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Abstract

A uni�ed quasi-maximum likelihood (QML) estimation theory for stationary and

nonstationary simple Markov bilinear (SMBL) models is proposed. Such models may

be seen as generalized random coe¢cient autoregressions (GRCA) in which the in-

novation and the random coe¢cient processes are fully correlated. It is shown that

the QML estimate (QMLE) for the SMBL model is always asymptotically Gaussian

without assuming strict stationarity, meaning that there is no knife edge e¤ect. The as-

ymptotic variance of the QMLE is di¤erent in the stationary and nonstationary cases

but is consistently estimated using the same estimator. A perhaps surprising result is

that in the nonstationary domain, all SMBL parameters are consistently estimated in

contrast with unstable GARCH and GRCA models where the QMLE of the condi-

tional variance intercept is inconsistent. As a result, strict stationarity testing for the

SMBL is studied. Simulation experiments and a real application to strict stationarity

testing for some �nancial stock returns illustrate the theory in �nite samples.
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1. Introduction

Over the past few decades, there has been a very abundant literature on conditional mean

and volatility (CMV ) models because of their ability to describe both level and variability

of a broad array of observed time series such as �nancial stock returns (see e.g. Engle,

1982; Nicholls and Quinn, 1982; Weiss, 1984; Bollerslev, 1986; Taylor, 1986; Tsay, 1987,

2002; Holan et al, 2010; Francq and Zakoïan, 2010). An essential common speci�cation for

such models is that their conditional mean and conditional variance are stochastic, generally

function of the past of the observed phenomenon, from which they can be evaluated for

level and volatility predictions. In particular, when the conditional variance (resp. condi-

tional mean) is non-stochastic the CMV model is simply called purely conditional mean

(resp. purely conditional volatility) model. Among the most popular speci�cations are:

the ARMA model with a GARCH innovation (ARMA-GARCH), the ARMA model with

a stochastic volatility (ARMA-SV ) innovation, the ARMA model with a bilinear innova-

tion (ARMA-BL), the subdiagonal bilinear (BL) model, the conditionally heteroskedastic

ARMA (CHARMA) model, the double autoregressions (DAR) (Ling and Li, 2008; Chen

et al, 2014) and the random coe¢cient autoregression (RCA) with a special case in which

the random coe¢cient is �nite-valued like the Markov mixture autoregression (MAR) and

the threshold autoregression (TAR). In fact, all aforementioned models are subclasses of the

general class of weak (or nonlinear) ARMA models (e.g. Amendola and Francq, 2009) which

consist of ARMA equations with uncorrelated, but not necessarily independent innovations.

When the innovation is independent, the ARMA model is simply called strong (or linear).

While (G)ARCH-type models seem to have dominated the literature on CMV models,

a renewed interest has been paid recently to RCA models which were initially considered

as purely conditional mean models. The most popular RCA model is an autoregressive

equation driven by an independent and identically distributed (iid) innovation where the

corresponding autoregressive coe¢cient is an iid process. Statistical analysis forRCAmodels

usually assumes that the random coe¢cient and the innovation processes are uncorrelated

(e.g. Nicholls and Quinn, 1982; Feigin and Tweedie, 1985; Schick, 1996; Aue et al, 2006;
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Berkes et al, 2009; Aue and Horváth, 2011; Aknouche, 2013 etc.). The case of RCA models

in which the random coe¢cient and the innovation are permitted to be correlated (which is

called generalized RCA) has seen less interest despite its practical importance as it allows

more �exible volatility representation including asymmetry in level and volatility (e.g. Hwang

and Basawa, 1998; Zhao and Wang, 2012; 2013; Truquet and Yao, 2012; Aknouche, 2015a).

A special case of generalized RCA models in which the random coe¢cient and the innovation

are fully correlated is the SMBL (1) given by the stochastic equation

yt = (�+ �"t) yt�1 + "t; t 2 N�; (1:1)

where y0 is a given random variable and

f"t; t 2 Ng is an independent and identically distributed (iid) process (A1)

with

E ("1) = 0 and E
�
"21
�
= �2 > 0; (A2)

N
� = N � f0g being the set of positive integers. The SMBL equation introduced by Tong
(1981) is related to many volatility models. Indeed, it can be seen as a double autoregression,

a subdiagonal bilinear model or a generalized RCA in which the random coe¢cient is fully

correlated with the innovation. Probabilistic properties of the SMBL model (1:1) such

as stationarity, ergodicity, geometric ergodicity and some Markov chain solidarity properties

have been extensively studied (e.g. Tong, 1981; Feigin and Tweedie, 1985; Goldie and Maller,

2000; Cline and Pu, 2002; Meyn and Tweedie, 2009) where some singular properties on the

stochastic unit root (� = 1) have been revealed (Cline and Pu, 2002). Some generalizations

of the original formulation have been developed and their structures have been studied (e.g.

Ferrante et al, 2003; Cline, 2007). However, statistical properties of the SMBL model have

received much less interest. Indeed, at the knowledge of the author, it appears that the �rst

work concerning estimation of the SMBL model (1:1) is the one of Aknouche (2013, Section

3.2) who studied asymptotic distribution of the QMLE for a nonstationary SMBL model

(1:1) with � = 1. It turns out that the QMLE coincides with the two-stage weighted least

squares estimate, 2SWLSE (cf. Aknouche, 2012a, 2012b, 2013, 2014, 2015a).
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This Chapter proposes a uni�ed quasi-maximum likelihood (QML) estimation theory for

stable and unstable SMBL models (assuming � known, say � = 1), i.e.

yt = (�+ "t) yt�1 + "t; t 2 N�: (1:2)

Our aim is threefold. i) First, under stability of (1:2) with respect to strict stationarity, we

show that the QMLE of (�; �2)0 is asymptotically Gaussian when � 6= 1 and inconsistent in
the stochastic unit root case � = 1. The result is valid regardless of any moment requirement

on the observed process fyt; t 2 Ng. ii) Second, we shall see that when � 6= 1, the QMLE of
(�; �2)0 is always

p
n-Gaussian irrespective of the strict stationarity requirement, meaning

that there is no knife edge e¤ect (Lumsdaine, 1996; Jensen and Rahbek, 2004) for the SMBL

model. The corresponding asymptotic distribution is di¤erent in the stationary and nonsta-

tionary cases but is consistently estimated using the same estimator. This parallels recent

results by Aue and Horváth (2011) for RCA(1) models (see also Hwang and Basawa, 2005)

and Francq and Zakoïan (2012; 2013a) for GARCH(1; 1) and asymmetric GARCH (1; 1)

models, respectively. iii) Third, as an application of the proposed uni�ed estimation theory,

strict stationarity testing for the SMBL equation is studied. A perhaps surprising result is

that all parameters of the SMBL are consistently estimated when � 6= 1. This is in con-

trast with RCA(1) and GARCH(1; 1) models where the QMLE of the conditional variance

intercept is inconsistent in the nonstationary domain (see Aue and Horváth, 2011; Francq

and Zakoïan, 2012; Aknouche, 2013; 2015a). Moreover, in the nonstationary stochastic unit

root case, the QMLE is still consistent when (1:2) is appropriately started.

The rest of this Chapter proceeds as follows. In Section 2, stability of the SMBL

equation (1:1) with arbitrary � is revisited. A necessary and su¢cient condition for the

SMBL model with � 6= 1 to admit a unique (asymptotically) strictly stationary solution is
provided. Furthermore, various modes of divergence to in�nity in the nonstationary case are

also presented. Assuming strict stationarity of the model and � = 1, Section 3 establishes

asymptotic normality of QMLE of (�; �2)0 when � 6= 1 and its inconsistency when � = 1.
In Section 4, a consistent estimate for the asymptotic variance of the QMLE in both strict

stationarity and non strict stationarity situations is given when � 6= 1. Then, a uni�ed
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asymptotic theory for the QMLE in both stable and unstable situations is provided. Section

5 proposes strict stationarity and non-strict stationarity testing procedures for the SMBL.

In particular, consistent interval estimates for the parameters are given without assuming

strict stationarity. In addition, a simulation study is conducted to assess the theory in

�nite samples and application to strict stationarity testing for some �nancial stock returns

is provided. Finally, Section 6 concludes.

2. Stability analysis for the SMBL model

Existence of a nonanticipative strictly stationary solution of (1:1) is now considered. It is

clear that studying stationarity of the one-sided equation (1:1) translates immediately into

studying stationarity of the two-sided version of (1:1)

yt = (�+ �"t) yt�1 + "t; t 2 Z; (2:1)

(Z being the set of integers). This of course implies that y0 in (1:1) should have the same

distribution as the unique strictly stationary solution of (2:1) when exists. Otherwise, we

rather speak about the unique "asymptotically" strictly stationary solution fyt; t 2 Ng in
the sense that the limiting distribution of yt (as t ! 1) exists and is unchanged whatever
the distribution of y0. For both situations we are then interested in the stability of (1:1)

with respect to strict stationarity. Notice that the �nite second moment assumption A2 on

the innovation sequence f"t; t 2 Zg is unnecessary for that purpose and is replaced by the
weaker condition of �niteness of absolute log-moments:

E (jlog j"1jj) <1 and E (jlog j�+ �"1jj) <1. (A3)

For model (2:1), assumption A1 corresponds to

f"t; t 2 Zg is an independent and identically distributed (iid) process. (A10)

The following result, by now classical, provides a necessary and su¢cient condition for

strict stationarity of model (2:1) and hence stability of (1:1) with respect to strict stationarity.
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Theorem 2.1 Consider equation (2:1) subject to (A10) and (A3).

i) (2:1) admits a unique nonanticipative strictly stationary and ergodic solution given by

yt =
1X

j=0

j�1Y

i=0

(�+ �"t�i) "t�j; t 2 Z; (2:2)

where the latter series converges absolutely almost surely if

 := E (log j�+ �"1j) < 0: (2:3)

ii) Conversely, if (2:1) admits a nonanticipative strictly stationary solution, � 6= 1 and

P ("1 = c) < 1; (2:4)

for all c 2 R, then (2:3) holds.
iii) If � = 1 then model (2:1) is not irreducible in the sense of Bougerol and Picard

(1992) and the Markov chain fyt; t 2 Ng de�ned by (1:1), starting from y0, is not ergodic.

Moreover, under (2:3) and assuming that E
�
log
���y0 + 1

�

���
�
<1,

yt
a:s:!
t!1

� 1
�
: (2:5)

Proof i) The �rst part of the theorem follows from Brandt (1986).

ii) It is clear that when � 6= 1 and "1 is nondegenerate (i.e. (2:4) holds), model (2:1) is
irreducible in the sense of Bougerol and Picard (1992), so ii) follows from their Theorem 2.5.

iii) If � = 1 then (2:2) reduces to yt = � 1
�
for all t 2 Z (cf. Cline and Pu, 2002, p. 287)

which is a strictly stationary solution whatever  2 [�1;+1). Considering the one-sided
equation (1:1), if y0 = � 1

�
a:s: then y1 = (1 + �"1) y0 + "1 = � 1

�
a:s:, so any subspace of

R containing
n
� 1
�

o
is invariant under (2:1). This shows that model (2:1) is not irreducible

in the sense of Bougerol and Picard (1992). Moreover, non ergodicity of the Markov chain

fyt; t 2 Ng starting from y0 has been proved by Cline and Pu (2002, Theorem 2.1). Finally,

(2:5) trivially follows when y0 = � 1
�
a:s: since as seen above yt = � 1

�
a:s: for all t 2 N. If,
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however, P
�
y0 6= � 1

�

�
< 1, then iterating (1:1) with � = 1, we have

yt +
1
�
= (1 + �"t) yt�1 + "t +

1
�

= (1 + �"t)
�
yt�1 +

1
�

�

= ::: =
tY

k=1

(1 + �"k)
�
y0 +

1
�

�
; t 2 N�:

From the strong law of large numbers and under (2:3) and E
�
log
���y0 + 1

�

���
�
< 1, it

follows that

1

t
log
���yt + 1

�

��� =
1

t

tX

k=1

log j1 + �"kj+
1

t
log
���y0 + 1

�

���

a:s:!
t!1

 < 0:

This shows that log
���yt + 1

�

��� a:s:!
t!1

�1, so
���yt + 1

�

��� a:s:!
t!1

0 proving (2:5). �

So in all, assuming (A1), (A3), � 6= 1 and (2:4), condition (2:3) is the necessary and

su¢cient condition for model (2:1) to have a unique (nonanticipative) strictly stationary and

ergodic solution. For � = 1 the SMBL model (1:1) is (tied-down line) degenerate in the

sense of Goldie and Maller (2000, p. 1199) and Babillot et al (1997, p. 480) since when

c = � 1
�
, then c = (1 + �"t) c + "t for all t 2 N. As a consequence, if y0 = � 1

�
a:s: then

yt = � 1
�
a:s: for all t 2 N. However, when  < 0, even though the Markov chain fyt; t 2 Ng

is not ergodic, it has a unique stationary distribution given by �
�
1

�
(Cline and Pu, 2002),

where �x denotes the degenerate distribution concentrated at x.

Existence condition of a unique strictly stationary solution to (2:1) with a �nite second

moment is given by the following result.

Theorem 2.2 Under (A1 0), (A3) and (2:4), equation (2:1) admits a unique nonantic-

ipative strictly stationary solution given by (2:2) with E (y21) <1, where the corresponding
series converges a:s: and in mean square, if and only if

�2 + �2�2 < 1: (2:6)

Proof See e.g. Nicholls and Quinn (1982) and Feigin and Tweedie (1985) for the su¢-

ciency part. For the necessity part, assume that fyt; t 2 Zg is a stationary solution to (2:1)
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with E (y21) <1. Then, from (2:1) we have

y2t = �
2y2t�1 + "

2
t (1 + �yt�1)

2 + 2�yt�1 (1 + �yt�1) "t;

so

E
�
y2t
�
= �2E

�
y2t�1

�
+ �2E (1 + �yt�1)

2 ;

and
�
1�

�
�2 + �2�2

��
E
�
y2t
�
= �2;

implying that (2:6) should be satis�ed. �

It is clear that (2:6) implies (2:3), so the second-order stationarity domain is strictly

included in the strict stationarity one. Therefore, there is non-invariance of the stability

domains. When the strict stationarity condition (2:3) is dropped, the two-sided equation

(2:1) has no interest, but asymptotic behavior of the solutions of the one-sided equation (1:1)

could be studied. The following result (cf. Aknouche, 2013 when � = 1) gives the limit of

yt as t!1 under each one of the following instability conditions

 = 0: (2:7a)

 > 0: (2:7b)

Theorem 2.3 Consider model (1:1) subject to (A1) and (A3).

i) Under � 6= 1 and (2:7a),
jytj

p!
t!1

1: (2:8a)

ii) Under � 6= 1 and (2:7b), there exists 0 < � < 1 such that

�t jytj a:s:!
t!1

1: (2:8b)

iii) Under � = 1, (2:7b) and P
�
y0 6= � 1

�

�
= 1, there exists 0 < � < 1 such that

�t jytj a:s:!
t!1

1: (2:9)

Proof See Aknouche (2013, Lemma 1) when � = 1. �
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Thus, the asymptotic behavior of yt can be summarized for the two cases � 6= 1 and

� = 1 as follows:

i) When � 6= 1:
- Under stability ( < 0) (Vervaat, 1979);

yt
L!

t!1

1X

j=1

j�1Y

i=1

(�+ �"i) "j:

- Under instability ( = 0);

jytj
p!

t!1
1:

- Under strict instability ( > 0);

�t jytj a:s:!
t!1

1 for some 0 < � < 1:

ii) When � = 1:

- Under stability ( < 0) and E
�
log
���y0 + 1

�

���
�
<1;

yt
a:s:!
t!1

� 1
�
:

- Under strict instability ( > 0) and P
�
y0 6= � 1

�

�
= 1,

�t jytj a:s:!
t!1

1; for some 0 < � < 1:

- If P
�
y0 = � 1

�

�
= 1 then whatever  2 [�1;+1);

yt = � 1
�
, a:s: 8t 2 N:

iii) The case � = 1,  = 0 and P
�
y0 6= � 1

�

�
< 1 remains open.

3. QML estimation for stable SMBL models

In the sequel, we consider model (1:2) (i.e. with � = 1) started with an arbitrary random

variable y0 and subject to (A1), (A2), the fourth moment assumption

E
�
"41
�
<1; (A4)
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and the non-degeneracy condition

P ("1 = 0) = 0: (A5)

The parameter of the model about which we will make inference is denoted by � = (�; �2)
0
.

Notice that the conditional mean and conditional variance of the SMBL process given

the past information are respectively given by E (yt=Ft�1) = �yt�1 and V ar (yt=Ft�1) =
�2 (1 + yt�1)

2, where Ft denotes the �-algebra generated by f"s; s � tg. Observe that the
SMBL model is with an endogenous volatility since V ar (yt=Ft�1) depends on fyt; t 2 Ng.
Therefore, given a series y1; y2; :::; yn generated from (1:2) the logarithmed (Gaussian)

quasi-likelihood function of � conditional on y0 is written as follows

log l = �1
2

nX

t=1

log
�p
2�� j1 + yt�1j

�
� 1

2�2

nX

t=1

(yt � �yt�1)2

(1 + yt�1)
2 : (3:1)

Thanks to the form of the log-likelihood in (3:1), the QMLE; b�0QML =
�
b�QML; b�2QML

�
,

which is the maximizer of (3:1), is given in a closed form

b�QML =

 
nX

t=1

y2t�1

(1 + yt�1)
2

!�1 nX

t=1

yt�1yt

(1 + yt�1)
2 : (3:2)

b�2QML =
1

n

nX

t=1

�
yt � b�QMLyt�1

�2

(1 + yt�1)
2 : (3:3)

It turns out that the QMLE de�ned by (3:2)-(3:3) is also the two-stage weighted least

squares estimate (2SWLSE) in which the weight is the inverse of the conditional variance

(see Aknouche, 2013). Consistency and asymptotic normality of the QMLE given by (3:2)-

(3:3) are now established under in particular the stability condition (2:3).

Theorem 3.1 Let fyt; t 2 Ng be the unique (asymptotically) strictly stationary solution
of model (1:2) which is subject to (A1), (A2), (2:3) and (A5) and let b�QML and b�2QML given

by (3:2)-(3:3). Then:

i) When � 6= 1,

b�QML

a:s:!
n!1

�: (3:4a)

b�2QML

a:s:!
n!1

�2: (3:4b)
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ii) When � = 1 and E (log jy0 + 1j) <1, b�QML is inconsistent.

Proof i) From (3:2) and (1:2) we have

b�QML � � =
 
1

n

nX

t=1

y2t�1

(1 + yt�1)
2

!�1
1

n

nX

t=1

yt�1
1 + yt�1

"t: (3:5)

So (3:4a) follows from the ergodic theorem, (A5) and the fact that E ("1) = 0. To show

(3:4b), we rewrite (3:3) as follows:

b�2QML =
1

n

nX

t=1

�
yt � �yt�1 �

�
b�QML � �

�
yt�1

�2

(1 + yt�1)
2

=
1

n

nX

t=1

(yt � �yt�1)2

(1 + yt�1)
2 +

�
b�QML � �

�2
y2t�1

(1 + yt�1)
2 �

2 (yt � �yt�1)
�
b�QML � �

�
yt�1

(1 + yt�1)
2

=
1

n

nX

t=1

"2t +
1

n

nX

t=1

�
b�QML � �

�2
y2t�1

(1 + yt�1)
2 � 2

n

nX

t=1

�
b�QML � �

�
yt�1"t

(1 + yt�1)
2 : (3:6)

Using (3:4a) and the Césaro lemma, the last two terms of the right hand side of (3:6)

converge a:s: to zero. Thus, (3:4b) follows from the strong law of large numbers and (A2).

ii) When y0 = �1 a:s:, we have seen that yt = �1 a:s: for all t 2 N. So b�QML given

by (3:2)-(3:3) is unde�ned and hence inconsistent. If, however, P (y0 = �1) < 1 then under
(2:3) and E (log jy0 + 1j) <1, result (2:5) clearly holds, so b�QML is still inconsistent. �

Now we establish asymptotic normality of b�QML under in particular the stability con-

dition (2:3). For an asymptotically stationary process fzt; t 2 Ng denote by E1 (zt) =
limt!1E (zt). Let

� =

0
@ �2

�
E1

�
y2t

(1+yt)
2

���1
E ("31)E1

�
yt
1+yt

��
E1

�
y2t

(1+yt)
2

���1

E ("31)E1

�
yt
1+yt

��
E1

�
y2t

(1+yt)
2

���1
V ar ("21)

1
A : (3:7)

In order that � exists, y2t should be non-null almost surely as t ! 1. This holds if we
assume that f"t; t 2 Ng is non-degenerate in the sense of (A5). Thus, we have the following
result.
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Theorem 3.2 Let fyt; t 2 Ng be the unique (asymptotically) strictly stationary solution
to equation (1:2) which is subject to (A1), (A2), (A4), (2:3); (A5) and � 6= 1. Then,

p
n
�
b�QML � �

�
L!

n!1
N (0;�) ; (3:8)

where � is given by (3:7).

Proof First, we rewrite (3:5) and (3:6) as follows

p
n
�
b�QML � �

�
=

 
1

n

nX

t=1

y2t�1

(1 + yt�1)
2

!�1
1p
n

nX

t=1

yt�1"t
1 + yt�1

: (3:9)

p
n
�
b�2QML � �2

�
=

1p
n

nX

t=1

�
"2t � �2

�
+

1p
n

nX

t=1

�
b�QML � �

�2
y2t�1

(1 + yt�1)
2

� 2p
n

nX

t=1

�
b�QML � �

�
yt�1"t

(1 + yt�1)
2 : (3:10)

Using strong consistency of b�QML (see (3:4a)) we have (see e.g. Nicholls and Quinn, 1982;

Aknouche, 2015a)

b�QML � � = n�
1

2Op (1) ;

so from Césaro lemma and the ergodic theorem (3:10) becomes

p
n
�
b�2QML � �2

�
=

1p
n

nX

t=1

�
"2t � �2

�
+ op (1) : (3:11)

In vector form, (3:9) and (3:11) may be expressed as follows

p
n
�
b�QML � �

�
=

0
BB@

1

n

nX

t=1

y2t�1

(1 + yt�1)
2 0

0 1

1
CCA

�1
0
BBB@

1p
n

nX

t=1

yt�1"t
1 + yt�1

1p
n

nX

t=1

("2t � �2)

1
CCCA+ op (1) : (3:12)

Using the ergodic theorem we have
0
BB@

1
n

nX

t=1

y2t�1

(1 + yt�1)
2 0

0 1

1
CCA

a:s:!
n!1

0
B@
E1

�
y2t

(1 + yt)
2

�
0

0 1

1
CA : (3:13)
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On the other hand, the sequence fWt; t 2 Ng de�ned by Wt =

�
yt�1"t
1 + yt�1

; "2t � �2
�0
is

clearly a bounded Martingale di¤erence with respect to fFt; t 2 Ng. Moreover, using again
the ergodic theorem it follows that

1

n

nX

t=1

E (WtW
0

t=Ft�1) =
1

n

nX

t=1

0
BB@

�2y2t�1

(1 + yt)
2

yt�1E ("1 ("
2
1 � �2))

1 + yt�1
yt�1E ("1 ("

2
1 � �2))

1 + yt�1
E ("21 � �2)

2

1
CCA

a:s:!
n!1

0
BB@

�2E1

�
y2t

(1 + yt)
2

�
E ("31)E1

�
yt

1 + yt

�

E ("31)E1

�
yt

1 + yt

�
E ("21 � �2)

2

1
CCA := 
:

Therefore, the Martingale central limit theorem yields

1p
n

 
nX

t=1

yt�1"t
1 + yt�1

;

nX

t=1

�
"2t � �2

�
!0

L!
n!1

N (0;
) : (3:14)

So result (3:8) follows while combining (3:12)-(3:14). �

4. Uni�ed QML estimation theory for stable and unsta-

ble SMBL models

Having established asymptotics for the QMLE in the stable case, we now use asymptotic

results by Aknouche (2013, Section 3.2) for the QMLE in the unstable SMBL case, giving

uni�ed theory for the QMLE irrespective of stability issues.

Theorem 4.1 Let fyt; t 2 Ng be a solution to equation (1:2) which is subject to (A1),
(A2), (A4) and (A5).

i) If � 6= 1,

b�QML
a:s:!
n!1

� if E (log j�+ "1j) 6= 0: (4:1a)

b�QML
p!

n!1
� if E (log j�+ "1j) = 0: (4:1b)

ii) In addition,
p
n
�
b�QML � �

�
L!

n!1
N (0;�) ; (4:1c)
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where

� =

8
>>><
>>>:

� if E (log j�+ "1j) < 0;0
@ �2 E ("31)

E ("31) V ar ("21)

1
A if E (log j�+ "1j) � 0;

(4:2)

and � is given by (3:7).

iii) If, however, � = 1, E (log j�+ "1j) � 0 and P (y = �1) = 0 then (4:1c) still holds.
Proof i) (4:1a) follows from (2:9) and (3:5) when E (log j�+ "1j) > 0 (see Aknouche,

2013), and from (3:4) when E (log j�+ "1j) < 0. Result (4:1b) easily follows from (2:8a) and
(3:5) (see Aknouche, 2013).

ii) See Aknouche (2013, Theorem 4, (i)) for the proof of (4:2) in the case where (2:3)

is not satis�ed. If, however, (2:3) holds then (4:2) reduces to (3:8) which has been already

proved.

iii) See Aknouche (2013, Theorem 4, (ii)) for the proof. �

Assuming � 6= 1, we now propose for the asymptotic variance � given by (4:2), an

estimate that is consistent in the strict stationary and nonstationary cases. Set

b"t =
yt � b�QMLyt�1

1 + yt�1
; (4:3a)

b�r =
1

n

nX

t=1

b"rt ; (4:3b)

for some r 2 f1; :::; 4g. Clearly, b�2 reduces to b�2QML.

Theorem 4.2 i) Under (A1), (A2), (A5) and � 6= 1;

b"t � "t a:s:!
t!1

0 if E (log j�+ "1j) 6= 0: (4:4a)

b"t � "t
p!

t!1
0 if E (log j�+ "1j) = 0: (4:4b)

ii) If, in addition, E ("r1) <1, then

b�r
a:s:!
n!1

E ("r1) if E (log j�+ "1j) 6= 0: (4:5a)

b�r
p!

n!1
E ("r1) if E (log j�+ "1j) = 0: (4:5b)
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Proof i) From (4:3a) and (1:2) we have

b"t � "t =
�
�� b�QML

� yt�1
1 + yt�1

: (4:6)

Hence, (4:4a) follows from (4:1a) and the a:s: boundedness of yt�1
1+yt�1

. Result (4:5b) follows

from (4:6), (4:1b) and the boundedness in probability of yt�1
1+yt�1

.

ii) (4:6) and elementary algebras yield

b�r =
1

n

nX

t=1

("t + (b"t � "t))r

=
1

n

nX

t=1

"rt +
1

n

nX

t=1

r�1X

i=0

�
r

i

�
"it(b"t � "t)r�i

=
1

n

nX

t=1

"rt +
1

n

nX

t=1

r�1X

i=0

�
r

i

�
"it

��
�� b�QML

� yt�1
1 + yt�1

�r�i
: (4:7)

From (4:1a) and the Césaro lemma, (4:7) becomes

b�r =
1

n

nX

t=1

"rt + oa:s: (1) ;

so (4:5a) follows from the ergodic theorem. If, however, E (log j�+ "1j) = 0, then we can

use (4:1b) to easily show that the last term in the right hand side of (4:7) is op(1). So (4:5b)

is established from the ergodic theorem. �

Using Theorem 4.2, a consistent estimate for the asymptotic covariance matrix � is now

given. De�ne b� by

b�11 = b�2QML

 
1

n

nX

t=1

y2t
(1 + yt)

2

!�1
: (4:8a)

b�12 = b�21 = b�3
1

n

nX

t=1

yt
1 + yt

 
1

n

nX

t=1

y2t
(1 + yt)

2

!�1
: (4:8b)

b�22 =
1

n

nX

t=1

�
"2t � b�2

�2
: (4:8c)

Then, we state the main result of this Section.
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Corollary 4.1 Under (A1), (A2), (A4), � 6= 1 and (A5),

b� a:s:!
n!1

� if E (log j�+ "1j) 6= 0: (4:9a)

b� p!
n!1

� if E (log j�+ "1j) = 0: (4:9b)

In addition,
p
nb��1

�
b�QML � �

�
L!

n!1
N (0; I) ; (4:10)

where I denotes the identity matrix of dimension 2.

Proof i) (4:9) follows from (4:8), (4:4), (4:5) and the ergodic theorem.

ii) (4:10) is a consequence of (4:1c) and (4:9). �

In practice, result (4:10) is useful in getting con�dence interval estimates and signi�cancy

tests for the SMBL parameters (see Section 5). It is the analog of results by Aue and

Horváth (2011) for RCA models and Francq and Zakoïan (2012; 2013a) for GARCH and

asymmetric GARCH models (see also Aknouche, 2012a, 2012b, 2014, 2015a; Aknouche and

Al-Eid, 2012; Aknouche et al, 2011).

5. Strict stationarity testing and illustrations

5.1. Strict stationarity testing

ForCMV models with endogenous volatility, EnCMV (e.g. GARCH, RCA,DAR, SMBL),

second-order stationarity and unit root testing seem to have a little interest compared to

CMV models with exogenous volatility (e.g. strong ARMA, ARMA-GARCH) because

outside the second-order stationarity domain, the observed process may still remain strictly

stationary. This is in contrast with CMV models (e.g. strong ARMA, ARMA-GARCH)

with exogenous volatility in which both regions of strict and second-order stationarities (with

respect to the conditional mean parameter) coincide. An important consequence is that the

asymptotic distribution of the QMLE for such endogenous volatility models is invariant

inside or outside the second-order stationary domain and only depends on strict station-

arity (see e.g. Francq and Zakoïan 2012, 2013a; Aue and Horváth, 2011; Aknouche, 2013
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and the references therein). Thus, for SMBL modeling, strict stationarity and non-strict

stationarity testing are appealing.

For the strict stationarity testing problems

H0 :  < 0 against H1 :  � 0; (5:1)

and

H0 :  � 0 against H1 :  < 0; (5:2)

( = E log j�+ "1j) consider the estimate bn of  given by

bn =
1

n

nX

t=1

log
���b�QML + b"t

��� ;

where b"t is obtained from (4:3a). If we set

n (') =
1

n

nX

t=1

log

����'+
yt � 'yt�1
1 + yt�1

���� ;

for some ', then clearly bn = n
�
b�QML

�
.

Let

et = log j�+ "tj � E log j�+ "1j ; t 2 N)

�2e = E
�
e21
�
;

and assume that

E
�
(log j�+ "1j)2

�
<1. (A6)

Therefore, the following result provides the asymptotic distribution of bn under  2
[�1;+1).
Theorem 5.1 Consider model (1:2) subject to A1, A3, A4, A5, A6 and � 6= 1. Then,

p
n (bn � )

L!
n!1

N
�
0; �2

�
; (5:3a)

where

�2 =

8
><
>:
�2e + �

2

�
E1

�
y2t

(1 + yt)
2

���1�
E1

�
1

�+ yt

��2
if  < 0;

�2e if  � 0.
(5:3b)
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Proof The Taylor formula gives

bn = n

�
b�QML

�

= n (�) +
�
b�QML � �

� @n (�)
@'

+ op

�
n�

1

2

�

= n (�) +
1

n

�
b�QML � �

� nX

t=1

1

�+ yt
+ op

�
n�

1

2

�
:

So

p
n (bn � ) =

p
n (n (�)� ) +

p
n
�
n

�
b�QML

�
� n (�)

�

=
p
n (n (�)� ) +

p
n
�
b�QML � �

� 1
n

nX

t=1

1

�+ yt
+ op (1) : (5:4)

If  < 0 the ergodic theorem yields

1

n

nX

t=1

1

�+ yt

a:s:!
n!1

E1

�
1

�+ yt

�
: (5:5)

If, however,  � 0 then from (2:8) we have

1

n

nX

t=1

1

�+ yt

p!
n!1

0: (5:6)

Thus (5:3) follows from (5:4), (5:5), (5:6) and (4:1c). �

Like the GARCH model (cf. Francq and Zakoïan, 2012, Theorem 3.1), the asymptotic

variance of bn is larger in the strict stationarity domain than in the non strict stationarity
one.

To make inference about bn we need to estimate its asymptotic variance �2. Let

b�2 = b�2e + b�2QML

 
1

n

nX

t=1

y2t
(1 + yt)

2

!�1 
1

n

nX

t=1

1

b�QML + yt

!2
;

where

b�2e =
1

n

nX

t=1

�
log
���b�QML + b"t

���� bn
�2
:

The following result establishes consistency of b�2.
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Corollary 5.1 Under the same assumptions of Theorem 5.1 we have

b�2
a:s:!
n!1

�2 if E (log j�+ "1j) 6= 0:

b�2
p!

n!1
�2 if E (log j�+ "1j) = 0:

An important consequence of Theorem 5.1 and Corollary 5.1 is that we can get a consis-

tent interval estimate for .

Corollary 5.2 Under the same assumptions of Theorem 5.1, a con�dence interval for 

at the asymptotic nominal level � 2 (0; 1) is
�
bn �

b�p
n
��1

�
1� �

2

�
; bn �

b�p
n
��1

�
1� �

2

��
;

where � denotes the standard normal (N (0; 1)) cumulative distribution.

Let Tn =

p
nbn
b�e

be the test statistic for the problems (5:1) and (5:2). Thanks to the

form of �2 in Theorem 5.1, we have taken Tn to be a function of b�e not of b�, allowing to
simplify the procedure. The same has been considered earlier by Francq and Zakoïan (2012;

2013a) in the context of GARCH and asymmetric power GARCH models. The following

result gives the asymptotic critical regions for the testing problems (5:1) and (5:2).

Corollary 5.3 Under the same assumptions of Theorem 5.1:

i) The asymptotic level of the test STS de�ned for the problem (5:1) by the critical region

CSTS =
�
Tn > �

�1 (1� �)
	
;

is bounded by � and is equal to � under  = 0. Moreover, the test STS is consistent for all

 > 0.

ii) The asymptotic level of the test NSS de�ned for the problem (5:2) by the critical

region

CNSS =
�
Tn < �

�1 (�)
	
;

is bounded by � and is equal to � under  = 0. Moreover, the test NSS is consistent for

all  < 0.

The proofs of Corollary 5.1-5.3 are based on arguments already used in the proofs of

Theorem 4.2 and Theorem 5.1 and hence they are omitted.
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It is worth noting that as in the GARCH (1; 1) case (see Francq and Zakoïan, 2012), the

test statistic Tn =
p
n
bn � 
b�e

+
p
n


b�e
is such that

Tn
a:s:!
n!1

�1 if  < 0:

Tn
a:s:!
n!1

+1 if  > 0:
(5:7)

5.2. Finite sample properties of the proposed inference procedures

This subsection studies the behavior of the QMLE and the strict stationarity tests STS

and NSS in �nite sample through some simulation experiments and real stock return series.

5.2.1. Finite sample properties of the QMLE

The QMLE has been run on 1000 simulated series generated from Gaussian SMBL models

with sample sizes 100 and 1000. Three set of parameters have been considered. The �rst one

corresponds to (�; �2) = (0:5; 0:7) for which the model is strictly stationary ( = �0:6451 <
0, StS) with �nite variance (�2+�2 = 0:95 < 1, 2nS). For the second one, (�; �2) = (0:8; 0:7),

the model is strictly ( = �0:6451 < 0) but not second-order stationary (N2S), having an
in�nite variance (�2+�2 = 1:34 > 1). For the third one, (�; �2) = (2; 1), the model is neither

strictly stationary ( = 0:5203 > 0, NSS) nor second-order stationary (�2 + �2 = 5 > 1,

N2S). For all instances, we have obtained bias and standard deviations (Std) for the QMLE
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over the 1000 replications (cf. Table 5.1).

 = �0:6451 (STS)
�2+�2= 0:95 (2nS)

� = 0:5 �2= 0:7

 = �0:4183 (STS)
�2+�2= 1:34 (N2S)

� = 0:8 �2= 0:7

 = 0:5203 (NSS)

�2+�2= 5 (N2S)

� = 2 �2= 1

n = 100

Bias

Std

�0:0007
0:0170

�0:0124
0:0997

�0:0070
0:0110

�0:0153
0:0988

0:0018

0:0898

�0:0149
0:1402

n = 1000

Bias

Std

0:0001

0:0019

�0:0015
0:0344

0:0000

0:0011

�0:0013
0:0310

0:0006

0:0308

�0:0023
0:0464

Table 5.1 Bias and Std of the QMLE for the Gaussian SMBL under second-order stationarity

(2nS), strict stationarity (STS) with in�nite variance (N2S) and non-strict stationnarity (NSS).

It may be observed from Table 5.1 that the QMLE results are totally consistent with

asymptotic theory. Indeed, for all instances, the QMLE has very small bias and Std ir-

respective of the stationarity conditions. Moreover, in the unstable case the QMLE of all

parameters is consistent contrary to the unstable GARCH (Francq and Zakoïan, 2012) and

the unstable RCA (Aue and Horváth, 2011) where the QMLE of the conditional variance

intercept is inconsistent.

5.2.2. Finite sample properties of the tests

We have applied the tests STS andNSS on 1000 replications of Gaussian SMBL series with

sample sizes 100, 500 and 3000. Various sets of parameters, inside ( < 0), (approximately)

on the boundary ( ' 0) and outside the strict stationarity domain ( > 0) have been

taken (cf. Table 5.2 and Table 5.3). For all instances, we have obtained relative frequency

of rejection of the tests STS (cf. Table 5.2) and NSS (cf. Table 5.3) at the nominal level
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� = 5%.

(�; �2)

(0:5; 0:7) (0:9; 0:7) (0:8; 2) (0:8; 2:87) (0:8; 2:88) (1:1; 3) (2; 2)



�0:4625 �0:3312 �0:1368 �0:0005 0:0008 0:1029 0:4508

n

100

500

3000

0:0

0:0

0:0

0:0

0:0

0:0

0:3

0:0

0:0

7:1

5:8

4:6

7:5

6:6

4:8

27:1

68:2

99:8

99:3

100:0

100:0

Table 5.2 Percentage of rejection of the strict stationarity test STS; H0 :  < 0;

at the nominal level � = 5% for the Gaussian SMBL model.

It may be observed from Table 5.2 that the relative frequency of rejection of the test

STS:

i) tends to be close to 0% as  decreases negatively ( < 0),

ii) tends to be close to 100% as  increases positively ( > 0) and,

iii) is close to the nominal level � = 5% around  = 0.

These conclusions tend to be true as n increases con�rming consistency of the STS.

(�; �2)

(0:5; 0:7) (0:9; 0:7) (0:8; 2) (0:8; 2:87) (0:8; 2:88) (1:1; 3) (2; 2)



�0:4625 �0:3312 �0:1368 �0:0005 0:0008 0:1029 0:4508

n

100

500

3000

100:0

100:0

100:0

97:0

100:0

100:0

33:8

88:9

100:0

3:9

4:2

4:9

4:5

3:2

3:8

0:4

0:0

0:0

0:0

0:0

0:0

Table 5.3 Percentage of rejection of the non strict stationarity test NTS, H0 :  � 0;
at the nominal level � = 5% for the Gaussian SMBL model.
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From Table 5.3 the same conclusion may be done as above: the relative frequency of

rejection of the non-strict stationarity test NSS:

i) tends to be close to 100% as  decreases negatively ( < 0),

ii) is close to 0% whenever  increases positively ( > 0) and

iii) is close to the nominal level � = 5% when  ' 0 and n increases.

5.2.3. Application: strict stationarity testing for some �nancial stock returns

We have applied the proposed strict stationarity tests to daily returns of three stock market

indices and two oil prices. We have considered the SP500 from 01/02/1997 to 06/06/2000,

the CAC40 from 06/11/2010 to 06/10/2013, the KV Pharmaceutical (NY SE: KV -A) from

09/18/ 2008 to 02/07/2011,the BRENT oil price from 01/02/2008 to 03/14/2013 and the

WTI oil price from 01/11/2010 to 03/14/2013 (see also Aknouche and Touche, 2015). The

KV -A series has been taken from Francq and Zakoïan (2012). For the WTI oil price series,

missing data have been removed. Table 5.4 displays the strict stationarity test statistic Tn

computed on each return series. In view of the asymptotic property of Tn in (5:7), the strict

stationarity hypothesis of the SMBLmodel cannot be rejected at any reasonable level for the

return series of SP500, CAC40, BRENT andWTI. In contrast, a strict stationary SMBL

is not plausible for the KV -A return series. The same conclusion with a GARCH(1; 1)

model has been made by Francq and Zakoïan (2012) for the KV -A return series.

SP500 CAC40 BRENT WTI KV -A

Tn �150:8579 �137:4617 �164:4189 �127:8241 0:7933

Table 5.4 The test statistic Tn of the strict stationarity tests STS and

NSS for returns of SP500, CAC40, BRENT , WTI and KV -A.

6. Conclusion

In this Chapter statistical properties of the SMBL model (a random coe¢cient autore-

gression in which the random coe¢cient coincides with the innovation) have been explored
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irrespective of its probabilistic structure. In addition to its parsimony and simplicity, the

SMBL model allows describing the level and volatility contrary to the pur GARCH process

which only models volatility. Testing purely conditional variance e¤ect may then be done

while considering the null hypothesis H0: � = 0 against the alternative H1: � 6= 0. The test
may be obtained irrespective of the stationarity assumption from the distribution of b�QML

given by Corollary 4.1. An interesting statistical property of the SMBL model is that its

QMLE has a closed form and surprisingly is consistent for all parameters in the unstable

case. This is in contrast with standard RCA and GARCH models where the conditional

variance intercept cannot be consistently estimated in the unstable domain (cf. Aue and

Horváth, 2011; Aknouche, 2013; Francq and Zakoïan, 2012). Notice that the proposed uni-

�ed QML theory for the SMBL model was based on the fourth moment assumption A4 on

the innovation, which may be too restrictive when modeling heavy tailed stock returns. So

adapting such a theory to some robust methods which do not require A4, such as the least

absolute deviation estimate (LADE) and the generalized QMLE (GQMLE), would be of

interest (see e.g. Peng and Yao 2003; Berkes and Horváth, 2004; Francq and Zakoïan, 2013b,

Fan et al, 2014 for the GARCH model and Zhu and Ling, 2013 for the DAR model).

7. Appendix: Glossary

a:s:!
n!1

Almost sure convergence as n!1:
L!

n!1
Convergence in distribution (law) as n!1:

p!
n!1

Convergence in probability as n!1:

op (1) A term converging in probability to zero as n!1:
oa:s: (1) A term converging almost surely to zero as n!1:
Op (1) A term bounded in probability as n!1:
N Set of nonnegative integer numbers.

N
� Set of positive integer numbers.

Z Set of integer numbers.
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R Set of real numbers.

2nS Second-order stationary, second-order stationarity.

2S(WLSE) Two-Stage (Weighted Least Squares Estimate).

ARCH Autoregressive Conditionally Hetereskedastic.

ARMA Autoregressive Moving Average.

ARMA-BL ARMA with BiLinear innovation.

ARMA-GARCH ARMA with GARCH innovation.

ARMA-SV ARMA with Stochastic Volatility innovation.

a:s: almost surely.

BL BiLinear.

CHARMA Conditionally Heteroskedastic ARMA.

CMV Conditional Mean and Volatility.

DAR Double AutoRegression.

GARCH Generalized ARCH.

GRCA Generalized RCA.

GQMLE Generalized QMLE.

iid independent and identically distributed.

LADE Least Absolute Deviation Estimate.

MAR Mixture Autoregression.

N2S Non Second-order Stationary, Non Second-order Stationarity.

NSS Non Strict Stationary, Non Strict Stationarity.

QML(E) Quasi Maximum Likelihood (Estimate).

RCA Random Coe¢cient Autoregression, Random Coe¢cient Autoregressive.

SMBL Simple Markov BiLinear.

Std Standard deviation.

STS Strict Stationary, Strict Stationarity.

SV Stochastic Volatility.

TAR Treshold autoregression.
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