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Abstract

This paper proposes a stochastic volatility model (PAR-SV ) in which the log-volatility follows a

�rst-order periodic autoregression. This model aims at representing time series with volatility displaying

a stochastic periodic dynamic structure, and may then be seen as an alternative to the familiar periodic

GARCH process. The probabilistic structure of the proposed PAR-SV model such as periodic station-

arity and autocovariance structure are �rst studied. Then, parameter estimation is examined through

the quasi-maximum likelihood (QML) method where the likelihood is evaluated using the prediction

error decomposition approach and Kalman �ltering. In addition, a Bayesian MCMC method is also

considered, where the posteriors are given from conjugate priors using the Gibbs sampler in which the

augmented volatilities are sampled from the Griddy Gibbs technique in a single-move way. As a-by-

product, period selection for the PAR-SV is carried out using the (conditional) Deviance Information

Criterion (DIC). A simulation study is undertaken to assess the performances of the QML and Bayesian

Griddy Gibbs estimates. Applications of Bayesian PAR-SV modeling to daily, quarterly and monthly

S&P 500 returns are considered.

Keywords and phrases: Periodic stochastic volatility, periodic autoregression, QML via prediction

error decomposition and Kalman �ltering, Bayesian Griddy Gibbs sampler, single-move approach, DIC.

Mathematics Subject Classi�cation: AMS 2000 Primary 62M10; Secondary 60F99

Proposed running head: Periodic AR Stochastic volatility.

1. Introduction

Over the past three decades, stochastic volatility (SV ) models introduced by Taylor (1982) have played an

important role in modelling �nancial time series which are characterized by a time-varying volatility feature.

This class of models is often viewed as a better formal alternative to ARCH-type models because the
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volatility is itself driven by an exogenous innovation, a fact that is consistent with �nance theory, although it

makes the model relatively more di¢cult to estimate. Several extensions of the original SV formulation have

been proposed in the literature to account for further volatility features such as long memory, simultaneous

dependence, excess kurtosis, leverage e¤ect and change in regime (e.g. Harvey et al, 1994; Ghysels et al,

1996; Breidt, 1997; Breidt et al, 1998; So et al, 1998; Chib et al, 2002; Carvalho and Lopes, 2007; Omori et

al, 2007; Nakajima and Omori, 2009). However, it seems that most of the proposed formulations have been

devoted to time-invariant volatility parameters and hence they could not meaningfully explain time series

whose volatility structure changes over time, in particular volatility displaying a stochastic periodic pattern

that cannot be accounted for by time-invariant SV -type models.

In order to describe periodicity in the volatility, Tsiakas (2006) proposed various interesting and parsimo-

nious time-varying stochastic volatility models in which the volatility parameters are expressed as determin-

istic periodic functions of time with appropriate exogenous variables. The proposed models called "periodic

stochastic volatility" (PSV ) have been successfully applied to model the evolution of daily S&P 500 returns.

This is an evidence that the periodically changing structure may characterize time series volatility. However,

the PSV formulations are by de�nition especially well adapted to a kind of deterministic periodicity in the

second moment and hence they might neglect a possible stochastic periodicity in these moments (see e.g.

Ghysels and Osborn, 2001 for the di¤erence between deterministic and stochastic periodicity). A comple-

mentary approach which seems to be appropriate in capturing stochastic periodicity in the volatility is to

consider a linear time-invariant representation for the volatility equation involving seasonal lags, leading to

a seasonal SV speci�cation (see e.g. Ghysels et al, 1996). However, because of the time-invariance of the

volatility parameters, the seasonal SV model may be too restrictive in representing periodicity and a model

with periodic time-varying parameters seems to be more relevant. Indeed, as pointed out by Bollerslev and

Ghysels (1996, p. 140) many �nancial time series encountered in practice are such that neglecting periodic

time-variation in the corresponding volatility equation give rise to a loss in forecast e¢ciency, which is more

severe in the GARCH model than in linear ARMA. This has motivated Bollerslev and Ghysels (1996)

to propose the periodic GARCH (P -GARCH) formulation in which the parameters vary periodically over

time in order to capture the stochastic periodicity pattern in the conditional second moment. At present

the P -GARCH model is among the most important models for describing periodic time series volatility (see

e.g. Bollerslev and Ghysels, 1996; Taylor, 2006; Koopman et al, 2007; Osborn et al, 2008; Regnard and

Zakoïan, 2011; Sigauke and Chikobvu, 2011; Aknouche and Al-Eid, 2012). However, despite the recognized

relevance of the P -GARCH model, an alternative periodic SV for stochastic periodicity is in fact needed

for many reasons. First, it is well known that an SV -like model is more �exible than a GARCH type model

because the volatility in the latter is only driven by the past of the observed process which constitutes a

restrictive limitation. Second, compared to SV -type models, the probability structure of P -GARCH models
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is relatively more complex to obtain (Aknouche and Bibi, 2009). Finally, compared to the P -GARCH, the

PAR-SV easily allows to simple multivariate generalizations.

In this paper we propose to model stochastic periodicity in the volatility through a model that generalizes

the standard SV equation so that the parameters vary periodically over time. Thus, in the proposed model

termed periodic autoregressive stochastic volatility (PAR-SV ) the log-volatility process follows a �rst-order

periodic autoregression and may be generalized so as to have any linear periodic representation. This model

may be seen as an extension of the models of Tsiakas (2006) to include periodic feature in the autoregressive

dynamic of the log-volatility equation. The structure and probability properties of the proposed model such as

periodic stationarity, autocovariance structure and relationship with multivariate stochastic volatility models

are �rst studied. In particular, periodic ARMA (PARMA) representations for the logarithm of the squared

PAR-SV process are proposed. Then, parameter estimation is conducted via the quasi-maximum likelihood

(QML) method, properties of which are discussed. In addition, Bayesian estimation approach using Markov

Chains Monte Carlo (MCMC) techniques is also considered. Speci�cally, a Gibbs sampler is used to estimate

the joint posterior distribution of the parameters and the augmented volatility while calling for the Griddy

Gibbs procedure when estimating the conditional posterior distribution of the augmented parameters. On

the other hand, selection of the period of the PAR-SV model is carried out using the (conditional) Deviance

Information Criterion (DIC). Simulation experiments are undertaken to assess �nite-sample performances

of the QMLE and the Bayesian Griddy Gibbs methods. Moreover, empirical applications to modeling series

of daily, quarterly and monthly S&P 500 returns are conducted in order to appreciate the usefulness of the

proposed PAR-SV model. In the particular daily return case, a variant of the PAR-SV model with missing

values, dealing with the "day-of-the-week" e¤ect is applied.

The rest of this paper proceeds as follows. Section 2 proposes the PAR-SV model and studies its

main probabilistic properties. In Section 3, the quasi-maximum likelihood method via prediction error

decomposition and Kalman �ltering is adopted. Moreover, a single-move Bayesian approach by means of

the Griddy Gibbs (BGG) sampler is proposed. In particular, some MCMC diagnostic tools are presented

and period selection in PAR-SV models is carried out using the DIC. Through a simulation study, Section

4 examines the behavior of the QML and BGG methods in �nite samples. Section 5 applies the PAR-SV

speci�cation to model daily, quarterly and monthly S&P 500 returns using the Bayesian Griddy Gibbs

method. Finally, Section 6 concludes.
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2. The PAR-SV and its main probabilistic properties

In this paper, we say that a stochastic process f"t; t 2 Zg has a periodic autoregressive stochastic volatility
representation with period S (PAR-SVS in short) if it is given by

8
<
:

"t =
p
ht�t

log (ht) = �t + �t log (ht�1) + �tet
, t 2 Z; (2:1a)

where the parameters �t; �t; and �t are S-periodic over t (i.e. �t = �t+Sn 8n 2 Z and so on) and the
period S � 1 is the smallest positive integer verifying the latter relationship. f(�t; et); t 2 Zg is a sequence
of independent and identically distributed (i:i:d:) random vectors with mean (0; 0)0 and covariance matrix

I2 (I2 stands for the identity matrix of dimension 2). We have called model (2:1a) periodic autoregressive

stochastic volatility rather than shortly periodic stochastic volatility because the log-volatility is rather driven

by a �rst-order periodic autoregression and also in order to make distinction between model (2:1a) and the

periodic stochastic volatility (PSV ) model proposed by Tsiakas (2006). In fact, the PAR-SV model (2:1a)

may be generalized so that ht satis�es any stable periodic ARMA (henceforth PARMA) representation.

Note that when �t = 0, model (2:1a) reduces to Tsiakas�s (2006) model if we take �t to be an appropriate

deterministic periodic function of time. In that case, the e¤ect of any current shock in the innovation et

in�uences only the present volatility and does not a¤ect its future evolution. This is the case of what is

called deterministic periodicity. If, in contrast, �t 6= 0 for some t, the log-volatility equation involves lagged
values of the log-volatility process. Therefore, the log-volatility consists at any time of an accumulation

of past shocks, so that present shocks a¤ect more or less the future log-volatility evolution, depending on

the stability of the log-volatility equation (see the periodic stationarity condition (2:5) below). This case is

commonly named stochastic periodicity in the volatility.

It should be noted that although ht is conventionally called volatility, it is not the conditional variance

of the observed process given its past information in the familiar sense as in ARCH-type models. This is

because ht is instead Ft-measurable and so E
�
"2t=Ft�1

�
= E (ht=Ft�1) 6= ht, where Ft is the �-Algebra

generated by f"u; u � tg. Nevertheless, E (ht) = E
�
"2t
�
and E

�
"2t=ht

�
= ht as in the ARCH-type case.

To emphasize the periodicity of the model, let t = nS + v for n 2 Z and 1 � v � S. Then model (2:1a)

may be written as follows
8
<
:

"nS+v =
p
hnS+v�nS+v

log (hnS+v) = �v + �v log (hnS+v�1) + �venS+v
, n 2 Z; 1 � v � S; (2:1b)

where by season v (1 � v � S) we mean the channel fv; v + S; v + 2S; :::g with corresponding parameters
�v; �v and �v.

From (2:1b) the log-volatility appears to be a Markov chain, which is not homogeneous as in time-invariant

stochastic volatility models, but is rather periodically homogeneous due to the periodic time-variation of
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parameters. This may relatively complicate studying the probabilistic structure of the PAR-SV model.

As is common in periodic time varying modeling, a routine approach is to write (2:1b) as a time-invariant

multivariate SV model by embedding seasons v, 1 � v � S (see e.g. Gladyshev, 1961 and Tiao and Grupe,

1980 for periodic linear models) and then studying the property of this latter. More precisely, de�ne the

S-variate sequences fHn; n 2 Zg, f"n; n 2 Zg by Hn = (hnS+1; :::; hnS+S)
0
and "n = ("nS+1; :::; "nS+S)

0
.

Then model (2:1b) may be cast in the following multivariate SV form

8
<
:
"n = diag

�
H

1
2
n

�
�n

logHn = B logHn�1 + �n

, n 2 Z; (2:2)

where �n =
�
�nS+1; :::; �nS+S

�0
, diag (a) stands for the diagonal matrix formed by the entries of the vector

a in the given order. The notations H
1
2
n and logHn denote the S-vectors de�ned respectively by H

1
2
n (v) =

p
hnS+v and logHn (v) = log (hnS+v) (1 � v � S). The matrices B and �n in (2:2) are given by

B =

0
BBBBBBB@

0 : : : 0 �1

0 : : : 0 �2�1
...

...
...

...

0 : : : 0
S�1Q
v=0

�S�v

1
CCCCCCCA

S�S

; �n =

0
BBBBBBB@

�1+nS

�2�1+nS + �2+nS
...

SP
k=1

S�k�1Q
v=0

�S�v�k+nS

1
CCCCCCCA

S�1

;

with �nS+v = �v + �venS+v (1 � v � S).

However, this approach has the main drawback that available methods for analyzing multivariate SV

models do not consider the particular structure of the coe¢cients in (2:2) and it may be di¢cult to conclude

on model (2:1). Thus, studying probabilistic and statistical properties of model (2:1) directly may be simpler

and better than studying them through model (2:2). This implies that periodic stochastic volatility modelling

cannot be trivially deduced from existing multivariate SV analysis. In the sequel, we study the structure of

model (2:1) using mainly the direct approach.

Throughout this paper, we frequently use solutions of the following ordinary di¤erence equation

ut = at + btut�1; t 2 Z; (2:3a)

with S-periodic coe¢cients at and bt. Recall that the solution is given, under the requirement that

����
S�1Q
v=0

bv

���� <
1, by

unS+v =

 
1�

S�1Y

v=0

bv

!�1 S�1X

j=0

j�1Y

i=0

bv�iav�j , 1 � v � S; n 2 Z. (2:3b)

First, we have the following result which provides a necessary and su¢cient condition for strict periodic

stationarity (see Aknouche and Bibi, 2009 for the de�nition of strict periodic stationarity).

Theorem 2.1 (Strict periodic stationarity)
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The PAR-SV equation given by (2:1) admits a unique (nonanticipative) strictly periodically stationary

and periodically ergodic solution given for n 2 Z and 0 � v � S � 1 by

"nS+v = �nS+v exp

8
>>><
>>>:

1

2

0
BBB@

PS�1
j=0

j�1Q
i=0

�v�i�v�j

1�
S�1Q
v=0

�v

+
1X

j=0

j�1Y

i=0

�v�i�v�jenS+v�j

1
CCCA

9
>>>=
>>>;
; (2:4)

where the series in (2:4) converges almost surely, if and only if,

�����

S�1Y

v=0

�v

����� < 1: (2:5)

Proof The result obviously follows from standard linear periodic autoregression (PAR) theory while

using (2:3) (see e.g. Aknouche and Bibi, 2009). So, details are omitted. �

From Theorem 2.1 we see that the monodromy coe¢cient
S�1Q
v=0

�v is the analog of the persistent parameter

in the case of time-invariant SV and standard GARCH models. If, however,

����
S�1Q
v=0

�v

���� � 1, then clearly there
does not exist a nonanticipative strictly periodically stationary solution of (2:1) like (2:4).

Other properties such as periodic geometric ergodicity and strong mixing are obvious. Let �rst say that a

strictly periodically stationary stochastic process f"t; t 2 Zg is called geometrically periodically ergodic if and
only if the corresponding multivariate strictly stationary process f"t; t 2 Zg given by "n = ("nS+1; :::; "nS+S)0

is geometrically ergodic in the classical sense (see e.g. Meyn and Tweedie, 2009 for the de�nition of geometric

ergodicity).

Theorem 2.2 (Geometric periodic ergodicity)

Under the condition

����
S�1Q
v=0

�v

���� < 1, the process f"t; t 2 Zg de�ned by (2:1) is geometrically periodically
ergodic. Moreover, if initialized from its invariant measure, then flog ht; t 2 Zg and hence f"t; t 2 Zg are
periodically �-mixing with exponential decay.

Proof The result follows from geometric ergodicity of the vector autoregression flogHn; n 2 Zg given by
(2:2), which may easily be established using Meyn and Tweedie�s (2009) results (see also Davis and Mikosch,

2009). �

Given the form of the periodically stationary solution (2:4), it is easy to give its second-order properties.

Assuming the following condition

1Q
j=0

�v;j <1; for all 0 � v � S � 1; (2:6)

where

�v;j = E

 
exp

 
j�1Y

i=0

�v�i�v�jev�j

!!
;

we have the following result.
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Theorem 2.3 (Second-order periodic stationarity)

Under conditions (2:5) and (2:6), the series in (2:4) converges in the mean square sense and the process

given by (2:4) is also second-order periodically stationary.

Proof Routine computation shows that under (2:5) and (2:6) the series in (2:4);

1X

j=0

j�1Y

i=0

�v�i�v�jenS+v�j ;

converges in mean square. Moreover, under these conditions, it is clear that f"t; t 2 Zg given by (2:4) is a
periodic white noise with periodic variance since E ("t) = 0, E ("t"t�h) = 0 (h > 0) and, while using (2:3),

V ar ("nS+v) = E

0
BBB@exp

0
BBB@

PS�1
j=0

j�1Q
i=0

�v�i�v�j

1�
S�1Q
v=0

�v

+
1X

j=0

j�1Y

i=0

�v�i�v�jenS+v�j

1
CCCA

1
CCCA

= exp

0
BBB@

PS�1
j=0

j�1Q
i=0

�v�i�v�j

1�
S�1Q
v=0

�v

1
CCCA

1Q
j=0

�v;j ; 0 � v � S � 1: � (2:7)

In the case of Gaussian log-volatility innovations fet; t 2 Zg, (i.e. et � N(0; 1)) it is also possible to

obtain more explicit results while reducing assumptions of Theorem 2.3. Using the fact that if X � N(0; 1)

then E(exp(�X)) = exp(�
2

2 ) for all non null real constant �, we obtain

�v;j = exp
1

2

 
�2v�j

j�1Y

i=0

�2v�i

!
; (2:8)

and condition (2:6) of �niteness of
Q1
j=0 �v;j reduces to the periodic stationarity condition (2:5):

����
S�1Q
v=0

�v

���� < 1:
Moreover, using (2:8) and (2:3) the variance of the process given by (2:7) may be expressed more explicitly

as follows

V ar ("nS+v) = exp

0
BBB@

PS�1
j=0

j�1Q
i=0

�v�i�v�j

1�
S�1Q
v=0

�v

1
CCCA

1Q
j=0

exp

 
1

2
�2v�j

j�1Y

i=0

�2v�i

!

= exp

0
BBB@

PS�1
j=0

j�1Q
i=0

�v�i�v�j

1�
S�1Q
v=0

�v

1
CCCA exp

0
@1
2

1X

j=0

j�1Y

i=0

�2v�i�
2
v�j

1
A

= exp

0
BBB@

S�1P
j=0

j�1Q
i=0

�v�i�v�j

1�
S�1Q
v=0

�v

+
1

2

S�1P
j=0

j�1Q
i=0

�2v�i�
2
v�j

1�
S�1Q
v=0

�2v

1
CCCA : (2:9)
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For example, the variance V ar ("nS+v) of the process is given respectively, for S = 2 and S = 3, by

V ar ("2n+1) = exp

�
�1 + �1�2
1� �1�2

+
1

2

�21 + �
2
1�

2
2

1� �21�22

�
;

V ar ("2n+2) = exp

�
�2 + �2�1
1� �1�2

+
1

2

�22 + �
2
2�

2
1

1� �21�22

�
;

V ar ("3n+1) = exp

�
�1 + �1�3 + �1�3�2

1� �1�2�3
+
1

2

�21 + �
2
1�

2
3 + �1�3�

2
2

1� �1�2�3

�
,

V ar ("3n+2) = exp

�
�2 + �2�1 + �2�1�3

1� �1�2�3
+
1

2

�22 + �2�
2
1 + �2�1�

2
3

1� �1�2�3

�
;

V ar ("3n+3) = exp

�
�3 + �3�2 + �3�2�1

1� �1�2�3
+
1

2

�23 + �3�
2
2 + �3�2�

2
1

1� �1�2�3

�
:

Next, the autocovariance of the squared process
�
"2t ; t 2 Z

	
is provided. This one is useful in identifying

the model and deriving certain estimation methods such as simple and generalized methods of moments. Let

"
2

v (h) = E
�
"2nS+v"

2
nS+v�h

�
� E

�
"2nS+v

�
E
�
"2nS+v�h

�
.

Theorem 2.4 (Autocovariance structure of
�
"2t ; t 2 Z

	
)

i) Under (2:5), (2:6) and the conditions
Q1
j=0 �v;j�v�h;j <1 and E

�
�41
�
<1 we have

"
2

v (0) = exp

0
BBB@2

S�1P
j=0

j�1Q
i=0

�v�i�v�j

1�
S�1Q
v=0

�v

1
CCCA

0
@E

�
�41
�
E

0
@exp

0
@2

1X

j=h

j�1Y

i=0

�v�i�v�jev�j

1
A
1
A�

1Q
j=0

�2v;j

1
A (2:10a)

"
2

v (h) =

0
@E

0
@exp

0
@
h�1X

j=0

j�1Y

i=0

�v�i�v�jev�j +

 
1 +

h�1Y

i=0

��1v�i

!
1X

j=h

j�1Y

i=0

�v�i�v�jev�j

1
A
1
A�

1Q
j=0

�v;j�v�h;j

!
� exp

0
BBB@

S�1P
j=0

j�1Q
i=0

�v�i�v�j +
S�1P
j=0

j�1Q
i=0

�v�h�i�v�h�j

1�
S�1Q
v=0

�v

1
CCCA ; h > 0: (2:10b)

Proof Using (2:4) direct calculation gives

E
�
"2nS+v"

2
nS+v�h

�
= E

0
@exp

0
@

1X

j=0

j�1Y

i=0

�v�i�v�jenS+v�j +
1X

j=0

j�1Y

i=0

�v�h�i�v�h�jenS+v�h�j

1
A
1
A

� exp

0
BBB@

PS�1
j=0

j�1Q
i=0

�v�i�v�j

1�
S�1Q
v=0

�v

+

PS�1
j=0

j�1Q
i=0

�v�h�i�v�h�j

1�
S�1Q
v=0

�v

1
CCCAE

�
�2nS+v�

2
nS+v�h

�
; (2:11)

under �niteness of the latter expectations. When in particular h = 0, combining (2:7) and (2:11) we get

(2:10a) under �niteness of E
�
�41
�
.
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For h > 0, because of the independence structure of f�t; t 2 Zg one obtains

E
�
"2nS+v"

2
nS+v�h

�
= exp

0
BBB@

S�1P
j=0

j�1Q
i=0

�v�i�v�j +
S�1P
j=0

j�1Q
i=0

�v�h�i�v�h�j

1�
S�1Q
v=0

�v

1
CCCA�

E

0
@exp

0
@
h�1X

j=0

j�1Y

i=0

�v�i�v�jev�j +
1X

j=h

j�1Y

i=0

�v�i�v�jev�j +
1X

j=0

j�1Y

i=0

�v�h�i�v�h�jev�h�j

1
A
1
A

= exp

0
BBB@

S�1P
j=0

j�1Q
i=0

�v�i�v�j +
S�1P
j=0

j�1Q
i=0

�v�h�i�v�h�j

1�
S�1Q
v=0

�v

1
CCCA�

E

 
exp

 
h�1P
j=0

j�1Q
i=0

�v�i�v�jev�j +

�
1 +

h�1Q
i=0

��1v�i

�
1P
j=h

j�1Q
i=0

�v�i�v�jev�j

!!
;

giving (2:10b). �

Expressions of the S kurtoses Kurt (v) (1 � v � S) of the PAR-SVS model may be given from (2:9) and

(2:10) by

Kurt (v) = E
�
�41
�
Q1
j=0E

 
exp

�
j�1Q
i=0

�v�i�v�jev�j

�2!

Q1
j=0

�
E

�
exp

j�1Q
i=0

�v�i�v�jev�j

��2 ; 1 � v � S; (2:12)

� E
�
�41
�
:

By the Cauchy-Schwartz inequality, this clearly shows that the PAR-SV is characterized by excess

Kurtosis for all channels f1; :::; Sg.
In particular, under the normality assumption on the innovations, the second-order periodic stationarity

reduces to E(�41) <1 and

����
S�1Q
v=0

�v

���� < 1. So from (2:8), expression (2:12) reduces to

Kurt (v) = E
�
�41
�
; 1 � v � S:

The autocovariance function has also more explicit form in the case of Gaussian fet; t 2 Zg.
Corollary 2.1 (Autocovariance structure of

�
"2t ; t 2 Z

	
under normality of fet; t 2 Zg)

Under the same assumptions of Theorem 2.4 and if fet; t 2 Zg is Gaussian then,

"
2

v (0) = exp

0
@2
 
1�

S�1Y

v=0

�v

!�1 S�1X

j=0

j�1Y

i=0

�v�i�v�j +

 
1�

S�1Y

v=0

�2v

!�1 S�1X

j=0

j�1Y

i=0

�2v�i�
2
v�j

1
A�E

�
�41
�
� 1
�
;

(2:13a)
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"
2

v (h) = exp

0
BBB@

S�1P
j=0

j�1Q
i=0

�v�i�v�j +
S�1P
j=0

j�1Q
i=0

�v�h�i�v�h�j

1�
S�1Q
v=0

�v

+

S�1P
j=0

j�1Q
i=0

�2v�i�
2
v�j

1�
S�1Q
v=0

�2v

1
CCCA�

0
BBB@exp

0
BBB@

S�1P
j=0

j�1Q
i=0

�2v�i�
2
v�j

1�
S�1Q
v=0

�2v

h�1Y

i=0

�v�i

1
CCCA� 1

1
CCCA , h > 0: (2:13b)

Proof For Gaussian innovations, we use again the fact that if X � N(0; 1) then E(exp(�X)) = exp(�
2

2 ).

Therefore, (2:13a) follows from (2:10a) and (2:9). For h > 0 we have

E
�
"2nS+v"

2
nS+v�h

�
= exp

0
@
 
1�

S�1Y

v=0

�v

!�10
@
S�1X

j=0

j�1Y

i=0

�v�i�v�j +
S�1X

j=0

j�1Y

i=0

�v�h�i�v�h�j

1
A
1
A�

h�1Q
j=0

exp

 
1

2

j�1Y

i=0

�2v�i�
2
v�j

!
1Q
j=0

exp

0
@1
2

 
1 +

h�1Y

i=0

��1v�i

!2 j�1Y

i=0

�2v�i�
2
v�j

1
A :

After tedious but straightforward calculation, the autocovariance function at lag h (h > 0) simpli�es for

Gaussian innovations to

"
2

v (h) = exp

0
B@

S�1P

j=0

j�1Q

i=0

�v�i�v�j+
S�1P

j=0

j�1Q

i=0

�v�h�i�v�h�j

1�
S�1Q

v=0

�v

1
CA

2
4exp

0
@
h�1X

j=0

j�1Y

i=0

�2v�i
�2v�j
2

1
A �

exp

0
@

1X

j=h

j�1Y

i=0

�2v�i�
2
v�j

 
1 +

h�1Y

i=0

��1v�i

!21
A� exp

0
@

1X

j=0

j�1Y

i=0

�2v�i�
2
v�j

1
A
3
5 :

= exp

0
BBB@

S�1P
j=0

j�1Q
i=0

�v�i�v�j +
S�1P
j=0

j�1Q
i=0

�v�h�i�v�h�j

1�
S�1Q
v=0

�v

+

S�1P
j=0

j�1Q
i=0

�2v�i�
2
v�j

1�
S�1Q
v=0

�2v

1
CCCA�

0
BBB@exp

0
BBB@

S�1P
j=0

j�1Q
i=0

�2v�i�
2
v�j

1�
S�1Q
v=0

�2v

h�1Y

i=0

�v�i

1
CCCA� 1

1
CCCA ;

which is (2:13b). �

It is worth noting that expanding the exponential function in (2:13b) under the periodic stationarity

condition (2:5), the autocovariance function "
2

v (h) of the squared process
�
"2t ; t 2 Z

	
has the following

equivalent form as h!1

"
2

v (h) � K
h�1Y

i=0

�v�i � K

 
S�1Y

v=0

�v

!h=S
;

and so "
2

v (h) converges geometrically to zero as h ! 1, where K is an appropriate real constant. How-

ever, the decreasing of "
2

v (h) is not compatible with the recurrence equation that satisfy periodic ARMA
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(PARMA) autocovariances and we can conclude that the squared process
�
"2t ; t 2 Z

	
does not admit a

PARMA autocovariance representation.

Nevertheless, the logarithmed squared process
�
log
�
"2t
�
; t 2 Z

	
has in fact a PARMA autocovariance

structure. Considering the following notations Yt = log
�
"2t
�
, Xt = log ht, ut = log

�
�2t
�
, E

�
log
�
�2t
��
= �u

and V ar
�
log
�
�2t
��
= �2u, we have from (2:1)

Yt = Xt + ut: (2:14)

Theorem 2.5 (PARMA (1; 1) representation of
�
log
�
"2t
�
; t 2 Z

	
)

Under assumption (2:5) and �niteness of �2u, the process fYt; t 2 Zg has a PARMAS (1; 1) representa-

tion given by

YnS+v � �Yv = �v
�
YnS+v�1 � �Yv�1

�
+ �nS+v �  v�nS+v�1; 1 � v � S; t 2 Z; (2:15a)

where �Yv = E (YnS+v),

 v =

8
<
:

(1+�2v)�
2
u+�

2
v�
p
((1+�2v)�

2
u+�

2
v)((1��

2
v)�

2
u+�

2
v)

2�v�
2
u

if �2u 6= 0
0 if �2u = 0

, 1 � v � S; (2:15b)

and f�t; t 2 Zg is a periodic white noise with periodic variance

�2�;v = V ar
�
�nS+v

�
=

8
>><
>>:

�v�
2
u

 v
if

S�1Q
v=0

�v 6= 0

0 if
S�1Q
v=0

�v = 0

, 1 � v � S: (2:15c)

Proof The second-order structure of fXt; t 2 Zg is given form (2:1) while using (2:3),

�Xv = E (XnS+v) = �v + E (XnS+v�1) =

�
1�

S�1Q
v=0

�v

��1 S�1P
j=0

j�1Q
i=0

�v�i�v�j ,

Xv (0) = V ar
�
X2
nS+v

�
= �2vE

�
X2
nS+v�1

�
+ �2v =

�
1�

S�1Q
v=0

�2v

��1 S�1P
j=0

j�1Q
i=0

�2v�i�
2
v�j

Xv (h) = Cov (XnS+v; XnS+v�h)

= �v
X
v�1 (h� 1) ;

; h > 0:

Therefore, using (2:14) we have

�Yv = E (YnS+v) = E (XnS+v) + E (unS+v) =

�
1�

S�1Q
v=0

�v

��1 S�1P
j=0

j�1Q
i=0

�v�i�v�j + �u,

Yv (0) = V ar (YnS+v) = V ar (XnS+v) + �
2
u =

�
1�

S�1Q
v=0

�2v

��1 S�1P
j=0

j�1Q
i=0

�2v�i�
2
v�j +�

2
u

Yv (h) = Xv (h) = �v
X
v�1(h� 1) = �v�v�1:::�v�h+1

X
v�h(0)

= �v�v�1:::�v�h+1

�
1�

S�1Q
v=0

�2v

��1 S�1P
j=0

j�1Q
i=0

�2v�h�i�
2
v�h�j

; h > 0:
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Clearly, the process fYt; t 2 Zg has a PARMA representation since Yv (h) = �v
Y
v�1(h � 1), for h > 1.

To identify the parameters of its representation we use expressions of Yv (h) for h = 0; 1. If fYt; t 2 Zg has
a PARMA representation (2:15a) then for all 1 � v � S

Yv (0) = �v
Y
v (1) + �

2
�;v (1 +  v ( v � �v))

Yv (1) = �v
Y
v�1(0)�  v�2�;v: (2:15d)

Hence, if �2u 6= 0 we have for all 1 � v � S;

1 +  v ( v � �v)
 v

=
Yv (0)� �vYv (1)
�v

Y
v�1(0)� Yv (1)

=
Yv (0)� �2vXv�1(0)

�v
�
Xv�1(0) + �

2
u)
�
� �vXv�1(0)

=
Yv (0)�

�
Xv (0)� �2v

�

�v�
2
u

=
Yv (0)�

�
Yv (0)� �2v ��2u

�

�v�
2
u

=
�2v +�

2
u

�v�
2
u

: (2:15e)

The latter equation admits, for all 1 � v � S, two solutions one of which is with modulus less than 1

(j vj < 1) and is given by (2:15b). Such a choice clearly ensures that
S�1Q
v=0

j vj < 1, but it is not unique.

Moreover, when
S�1Q
v=0

�v 6= 0 using (2:15d), the variance of f�t; t 2 Zg is

�2�;v =
�v

Y
v�1(0)� Yv (1)

 v

=
�v
�
Xv�1(0) + �

2
u

�
� �vYv�1(0)

 v
;

showing (2:15c).

If, however, �2u = 0 the relationship Yv (h) = �v
Y
v�1(h � 1) also holds for h = 1 and so the process

fYt; t 2 Zg is a pure �rst-order periodic autoregression (PAR(1)) with  v = 0 for all v. When
S�1Q
v=0

�v = 0,

the process fYt; t 2 Zg is a strong periodic white noise (an independent and periodically distributed, i:p:d:
sequence) and so  v = 0 for all v (see also Francq and Zakoïan, 2006 for the particular non-periodic case

S = 1). �

It is worth noting that representation (2:15a) is not unique. Indeed, in contrast with time-invariant

ARMA models for which an ARMA process may be uniquely identi�ed from its autocovariance function

(see Brockwell and Davis, 1991), it is not always possible to build a unique PARMA model from an au-

tocovariance function having PARMA structure. However, we may enumerate all possible representations

from solving (2:15d) and choosing the best one �tting the observed series. The resulting representation will
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be abusively said the PARMA representation. Such a representation is useful for obtaining predictions

for the process
�
log
�
"2t
�
; t 2 Z

	
. It may also be used to obtain approximate predictions for the squared

process
�
"2t ; t 2 Z

	
as this latter does not admit a PARMA representation (see Section 4.2). If we denote

by b"2t+h=t = E
�
"2t+h="

2
t ; "

2
t�1; :::

�
the mean-square prediction of "2t+h based on "

2
t ; "

2
t�1; :::; then b"2t+h=t may

be approximated by

C exp

�
\

log
�
"2t+h=t

��
;

where
\

log
�
"2t+h=t

�
= E

�
log
�
"2t+h

�
= log

�
"2t
�
; log

�
"2t�1

�
; :::
�
;

and C is a normalization factor. The constant C is introduced to minimize the bias due to using incorrectly

the following relationship

exp

�
\

log
�
"2t+h=t

��
=

\
exp log

�
"2t+h=t

�
;

as we know from Jensen�s inequality that the latter equality is in fact not true. Typically, one can take C

as the sample variance of
�
log
�
"2t
�
; t = 1; :::; T

�
.

3. Parameter estimation of the PAR-SV model

In this Section we consider two estimation methods for the PAR-SV model. The �rst one is a QML

method based on prediction-error decomposition of a corresponding linear periodic state-space model. This

method which uses Kalman �ltering to obtain linear predictors and error prediction variances is used as

a Benchmark to the second proposed method, which is based on the Bayesian approach. In this method,

from given conjugate priors, the conditional posteriors are obtained from the Gibbs sampler in which the

conditional posterior of the augmented volatilities is driven via the Griddy-Gibbs technique. In the rest of

this Section we consider a series " = ("1; : : : ; "T )
0
generated from model (2:1) with sample-size T = NS

supposed without loss of generality multiple of the period S. The vector of model parameters is denoted by

� =
�
!0; �20

�0
where ! = (!01; !

0
2; :::; !

0
S)
0
, !v = (�v; �v)

0
and �2 =

�
�21; �

2
2; :::; �

2
S

�0
.

3.1 QMLE via prediction error decomposition and Kalman �ltering

Taking in (2:1) the logarithm of the square of "t we obtain the following linear periodic state space-model

8
<
:

YnS+v = �+XnS+v + eunS+v
XnS+v = �v + �vXnS+v�1 + �venS+v

, n 2 Z; 1 � v � S; (3:1)

where as in the above Yv+nS = log
�
"2nS+v

�
, XnS+v = log (hnS+v), unS+v = log

�
�2nS+v

�
; � = E (unS+v),

eunS+v = unS+v � � and �2u = V ar (unS+v). When f�t; t 2 Zg is standard Gaussian, the mean and variance
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of log
�
�2nS+v

�
can accurately be approximated by  

�
1
2

�
� ln

�
1
2

�
� �1:27 and �2=2 respectively, where  (:)

is the gamma function. Note, however, that the linear state-space model (3:1) is not Gaussian, unless i) e1

is Gaussian, ii) e1 and �1 are independent and iii) �1 has the same distribution as exp (X=2) for some X

normally distributed with mean zero and variance 1. In what follows we assume for simplicity of exposition

that �1 is standard Gaussian, but the QML method we present below is still valid when �1 is not Gaussian

and even when � and �2u are unknown.

Let Y = (Y1; : : : ; YT )
0
be the series of log-squares corresponding to " = ("1; : : : ; "T )

0
(i.e. Yt = log

�
"2t
�
;

1 � t � T ), which is generated from (3:1) with true parameter �0. The quasi-likelihood function lQ(�;Y )

evaluated at a generic parameter � may be written via the prediction error decomposition as follows

log(lQ(�;Y )) = �
T

2
log(2�)� 1

2

TX

t=1

 
log(Ft) +

(Yt � bY t/t�1)2
Ft

!
; (3:2)

where bY t/t�1 = bXtjt�1+�, bXtjt�1 is the best predictor of the state Xt based on the observations Y1; :::; Yt�1

with mean square errors Pt=t�1 = E
�
Xt � bX t/t�1

�2
and Ft = E

�
Yt � bY t/t�1

�2
. A QML estimate b�QML

of the true �0 is the maximizer of log(lQ(�;Y )) over some compact parametric space �, where lQ(�;Y ) it is

evaluated as if the linear state space model (3:1) was Gaussian. Thus the best state predictor bXtjt�1 and

the state prediction error variance Pt=t�1 may be recursively computed using the Kalman �lter, which in the

context of model (3:1) is described by the following recursions

bX t/t�1 = �t

�
bX t�1/t�2 + Pt�1=t�2F

�1
t�1

�
Yt�1 � bX t�1/t�2 � �

��
+ �t

Pt=t�1 = �2t

�
Pt�1=t�2 � P 2t�1=t�2F�1t�1

�
+ �2t

Ft = Pt=t�1 +�
2
u

; 2 � t � T; (3:3a)

while remembering that �t, �t and �
2
t are S-periodic over t. The start-up values of (3:3a) are calculated on

the basis of: bX1=0 = E (X1) and P1=0 = V ar (X1). Using results of Section 2, we then get

bX1=0 =

PS�1
j=0

j�1Q
i=0

�1�i�1�j

1�
S�1Q
v=0

�v

and P1=0 =

PS�1
j=0

j�1Q
i=0

�21�i�
2
1�j

1�
S�1Q
v=0

�2v

. (3:3b)

Recursions (3:3) may also be used in a reverse form for smoothing purposes, i.e. to obtain the best

linear predictor eXt of Xt based on Y1; : : : ; YT , from which we get estimates of the unobserved volatilities ht

(1 � t � T ).

Consistency and asymptotic normality of the QML estimate may be established using standard theory of

linear (non-Gaussian) signal plus noise models with time-invariant parameters (Dunsmuir, 1979). For this,

we invoke the corresponding multivariate time-invariant model (2:2) which we transform to a linear form as

follows 8
<
:
Yn = logHn + �n

logHn = B logHn�1 + �n

, n 2 Z; (3:4)
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where Yn and �n are S-vectors such that Yn (v) = Yv+nS , and �n (v) = uv+nS (1 � v � S) and where

logHn; B and �n are given by (2:2). Using (3:4), we can call for the theory in Dunsmuir (1979) to yield the

asymptotic variance of the QMLE under the �niteness of the moment E
�
Y 4v+nS

�
(see also Ruiz, 1994 and

Harvey et al, 1994).

Of course, the QMLE would be asymptotically e¢cent if we assume that et is Gaussian, e1 and and

�1 are independent, and has �1 the same distribution as exp (X=2), where X � N(0; 1). In that case,

log
�
�21
�
� N(0; 1) and the lienar state space (3:1) would be also Gaussian. Therefore, the QMLE reduces

to the exact maximum likelihood estimate (MLE). However, the assumption that log
�
�21
�
� N(0; 1) seems

to have a little interest in practice.

3.2. Bayesian inference via Gibbs sampling

Adopting the Bayesian approach, the parameter vector � of the model and the unobserved volatilities

h = (h1; h2; :::; hT )
0
which are also considered as augmented parameters, are viewed as random with a

certain prior distribution f (�; h). Given a series " = ("1; : : : ; "T )
0
generated from the PAR-SVS model (2:1)

with Gaussian innovations, the goal is to make inference about the joint posterior distribution, f (�; h="),

of (�; h) given ". Because of the periodic structure of the PAR-SV model it is natural to assume that

the parameters h, !; �21; �
2
2; :::; �

2
S are independent of each other. Thus, the joint posterior distribution

f (�; h=") = f
�
!; �2; h="

�
can be estimated using Gibbs sampling provided we can draw samples from

any of the S + 2 conditional posterior distributions f
�
!="; �2; h

�
, f
�
�2v="; !; �

2
�fvg; h

�
(1 � v � S) and

f
�
h="; !; �2

�
, where x�ftg denotes the vector obtained from x after removing its t-th component xt. Since

the posterior distribution of the volatility parameter f
�
h="; !; �2

�
has a rather complicated expression, we

sample it element-by-element as done by Jacquier et al (1994). Thus, the Gibbs sampler for sampling from the

joint posterior distribution f
�
!; �2; h="

�
reduces to drawing samples from any of the T+S+1 conditional pos-

terior distributions f
�
!="; �2; h

�
, f
�
�2v="; !; �

2
�fvg; h

�
, (1 � v � S) and f

�
ht="; !; �

2; h�ftg
�
; (1 � t � T ).

Under normality of the volatility proxies and using standard linear regression theory with an appropriate

adaptation to the PAR form of the log-volatility equation (2:1), the conditional posteriors f
�
!="; �2; h

�

and f
�
�2v="; !; �

2
�fvg; h

�
, (1 � v � S) may be determined directly from given conjugate priors f (!) and

f
�
�2v
�
, (1 � v � S). However, like the non-periodic SV case (Jacquier et al, 1994), direct draws from the

distribution f
�
ht="; !; �

2; h�ftg
�
are not possible because it has unusual form. Nevertheless, unlike Jacquier

et al (1994) which used a Metropolis-Hasting chain after determining the form of f
�
ht="; !; �

2; h�ftg
�
except

for a scaling factor, we use the Griddy-Gibbs procedure as in Tsay (2010) because in our periodic context

its implementation seems much simpler.
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3.2.1. Prior and posterior sampling analysis

a) Sampling the log-volatility periodic autoregressive parameter ! Before giving the conditional

posterior distribution f
�
!="; �2; h

�
through some conjugate prior distributions and linear regression the-

ory, we �rst write the PAR log-volatility equation as a standard linear regression. Setting HnS+v =0
@ 0; :::; 0| {z }
v�1 times

; 1; log (hnS+v�1) ; 0; :::; 0| {z }
S�v times

1
A
0

, model (2:1b) for t = 1; :::; NS may be rewritten in the following

periodically homoskedastic linear regression

log (hnS+v) = H0
nS+v! + �venS+v; 1 � v � S; 0 � n � N � 1; (3:5a)

or also as a standard regression

log (hnS+v)

�v
=
1

�v
H0
nS+v! + enS+v; 1 � v � S; 0 � n � N � 1; (3:5b)

with i:i:d: Gaussian errors. Assuming known the variances �2v (1 � v � S) and the initial observation h0,

the least squares estimate b!WLS of !, based on (3:5b), (which is just the weighted least squares estimate of

! based on (3:5a)) has the following form

b!WLS =

 
N�1X

n=0

SX

v=1

1

�2v
HnS+vH0

nS+v

!�1 N�1X

n=0

SX

v=1

1

�2v
HnS+v log (hnS+v) ;

and is normally distributed with mean ! and covariance matrix

� =

 
N�1X

n=0

SX

v=1

1

�2v
HnS+vH0

nS+v

!�1
. (3:6)

Under assumption (3:5b), information of the data about ! is contained in the weighted least squares

estimate b!WLS of !. To get a closed-form expression for the conditional posterior f
�
!="; �2; h

�
we use a

conjugate prior for !. This prior distribution is Gaussian, i.e. ! � N
�
!0;�0

�
, where the hyperparameters

!0;�0 are known and are �xed so that to have a quite reasonably di¤use prior yet informative.

Thus, using standard regression theory (Box and Tiao, 1973; Tsay, 2010) the conditional posterior dis-

tribution of ! given "; �2; h is:

!="; �2; h � N (!�;��) ; (3:7a)

where

�� =

 
N�1X

n=0

SX

v=1

1

�2v
HnS+vH0

nS+v +
�
�0
��1
!�1

(3:7b)

!� = ��

 
N�1X

n=0

SX

v=1

1

�2v
HnS+v log (hnS+v) +

�
�0
��1

!0

!
: (3:7c)

Some remarks are in order:

16



i) The matrix � given by (3:6) is block diagonal. So if we assume that �0 is also block diagonal, then

we obtain the same result as if we assume that the seasonal parameters !1; !2; :::; !S are independent of

each other, and each one has a conjugate prior with hyperparameters, say !0v and �
0
v (1 � v � S), that are

appropriate components of !0 and �0.

ii) Faster and more stable computation of !� and �� in (3:7) which does not involve any matrix inversion

(in contrast with (3:7b)) may be obtained while setting !� = !�NS , �
� = ��NS and recursively then computing

the latter quantities using the well-known recursive least squares (RLS) algorithm (see Ljung and Söderström,

1983, Lemma 2.2) which is given by

!�nS+v = !�nS+v�1 +
���1nS+v�1HnS+v

�
log (hnS+v)�H0

nS+v!
�
nS+v�1

�

�2v +H0
nS+v�

��1
nS+v�1HnS+v

���1nS+v = �
��1
nS+v�1 �

���1nS+v�1HnS+vH0
nS+v�

��1
nS+v�1

�2v +H0
nS+v�

��1
nS+v�1HnS+v

;
1 � v � S

0 � n � N � 1;
(3:8a)

with starting values

!�0 = !0 and ���10 = �0. (3:8b)

This may improve the numerical stability and computation time tied to the whole estimation method,

especially for a large period S.

b) Sampling the log-volatility periodic variance parameters �2v; 1 � v � S We also use conjugate

priors for �2v; 1 � v � S to get a closed form expression for the conditional posterior of �2v given data and

the other parameters �2�fvg. Such priors are provided by the inverted Khi -squared distribution:

av�v
�2v

� �2av ; 1 � v � S; (3:9a)

where av�v = 1 (1 � v � S). Given the parameters ! and h, if we de�ne

enS+v = log (hnS+v)� �v � �v log (hnS+v�1) ; 1 � v � S; 0 � n � N � 1; (3:9b)

then ev; ev+S ; :::; e(N�1)S+v � iiN
�
0; �2v

�
, 1 � v � S. From standard Bayesian linear regression theory (see

e.g. Tsay, 2010) the conditional posterior distribution of �2v; 1 � v � S, given the data and the remainder

parameters is an inverted Khi -squared distribution with degree of freedom av +N � 1, that is

av�v+
PN�1

n=0 e
2
nS+v

�2v
="; !; �2�fvg; h � �2av+N�1; 1 � v � S: (3:9c)

c) Sampling the augmented volatility parameters h = (h1; h2; :::; hT )
0
Now, it remains to sample

from the conditional posterior distribution f
�
ht="; �; h�ftg

�
, t = 1; 2; :::; T . Let us �rst give the expression

of this distribution (except for a multiplicative constant) and we will show how to (indirectly) draw samples

from it using the Griddy Gibbs technique. Because of the Markovian (but non-homogeneous) structure of
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the volatility process fht; t 2 Zg and the conditional independence of "t and ht�h (h 6= 0) given ht, it follows
that for any 1 < t < T:

f
�
ht="; �; h�ftg

�
=

f (ht=ht�1; �) f (ht+1=ht; �) f ("t=�; ht)

f (ht+1=ht�1; �) f ("t=�; ht�1; ht+1)

_ f (ht=ht�1; �) f (ht+1=ht; �) f ("t=�; ht) : (3:10)

Using the fact that "t=�; ht � "t=ht � N (0; ht), log (ht) = log (ht�1) ; � � N
�
�t + �t log (ht�1) ; �

2
t

�
; and

d log(ht) =
1
ht
dht, formula (3:10) becomes

f
�
ht="; �; h�ftg

�
_

1p
h3t
exp

�
� "2t
2ht

� 1

2
t
(log (ht)� �t)2

�
; 1 < t < T; (3:11a)

where

�t =
�2t+1 (�t + �t log (ht�1)) + �

2
t�t+1 (log (ht+1)� �t+1)

�2t+1 + �
2
t�

2
t+1

(3:11b)


t =
�2t+1�

2
t

�2t+1 + �
2
t�

2
t+1

: (3:11c)

Note that in (3:11a) we have used the well-known formula (see Box and Tiao, 1973, p. 418) A (x� a)2+
B (x� b)2 = (x� c)2 (A+B) + (a� b)2 AB

A+B
, where c = (Aa+Bb)=(A+B) provided that A+B 6= 0.

For the two end-points h1 and hT we may simply use a naive approach which consists of assuming

h1 �xed so that the sampling starts with t = 2 and use the fact that log (hT ) =�; log (hT�1) � N(�T +

�T�1 log (hT�1) ; �
2
T ). Alternatively, we may also use a forecast of hT+1 and a backward prediction of h0

and employ again formula (3:11) for 0 < t < T + 1. In that case, we forecast hT+1, on the basis of the

log-volatility equation of model (2:1), by using a 2-step ahead forecast \log (hT�1) (2), at the origin T � 1,
which is given from (2:1) by \log (hT�1) (2) = �T+1+�T+1�T +�T+1�T log (hT�1). The backward forecast of

h0 is obtained using a 2-step ahead backward forecast on the basis of the backward periodic autoregression

(Sakai and Ohno, 1997) associated to the PAR log-volatility.

Once the conditional posterior f
�
ht="; �; h�ftg

�
is determined except for a scale factor, we may use some

indirect sampling algorithms to draw the volatility ht. Jacquier et al (1994) used the rejection Metropolis-

Hasting algorithm. Alternatively, following Tsay (2010) we call for the Griddy-Gibbs technique (Ritter and

Tanner, 1992) which consists in:

i) Choosing a grid ofm points from a given interval [ht1; htm] of ht: ht1 � ht2 � ::: � htm; then evaluating

the conditional posterior f
�
ht="; �; h�ftg

�
via (3:11) (ignoring the normalization constant) at each one of

these points, giving fti = f
�
hti="; �; h�ftg

�
, i = 1; :::;m.

ii) Building from the values ft1; ft2; :::; ftm the discrete distribution p (:) de�ned at hti (1 � i � m)

by p (hti) =
ftiPm
j=1 ftj

. This may be seen as an approximation to the inverse cumulative distribution of

f
�
ht="; �; h�ftg

�
.
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iii) Generating a number from the uniform distribution on (0; 1) and transforming it using the discrete

distribution p (:) obtained in ii) to get a random draw for ht.

It is worth noting that the choice of the grid [ht1; htm] is crucial for e¢ciency of the Griddy algorithm.

We follow here a similar device by Tsay (2010), which consists of taking the range of ht, at the l-th Gibbs

iteration, to be [h�mt ; h�Mt ], where

h�mt = 0:6max
�
h
(0)
t ; h

(l�1)
t

�
, h�Mt = 1:4min

�
h
(0)
t ; h

(l�1)
t

�
; (3:12)

h
(l�1)
t and h

(0)
t being, respectively, the estimate of ht for the (l � 1)-th iteration and initial value.

3.2.2. Bayes Griddy Gibbs sampler for PAR-SV

The following algorithm summarizes the Gibbs sampler for drawing from the conditional posterior dis-

tribution f (�; h=") given ". For l = 0; 1; :::;M , consider the notation h(l) =
�
h
(l)
1 ; :::; h

(l)
T

�0
, !(l) =

�
�
(l)
1 ; �

(l)
1 ; :::; �

(l)
S ; �

(l)
S

�0
and �2(l) =

�
�
2(l)
1 ; �

2(l)
2 ; :::; �

2(l)
S

�0
.

Algorithm 3.1

Step 0 Specify starting values h(0), !(0) and �2(0).

Step 1 Repeat for l = 0; 1; :::;M � 1;
Draw !(l+1) from f

�
!="; �2(l); h(l)

�
using (3:7a) and (3:8).

Draw �2(l+1) from f
�
�2="; !(l+1); h(l)

�
using (3:9b) and (3:9c).

Repeat for t = 1; 2; :::; T = NS

Griddy Gibbs:

Select a grid of m points
�
h
(l+1)
ti

�
: h

(l+1)
t1 � h

(l+1)
t2 � ::: � h

(l+1)
tm .

For 1 � i � m calculate f
(l+1)
ti = f

�
h
(l+1)
ti ="; �(l); h

(l)
�ftg

�
from (3:11).

De�ne the inverse distribution p
�
h
(l+1)
ti

�
=

f
(l+1)
tiPm

j=1 f
(l+1)
tj

, 1 � i � m.

Generate a number u from the uniform (0; 1) distribution.

Transform u using the inverse distribution p (:) to get h
(l+1)
t , which is

considered as a draw from f
�
ht="; �

(l+1); h
(l)
�ftg

�
.

Step 2 Return the values h(l), !(l) and �2(l), l = 1; :::;M . �

3.2.3. Inference and prediction using the Gibbs sampler for PAR-SV

Once sampling from the posterior distribution f (�; h="), statistical inference for the PAR-SV model may

be easily made.
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The Bayes Griddy-Gibbs parameter estimate b�BGG of � is taken to be the posterior mean � = E (�=")

which is, under the Markov chain ergodic theorem, approximated with any desired degree of accuracy by

b�BGG =
1

M

M+l0X

l=l0

�(l);

where �(l) is the l-th draw of � from f (�; h=") given by Algorithm 3.1, l0 is the burn-in size, i.e. the number

of initial draws discarded, and M is the number of draws.

Smoothing and forecasting volatility are obtained as a by-product of the Bayes Griddy-Gibbs method.

The smoothed value, ht = E (ht="), of ht (1 � t � T ) is obtained while sampling from the distribution

f (ht=") which in turn is the marginal of the posterior distribution f (�; h="). So E (ht=") may be accurately

approximated by 1
M

PM+l0
l=l0

h
(l)
t where h

(l)
t is the l-th draw of ht from f (�; ht="). Forecasting future values

hT+1; hT+2; ::; hT+k are getting either as in the above using the log-volatility equation with the Bayes pa-

rameter estimates or directly while sampling from the predictive distribution f (hT+1; hT+2; ::; hT+k=") (see

also Jacquier et al, 1994).

3.2.4 MCMC diagnostics

It is important to discuss the numerical properties of the proposed BGG method in which the volatilities

are sampled element by element. Despite the ease of implementation, it is well documented that the main

drawback of the single-move approach (e.g. Kim et al, 1998) is that the posterior draws are often highly

correlated thereby resulting in a slow mixing and so a slow convergence properties. Among several MCMC

diagnostic measures, we consider here the Relative Numerical Ine¢ciency (RNI) (e.g. Geweke, 1989; Geyer,

1992), which is given by

RNI = 1 + 2
BX

k=1

K
�
k
B

�
b�k;

where B = 500 is the bandwidth, K (:) is the Parzen kernel (e.g. Kim et al, 1998) and b�k the sample
autocorrelation at lag k of the BGG parameter draws. The RNI indicates in fact on the ine¢ciency due to

the serial correlation of the BGG draws (see also Geweke, 1989; Tsiakas, 2006). AnotherMCMC diagnostic

measure (Geweke, 1989) we use here is the Numerical Standard Error (NSE), which is the square root of

the estimated asymptotic variance of the MCMC estimator. In fact, the NSE is given by

NSE =

vuut 1
M

 
b0 + 2

BX

k=1

K
�
k
B

�
bk

!
;

where bk is the sample autocovariance at lag k of the BGG parameter draws and M is the number of draws.
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3.2.5 Period selection via the Deviance Information Criterion

An important issue in PAR-SV modeling is the selection of the period S. This problem is especially more

pronounced for modeling daily returns because their periodicity is not as obvious as in quarterly or monthly

data. Although many authors (e.g. Franses and Paap, 2000; Tsiakas, 2006) have emphasized the day-of-

the-week e¤ect in daily stock returns, which often entails a period of S = 5, the period selection problem in

periodic volatility models remains a challenging problem. Standard order selection measures such as the AIC

and BIC, which require the speci�cation of the number of free parameters in each model, are not applicable

for comparing complex Bayesian hierarchical models like the PAR-SV model. This is because in the PAR-

SV model, the number of free parameters, which is augmented by the latent volatilities that are in fact not

independent but Markovian, is not well de�ned (cf. Berg et al, 2004). For a long time, the Bayes factor has

been viewed as the best way to carry out Bayesian model comparison. However, its calculation based on

evaluating the marginal likelihood requires extremely high-dimensional integration, and this would be more

computationally demanding especially for PAR-SV model which involves a larger number of parameters

augmented by the volatilities, exceeding the sample size.

In this paper, we will carry out period selection using rather the Deviance Information Criterion (DIC),

which may be viewed as a trade-o¤ between model adequacy and model complexity (Spiegelhalter et al,

2002). Such a criterion, which represents a Bayesian generalization of the AIC, is easily obtained from

MCMC draws, needing no extra-calculations. The (conditional) DIC as introduced by Spiegelhalter et al

(2002) is de�ned in the context of PAR-SVS to be

DIC (S) = �4E�;h=" (log (f ("=�; h))) + 2 log
�
f
�
"=�; h

��
;

where f ("=�; h) is the (conditional) likelihood of the PAR-SV model for a given period S and
�
�; h
�
=

E ((�; h)=") is the posterior mean of (�; h). From the Griddy-Gibbs draws, the expectation E�;h=" (log (f ("=�; h)))

can be estimated by averaging the conditional log-likelihood, log f ("=�; h), over the posterior draws of (�; h).

Further, the joint posterior mean estimate of (�; h) can be approximated by the mean of the posterior draws of

(�(l); h(l)). Using the fact that f ("=�; h) := f ("=h) = � 1
2

PT
t=1

�
log (2�ht) +

"2t
ht

�
, the DIC (S) is estimated

by

2

M

l0+MX

l=l0

TX

t=1

 
log
�
2�h

(l)
t

�
+

"2t

h
(l)
t

!
�

TX

t=1

�
log
�
2�ht

�
+
"2t
ht

�
;

where h
(l)
t denotes the l-th BGG draw of ht from f (ht="t; �), M is the number of draws, l0 is the burn-in

size and ht := E (ht=") is estimated by
1
M

Pl0+M
l=l0

h
(l)
t (1 � t � n). Of course, a model is preferred if it has

the smallest DIC value.

Since the DIC is random and for the same �tted series it may change value from a MCMC draw to

another, it is useful to get its corresponding numerical standard error. However, as pointed out by Berg et al
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(2004), non e¢cient method has been developed for calculating reasonably accurate Monte Carlo standard

errors of DIC. Nevertheless, following the recommendation of Zhu and Carlin (2000) we simply replicate the

calculation of DIC some G times and estimate V ar(DIC) by its sample variance, giving a broad indication

of the implied variability of DIC.

Note �nally that for the class of latent variable models to which belongs the PAR-SV , there are in

fact several alternative de�nitions of the DIC depending on the di¤erent concepts of the likelihood used

(complete, observed, conditional) and the one we worked with here is the conditional DIC as categorized

by Celeux et al (2006). We have avoided using the observed DIC because, like the Bayes factor, it is based

on evaluating the marginal likelihood whose computation is typically very time-consuming.

4. Simulation study: Finite-sample performance of the QML and

BGG estimates

In this Section, a simulation study is undertaken to assess the performance of the QML, BGG Bayes

estimates in �nite samples.

Concerning �nite-properties of the QML and BGG estimates, three instances of the Gaussian PAR-SV

model with period S = 2 are considered and are reported respectively in Table 4.1, Table 4.2 and Table 4.3.

The parameter � =
�
�1; �1; �2; �2; �

2
1; �

2
2

�0
are chosen for each instance in order to be in accordance with

empirical evidence. In particular, for the three instances the persistence parameter �1�2 equals 0:90, 0:95 and

0:99 respectively. We have also set small values for �21 and �
2
2 because it is a critical case for the performance

of the QMLE as pointed out by Ruiz (1994) and Harvey et al (1994) in the standard SV case. The choice

of S = 2 is only motivated by computational and time-consuming considerations. For each instance, we have

considered 1000 replications of PAR-SV series with sample size 1500, for which we calculated the QML

and Bayes estimates. Mean of estimates (b�QML and b�BGG) and their standard deviations (Std) over the
replications are reported in Tables 4.1-4.3.

For the QML method a non linear optimization routine is required. We have applied a Gauss-Newton

type algorithm starting from di¤erent values of the � parameter estimate. For the Bayes Griddy Gibbs

estimate, we have taken the same prior distributions for ! = (�1; �1; �2; �2)
0
across instances:

! � N (!0; diag (0:05; 0:5; 0:05; 0:5)) , !0 = (0; 0; 0; 0)
0
;

1
�2
1

� �25;
1
�2
2

� �25;

which are quite di¤use, but proper. Concerning initial parameter values, the initial volatility h(0) in the
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Gibbs sampler is taken to be the volatility generated by the �tted GARCH (1; 1), that is h(0) = hG where

8
<
:

"t =
p
hGt �t

hGt = '0 + '1"
2
t�1 +  h

G
t�1

; t 2 Z;

while the initial log-volatility parameter estimate �(0) is taken to be the ordinary least-squares estimate of

� based on the series log
�
h(0)

�
. Furthermore, in the Griddy Gibbs iteration, ht is generated using 500 grid

points and the range of ht at the l-th Gibbs iteration is taken as in (3:12). Finally, the Gibbs sampler is run

for 5500 iterations from which we discarded the �rst 500 iterations.

�1 �1 �2 �2 �1 �2

True value �0:5 1 1:2 0:9 0:2 0:3

QMLE

Std

�0:5255
(0:0374)

1:0728

(0:0691)

1:2536

(0:0743)

0:9348

(0:0385)

0:2629

(0:0926)

0:3755

(0:0836)

BGG

Std

�0:5004
(0:0373)

0:9979

(0:0182)

1:1982

(0:0421)

0:9061

(0:0107)

0:2003

(0:0127)

0:2964

(0:0165)

Table 4.1: Instance 1- Simulation results for QML and BGG on a Gaussian PAR-SV2

with T = 1500:

�1 �1 �2 �2 �1 �2

True value �0:5 1 1:2 0:95 0:1 0:2

QMLE

Std

�0:5258
0:0396

1:0799

0:0587

1:2527

0:0643

0:9849

0:0531

0:1394

0:5697

0:2570

0:4582

BGG

Std

�0:4:939
0:0133

0:9992

0:0166

1:2030

0:0113

0:9505

0:0105

0:1004

0:0123

0:2069

0:0093

Table 4.2: Instance 2- Simulation results for QML and BGG on a Gaussian PAR-SV2

with T = 1500.
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�1 �1 �2 �2 �1 �2

True value �0:5 1 1:2 0:99 0:15 0:1

QMLE

Std

�0:5230
(0:0733)

1:3842

(0:0601)

1:1773

(0:0661)

0:9503

(0:0642)

0:0512

(0:4287)

0:2608

(0:4913)

BGG

Std

�0:5036
(0:0312)

1:0025

(0:0150)

1:1992

(0:0201)

0:9767

(0:0132)

0:1606

(0:0101)

0:1180

(0:0135)

Table 4.3: Instance 3- Simulation results for QML and BGG on a Gaussian PAR-SV2

with T = 1500.

It can be observed that the parameters are quite well estimated by the two methods with an obvious

superiority of the Bayes estimate over the QMLE. Indeed, in all instances the BGG estimate (BGGE)

greatly dominates the QMLE in the sense that it has smaller bias and standard deviations. We also observe

that the QMLE provides poor estimates as small as the variance parameters �21 and �
2
2.

From a theoretical point of view, it would be interesting to compare the QMLE and BGGE when

log
�
�21
�
� N (0; 1), i.e. when �1 � exp (X=2) with X � N (0; 1). In that case, as emphasized in Section

3, the QMLE reduces to the MLE and it would be more (asymptotically) e¢cient than the BGGE. So

through simulations, the QMLE would (in principle) perform better than the BGGE for PAR-SV series

with quite large sample size. However, the BGG method should be adapted to the case of distribution

�1 � exp (X=2), which may entails a lot of e¤ort for that distribution (exp (N (0; 1) =2)) that seems to have
a little interest in practice.

5. Application to the S&P 500 returns

For the sake of illustration, we propose to �t Gaussian PAR-SV models (2:1) with various periods to the

returns on the S&P 500 (closing value) index. In order to highlight many possible values of the PAR-SV

period, three types of datasets are considered namely daily, quarterly and monthly S&P 500 returns. For the

three series considered, we use the Bayes Griddy Gibbs estimate thanks to its good �nite-sample properties,

with number of iterationsM = 5000 and burn-in 500. As in Section 4, we take the initial volatility h(0) to be

the volatility generated by the �tted GARCH (1; 1) while the initial log-volatility parameter estimate �(0) is

taken to be the ordinary least-squares estimate of � based on the series log
�
h(0)

�
. We have in fact avoided

to use the volatility �tted by the periodic GARCH (PGARCH (1; 1)) model as initial value h(0) because of

some numerical di¢culties in the corresponding QML estimation when S becomes large (once S � 3). In
the Gibbs step, the volatility h(l) is drawn across PAR-SV models using the Griddy-Gibbs technique using

24



the same devises as in Section 4, i.e. using 500 grid points and the range of ht at the l-th Gibbs iteration is

taken as in (3:12). All procedures have been applied on a personal computer using Matlab 2013. The BGG

programs are available from the author upon request.

5.1. Daily S&P 500 returns: day-of-the-week e¤ect

5.1.1. The data

The �rst dataset consists of the daily S&P 500 returns (in decimals) over the sample period starting from

January, 01, 2007 to December, 31, 2012, with a total of T = 1509 observations. The time series plots of

the index (panel (a)) and its return (panel (b)) are presented in Figure 5.1. The same data has also been

considered by Chan and Grant (2014).
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Figure 5.1: Daily S&P 500 from January 2007 to December 2012.

(a) level, (b) return.

Table 5.1 shows some descriptive statistics for the returns, the absolute returns, the squared return and

the log-absolute returns where it may be seen that the data exhibits negative skewness, high kurtosis and

low autocorrelation. Moreover, unreported sample correlations with high lags show that the absolute and

squared returns are characterized by high persistence with an obvious higher correlation for the absolute

returns than the squares. Finally, the log-absolute return looks like a Gaussian much more than do the daily

("t) ; (j"tj) and
�
"2t
�
. The same �nding has been observed by Tsiakas (2006) for the S&P 500 returns, but
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for a di¤erent sample period.

Returns

("t)

Absolute returns

(j"tj)
Log-abs. returns

(log j"tj)
Squared returns

�
"2t
�

Mean 4:4711e�06 0:0102 �5:2239 0:0002

St. Devi. 0:0157 0:0119 1:3095 0:0007

Skewness �0:2643 2:9540 �0:8449 8:5518

Kurtosis 10:4975 16:5674 4:1138 100:0209

Minimum �0:0947 0:001 �11:1125 2:2273e�10

Maximum 0:1096 0:1096 �2:2112 0:0120

Corr ("t; "t�1) �0:1184 0:2358 0:1250 0:1898

Corr ("t; "t�2) �0:0610 0:3723 0:1915 0:3919

Corr ("t; "t�3) 0:0444 0:2896 0:2023 0:1672

Corr ("t; "t�5) �0:0544 0:3865 0:2032 0:3334

Table 5.1: Some descriptive statistics for the daily S&P 500 returns.

It is by now well documented (Bollerslev and Ghysels, 1996; Franses and Paap, 2000; Tsiakas, 2006) that

daily S&P 500 returns are characterized by the day-of-the-week e¤ect which often suggests the presence

of periodicity in volatility with period S = 5. While the sample-period chosen here is di¤erent from those

taken by e.g. Franses and Paap (2000) and Tsiakas (2006) for the same daily S&P 500 variable, it may

be observed from Table 5.2 that the average return and the volatility (approximated by the absolute value)

are somewhat di¤erent from a day to another. Of course, the di¤erence signi�cancy could be studied more

e¤ectively using e.g. the bootstrap approximation of the distribution of the return, along each day as done

by Tsiakas (2006). However, this is behind the scoop of this application, which is made only for illustration

purposes.

Sample size Mean of ("t) Mean of (j"tj) Mean of (log j"tj) Mean of
�
"2t
�

Full series 1509 4:4711e�06 0:0102 �5:2239 0:0002

1 Monday 284 0:0013 0:0108 �5:1867 0:0003

2 Tuesday 308 �0:0003 0:0099 �5:2355 0:0002

3 Wednesday 311 0:0001 0:0109 �5:0883 0:0003

4 Thursday 305 �0:0002 0:0088 �5:2770 0:0001

5 Friday 301 �0:0007 0:0108 �5:3336 0:0003

Table 5.2: Day of the week e¤ect in the daily S&P 500 returns.

26



5.1.2. The models and prior distributions

In order to identify the period of the best �tting PAR-SV model according to the DIC, we estimate six

PAR-SV models (2:1) corresponding to each S 2 f1; :::; 6g. For S = 5, because of the presence of holidays,
model (2:1) in which !v = !d(v) and �v = �d(v) with d(v) = nS + v (1 � v � S, n 2 Z) seems not suitable.
This is because with model (2:1) each day of a week may have di¤erent speci�cation than the same day of the

week before. So when S = 5 we also estimate the following variant of model (2:1) (henceforth PAR-SV �5 ):

8
<
:

"t =
p
ht�t

log (ht) = �d(t) + �d(t) log (ht�1) + �d(t)et
; 1 � t � T; (5:1)

in which d(t) is instead de�ned to be

d (t) =

8
>>>>>><
>>>>>>:

1 if the day corresponding to t is a Monday

2 if the day corresponding to t is a Tuesday
...

5 if the day corresponding to t is a Friday.

Such a speci�cation with missing values (see e.g. Franses and Paap, 2000; Regnard and Zakoïan, 2011

in the periodic GARCH case) seems well adapted to explain the day-of-the-week e¤ect.

In calculating the BGG estimate across models, the chosen prior distributions for all the candidate PAR-

SVS models are reported in Table 5.3. These priors are informative, but reasonably �at (cf. Figures 5.2-5.3).

When S = 1, the prior distributions in Table 5.3 are similar to those proposed by Tsay (2010, Example 12.3)

for his SV model. For the variant PAR-SV � model (5:1), we use the same priors as in the PAR-SV5 model

(2:1). Note that in Table 5.3, the diagonal matrix Dk (k = 2; 4; 10) is de�ned to be

Dk (i; j) =

8
>>><
>>>:

0 if i 6= j

0:05 if i = j is odd

0:5 if i = j is even

, 1 � i; j � k: (5:2)
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Prior for ! : ! � N (!0;�0) Prior for �2 : av�v
�2v

� �2av

PAR-SVS !0 �0 a = (a1; :::; aS) � = (�1; :::; �S)

S = 1 02�1 D2 5 0:2

S = 2 04�1 D4 5� 12 0:2� 12
S = 3 06�1 D6 5� 13 0:2� 13
S = 4 08�1 D8 5� 14 0:2� 14
S = 5 010�1 D10 5� 15 0:2� 15
S = 6 012�1 D12 5� 16 0:2� 16

Table 5.3: Prior distributions of ! and �2 for the candidates PAR-SVS , 1 � S � 6,
(Dk, 0k�1 and 1k denote respectively the diagonal matrix given by (5:2), the null

vector with k components and the k-vector with all components equal 1).

Using the QML method, the �tted standard GARCH(1; 1) speci�cation to the daily S&P 500 returns

is given by

hGt = 0:00000314
(0:00000081)

+ 0:1022
(0:0121)

"2t�1 + 0:8822
(0:0138)

hGt�1;

with standard deviations of estimates in parentheses. The found volatility hG is used to initialize the volatility

parameter h(0) in the Gibbs sampler across all estimated PAR-SVS (and PAR-SV
�
5 ) models.

5.1.3. Results

The estimated DIC�s across PAR-SV models, their computation times (in minutes), their numerical stan-

dard errors (approximated by their standard deviations over G replications) and the monodromy parameters

of all estimated models are reported in Table 5.4. In computing the standard errors of DIC, we have

replicated the BGG procedure (Algorithm 3.1) G = 500 times.

PAR-SV1 PAR-SV2 PAR-SV3 PAR-SV4 PAR-SV5 PAR-SV �5 PAR-SV6

�DIC
(Std)

8872:1155
(1:0737)

8869:2121
(1:1277)

8863:8238
(1:2547)

8866:6620
(0:9992)

8864:5966
(1:1825)

8881:8162
(0:8261)

8868:5853
(1:2823)

Rank 2 3 7 5 6 1 4

Time 80:3535 81:9259 81:5512 82:7189 82:9024 82:7828 83:5396

Monod. 0:8509 0:8332 0:7277 0:6423 0:5918 0:5853 0:5160

Table 5.4: Estimated DIC, standard deviation, ranking, computation time (in minutes) and the

monodromy (Monod.) estimate for the candidate PAR-SVS (1 � S � 6) and PAR-SV �5 models.
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From Table 5.4, some broad conclusions are in order. Firstly, the DIC�s corresponding to the PAR-SVS

(1 � S � 6) models given by (2:1) are very close to each other. So, with regard to the standard errors of

the DIC�s, which are reasonably small, it is di¢cult to distinguish between the corresponding PAR-SVS

(1 � S � 6) models despite the inherent ranking reported in Table 5.4. On the other hand, the DIC favors

the PAR-SV �5 given by (5:1), whose value (�8881:8162) is quite small than the others. Secondly, while the
BGG method is relatively time-consuming for all PAR-SV models, a fact that is well known in the single

move approach, the computation time is almost similar across PAR-SV models in spite of the increasing

number of parameters when S tends to be large. So �tting a periodic PAR-SV model is carried out without

increasing computational cost compared to the non-periodic SV . Thirdly, the monodromy parameters
SQ
v=1

�v

across models are quite large, which suggests a strong persistence in volatility.

According to the DIC, the best model is the PAR-SV �5 given by (5:1), whose parameters, theirMCMC

standard deviations (std), their NSE and their RNI are reported in Table 5.6. As a benchmark, Table 5.5

reports the same information concerning the second best model ranked by the DIC, which is the standard

SV corresponding to PAR-SV1. Due to lack of space the remaining estimated models are not presented

here, but are available from the author. Further, prior and posterior distributions of the estimates for the

PAR-SV1 and PAR-SV
�
5 are plotted in Figure 5.2 and Figure 5.3 respectively.

PAR-SV1

parameter

Posterior

mean

MCMC

std
NSE RNI

� �1:2822 0:1132 0:0041 0:1431

� 0:8509 0:0133 0:0004 0:1389

�2 0:2535 0:0128 0:0006 0:2525

Table 5.5: BGG parameter estimates for the PAR-SV1 (standard SV ).
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Day
PAR-SV �5

parameter

Posterior

mean

MCMC

std
NSE RNI

�1 �0:5655 0:1014 0:0026 0:7179

Monday �1 0:9351 0:0121 0:0003 0:4708

�21 0:2482 0:0270 0:0004 0:2020

�2 �1:0438 0:0942 0:0022 0:6025

Tuesday �2 0:8795 0:0116 0:0003 0:5675

�22 0:2471 0:0268 0:0003 0:1126

�3 �0:8723 0:0986 0:0021 0:5202

Wednesday �3 0:9010 0:0119 0:0003 0:7461

�23 0:2348 0:0241 0:0003 0:1457

�4 �1:0149 0:0969 0:0016 0:2827

Thursday �4 0:8835 0:0116 0:0002 0:3509

�24 0:2416 0:0253 0:0009 1:3812

�5 �0:9366 0:0992 0:0017 0:3159

Friday �5 0:8938 0:0119 0:0002 0:2315

�25 0:2336 0:0252 0:0005 0:4316

Table 5.6: BGG parameter estimates for the PAR-SV �5 .

It may be seen from Table 5.5-5.6 that the parameters appear quite well estimated as shown by their

low MCMC standard deviations, low RNI and small NSE. The latter clearly shows that even with the

single move approach, when a suitable choice of the range of h in the Griddy-Gibbs procedure is made, the

MCMC estimates mixe well. This is con�rmed by the low autocorrelations of the estimates (cf. Figure 5.4).

Moreover, from Table 5.6 it can be observed that the parameters are quite di¤erent from a day to another,

especially for the �v and �v (1 � v � 5). On the other hand, the estimates are comparable with similar

models in the literature when S = 1. Prior and posterior distributions of the estimates for the PAR-SV1

and PAR-SV �5 are plotted in Figure 5.2 and Figure 5.3 respectively. The prior distributions used are, as

pointed out above, relatively noninformative while the posterior distributions are quite concentrated. In

addition, from Figure 5.5 the volatilities induced by the GARCH(1; 1) (dashed-line) and PAR-V S�5 (solid

line) models have similar pattern. Note �nally that these result were quite stable to using di¤erent initial

values, priors, and numbers of iterations for the Gibbs sampler. However, the e¢ciency of the Gibbs sampler

30



greatly depends on the choice of the range of h in the Griddy-Gibbs step.
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Figure 5.2: Prior (dashed line) and BGG posterior (solid line)

distributions of parameters in the PAR-SV1 (aperiodic SV ) model.
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Figure 5.3: Prior (dashed line) and BGG posterior (solid line)

distributions of parameters in the PAR-SV �5 model.
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Figure 5.4: Sample autocorrelations of the PAR-SV �5 parameter estimates.
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Figure 5.5: Volatilities induced by the GARCH (1; 1) ,

the SV and PAR-SV �5 .

5.2. Quarterly S&P 500 returns

The second dataset consists of the quarterly S&P 500 returns over the sample period from the �rst quarter

(Q1) 1871 to the fourth quarter (Q4) 2012, with a total of T = 567 observations. The index is calculated

by taking average price per share in month ending quarter. The time series plots of the index series and its

return are displayed in Figure 5.6. The data are given from Shiller (2015).
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Figure 5.6: Quarterly S&P 500 index : (a) level and (b) return.

We estimated �ve PAR-SV models (2:1) corresponding to each S 2 f1; :::; 5g using the same prior
distributions as in Table 5.3 (for 1 � v � 5). The estimated volatility via the GARCH(1; 1) model, which
is used to initialize the volatility in the Gibbs sampler, has the following speci�cation

hGt = 0:0010
(0:0035)

+ 0:1792
(0:0577)

"2t�1 + 0:6796
(0:0674)

hGt�1;
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with standard errors of estimates in parentheses. The estimated DIC�s across PAR-SV models, their com-

putation times (in minutes), their numerical standard errors and the corresponding monodromy parameters

are reported in Table 5.7. The standard errors of DIC are calculated as above.

PAR-SV1 PAR-SV2 PAR-SV3 PAR-SV4 PAR-SV5

DIC
(Std)

�1206:4619
(2:0577)

�1210:4912
(2:2225)

�1209:6398
(1:9911)

�1211:9735
(1:0370)

�1207:6028
(2:2684)

Rank 5 2 3 1 4

Time 29:7357 30:2224 31:3725 30:3580 32:4587

Monod. 0:6298 0:5102 0:4476 0:4304 0:3841

Table 5.7: Estimated DIC, standard deviations, ranking, computation time (in minutes)

and the monodromy (Monod.) estimates for the candidate PAR-SVS (1 � S � 5) models.

From Table 5.7, the DIC selects the four-periodic PAR-SV4 with smallest value �1211:9735. Such a
value is not so far from those of the remaining PAR-SVS models (S 6= 4) regarding their numerical standard
errors. On the other hand, the corresponding computation times are quite comparable while the monodromy

parameters are less important than in the daily return case. The parameters of the found PAR-SV4 model,

their MCMC standard deviations, their NSE and their RNI are listed in Table 5.8.

Quarter
PAR-SV4

parameters

Posterior

mean

MCMC

std
NSE RNI

�1 �1:0552 0:0693 0:0007 0:5029

Q1 �1 0:7861 0:0183 0:0002 0:7718

�21 0:2283 0:0359 0:0005 1:1526

�2 �0:7527 0:0692 0:0006 0:4521

Q2 �2 0:8379 0:0187 0:0003 1:2665

�22 0:2752 0:0436 0:0009 2:3623

�3 �0:8548 0:0709 0:0012 1:5954

Q3 �3 0:8181 0:0189 0:0003 1:4664

�23 0:2547 0:0397 0:0007 1:5453

�4 �0:9423 0:0697 0:0011 1:3967

Q4 �4 0:7987 0:0188 0:0003 1:8023

�24 0:2766 0:0438 0:0009 2:1791

Table 5.8: BGG parameter estimates for the selected PAR-SV4 model.
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The same conclusions for the daily return case may be obtained: the parameters are quite well estimated

in view of their low standard deviations, low RNI and small NSE (cf. Table 5.8). Moreover, the posterior

distributions are fairly concentrated (cf. Figure 5.7). On the other hand, the parameters are quite di¤erent

from a quarter to another especially for the �v and �v. However, in overall, the estimates seem slightly less

accurate than in the daily return case, which is perhaps due to the smaller sample size. Finally, Figure 5.8

plots the volatilities generated by the GARCH(1; 1) (panel (a)) and the PAR-SV4 (panel (b)) where it may

be seen that they display a very similar pattern.
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Figure 5.7: Prior (dashed line) and posterior (solid line)

distributions of parameters in the PAR-SV4 model.
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Figure 5.8: Volatilities induced by the GARCH (1; 1) and PAR-SV4:
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5.3. Monthly S&P 500 returns

The third dataset consists of the return of the monthly S&P 500 index from January 1950 to January 2015,

involving 780 observations. The returns are computed using the �rst adjusted closing index of each month.

Plots of the S&P 500 index and its return are given in Figure 5.9. A similar monthly series, but on di¤erent

sample period has been studied by Tsay (2010, example 12.3) via a SV model.
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Figure 5.9: Monthly S&P 500 index: (a) level and (b) return.

We estimated twelve PAR-SV models (2:1) corresponding to each S 2 f1; :::; 12g using the prior distri-
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butions presented in Table 5.9.

Prior for ! : ! � N (!0;�0) Prior for �2 : av�v
�2v

� �2av

PAR-SVS !0 �0 a = (a1; :::; aS) � = (�1; :::; �S)

S = 1 02�1 D2 5 0:2

S = 2 04�1 D4 5� 12 0:2� 12
S = 3 06�1 D6 5� 13 0:2� 13
S = 4 08�1 D8 5� 14 0:2� 14
S = 5 010�1 D10 5� 15 0:2� 15
S = 6 012�1 D12 5� 16 0:2� 16
S = 7 014�1 D14 5� 17 0:2� 17
S = 8 016�1 D16 5� 18 0:2� 18
S = 9 018�1 D18 5� 19 0:2� 19
S = 10 020�1 D20 5� 110 0:2� 110
S = 11 022�1 D22 5� 111 0:2� 111
S = 12 024�1 D24 5� 112 0:2� 112

Table 5.9: Prior distributions of ! and �2 for the candidates PAR-SVS , 1 � S � 12,
(Dk, 0k�1 and 1k denote respectively the diagonal matrix given by (5:2), the null

vector with k components and the k-vector with all components equal 1).

The volatility generated by the GARCH(1; 1) model, which is used to initialize the volatility in the Gibbs

sampler across estimated PAR-SVS models, is given by

hGt = 0:0001
(0:00002)

+ 0:1058
(0:0245)

"2t�1 + 0:8502
(0:0271)

hGt�1;

with standard errors of estimates in parentheses. The estimated DIC�s for PAR-SV models, their compu-

tation times (in minutes), their numerical standard errors and the corresponding monodromy parameters

are reported in Table 5.7. The standard errors of DIC are calculated using 500 replications of the BGG
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procedure.

PAR-SV1 PAR-SV2 PAR-SV3 PAR-SV4 PAR-SV5 PAR-SV6

DIC
(Std)

�2685:1845
(1:2577)

�2685:5848
(1:8528)

�2682:9659
(2:2164)

�2679:9444
(2:0055)

�2684:1986
(1:8917)

�2684:4897
(0:9922)

Rank 6 4 11 12 9 7

Time 41:9776 42:6814 42:5118 43:0081 42:7517 44:1573

Monod. 0:6259 0:7249 0:7593 0:6124 0:6255 0:5969

PAR-SV7 PAR-SV8 PAR-SV9 PAR-SV10 PAR-SV11 PAR-SV12

DIC
(Std)

�2685:6729
(2:0248)

�2684:4211
(1:9524)

�2685:5062
(2:0473)

�2684:03953
(2:1246)

�2685:9018
(1:6524)

�2686:6698
(1:2684)

Rank 3 8 5 10 2 1

Time 43:3544 43:9715 43:2856 43:5522 44:3780 44:9834

Monod. 0:5726 0:5399 0:5335 0:5099 0:4973 0:4771

Table 5.10: Estimated DIC, standard deviations, ranking, computation time (in minutes) and the

monodromy (Monod.) estimates for the candidate PAR-SVS (1 � S � 12) models.

According to the DIC, the best model is the 12-periodic PAR-SV12 with value �2686:6698. However,
the DIC�s in Table 5.10 are very close to each other, so in view of their standard errors, it is di¢cult to

discriminate between the corresponding models. On the other hand, as in the quarterly return case, the

monodromy estimates are around half a unity while the computation times are close to each other. The
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speci�cation of the selected PAR-SV12 model is given in Table 5.11.

�

Post.

mean

MC

std
NSE RNI

�1 �0:6197 0:1264 0:0058 0:0727

Jan. �1 0:8845 0:0367 0:0007 0:0399

�21 0:2287 0:0442 0:0033 0:6241

�2 �1:2150 0:1071 0:0123 0:3904

Feb. �2 0:7989 0:0330 0:0019 0:3815

�22 0:2364 0:0531 0:0016 0:1063

�3 0:4881 0:1057 0:0079 0:1253

Mar. �3 1:0821 0:0413 0:0011 0:0799

�23 0:3095 0:0796 0:0065 0:7369

�4 0:3656 0:0719 0:0093 0:2148

Apr. �4 1:0500 0:0373 0:0022 0:3884

�24 0:2841 0:0778 0:0064 0:7499

�5 �0:2547 0:0863 0:0173 0:6454

May �5 0:9572 0:0381 0:0034 0:8705

�25 0:2552 0:0596 0:0077 1:8386

�6 �0:3875 0:0977 0:0305 1:8303

Jun. �6 0:9352 0:0408 0:0054 1:9583

�26 0:2665 0:0504 0:0019 0:1541

�

Post.

mean

MC

std
NSE RNI

�7 �0:3703 0:0738 0:0103 0:2141

Jul. �7 0:9364 0:0418 0:0020 0:2514

�27 0:2485 0:0644 0:0049 0:6491

�8 �0:3928 0:0980 0:0191 0:8508

Aug. �8 0:9237 0:0386 0:0030 0:6539

�28 0:2829 0:0631 0:0032 0:2822

�9 �0:4057 0:0860 0:0196 0:8343

Sep. �9 0:9250 0:0379 0:0039 1:1715

�29 0:2443 0:0508 0:0021 0:1871

�10 �0:3348 0:1953 0:0135 0:5348

Oct. �10 0:9400 0:0347 0:0034 1:0388

�210 0:3017 0:0736 0:0063 0:8232

�11 �0:4065 0:0937 0:0081 0:1240

Nov. �11 0:9259 0:0422 0:0024 0:3609

�211 0:2768 0:0676 0:0054 0:7129

�12 �0:4025 0:0835 0:0182 0:7401

Dec. �12 0:9351 0:0403 0:0013 0:1194

�212 0:2581 0:0520 0:0046 0:8719

Table 5.11: BGG parameter estimates for the selected PAR-SV12 model.
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Figure 5.10: Prior (dashed line) and posterior (solid line) distributions of parameters in the

PAR-SV12 model.

From Table 5.11 and Figure 5.10, it may be concluded that the estimates are relatively good in spite

of the small sample size compared to the large number of parameters to estimate. The MCMC std, the

RNI and the NSE are fairly low while the posterior distributions are quite concentrated. Moreover, the

parameters seem di¤erent from a month to another, especially for the �v and �v. Finally, from Figure 5.11,

the volatilities induced by the GARCH(1; 1) (upper panel) and the 12-periodic PAR-SV12 (lower panel)

have a similar behavior in both shape and magnitude.
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Figure 5.11: Volatilities induced by the GARCH (1; 1) and PAR-SV12:

6. Conclusion

In this paper we have proposed a stochastic volatility model whose log-volatility follows a periodic autore-

gression. This model may be seen as a �exible complementary to the periodic GARCH process because it

overcomes the limitation that the volatility is only driven by the past of the process. Moreover, the periodic

time-variation of the parameters allows a more �exible periodic volatility modelling compared to the time-

invariant seasonal SV or deterministic periodic SV . As we have seen, statistical inference for this model may

be easily done using the BayesianMCMC approach without additional computational cost compared to the

standard SV case. While the PAR-SV model allows modelling some �nancial features such as periodicity

in volatility, volatility clustering and excess kurtosis, it seems incapable of representing other observed facts.

In particular, excess kurtosis implied by the model might be only of a given order of magnitude and may

be less than kurtosis generated by heavy tail innovation �1, like the Student distribution. So, various inter-

esting generalizations of the proposed PAR-SV model to account for additional features like large excess

kurtosis, leverage e¤ect, change in volatility regime and simultaneous volatility dependence are needed and

may constitute future research. In particular, PAR-SV with heavy tailed innovations like a student or mix-

ture Gaussian distribution, Markov switching PAR-SV , PAR-SV models with correlated error terms, and

multivariate versions of the PAR-SV are appealing. Finally, a multi-move MCMC approach for estimating

PAR-SV models would be of great interest.
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