∈ P and
s ∈ S.

The Identification condition says that, while an individual’s actual vote may be incorrect,
the expected value of her vote is a good indicator of the true state of nature —at least
once it has been “interpreted” using the function f . The variance of an individual’s vote
distribution is a measure of her reliability: if the variance is large, then this voter has a
high probability of picking the wrong answer. The Minimal Reliability condition says that
all voters meet at least some minimum standard of reliability. Note that, if the set V is
bounded (in particular, if V is finite), then Minimal Reliability is automatically satisfied
(because there will be some M such that var(ρ) ≤ M for any ρ ∈ ∆(V)).
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Our first result says that, if S is finite and a large number of voters are drawn from a
sagacious populace, and their votes are independent random variables, then the output of
the voting rule will be the true state of nature, with very high probability.

Proposition 4.1 Let F be a mean partition rule ranging over a finite set S, and let P
be a populace which is sagacious for F . For all i ∈ N, let ρi ∈ P. Fix s ∈ S, and

suppose {vi}
∞
i=1 are all independent random variables, where, for all i ∈ N, vi is drawn

from distribution ρi(s). Then lim
I→∞

Prob [F (v1,v2, . . . ,vI) = s] = 1.

Example 4.2. (a) (Condorcet Jury Theorem) Let S = V := {±1} and let Fmaj be as in
Example 3.1(a). Let P be the set of all behaviour models ρ : {±1}−→∆{±1} such that
ρ(s|s) > 1

2
+ ǫ (and thus, ρ(−s|s) < 1

2
− ǫ) for both s ∈ {±1}. Let C−1 := [−1,−ǫ) and

C1 := (ǫ, 1]. Then E[ρ(s)] ∈ Cs for any ρ ∈ P and s ∈ {±1} . Thus, Fmaj (E[ρ(s)]) = s,
so Identification is satisfied. Furthermore, var(ρ) < 4 for any ρ ∈ ∆{±1}, so Minimal

Reliability is always satisfied. Thus, Proposition 4.1 yields an extension of the Condorcet
Jury Theorem to heterogenous voters, originally stated by Paroush (1998): If the voter’s
opinions about some dichotomous choice are independent random variables, and each voter
satisfies some minimal level of competency (i.e. her probability of identifying the correct
answer is ǫ-better than a coin flip), then the outcome of a simple majority vote will converge
in probability to the correct answer as the voting population becomes large.

(b) (Plurality CJT) Let N ≥ 2, and let S := {1, 2, . . . N}. Define (V,V , Fplu) as in
Example 3.1(b). Let P be the set of all behaviour models ρ : S−→∆(V) such that ρ(vs|s) >
ρ(vt|s) + ǫ, for all s, t ∈ S with s 6= t. For all s ∈ S, define Cs as in Example 3.1(b). Then
E[ρ(s)] = (ρi(1|s), ρi(2|s), . . . , ρi(N |s)) ∈ Cs for all ρ ∈ P and s ∈ S; thus, Identification
is satisfied. Furthermore, var(ρ) < N for any ρ ∈ ∆(V), so Minimal Reliability is always
satisfied. Thus, Proposition 4.1 yields a “polychotomous” extension of the CJT, originally
stated by Goodin and List (2001; Proposition 2): if each voter satisfies some minimal level
of competency (i.e. is ǫ-better than a random guess), then the outcome of the plurality

rule will converge in probability to the correct answer as the voting population becomes
large. ♦

In fact, Proposition 4.1 is a special case of the next result, which also applies when S
is infinite. This result says that, if a large number of voters are drawn from a sagacious
populace, and their votes are independent random variables, then the output of the voting
rule will be very close to the true state of nature, with very high probability.

Proposition 4.3 Let F be a mean partition rule ranging over an arbitrary set S, and

let P be a populace which is sagacious for F . For all i ∈ N, let ρi ∈ P. Fix s ∈ S,
and suppose {vi}

∞
i=1 are all independent random variables, where, for all i ∈ N, vi is

drawn from distribution ρi(s). Then for any open subset U ⊂ S containing s, we have

lim
I→∞

Prob [F (v1,v2, . . . ,vI) ∈ U ] = 1.

Example 4.4. (The Wisdom of Crowds) Let N ≥ 1, let V = S be some convex subset of
R

N , and let Fave be the average rule, as in Example 3.1(c).
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Fix M > 0, and let P be the set of all behaviour models ρ : S−→∆(V) such that, for all
s ∈ S, E[ρ(s)] = s and var[ρ(s)] ≤ M . Then Identification and Minimal Reliability are
satisfied. Thus, Proposition 4.3 yields the Wisdom of Crowds principle for the estimation
of some real-valued (or, more generally, vector-valued) quantity: if each voter estimates
the quantity, and their estimates are independent, unbiased, and have finite variance, then
the average of their estimates will converge in probability to the correct answer. ♦

Examples 4.2 and 4.4 are well-known results from epistemic social choice theory. However,
the next example is new.

Example 4.5. (Log-likelihood scoring rules) Let S be a finite set. Let p : S−→∆(S) be
a function (called an error model). For any s, t ∈ S, we interpret p(t|s) be the probability
that a voter will believe that the true state is t, when it is actually s. Let V := R

S , and
for all r ∈ S, define vr := (vrs)s∈S ∈ V by setting vrs := log[p(r|s)], for all s ∈ S. Let
V := {vr}r∈S , let C be the convex hull of V , and let f p

log := fscr : C−→S be the scoring rule
defined in Example 3.1(g). We will refer to this as a log-likelihood scoring rule.

Assume the votes of the different voters are independent random variables (conditional
on the true state of nature). Any error model p′ induces a behaviour model ρ′ by setting
ρ′(vr|s) := p′(r|s) for all r, s ∈ S. For any δ > 0, let Pp,δ be the populace consisting
of all behaviour models ρ′ induced by an error model p′ such that |p′(t|s)− p(t|s)| < δ
for all t, s ∈ S. If p(t|s) > 0 for all t, s ∈ S, then the populace Pp,δ satisfies Minimal

Reliability (see Proposition A.2(a) in the Appendix). Now fix ǫ > 0, and for all s ∈ S,
define Cǫ

s := {c ∈ C; cs > ct + ǫ for all t 6= s}. If C ′
ǫ :=

⋃
s∈S C

ǫ
s, then f p

log satisfies (M3)
when restricted to C ′. If ǫ and δ are small enough, then Pp,δ satisfies Identification with
respect to f p

log and C ′
ǫ (see Proposition A.2(b) in the Appendix).

Thus, Proposition 4.1 yields an extension of the Condorcet Jury Theorem to any log-
likelihood scoring rule. If a sufficiently large number of independent random voters are
drawn from the populace Pp,δ, then the log-likelihood scoring rule F p

log will select the true
state of nature, with probability arbitrarily close to 1. For example, if S is the space of
preference orders on some set of alternatives, then this conclusion holds for the Kemeny
rule, given the error model proposed by Young (1986, 1988, 1995, 1997). ♦

If the error model p in Example 4.5 has “sufficient symmetry”, then the outcome of the
rule F p

log will be the maximum likelihood estimator (MLE) of the true state. Conversely,
any scoring rule can be interpreted as a log-likelihood scoring rule for some error model,
and in many cases, these are in fact maximum likelihood estimators (Pivato, 2013b, Theo-
rem 2.2(b)). For example, the Kemeny rule (Example 3.1(f)) is the MLE for a natural error
model on the space of preference orders (Young, 1986, 1988, 1995, 1997). More generally, on
any metric space (S, d) which is “sufficiently symmetric”, the generalized median rule (Ex-
ample 3.1(e)) is the MLE for any exponential error model, where p(s|t) = C exp[−α d(s, t)],
for some constants α,C > 0 (Pivato, 2013b, Corollary 3.2). Example 4.5 is a complemen-
tary result: not only is F p

log an MLE, but it is in fact a consistent estimator of the true
state, in the large-population limit.
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5 Correlated Voters

The problem with the model in Section 4 is the assumption that the errors of the voters are
stochastically independent. We will now extend this model to allow for correlated voters.

Culture. If the voters are correlated, then we can no longer consider their vote distribu-
tions separately. Instead, we must consider the joint distribution of all the voters. Given
a set I of individuals and a set V of votes, a profile is an element V = (vi)i∈I of VI ,
which assigns a vote vi to each individual i in I. A collective behaviour model is a function
ρ : S−→∆(VI), which determines a probability distribution ρ(s) over the set of possible
profiles, for each possible state s ∈ S. We cannot assume that we have detailed knowledge
of the collective behaviour model of a society. We will only suppose that it arises from
some family of collective behaviour models with certain qualitative properties. For this
reason, we define a culture on V to be a sequence R = (RI)

∞
I=1 where, for all I ∈ N, RI is

a set of collective behaviour models on V , for a population of size I. Note that a culture
is not intended as a description of a single society facing a single epistemic problem. It
describes an infinite family of possible societies, of all possible sizes, facing a family of
possible decision problems.

Correlation. We will need to quantify the correlation between voters arising from a
culture. Let I ∈ N and let I := [1 . . . I]. An element V = (vi)i∈I of VI will be interpreted
as a profile of I voters. Fix a collective behaviour model ρ : S−→∆(VI), and some state
s ∈ S. For all i ∈ I, let

v̂i :=

∫

V

vi dρ[V|s]

be the expected value of individual i’s vote, given the state s.
Let 〈•, •〉 be an inner product structure on V. Fix s ∈ S, and let V = (vi)i∈I be a ρ(s)-

random profile. For any i ∈ I, the random vector (vi− v̂i) measures the amount by which
individual i’s vote deviates from its expected value (if the voters satisfy Identification,
then we can think of this as the “error” in i’s vote). The inner product 〈vi − v̂i, vj − v̂j〉
measures the extent to which the errors of voters i and j are “aligned” with respect to the
geometry of V. The covariance of voters i and j is the expected value of this inner product:

cov(vi,vj) := E[〈vi − v̂i, vj − v̂j〉].

This measures the amount, on average, by which we can expect the errors of i and j to
align in same direction in V. Note that var[vi] = cov(vi,vi). We then define the covariance
matrix of ρ(s) to be the I × I matrix cov[ρ(s)] := [bi,j]

I
i,j=1, where, for all i, j ∈ [1 . . . I],

bi,j := cov(vi,vj).
It is important to note that bi,j measures the correlation of errors, not the correlation

of votes. For example, if i and j were both perfectly reliable (so that, with probability
1, we have vi = vj = v for some v ∈ V such that F (v) = s), then their votes would be
perfectly correlated, but we would have bi,j = 0, since the error term is zero. Likewise, if
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bi,j = −1, this means that the errors of i and j are always exact negations of one another
—it does not mean their votes are always exact negations of one another.

Since we do not know the true collective behaviour model of society, and we don’t know
the true state of nature, we also do not know the true covariance matrix of the voters.
We can only assume that it comes from some family satisfying certain broad qualitative
properties. For this reason, we define a correlation structure to be a sequence B = (BI)

∞
I=1,

where, for all I ∈ N, BI is a collection of I × I symmetric, positive definite matrices. The
elements of BI are the possible covariance matrices that we could see in a society of size I.
We say that B is the correlation structure of the culture R if, for every I ∈ N, BI is the
set of all covariance matrices cov[ρ(s)], for any ρ ∈ RI and s ∈ S.

For any collective behaviour model ρ ∈ RI , and any state s ∈ S, the covariance
matrix B = cov[ρ(s)] combines two sorts of information: the diagonal entries encode the
“reliability” of individual voters, whereas the off-diagonal entries encode the correlations
between voters. To be precise, for any i ∈ [1 . . . I], the diagonal entry bi,i is the variance of
individual i’s vote in a ρ(s)-random profile; this is inversely proportional to i’s “reliability”.
For any distinct i, j ∈ [1 . . . I], the off-diagonal entry bi,j is the covariance between the error
of individual i’s vote and the error of individual j’s vote, in a ρ(s)-random profile. (Note
that bi,j could be negative, reflecting anticorrelation between the errors of i and j.) For
this reason, we will associate two distinct numerical values with each covariance matrix
B ∈ BI . We define

σ(B) :=
1

I

I∑

i=1

bi,i, and κ(B) :=
1

I(I − 1)

I∑

i,j=1
i 6=j

bi,j. (1)

In other words, σ(B) is the average of the diagonal entries (in effect: the average variance
of the voters’ errors), while κ(B) is the average of the off-diagonal entries (in effect: the
average covariance between the voters’s errors).

Let R = (RI)
∞
I=1 be a culture, with correlation structure (BI)

∞
I=1. Let F = (V,V , f) be

a mean partition rule with continuity set C ′. We will say that R is sagacious with respect
to F if it satisfies the following three properties.

Identification. For any I ∈ N, any ρ ∈ RI , and any s ∈ S, if (vi)i∈I is a ρ(s)-random
profile, then for all i ∈ [1 . . . I], the expected value of vi is in the f -preimage of s
inside C ′ —i.e. Eρ(s)[vi] ∈ f−1{s} ∩ C ′.

Asymptotic Reliability. For any I ∈ N, let σ(I) := sup
B∈BI

σ(B). Then lim
I→∞

σ(I)

I
= 0.

Asymptotically Weak Average Correlation. For any I ∈ N, let κ(I) := sup{κ(B);
B ∈ BI}. Then lim

I→∞
κ(I) = 0.

Here, the key condition is Asymptotically weak average correlation. This says that voters’
errors can be correlated, but as the society grows large, the average correlation between
the errors of different voters must become small. Identification has exactly the same
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interpretation as in Section 4. The condition of Asymptotic Reliability is a very weak form
of the Minimal reliability condition from Section 4. To see, this, first note that Minimal

reliability could be weakened to the following condition:

Average Reliability. There is some constant M > 0 such that, for any I ∈ N, and any
B ∈ BI , σ(B) < M .

This condition allows some individuals to be very unreliable, as long as the average reli-
ability is good.4 Clearly, Minimal reliability implies Average Reliability. But Asymptotic

Reliability is even weaker than Average Reliability: it says that even the average reliability
can decay as the population gets larger, as long as it does not decay too quickly. (To be
precise: the average variance of the voter’s errors can grow with population size, but its
growth rate must be sublinear.) Most of our examples satisfy the stronger conditions of
Minimal reliability or Average Reliability. But Asymptotic Reliability is all that is required
for our main result.

Example 5.1. Let P be a sagacious populace, as defined in Section 4. Given any behaviour
models ρ1, . . . , ρI ∈ P , and any s ∈ S, let ρ1⊗· · ·⊗ρI(s) be the product probability measure
on VI —that is, the distribution of a random profile where v1, . . . ,vI are are independent
random variables, with vi distributed according to ρi(s) for all i ∈ [1 . . . I]. This yields a
collective behaviour model ρ1 ⊗ · · · ⊗ ρI : S−→∆(VI).

For all I ∈ N, define RI := {ρ1 ⊗ · · · ⊗ ρI ; ρ1, . . . , ρI ∈ P}, and then let R := (RI)
∞
I=1.

Then R is a sagacious culture. ♦

The next result says that, if S is finite, and a random profile of votes is drawn from a
sagacious culture, and the population is sufficiently large, then with very high probability,
the outcome of the voting rule will be the true state of nature.

Proposition 5.2 Let F be a mean partition rule ranging over a finite set S, and let

(RI)
∞
I=1 be a sagacious culture for F . For all I ∈ N, let ρI ∈ RI . Then for any s ∈ S,

Prob
(
F (v1,v2, . . . ,vI) = s

∣∣∣ (vi)
I
i=1 is a ρI-random profile

)
−−−−

I→∞
−→ 1.

In fact, Proposition 5.2 is a special case of our main result, which also applies when
S is infinite. It says that, if a random profile of votes is drawn from a sagacious culture,
and the population is sufficiently large, then with very high probability, the outcome of
the voting rule will be very close to the true state of nature.

Theorem 5.3 Let F be a mean partition rule ranging over a set S, and let (RI)
∞
I=1 be a

sagacious culture for F . For all I ∈ N, let ρI ∈ RI . Then for any s ∈ S, and any open

set U ⊂ S containing s,

Prob
(
F (v1,v2, . . . ,vI) ∈ U

∣∣∣ (vi)
I
i=1 is a ρI-random profile

)
−−−−

I→∞
−→ 1.

4For a version of the CJT assuming Average reliability, see Theorem II of Grofman et al. (1989).
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In the case of dichotomous choice (i.e. the classical Condorcet Jury Theorem), this
result is very similar to a result proved by Ladha (1992)5. Theorem 5.3 extends this result
to a much larger family of epistemic social choice rules, and also weakensMinimal reliability

to Asymptotic Reliability. Using Theorem 5.3, it is straightforward to extend Examples
4.2, 4.4, and 4.5 to a setting with correlated voters; we leave the details to the reader.

What other combinations of voting rules and cultures are sagacious? First, we will see
how to eliminate any explicit mention of the voting rule from this question. Let V be a
vector space, and let R = (RI)

∞
I=1 be a culture on V. We will say that R is identifiable

if, for any s ∈ S, there is a closed, convex subset C ′
s ⊂ V such that, for any I ∈ N, any

ρ ∈ RI , and any s ∈ S, if (vi)i∈I is a ρ(s)-random profile, then for all i ∈ [1 . . . I], the
expected value of vi is in C ′

s. This is a minimal condition for any possibility of epistemic
social choice. We will say that a correlation structure B = (BI)

∞
I=1 is sagacious if it satisfies

Asymptotic Reliability and Asymptotically Weak Average Correlation.

Proposition 5.4 If R is an identifiable culture, with correlation structure B, and B is

sagacious, then there exists a mean partition rule F on V such that R is sagacious with

respect to F .

So, what sort of correlation structures are sagacious? We now turn to this question.

6 Social networks

A graph is a set I equipped with a symmetric, reflexive binary relation ∼. When I
is a set of voters, we can interpret a graph as a social network: if i ∼ j, we interpret
this to mean that voters i and j are somehow “socially connected” (e.g. friends, family,
neighbours, colleagues, classmates, etc.). The main result of this section says that, if
this social network satisfies certain mild geometric conditions, and the correlation between
voters is a decreasing function of their distance in the network, then the resulting culture
will be sagacious.

We cannot assume that we have exact knowledge of the social network topology; we can
only assume that belongs to some family of graphs satisfying broad qualitative properties.
For this reason, we define a social web to be a sequence N = (NI)

∞
I=1, where, for all I ∈ N,

NI is a set of possible graphs of size I. Thus, our hypotheses will be formulated in terms
of the asymptotic properties of the graphs in NI , as I→∞. But before we can formulate
these hypotheses, we need some basic concepts from graph theory.

Sublinear average degree growth. For any i ∈ I, the degree of i is the number of
links i has in the graph (I,∼). Formally, deg(i,∼) := #{j ∈ I; i ∼ j}. If |I| = I, then
the average degree of the graph (I,∼) is defined:

avedeg(I,∼) :=
1

I

∑

i∈I

deg(i,∼).

5See Ladha (1992, Corollary, p.628) and Ladha (1995, Proposition 1).
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This is the average number of social links of a voter in the social network described by
(I,∼). We then define avedeg(NI) := sup(I,∼)∈NI

avedeg(I,∼). We will say that a social
web (NI)

∞
I=1 exhibits sublinear average degree growth if

lim
I→∞

1

I
avedeg(NI) = 0. (2)

For instance, if avedeg(NI) remains bounded as I→∞, then the limit (2) is obviously
satisfied. However, the limit (2) even allows avedeg(NI) to grow as I→∞, as long as it
grows more slowly than a linear function.

Example 6.1. (Asymptotic degree distributions) Let (I,∼) be a graph. For all n ∈ N,
let

µ(I,∼)(n) :=
1

I
#{i ∈ I ; deg(i,∼) = n}.

This defines a probability distribution µ(I,∼) ∈ ∆(N), called the the degree distribution

of (I,∼). If µ ∈ ∆(N) is another probability distribution, then we define the distance
between µ and µ(I,∼) by

d(µ, µ(I,∼)) :=
∞∑

n=1

n ·
∣∣µ(I,∼)(n)− µ(n)

∣∣ .

We will say that a social web N has asymptotic degree distribution µ if

lim
I→∞

sup
(I,∼)∈NI

d(µ, µ(I,∼)) = 0.

Let avedeg(µ) :=
∞∑

n=1

µ(n)n. If this value is finite, and N has asymptotic degree distribu-

tion µ, then it is easy to check that avedeg(NI) will converge to avedeg(µ) as I→∞; thus,
N will have sublinear average degree growth.

For example, many social networks seem to exhibit a “power law” degree distribution of
the form µ(n) ≈ K/nα, for all n ∈ N, where α > 1, and where K > 0 is a normalization
constant (Barabási and Albert, 1999; Albert et al., 1999). This is a well-defined probability
distribution on N, as long as α > 1. (Typically, 2 < α < 3.) Networks with power law
distributions contain a surprisingly large number of “superconnected” or “hub” individuals,
whose degrees are much larger than that of the typical person. Thus, in such networks,
some individuals can be correlated with a very large number of other individuals. However,
avedeg(µ) is still finite, as long as α > 2. Thus, if a social web has a power law asymptotic
degree distribution with α > 2, then it will have sublinear average degree growth. ♦

Not all social webs have sublinear average degree growth. For example, if α < 2
in Example 6.1, then avedeg(NI) will grow at a superlinear rate as I→∞. For another
example, suppose NI is generated by sampling the Erdös-Renyi “random graph” model,
where there is a constant probability p that any two randomly chosen agents are linked.
Then avedeg(NI) ≈ p I, which grows linearly as I→∞. However, these are not considered
realistic models for social networks in most situations.
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Nearest-neighbour correlation structures. Let B = (BI)
∞
I=1 be a correlation struc-

ture, and let N = (NI)
∞
I=1 be a social web. We will say that B is a nearest-neighbour

correlation structure for N if:

• For any I ∈ N and B ∈ BI , there is some graph (I,∼) in NI and some identification
of I with [1 . . . I] such that, for all i, j ∈ [1 . . . I], we have bi,j 6= 0 only if i ∼ j,

• There is some constant M > 0 such that, for any I ∈ N and B ∈ BI , we have
|bi,j| ≤ M for all i, j ∈ [1 . . . I].

We now come to the first result of this section.

Proposition 6.2 If a social web N has sublinear average degree growth, then any nearest-

neighbour correlation structure for N is sagacious.

In fact, Proposition 6.2 is only a special case of the main result of this section. But before
we can state this result, we must introduce some more terminology.

Generalized degrees. Let (I,∼) be a connected graph. A path in (I,∼) is a sequence
of vertices i0, i1, . . . , iL ∈ I such that i0 ∼ i1 ∼ · · · ∼ iL; we say this path has length L, and
that it connects i0 to iL. For any i, j ∈ I, let d∼(i, j) be the length of the shortest path
connecting i to j in (I,∼). For completeness, we also define d∼(i, i) := 0 for all i ∈ I.
Observe that d∼ is a metric on I. (It is called the geodesic metric of the graph.) For any
r ∈ N and i ∈ I, we define the r-degree of i as degr(i,∼) := #{j ∈ I; d∼(i, j) = r}. Thus,
deg1(i,∼) is just the degree of i, as defined above. Now let γ : N−→[0,∞] be a function
(typically, increasing). For any i ∈ I, we define the γ-degree of i by

degγ(i,∼) := sup
r∈N

degr(i,∼)

γ(r)
. (3)

We then define

avedegγ(I,∼) :=
1

I

∑

i∈I

degγ(i,∼), (4)

and avedeg(NI) := sup
(I,∼)∈NI

avedeg(I,∼). (5)

We will say that a social web (NI)
∞
I=1 exhibits sublinear average γ-degree growth if

lim
I→∞

1

I
avedeg

γ
(NI) = 0. (6)

For instance, suppose we define γ1 : N−→{1,∞} by

γ1(r) :=

{
1 if r = 1;

∞ if r ≥ 2.
(7)

Then clearly, degγ1(i,∼) = deg(i,∼) for all i ∈ I and all (I,∼) ∈ NI . Thus, formula (6) is
equivalent to formula (2); thus, a social web will have sublinear average γ1-degree growth
if and only if it has sublinear average degree growth.
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(a)

(c) (d)

o i
j

(b)

Figure 4: (a) A two-dimensional grid has growth bounded by γ(r) = 4 r. For example, if i is the black
node, then deg5(i,∼) = 20 (the number of grey nodes). (b) If (J ,∼) is a subgraph of a two-dimensional
grid, then its growth is also bounded by γ(r) = 4 r. In this case, if i is the black node, then deg5(i,∼) = 9.
(c) If (J ,∼) is a tree where all nodes have 3 edges, then its growth is bounded by γ(r) = 3 · (2r−1). (d)
If (J ,∼) is an eight binary trees around a hub, then its growth is bounded by γ(r) = 8 · (2r−1).

Example 6.3. (Social networks from infinite graphs) Let J be an infinite set of vertices,
and let ∼ be a graph structure on J ; this is called an infinite graph. If γ : N−→[0,∞]
is some function, then (J ,∼) has γ-bounded growth if we have degr(j,∼) ≤ γ(r), for all
j ∈ I and all r ∈ N. In other words, degγ(j) ≤ 1 for all j ∈ J .

For example, if (J ,∼) is the two-dimensional grid shown in Figure 4(a), then degr(i) = 4 r
for all r ∈ N; thus, (J ,∼) has growth bounded by the function γ(r) := 4 r. More generally,
if (J ,∼) is an infinite subgraph of a two-dimensonal grid, like the one shown in Figure 4(b),
then its growth bounded by the function γ(r) := 4 r. Likewise, if (J ,∼) was an infinite
subgraph of a D-dimensional grid, then it would have growth bounded by a polynomial
function γ(r) := K rD−1 (for some constant K > 0). As these examples show, a graph
with polynomially bounded growth of degree D − 1 has a “D-dimensional” geometry.
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In contrast, suppose (J ,∼) is an infinite tree where every node has degree 3, as shown
in Figure 4(c). Then (J ,∼) has growth bounded by γ(r) = 3 · (2r−1). More generally,
if M ∈ N, and (J ,∼) is any graph where every vertex has degree (M + 1) or less, then
(J ,∼) has growth bounded by the exponential function γ(r) := M r.

For all I ∈ N, let NI be a collection of connected subgraphs of (J ,∼) with exactly I
vertices; then the sequence N = (NI)

∞
I=1 is a social web, which we will say is subordinate to

(J ,∼). Heuristically, the vertices in the graph (J ,∼) represent the set of all “potential”
people who could exist, and the links in (J ,∼) are all “potential” social connections
between them. Thus, any actual social network will be some finite subgraph of (J ,∼);
these are the graphs which appear in N. If (J ,∼) has growth bounded by the function γ,
then it is easy to see that avedeg

γ
(NI) ≤ 1 for all I ∈ N; thus, the asymptotic condition

(6) is trivially satisfied, so that N has sublinear average γ-degree growth. ♦

Correlation decay. Let (I,∼) be a graph, and let B ∈ R
I×I be an I × I matrix (e.g.

a covariance matrix). Let β : N−→R+ be a function (typically, decreasing). We will
say that the matrix B exhibits β-decay relative to (I,∼) if (after bijectively identifying
I with [1 . . . I] in some way), we have bi,j ≤ β[d∼(i, j)] for all i, j ∈ I. In particular, B
exhibits exponential decay if there are some constants λ ∈ (0, 1) and K ≥ 0 such that
bi,j ≤ K · λd∼(i,j) for all i, j ∈ I. Exponential correlation decay is a typical phenomenon
in the spatially distributed stochastic processes studied in statistical physics, such as Ising
models of ferromagnetism (Penrose and Lebowitz, 1974; Procacci and Scoppola, 2001; Bach
and Møller, 2003). The opinions of the voters in a social network can be seen as such a
spatially distributed stochastic process.

We will say that a correlation structureB = (BI)
∞
I=1 exhibits β-correlation decay relative

to social web N = (NI)
∞
I=1 if, for every I ∈ N, and every matrix B ∈ BI , there is some

graph (I,∼) inNI such that B exhibits β-decay relative to (I,∼). For example, letM > 0,
and define β(1) := M while β(r) := 0 for all r ≥ 2. Then B exhibits β-correlation decay
relative to N if and only if B is a nearest-neighbour correlation structure for N.

Subordinate correlation structures. We will say that a correlation structure B is
subordinate to a social web N if there exist functions β : N−→R

+ and γ : N−→[0,∞] such
that N has sublinear average γ-degree growth, B exhibits β-correlation decay relative to
N, and also

∞∑

r=0

γ(r) β(r) < ∞. (8)

(Here, we adopt the convention that ∞· 0 = 0.) Note that, the faster γ(r) grows as r→∞,
the faster β must decay to zero in order for inequality (8) to be satisfied.

Example 6.4. (a) Let M,D ∈ N and suppose that N is subordinate to an infinite, D-
dimensional grid or an M -ary tree, as described in Example 6.3. Let γ(r) := M r for all
r ∈ N; then N has sublinear average γ-degree growth. Let λ < 1/M , let β(r) := λr for all
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r ∈ N; and suppose that every matrix in B exhibits β-exponential correlation decay with
respect to some graph in N. Let c := M λ; then 0 < c < 1, and

∞∑

r=0

γ(r) β(r) =
∞∑

r=0

M r λr =
∞∑

r=0

cr =
1

1− c
< ∞.

Thus, inequality (8) is satisfied, so B is subordinate to N.

(b) Suppose N has sublinear average degree growth, and B is a nearest-neighbour cor-
relation structure for some social web N. As we have seen, this means there is some
constant M > 0 such that β(r) := M if r = 1 and β(r) := 0 for all r > 0, and B exhibits
β-correlation decay relative to N. Now define γ1 : N−→{1,∞} by formula (7). Then
inequality (8) is automatically satisfied. By comparing formulae (2) and (6), we see that
N has sublinear average γ1-degree growth. Thus, B is subordinate to N. ♦

We now come to the main result of this section.

Proposition 6.5 Let N be a social web. Then any correlation structure which is subordi-

nate to N is sagacious.

For example, Proposition 6.2 follows by applying Proposition 6.5 to Example 6.4(b).

7 Deliberation

We will now show that the sagacity of a culture is preserved under a simple model of
deliberation. We will adapt a well-known model of deliberation proposed by DeGroot
(1974).6 Formally, for all distinct i, j ∈ I, let di,j ≥ 0 be the “influence” of voter j on
voter i. This could be determined by the level of respect or trust which i has for j. Note
that influence is not symmetric: we may have di,j 6= dj,i. The diagonal entry di,i, in effect,
measures i’s confidence in her own opinions. Let D := [dij]i,j∈I . We will assume that

D is a stochastic matrix —that is,
∑

j∈I

di,j = 1, for all i ∈ I. We will refer to D as an

influence matrix. We cannot assume exact knowledge of the pattern of social influences
in the society. Thus, instead of fixing a single influence matrix D, we will consider an
entire family of such influence matrices. Formally, we define a deliberative institution to be
a sequence D = (DI)

∞
I=1, where for all I ∈ N, DI is a family of I × I stochastic matrices.

A deliberative institution is not a culture. It is a transformation, which can be applied
to a culture to obtain another culture, as we now explain. For the rest of this section,
suppose that V is a convex subset of a vector space V. Let V = (vi)

I
i=1 be an I-voter

profile in VI . Given an I × I stochastic matrix D (e.g. an element of DI), we define D ·V
to be the profile V′ = (v′

i)
I
i=1, where, for all i ∈ I,

v′
i :=

I∑

j=1

di,j vj.

6For an interesting recent application of the DeGroot model, see Golub and Jackson (2010).
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For all i ∈ I, vi represents the opinion of voter i before deliberation, while v′
i represents

her opinion after deliberation —it is a weighted average of her own opinion and those of
her peers, with the weights reflecting their degree of “influence” over her.

Now, let ρ : S−→∆(VI) be a collective behaviour model, fix s ∈ S, and suppose
V = (vi)

I
i=1 is a ρ(s)-random profile. Then D · V is another random profile. We denote

the probability distribution of D · V by D ⊙ ρ(s). If we do this for all s ∈ S, then we
obtain a collective behaviour model D⊙ ρ : S−→∆(VI).

Now, let R = (RI)
∞
I=1 be a culture, and let D = (DI)

∞
I=1 be a deliberative institution.

For all I ∈ N, we define

DI ⊙RI := {D⊙ ρ ; D ∈ DI and ρ ∈ RI}.

This is a collection of collective behaviour models on a population of I voters. Heuristically,
it has the following interpretation:

• RI is the set of possible collective behaviour models which can exist before delibera-
tion.

• DI is the set of the possible deliberations which can occur.

• DI ⊙RI is the set of the possible collective behaviour models which can exist after
deliberation.

We then define the culture D⊙R := (R′
I)

∞
I=1, where, for each I ∈ N, R′

I := DI ⊙RI . We
interpret this as the culture which arises when voters drawn from the culture R deliberate
according to D.

The main result of this section says that sagacity survives such deliberation. To explain
this result, we will need a bit more notation. For any j ∈ I, we define dj :=

∑
i∈I di,j. This

measures the “total influence” of voter j on other voters. A deliberative institution D is
local if there exists a constant D > 0 (which we will call the modulus of D) such that, for
all I ∈ N and all D ∈ DI we have dj ≤ D for all j ∈ I. In other words, the total influence
of each voter in any society is bounded; she can have a significant influence over at most
a small number of individuals (although she might also have a very small influence over
a much larger number of individuals). In particular, there are no “demagogues” who can
strongly influence a large number of people.

Proposition 7.1 Let F = (V,V , f) be a mean partition voting rule, where V is a convex

subset of V. If D is a local deliberative institution, and the culture R is sagacious for F ,

then the culture D⊙R is also sagacious for F .

To illustrate the scope of this result, we will now construct some examples of local
deliberative institutions. Given two deliberative institutions D and E, we define D · E :=
(CI)

∞
I=1, where for all I ∈ N, CI := {DE; D ∈ DI and E ∈ EI}. Informally, D·E represents

a deliberative institution where the voters first deliberate according to an influence matrix
drawn from E, and then deliberate further using a matrix drawn from D.
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Given any q ∈ [0, 1], we define qD + (1 − q)E := (CI)
∞
I=1, where for all I ∈ N, CI :=

{qD+(1−q)E; D ∈ DI and E ∈ EI}. Informally, this represents a deliberative institution
where the influence of one voter on another is a weighted average of two forms of influence;
one described by D and the other by E. (For example, D might describe influences arising
from personal affection, while E describes influences arising from professional respect and
admiration.)

Proposition 7.2 Let D and E be two local deliberative institutions. Then D · E is also

local, and qD+ (1− q)E is local for any q ∈ [0, 1].

For any deliberative institution D and any n ∈ N, we define D
n := (Dn

I )
∞
I=1, where for

all I ∈ N, Dn
I := {D1 · · ·Dn; D1, . . .Dn ∈ DI}. Informally, Dn represents a deliberative

institution where the voters deliberate n times, using n influence matrices drawn from D.
Let D

0 := {I}, where I is the identity matrix (this represents no deliberation). Finally,
given any sequence q = (qn)

∞
n=0 in [0, 1] with

∑∞

n=0 qn = 1, we can define the institution∑∞

n=0 qnD
n in the obvious way; informally, this is an institution where voters have delib-

erated a very large number of times, and the total influence of one voter on another is a
weighted average of more direct, short-term effects (corresponding to small values of n)
and more indirect, longer-terms effects (corresponding to larger values of n).

Corollary 7.3 If D is a local deliberative institution with modulus D, then
∑∞

n=0 qnD
n is

local as long as
∑∞

n=0 qn D
n < ∞.

As a simple example, suppose DI contains only one matrix, D, and furthermore, sup-
pose that most of the entries in D are zero. For any i, j ∈ I, write “j ❀ i” if di,j > 0.
Informally, this means “j has some direct influence on i”. The relation ❀ defines a directed
graph, which we might call the “influence network”. Now let Dn = [d

(n)
i,j ]; Thus, d

(n)
i,j > 0

if and only if there is at least one directed path of length n from j to i in the influence
network; in this case, d

(n)
i,j measures the total indirect influence which j has on i via such

chains of intermediaries. Finally, if
∑∞

n=1 qnD
n = [ei,j]i,j∈I , then ei,j measures the total

influence which j has on i over all possible chains of all possible lengths (weighted by the
vector q).

An interesting special case is when ❀ is an acyclic digraph on I (that is: a binary re-
lation which is irreflexive, antisymmetric, and whose transitive closure contains no cycles).
In this case, the society has a hierarchical structure: there are “opinion leaders” (who
are further upstream with respect to ❀) and “followers” (who are downstream from the
opinion leaders). Informally, “opinion leaders” correspond to pundits, politicians, public
intellectuals, and religious authorities, who can influence a large audience of “followers”.
The deliberative institution will be local as long as the opinion leaders do not have too
strong an influence on their followers.

Conclusion

The optimistic predictions of this paper are consistent with most of the previous literature
on epistemic social choice theory, but seemingly inconsistent with the empirical evidence.
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In reality, modern mass democracies do not seem to be very epistemically competent.
What is the reason for this discrepancy? Are some of our hypotheses incorrect?

Perhaps the hypotheses of Identification and Asymptotic reliability impute an unreal-
istically high level of epistemic competence to the average voter. There is now abundant
empirical evidence that human beings are subject to systematic cognitive biases, particu-
larly in tasks which involve logical or probabilistic reasoning (Kahneman, 2011). They also
overestimate small but spectacular risks (e.g. terrorism), while neglecting threats which
are less visible but far more pervasive and hazardous (e.g. antibiotic resistant bacteria).
They gravitate towards simple solutions, based on simplistic moral narratives. A more
sophisticated theory of epistemic democracy should account for such cognitive biases.

Ironically, the purported epistemic competency of large groups may be self-refuting.
By combining the strategic analysis of Austen-Smith and Banks (1996) with the “rational
ignorance” of Downs (1957), a voter might decide that there is no reason for her to become
informed at all, because the group is going to get the right answer anyways. If enough
voters behave this way, then the epistemic competency of the group may be undermined.
To counteract such “epistemic free-riding”, perhaps we must offer each voter an individual
incentive to get the right answer. It is notable that Galton’s (1907) original inspiration
was a betting pool, not a referendum.

We might also question our assumption that the set S of social alternatives can be
identified one-for-one with the possible states of the world. In reality, the alternatives in S
are generated by some murky and epistemically dubious political process, and it is possible
that none of these alternatives correctly describes the actual state of the world. Suppose
S = {f, t1, t2, t3, t4}, where f is a completely false theory, while the theories t1, t2, t3, t4
are each somewhat flawed but “mostly true”. Then even in a society of highly competent
voters, where 75% select one of the “mostly true” theories, the false theory f might win
a plurality vote through vote-splitting, contradicting the predictions of Example 4.2(b).
And this assumes that S consists of clear descriptions of possible worlds at all; in some
cases, the statements in S may be ambiguous or even meaningless.

Finally, it is possible that modern mass democracies actually exhibit a much higher
degree of voter correlation than we allowed in our models. The hypothesis of Asymptot-

ically Weak Average Correlation is consistent with a world where most correlations arise
from “local” interactions —e.g. through links in a social network, or via person-to-person
deliberation. It is even consistent with an Internet-saturated world, where voters are in-
fluenced by bloggers and other social media celebrities whose audiences follow a power law
distribution (Example 6.1). However, these models assume that the process which gen-
erates the social network topology is entirely independent of the process which generates
the voters’ opinions. In practice, these two processes are highly interdependent, because
people preferentially affiliate with other people who share their opinions. This can lead
to the formation of “echo chambers”, within which deliberation actually reduces epistemic
competency, by reinforcing voters’ ideological biases and cultivating manichean extrem-
ism (Sunstein, 2009). A properly functioning epistemic democracy needs mechanisms to
prevent the formation of such echo chambers.

Furthermore, the growing concentration of media ownership in modern societies means
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that most voters get most of their information about the world from a very small number
of genuinely independent sources. If we take the epistemic view of democracy seriously,
then one possible policy implication is that governments should be much more aggressive
in preventing the burgeoning oligopolization of radio, television and print media.
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comments. None of these people are responsible for any errors.

A Appendix

The following result will be used in our analysis of Example 4.5 below. The proof is
well-known, but it is short, so we include it for completeness.

Lemma A.1 Fix p ∈ ∆(S). Define Fp : ∆(S)−→R by Fp(q) :=
∑

s∈S ps log[qs].
7 Then

argmax(F ) = p.

Proof: We use the method of Lagrange multipliers. Let 1 ∈ R
S be the constant 1 vector

Note that ∆(S) := {r ∈ R
S
+; 1 • r = 1}. Thus, if an interior maximum q∗ exists, it

must satisfy the first-order condition that ∇Fp(q
∗) = c1 for some constant c ∈ R.

Now, for all s ∈ S, we have ∂s F (q) = ps/qs. Thus, ∇Fp(q) = c1 if and only if
ps = c qs for all s ∈ S. Since p and q are both probability vectors, this can happen only
if c = 1 and p = q. Thus, the unique critical point of Fp is at p itself.

Finally, observe that Fp is concave (indeed, ∂t∂s Fp = 0 if s 6= t, whereas ∂2
s Fp(q) =

−ps/q
2
s < 0, so the Hessian is a negative diagonal matrix, hence negative-definite ever-

where). Thus, this critical point is a maximum. ✷

The next result deals with the unproved assertions in Example 4.5.

Proposition A.2 Let S be finite, let p : S−→∆(S) be any error model, let δ > 0, and
define F p

log and Pp,δ as in Example 4.5.

(a) If p(t|s) > 0 for all t, s ∈ S, and δ < min{p(t|s); s, t ∈ S}, then Pp,δ satisfies

Minimal Reliability.

(b) Let ǫ > 0, and define C ′
ǫ as in Example 4.5. If ǫ and δ are small enough, then

Pp,δ satisfies Identification with respect to F p
log and C ′

ǫ.

7The function −Fp(q) is sometimes called the cross-entropy of p and q.
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Proof: (a) Let M := min{p(t|s); t, s ∈ S}; then M > 0, because S is finite, and p(t|s) > 0
for all t, s ∈ S. Let L := | log(M)|. Then L < ∞, and we have |vts| ≤ L for all s, t ∈ S.
Thus, ‖vt‖2 ≤ L2 |S| for all t ∈ S. Thus, var[ρ(t)] ≤ L2 |S| for all t ∈ S. Thus, Minimal

reliability is satisfied.

(b) For all s ∈ S, recall that Cǫ
s := {c ∈ C; cs ≥ ct + ǫ for all t 6= s}. Suppose p is

the error model of a voter. Then for any s, t ∈ S, we have ρ(vt|s) = p(t|s). Thus,
E[ρ(s)] =

∑
t∈S p(t|s)v

t = (wr(s))r∈S , where, for all r ∈ S, wr(s) =
∑

t∈S p(t|s)v
t
r =∑

t∈S p(t|s) log[p(t|r)].

We will first construct some ǫ0 > 0 such that E[ρ(s)] ∈ Cǫ0
s . To do this, we must show

that ∑

t∈S

p(t|s) log[p(t|s)] ≥ ǫ0 +
∑

t∈S

p(t|s) log[p(t|r)], for all r 6= s. (9)

Now, for any s ∈ S, define ps by setting pst := p(t|s) for all t ∈ S. Then Lemma A.1
says that Fps(ps) > Fps(q) for all q ∈ ∆(S) \ {ps}. In particular, this implies that
Fps(ps) > Fps(pt) for all t 6= s. Let ǫ0 := Fps(ps) − max{Fps(pt); t ∈ S \ {s}}. Then
ǫ0 > 0, because S is finite. We have Fps(ps) ≥ Fps(pt) + ǫ0 for all t 6= s. This implies
condition (9).

Now, let 0 < ǫ < ǫ0. If δ > 0 is small enough, then by continuity we will have

∑

t∈S

p′(t|s) log[p′(t|s)] ≥ ǫ+
∑

t∈S

p′(t|s) log[p′(t|r)], for all r 6= s. (10)

for all error models p′ such that |p′(t|s)− p(t|s)| < δ for all s, t ∈ S. Thus implies that
Pp,δ satisfies Identification with respect to F p

log and C ′
ǫ. ✷

Proposition 5.2 is just a special case of Theorem 5.3 when S is a finite set with the discrete
topology. Proposition 4.1 follows by applying Proposition 5.2 to Example 5.1. Likewise,
Proposition 4.3 follows by applying Theorem 5.3 to Example 5.1.

Proof of Theorem 5.3. Let F = (V,V , f) be a mean partition rule. Let C be the convex
hull of V , let C ′ be the closed subset of C posited by (M3), and let f0 be the restriction
of f to C ′. Fix s ∈ S. Let I ∈ N, let ρ ∈ RI , and let V = (vi)i∈I be a ρ(s)-random

profile of votes (where |I| = I). Let v :=
1

I

∑

i∈I

vi be the average of these votes.

Claim 1: Let v̂ := E[v]. Then v̂ ∈ f−1
0 {s}.

Proof: E(v) = E
(
1
I

∑
i∈I vi

)
= 1

I

∑
i∈I E (vi). By Identification, we have E (vi) ∈ f−1

0 {s}
for all i. But f−1

0 {s} is convex by (M2′). The claim follows. ✸ Claim 1

Claim 2: var(v) ≤
1

I
σ(I) +

I − 1

I
κ(I).
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Proof: For any i ∈ I, let v̂i := E[vi]. Then as we saw in the proof of Claim 1,

v̂ =
1

I

∑

i∈I

v̂i. Thus,

v − v̂ =
1

I

∑

i∈I

vi −
1

I

∑

i∈I

v̂i =
1

I

∑

i∈I

(vi − v̂i) =
1

I

∑

i∈I

ei,

where, for all i ∈ I, we define ei := vi − v̂i. Thus,

‖v − v̂‖2 =

〈
1

I

∑

i∈I

ei,
1

I

∑

j∈I

ej

〉
=

1

I2

∑

i,j∈I

〈ei, ej〉.

Thus, if B is the covariance matrix of ρ(s), then

var(v) = E
[
‖v − v̂‖2

]
=

1

I2

∑

i,j∈I

E [〈ei, ej〉]

=
1

I2

∑

i,j∈I

cov(vi,vj) =
1

I2

∑

i∈I

var(vi) +
1

I2

∑

i,j∈I
i 6=j

cov(vi,vj)

(∗)

1

I
σ(B) +

I − 1

I
κ(B) ≤

(†)

1

I
σ(I) +

I − 1

I
κ(I),

as claimed. Here, (∗) is by the defining equations (1), and (†) is by definition of σ(I)
and κ(I). ✸ Claim 2

Now, let U ⊂ S be any open set containing s. We want to show that lim
I→∞

Prob[f(v) ∈

U ] = 1. Claim 1 says that v̂ ∈ f−1
0 {s} ⊆ C ′. Since C ′ is a relatively open subset of C,

there is some δ1 > 0 such that, for any c ∈ C, if ‖c− v̂‖ < δ1, then c ∈ C ′ also. But
f0 is continuous on C ′, and f0(v̂) = s ∈ U , so there is some δ2 > 0 such that, for any
c′ ∈ C ′, if ‖c′ − v̂‖ < δ2, then f(c′) = f0(c

′) ∈ U also. Let δ := min{δ1, δ2}. Then δ > 0,
and, combining the two previous statements, we see that for any c ∈ C, if ‖c− v̂‖ < δ,
then f(c′) ∈ U . In particular, this holds if c = v. Thus,

Prob [f(v) 6∈ U ] ≤ Prob [‖v̂ − v‖ > δ] ≤
(∗)

var(v)

δ2

≤
(†)

1

δ2

(
1

I
σ(I) +

I − 1

I
κ(I)

)
−−−−(⋄)

I→∞
−→ 0,

as desired. Here (∗) is by the normed vector space version of Chebyshev’s inequality,
and (†) is by Claim 2. Finally, (⋄) is because Asymptotically minimal reliability says that
1
I
σ(I)−−−−

I→∞
−→0, while Asymptotically weak average correlation says that κ(I)−−−−

I→∞
−→0. ✷
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Proof of Proposition 5.4. Let V be a normed vector space, and suppose that R is a culture
on V. Observe that the convex sets C ′

s and C ′
r must be disjoint, for any distinct r and s.

By repeatedly applying the Separating Hyperplane Theorem, we can define a partition
of V into convex (not necessarily closed) disjoint sets {Cs}s∈S such that C ′

s ⊆ Cs for all
s ∈ S. If we define the function F : V−→S by setting F−1{s} = Cs for all s ∈ S, then
F is a mean partition rule, which satisfies the axioms of Continuity and Identification

with respect to R. ✷

Proof of Proposition 6.5. Let β : N−→R
+ and γ : N−→[0,∞] be functions satisfying

the inequality (8), such that B exhibits β-correlation decay relative to N, and N has
sublinear average γ-degree growth. Let I ∈ N, let (I,∼) be a graph in NI , and let BI

be a correlation matrix that exhibits β-decay for (I,∼). Let M := β(0); then Minimal

Reliability is automatically satisfied, because |bi,i| ≤ β(0) for all i ∈ I. It remains to
prove Asymptotically weak average correlation. Let C :=

∑∞

n=1 γ(n) β(n); then C is
finite by inequality (8). We have:

κ(B) =
1

I(I − 1)

I∑

i,j∈I
i 6=j

bi,j =
1

I(I − 1)

∑

i∈I

∞∑

r=1

∑

j∈I
d(i,j)=r

bi,j

≤
(a)

1

I(I − 1)

∑

i∈I

∞∑

r=1

∑

j∈I
d(i,j)=r

β(r) =
1

I(I − 1)

∑

i∈I

∞∑

r=1

β(r) degr(i,∼)

≤
(b)

1

I(I − 1)

∑

i∈I

∞∑

r=1

β(r) γ(r) degγ(i,∼)

=
1

I(I − 1)

∑

i∈I

degγ(i,∼)

(
∞∑

r=1

β(r) γ(r)

)

(c)

1

I(I − 1)

∑

i∈I

degγ(i,∼) · C

(d)

C

(I − 1)
avedegγ(I,∼) ≤

(e)

C

(I − 1)
avedeg

γ
(NI).

Here, inequality (a) is because BI exhibits β-decay for (I,∼), while inequality (b) is by
defining formula (3). Equality (c) is by definition of C, and equality (d) is by defining
formula (4). Inequality (e) is by defining formula (5).

This inequality holds for all matrices B ∈ BI . It follows that

κ(I) ≤
C

(I − 1)
avedeg

γ
(NI) −−−−

I→∞
−→0,

as desired, where the last step is by the limit equation (6). ✷
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Proof of Proposition 7.1. We must verify the three conditions for R
′ to be sagacious.

First, we will show that R′ satisfies Identification. Suppose the true state of nature is
s. Fix I ∈ N, and let I := [1 . . . I]. Let R′

I = DI ⊙RI , let ρ
′ ∈ R′

I , and let V′ = (v′
i)
I
i=1

be a ρ′(s)-random profile. Then there exists a collective behaviour model ρ ∈ RI , and
an influence matrix D ∈ DI such that ρ′ = D⊙ ρ. Suppose D = [di,j]i,j∈I . Thus, for all
i ∈ I, we have

v′
i :=

I∑

j=1

di,j vj,

where V = (vi)
I
i=1 is a ρ(s)-random profile. Now, RI is sagacious, so it satisfies Iden-

tification; thus, for all k ∈ I, we have E[vk] ∈ F−1{s} ∩ C ′. Thus, for all i ∈ I, we
have

E[v′
i] = E

[
∑

k∈I

di,k vk

]
=
∑

k∈I

di,k E[vk] ∈ F−1{s} ∩ C ′,

because F−1{s} ∩ C ′ is convex (by (M2′)), and
∑

k∈I di,k = 1 (because D is a stochastic
matrix). Thus, Identification is satisfied.

It remains to show that R′ satisfies Asymptotically weak average correlation and Asymp-

totic reliability. Since the culture R is sagacious, it already satisfies these properties.
For all I ∈ N, let σ(I) and κ(I) be as defined in the statements of these conditions.
Let s ∈ S, D ∈ DI , ρ ∈ RI , ρ

′ = D ⊙ ρ, V′, V, etc. be as defined in the proof of
Identification above. Let B′ = [b′i,j]

I
i,j=1 be the correlation matrix of ρ′(s). That is:

b′i,j := cov(v′
i,v

′
j), for all i, j ∈ I. Let D be the modulus of D (this is finite because D

is local).

Claim 1:
1

I2

∑

i,j∈I

b′i,j ≤ D2

(
1

I
σ(I) +

I − 1

I
κ(I)

)
.

Proof: Let B = [bi,j]
I
i,j=1 be the covariance matrix of ρ(s). Then for all i, j ∈ I, we have

b′i,j = cov(v′
i,v

′
j) = cov

(
∑

k∈I

di,k vk,
∑

ℓ∈I

dj,ℓ vℓ

)

=
∑

k∈I

∑

ℓ∈I

di,k dj,ℓ cov(vk,vℓ) =
∑

k,ℓ∈I

di,k dj,ℓ bk,ℓ, (11)
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where the last step is because cov(vk,vk) = bk,ℓ. For all k ∈ I, let dk :=
∑

i∈I

di,k. Then

1

I2

∑

i,j∈I

b′i,j (a)

1

I2

∑

i,j,k,ℓ∈I

di,k dj,ℓ bk,ℓ =
1

I2

∑

k,ℓ∈I

(
∑

i∈I

di,k

)(
∑

j∈I

dj,ℓ

)
bk,ℓ

=
1

I2

∑

k,ℓ∈I

dk dℓ bk,ℓ ≤
(b)

1

I2

∑

k,ℓ∈I

D2 bk,ℓ

= D2




1

I2

∑

k∈I

bk,ℓ +
1

I2

∑

k,ℓ∈I
k 6=ℓ

bk,ℓ


 = D2

(
1

I
σ(B) +

I − 1

I
κ(B)

)

≤
(c)

D2

(
1

I
σ(I) +

I − 1

I
κ(I)

)
.

as claimed. Here, (a) is by equation (11), while (b) is by definition of “modulus”. (c)
is by the definitions of σ(I) and κ(I). ✸ Claim 1

Now, let B = (BI)
∞
I=1 be the correlation structure for the culture R

′. Then for any
I ∈ N and B′ ∈ BI , we can find some ρ′ ∈ R′

I and s ∈ S such that B′ = cov[ρ′(s)], and
thus, Claim 1 applies to B′. However,

1

I2

∑

i,j∈I

b′i,j =
I − 1

I
κ(B′) +

1

I
σ(B′).

Thus, Claim 1 implies that

I − 1

I
κ(I) +

1

I
σ(I) ≤ D2

(
1

I
σ(I) +

I − 1

I
κ(I)

)
−−−−

I→∞
−→ 0,

where the last step because R satisfies Asymptotically weak average correlation and
Asymptotic Reliability. Thus, the culture R

′ is sagacious. ✷

Proof of Proposition 7.2. Let I := [1 . . . I]. For any I × I matrix D, let ‖D‖ :=

max
j∈I

(
∑

i∈I

di,j

)
. Thus, a deliberative institution C = (CI)

∞
I=1 is local if there is some

constant C > 0 such that ‖C‖ ≤ C for all C ∈ CI and all I ∈ N. In particular, if D and
E are local, then there are constants D and E such that ‖D‖ ≤ D and and ‖E‖ ≤ E
for all D ∈ DI , all E ∈ EI , and all I ∈ N.

Claim 1: For any I × I matrices D and E, we have ‖D · E‖ ≤ ‖D‖ · ‖E‖.
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Proof: Let C = D ·E. Thus, for all i, k ∈ I, ci,k =
∑

j∈I di,j ej,k. Thus, for all k ∈ I, we
have

∑

i∈I

ci,k =
∑

i∈I

∑

j∈I

di,j ej,k =
∑

j∈I

(
∑

i∈I

di,j

)
ej,k

≤
∑

j∈I

‖D‖ej,k = ‖D‖
∑

j∈I

ej,k ≤ ‖D‖ · ‖E‖.

Thus, ‖D · E‖ ≤ ‖D‖ · ‖E‖, as claimed. ✸ Claim 1

Let CI := {D · E; D ∈ DI and E ∈ EI}. It is well-known that the product of two
stochastic matrices is a stochastic matrix. (The proof is very similar to Claim 1.) Thus,
every element of CI is a stochastic matrix. Meanwhile, it follows from Claim 1 that
‖C‖ ≤ DE for all C ∈ CI and all I ∈ N. Thus, D · E is also local.

Now let q, q′ ∈ [0, 1] such that q + q′ = 1.

Claim 2: For any I × I matrices D and E, we have ‖qD+ q′E‖ ≤ q‖D‖ + q′‖E‖.

Proof: Let C = qD+ q′E. Thus, for all i, j ∈ I, ci,j = q di,j + q′ ei,j. Thus, for all j ∈ I,
we have

∑

i∈I

ci,j =
∑

i∈I

(q di,j + q′ ei,j) = q
∑

i∈I

di,j + q′
∑

i∈I

ei,j ≤ q ‖D‖ + q′‖E‖.

Thus, ‖qD+ q′E‖ ≤ q‖D‖ + q′‖E‖, as claimed. ✸ Claim 2

Let CI := {qD+q′ E; D ∈ DI and E ∈ EI}. It is well-known that the convex combination
of two stochastic matrices is a stochastic matrix. (The proof is very similar to Claim
2.) Thus, every element of CI is a stochastic matrix. Meanwhile, it follows from Claim
2 that ‖C‖ ≤ q D + q′ E for all C ∈ CI and all I ∈ N. Thus, qD+ q′E is also local. ✷
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à la pluralité des voix. Paris.

DeGroot, M. H., 1974. Reaching a consensus. Journal of the American Statistical Association
69 (345), 118–21.

Dietrich, F., List, C., 2004. A model of jury decisions where all jurors have the same evidence.
Synthese 142 (2), 175–202.

Dietrich, F., Spiekermann, K., March 2013a. Epistemic democracy with defensible premises.
Economics and Philosophy 29 (01), 87–120.

Dietrich, F., Spiekermann, K., 2013b. Independent opinions? on the causal foundations of belief
formation and jury theorems. Mind 122 (487), 655–685.

Downs, A., 1957. An Economic Theory of Democracy. Harper.

Estlund, D. M., 1994. Opinion leaders, independence, and condorcet’s jury theorem. Theory and
Decision 36 (2), 131–162.

Galton, F., March 1907. Vox populi. Nature 75, 450–451.
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