Precise measurement of macroeconomic variables in time domain using three dimensional wave diagrams

Ledenyov, Dimitri O. and Ledenyov, Viktor O.

James Cook University, Townsville, Queensland, Australia

17 February 2016
Precise measurement of macroeconomic variables in time domain using three dimensional wave diagrams

Dimitri O. Ledenyov and Viktor O. Ledenyov

Abstract – Article considers a research problem on the precise measurement of the macroeconomic variables changes in the time domain in the macroeconomics science. We propose to use the three dimensional (3D) wave diagram in the macroeconomics science for the first time, aiming to accurately characterize and to clearly visualize the GIP(t)/GDP(t)/GNP(t)/PPP(t) dependences changes in the time domain. We explain that the three dimensional (3D) wave diagram in the macroeconomics science has been created, using the theory on the continuous-time waves with the rotating polarization vector in the electrodynamics science. We show that the three dimensional (3D) wave diagram in the macroeconomics science can be used to accurately characterize and finely display the GIP(t), GDP(t), GNP(t), PPP(t) dependences changes in the time domain in the two possible cases: 1) the continuous-time waves of GIP(t), GDP(t), GNP(t), PPP(t) and 2) the discrete-time waves of GIP(t), GDP(t), GNP(t), PPP(t). We conclude that an introduction of the three dimensional (3D) wave diagram in the macroeconomics science can help to solve a challenging research problem on the precise measurement of the macroeconomic variables changes in the time domain.

JEL: E32, E43, E44, E53, E58, E61, G18, G21, G28

PACS numbers: 89.65.Gh, 89.65.-s, 89.75.Fb

Keywords: three dimensional (3D) wave diagram, dependence of general information product on time GIP(t), dependence of general domestic product on time GDP(t), dependence of general national product on time GDP(t), dependence of purchase power parity on time PPP(t), continuous-time signals, spectrum analysis of continuous-time signals, amplitude / frequency / wavelength / period / phase of continuous-time signal, mixing / harmonics / nonlinearities of continuous-time signals, continuous-time waves with rotating polarization vector, continuous-time signal generators, discrete-time signals, spectrum analysis of discrete-time signals, amplitude / frequency / wavelength / period / phase of discrete-time digital signal, mixing / harmonics / nonlinearities of discrete-time digital signals, Ledenyov discrete-time digital waves, discrete-time digital signals generators, Juglar fixed investment cycle, Kitchin inventory cycle, Kondratieff long wave cycle, Kuznets infrastructural investment cycle, nonlinear dynamic economic system, economy of scale and scope, macroeconomics science, econometrics science, electrodynamics science, econophysics science.
Introduction

In the natural sciences, the cut, color, clarity, carat weight of a pink/yellow/white diamond determine the value of a pink/yellow/white diamond precisely.

In the social sciences, the level of philosophical thinking on the problems of fundamental economics science defines a state of economical/social progress in the economy of scale and scope in any country of research interest accurately. The high level of philosophical thinking on the problems of fundamental economics resulted in a formulation and implementation of a set of progressive state policies towards the new limitless opportunities to build the economical/social prosperity in the economies of scale and scope in the leading countries. The philosophical thinking on the problems of fundamental economics in the process of research by the talented scientists with application of an accumulated knowledge base has been conducted in Joseph Penso de la Vega (1668, 1996), Mortimer (1765), Smith (1776, 2008), Menger (1871), Bagehot (1873, 1897), von Böhm-Bawerk (1884, 1889, 1921), Hirsch (1896), Bachelier (1900), Schumpeter (1906, 1911, 1933, 1939, 1961, 1939, 1947), Slatsky (1910, 1915 1923), von Mises (1912), Hayek (1931, 1935, 2008; 1948, 1980), Keynes (1936, 1992), Ellis, Metzler (1949), Friedman (1953), Baumol (1957), Debreu (1959), Krugman, Wells (2005), Stiglitz (2005, 2015).

The five main types of the business cycles in the macroeconomics science have been discovered:

1. 3 – 7 years Kitchin continuous-time inventory cycle in Kitchin (1923);
2. 7 – 11 years Juglar continuous-time fixed investment cycle in Juglar (1862);
3. 15 – 25 years Kuznets continuous-time infrastructural investment cycle in Kuznets (1973a, b);
4. 45 – 60 years Kondratieff continuous-time long wave cycle in Kondratieff, Stolper (1935); and
5. 70+ years Grand continuous-time super-cycle.

For many years, an old scientific opinion was that the above business cycles belong to a group of the continuous waves (the continuous-time signals), because their main parameters such as the amplitude / frequency / wavelength / period / phase change continuously in the time domain. In addition, it was generally accepted to think that the dependence of the General Domestic Product on the time GDP(t) can be viewed as a continuous-time fluctuation of the economy output in the form of the oscillating quantity of the produced goods and provided services in the economy of scale and scope over the specified time period, hence the GDP(t) can be used with the purpose to accurately characterize the macroeconomic processes in the economies of scales and scopes in Kuznets (1973a, b).

The interesting research proposal in macroeconomics science is that the digital waves (the discrete-time digital signals) rather than the early considered continuous waves (the continuous-time signals) originate and propagate in the nonlinear dynamic economic system in the time domain in Ledenyov D O, Ledenyov V O (2015e). It was shown that these discrete-time digital waves may have the multiple origins and can be generated by the discrete-time economical, financial, political and social events such as the disruptive innovations in Christensen, Denning (December 2015) in the economies of scales and scopes in the time domain in Ledenyov D O, Ledenyov V O (2013c, 2015d, 2015e). In other words, it was suggested that the dependence of general information product on time GIP(t), dependence of general domestic product on time GDP(t), dependence of general national product on time GDP(t), dependence of purchase power parity on time PPP(t) can be considered as the discrete-time fluctuations of the economy output in the form of the oscillating quantity of the produced goods and the provided services and the purchasing power and the generated information streams in the economy of scale and scope over the specified time period, which can quite accurately characterize the macroeconomic processes in the economies of scales and scopes in the time domain in Ledenyov D O, Ledenyov V O (2013c, 2015d, 2015e).
Therefore, as it was discovered in Ledenyov D O, Ledenyov V O (2013c, 2015d, 2015e), the five main types of the business cycles in the modern macroeconomics science are:

1. 3 – 7 years Kitchin-Ledenyov discrete-time inventory cycle in Kitchin (1923);
2. 7 – 11 years Juglar-Ledenyov discrete-time fixed investment cycle in Juglar (1862);
3. 15 – 25 years Kuznets--Ledenyov discrete-time infrastructural investment cycle in Kuznets (1973a, b);
4. 45 – 60 years Kondratieff-Ledenyov discrete-time long wave cycle in Kondratieff, Stolper (1935);
5. 70+ years Ledenyov discrete-time grand super-cycle.

In this research article, we would like to discuss the precise measurement of macroeconomic variables in the time domain using the three dimensional wave diagrams. Thus, completing a short insightful introduction, let us begin a more detailed scientific discussion and present our original research thoughts on the subject of scientific interest in this research article.

Precise measurement of macroeconomic variables in time domain using three dimensional wave diagrams

Let us consider the research problem on the precise measurement of changes of the macroeconomic variables in the macroeconomics science in the time domain. In the macroeconomics, the dependence of the general information product on the time GIP(t), the dependence of general domestic product on the time GDP(t), the dependence of the general national product on the time GDP(t), the dependence of the purchase power parity on the time PPP(t) are usually shown in the form of the two dimensions charts of GIP(t), GDP(t), GNP(t), PPP(t).

However, the scientific problem in the macroeconomics is that, looking at the dependences of GIP(t), GDP(t), GNP(t), PPP(t), it is not possible to answer the question: What are the separate contributions by the output of the real sector of the economy of scale and scope and by the output of the speculative sector of the economy of scale and scope to the general information product on the time GIP(t), the general domestic product on the time GDP(t), the general national product on time GDP(t), the purchase power parity on the time PPP(t)?

In the macroeconomics, the clear separation of the contributions by the real sector of the economy of scale and scope and by the speculative sector of the economy of scale and scope to the total resulting magnitude of GIP(t), GDP(t), GNP(t), PPP(t) is quite important. Presently, the
reported quantities of $GIP(t), GDP(t), GNP(t), PPP(t)$ can be considered as meaningless by the economists in view of the fact that it is frequently not possible to distinguish the contributions by the real sector of the economy of scale and scope and by the speculative sector of the economy of scale and scope to the total resulting magnitude of $GIP(t), GDP(t), GNP(t), PPP(t)$.

Let us explain that a huge increase of the monetary base by means of the money supply increase during the quantitative easing programs implementation by the central banks in the economies of scales and scopes in the developed/developing countries may lead to the situation, when the investment banks, investment funds, commerce banks, which obtain a lot of money from the central banks, contribute to the growth of $GIP(t), GDP(t), GNP(t), PPP(t)$ mainly. In other words, the $GIP(t), GDP(t), GNP(t), PPP(t)$ increase disproportionally, because of the increasing contributions by the speculative sectors of the economies of the scales and scopes as a result of huge increase of monetary bases due to the quantitative easing programs implementations by the central banks in the economies of scales and scopes in the developed/developing countries. At the same time, when the $GIP(t), GDP(t), GNP(t), PPP(t)$ increase disproportionally, the contributions by the real sectors of the economies of the scales and scopes to the changes of $GIP(t), GDP(t), GNP(t), PPP(t)$ in the economies of the scales and scopes may actually decrease / not change / modestly increase, depending on various factors.

Therefore, we propose to use the three dimensional (3D) wave diagram in the macroeconomics science for the first time, aiming to accurately characterize and to clearly visualize all the contributions by the real sector of the economy of scale and scope as well as the speculative sector of the economy of scale and scope to the final resulting change of $GIP(t)/GDP(t)/GNP(t)/PPP(t)$. We explain that the three dimensional (3D) wave diagram in the macroeconomics science has been created, using the theory on the continuous-time waves with the rotating circular polarization vector in the electrodynamics science. We would like to comment that, in the electrodynamics science, the continuous-time electro-magnetic waves with the rotating circular polarization vector have been well researched over the years in Wikipedia (2016i, j). The continuous-time electro-magnetic waves with the rotating circular polarization vector are usually used in the process of the information transmission over the ground-to-space and the space-to-ground satellite communication links. Also, the continuous-time electro-magnetic waves with the rotating circular polarization vector are normally applied in the process of the information transmission over the fiber optics communication channels.

In Fig. 1, we would like to show the proposed three dimensional (3D) wave diagram in the macroeconomics science, which can be used to accurately characterize and to finely display
the $GIP(t)$, $GDP(t)$, $GNP(t)$, $PPP(t)$ dependences changes in the time domain in the two possible cases:

1. the continuous-time waves of $GIP(t)$, $GDP(t)$, $GNP(t)$, $PPP(t)$, and
2. the discrete-time waves of $GIP(t)$, $GDP(t)$, $GNP(t)$, $PPP(t)$.

![3D wave diagram](image)

Fig. 1. 3D wave diagram, which shows changes of dependences of $GIP(t)$, $GDP(t)$, $GNP(t)$, $PPP(t)$ in time domain.

Let us explain the 3D Wave Diagram by saying that the total $GIP(t)$, $GDP(t)$, $GNP(t)$, $PPP(t)$ is a sum of the two components, including the real $GIP(t)$, $GDP(t)$, $GNP(t)$, $PPP(t)$ and the speculative $GIP(t)$, $GDP(t)$, $GNP(t)$, $PPP(t)$.

The total magnitude of $GIP(t)$, $GDP(t)$, $GNP(t)$, $PPP(t)$ can change as the continuous-time wave in agreement with the old economic representations in Kitchin (1923), Juglar (1862), Kuznets (1973a, b), Kondratieff, Stolper (1935) or as the discrete-time wave in accordance with the new economic representations in Ledenyov D O, Ledenyov V O (2013c, 2015d, 2015e).

The phase angle ϕ defines the tilt of $GIP(t)$, $GDP(t)$, $GNP(t)$, $PPP(t)$ and it depends on the magnitude of the real $GIP(t)$, $GDP(t)$, $GNP(t)$, $PPP(t)$ and the magnitude of the speculative $GIP(t)$, $GDP(t)$, $GNP(t)$, $PPP(t)$.
We have developed the software program, MacroSoft, which creates the proposed three dimensional (3D) wave diagram to accurately characterize and to finely display the GIP(t), GDP(t), GNP(t), PPP(t) dependences for the G7 economies of the scales and scopes in the time domain for the two possible cases:

3. the continuous-time waves of GIP(t), GDP(t), GNP(t), PPP(t), and
4. the discrete-time waves of GIP(t), GDP(t), GNP(t), PPP(t).

Let us conclude that an introduction of the three dimensional (3D) wave diagram in the macroeconomics science can help to solve a challenging research problem on the precise measurement of the macroeconomic variables in the time domain.

Conclusion

This article considers a research problem on the precise measurement of the macroeconomic variables changes in the time domain in the macroeconomics science.

We propose to use the three dimensional (3D) wave diagram in the macroeconomics science for the first time, aiming to accurately characterize and to clearly visualize the GIP(t)/GDP(t)/GNP(t)/PPP(t) dependences changes in the time domain.

We explain that the three dimensional (3D) wave diagram in the macroeconomics science has been created, using an analogy with the theory on the continuous-time waves with the rotating polarization vector in the electrodynamics science.

We show that the three dimensional (3D) wave diagram in the macroeconomics science can be used to accurately characterize and finely display the GIP(t), GDP(t), GNP(t), PPP(t) dependences changes in the time domain in the two possible cases:

5. the continuous-time waves of GIP(t), GDP(t), GNP(t), PPP(t), and
6. the discrete-time waves of GIP(t), GDP(t), GNP(t), PPP(t).

We conclude that an introduction of the three dimensional (3D) wave diagram in the macroeconomics science can help to solve a challenging research problem on the precise measurement of the macroeconomic variables changes in the time domain.

Acknowledgement

The authors acknowledge the multiple scientific discussions on the precise measurement of the macroeconomic variables changes in the time domain in the macroeconomics science with Oleg P. Ledenyov in Kharkiv, Ukraine in 1988 – 2016.
The first author appreciates many hours of the research discussions on the computing modeling techniques for the accurate characterization of the scientific phenomena with Janina E. Mazierska at James Cook University in Townsville, Australia in 2000 - 2016.

*E-mails: dimitri.ledenyov@my.jcu.edu.au, ledenyov@univer.kharkov.ua.

References:

Economics Science, Finance Science, Economic History Science:

4. Menger C 1871 Principles of Economics (Grundsätze der Volkswirtschaftslehre) Ludwig von Mises Institute Auburn Alabama USA
5. Bagehot W 1873, 1897 Lombard Street: A description of the money market Charles Scribner's Sons New York USA.
6. von Böhm-Bawerk E 1884, 1889, 1921 Capital and interest: History and critique of interest theories, positive theory of capital, further essays on capital and interest Austria; 1890 Macmillan and Co Smart W A (translator) London UK
10. Schumpeter J A 1933 The common sense of econometrics Econometrica.
15. Slutsky E E 1915 Sulla teoria del bilancio del consumatore Giornale degli economisti e rivista di statistica 51 no 1 pp 1 – 26 Italy.
17. von Mises L 1912 The theory of money and credit Ludwig von Mises Institute Auburn Alabama USA
22. Ellis H, Metzler L (editors) 1949 Readings in the theory of international trade Blakiston Philadelphia USA.
23. Friedman M (editor) 1953 Essays in positive economics Chicago University Press Chicago USA.

Juglar Economic Cycle:

Kondratiev Economic Cycle:

36. Kondratieff N D 1922 The world economy and its trends during and after war Regional branch of state publishing house Vologda Russian Federation.

37. Kondratieff N D 1925 The big cycles of conjuncture The problems of conjuncture 1 (1) pp 28 – 79.

41. Kondratieff N D 1984 The Long wave cycle Richardson & Snyder New York USA.

54. Van Duijn J J 1983 The long wave in economic life *Allen and Unwin* Boston MA USA.

63. Wallerstein I 1984 Economic cycles and socialist policies *Futures* 16 (6) pp 579 – 585.

67. Freeman C, Louçã F 2001 As time goes by: From the industrial revolutions to the information revolution *Oxford University Press* Oxford UK.

68. Goldstein J 1988 Long cycles: Prosperity and war in the modern age *Yale University Press* New Haven CT USA.

70. Berry B J L 1991 Long wave rhythms in economic development and political behavior *Johns Hopkins University Press* Baltimore MD USA.

74. Tylecote A 1992 The long wave in the world economy *Routledge* London UK.

76. Modelski G, Thompson W R 1996 Leading sectors and world politics: The co-evolution of global politics and economics *University of South Carolina Press* Columbia SC USA.

79. Perez C 2002 Technological revolutions and financial capital – The dynamics of bubbles and golden ages *Edward Elgar* Cheltenham UK.

Kitchin Economic Cycle:

Kuznets Economic Cycle:

89. Kuznets S 1924 Economic system of Dr. Schumpeter *M. Sc. Thesis under Prof. Wesley Clair Mitchell* Columbia University NY USA.

90. Kuznets S 1930 Secular movements in production and prices *Ph. D. Thesis under Prof. Wesley Clair Mitchell* Columbia University NY USA.

91. Kuznets S 1930 Secular movements in production and prices. Their nature and their bearing upon cyclical fluctuations *Houghton Mifflin* Boston USA.

96. Kuznets S 1966 Modern economic growth: Rate, structure, and spread.

97. Kuznets S 1968 Toward a theory of economic growth, with reflections on the economic growth of modern nations.

98. Kuznets S 1971 Economic growth of nations: Total output and production structure.

Accurate Characterization of Properties of Economic Cycles:

118. Hicks J R 1950 A contribution to the theory of the trade cycle Oxford University Press Oxford UK.

120. Inada K, Uzawa H 1972 Economical development and fluctuations Iwanami Tokyo Japan.

137. Sussmuth B 2003 Business cycles in the contemporary World Springer Berlin Heidelberg Germany.

143. Jourdon Ph 2008 La monnaie unique Europeenne et son lien au developpement economique et social coordonne: une analyse cliometrique Thèse Universite Montpellier France.

151. Swiss National Bank 2013 Countercyclical capital buffer: Proposal of the Swiss National
Bank and decision of the Federal Council

152. Uechi L, Akutsu T 2012 Conservation laws and symmetries in competitive systems
Progress of Theoretical Physics Supplement no 194 pp 210 – 222.

153. Central Banking Newsdesk 2013 Swiss board member supports counter-cyclical capital
buffer

154. Union Bank of Switzerland 2013 UBS outlook Switzerland

The Wall Street Journal New York USA.

156. Federal Reserve Bank of St Louis 2015 US Federal Reserve Economic Data (FRED)
Federal Reserve Bank of St Louis
http://research.stlouisfed.org/fred

157. Desai M, King St, Goodhart Ch 2015 Hubris: why economists failed to predict the crisis
and how to avoid the next one Public Lecture on 27.05.2015 London School of Economics
and Political Science London UK

158. Wikipedia 2015c Business cycle Wikipedia California USA

Disruptive Innovation in Technology, Economics and Finances:

159. Schumpeter J A 1911; 1939, 1961 Theorie der wirtschaftlichen entwicklung; The theory
of economic development: An inquiry into profits, capital, credit, interest and the business
cycle Redvers Opie (translator) OUP New York USA.

161. Schumpeter J A 1947 The creative response in economic history Journal of Economic
History vol 7 pp 149 – 159.

175. Christensen C M April 1999c Teradyne: The Aurora project & Teradyne: Corporate management of disruptive change, TN Harvard Business School Teaching Note 399 - 087.

178. Christensen C M 1999a Innovation and the general manager Irwin McGraw-Hill Homewood IL USA.

179. Christensen C M 1999b Impact of disruptive technologies in telecommunications in Bringing PC economies to the telecommunications industry PulsePoint Communications.

196. Shah Ch D, Brennan T A, Christensen C M April 2003 Interventional radiology: Disrupting invasive medicine.

197. Christensen C M March April 2003 Beyond the innovator's dilemma *Strategy & Innovation* **1** no 1.

208. Dyer J H, Gregersen H B, Christensen C M 2011 The innovator's DNA: Mastering the five skills of disruptive innovators *Harvard Business Press* Boston MA USA.

Christensen C M 2015 Disruptive strategy Course for Senior Executives Harvard Business School Harvard University Cambridge USA.

Scherer F M 1984 Innovation and growth: Schumpeterian perspectives MIT Press Cambridge MA USA.

220. Bernoulli J 1713 Ars conjectandi (The art of guessing).
222. De Moivre 1730 Miscellanea analytica supplementum (The analytic method).
226. Bunyakovsky V Ya 1825 Rotary motion in a resistant medium of a set of plates of constant thickness and defined contour around an axis inclined with respect to the horizon Ph D Thesis no 1 under Prof. Augustin - Louis Cauchy supervision École Polytechnique Paris France.
231. V Ya Bunyakovsky International Conference (August 20 - 21) 2004 Private communications with conference participants on V Ya Bunyakovsky’s mathematical theory of probability and its applications in econophysics and econometrics during a tour to Town of Bar Vinnytsia Region Ukraine V Ya Bunyakovsky International Conference Institute of
232. Chebyshev P L 1846 An experience in the elementary analysis of the probability theory
Crelle’s Journal für die Reine und Angewandte Mathematik.

233. Chebyshev P L 1867 Des valuers moyennes *Journal de Math’ematics Pures et
Appliqu’ees* vol 12 pp 177 – 184.

234. Chebyshev P L 1891 Sur deux theoremes relatifs aux probabilities *Acta Mathematica*
vol 14.

235. Chebyshev P L 1936 Theory of probability: Lectures given in 1879 and 1880
Lyapunov A N (lecture notes writer) Krylov A N (editor) *Moscow - St Petersburg* Russian
Federation.

236. Markov A A 1890 On one problem by D I Mendeleev *Zapiski Imperatorskoi Akademii

237. Markov A A 1899 Application des functions continues au calcul des probabilit´es

238. Markov A A 1900, 1912, 1913 Calculation of probabilities *St Petersburg* Russian
Federation; *Wahrscheinlichkeits-Rechnung Teubner* Leipzig-Berlin Germany; 3rd edition
St Petersburg Russian Federation.

239. Markov A A 1906 Extension of law of big numbers on variables, depending from each
other *Izvestiya Fiziko-Matematicheskogo Obschestva pri Kazanskom Universitete* 2nd series
vol 15 (94) pp 135 – 156 Russian Federation.

240. Markov A A 1907, 1910 Research on fine case of depending trials *Izvestiya Akademii
Nauk SPb* 6th series vol 1 (93) pp 61 – 80; *Recherches sur un cas remarquable d’eprueves

241. Markov A A 1908, 1912, 1971 Extension of limit theorems of calculation of probabilities
to sum of variables, connected in chain *Zapiski Akademii Nauk po Fiziko-Matematicheskomu
Otdeleniyu* 8th series vol 25 (3); Ausdehnung der Satze über die Grenzwerte in der
Wahrscheinlichkeitsrechnung auf eine Summe verketteter Grossen *Liebmann H* (translator)
Germany; Extension of the limit theorems of probability theory to a sum of variables
connected in a chain *Petelin S* (translator) in *Dynamic probabilities systems Howard R A*
(editor) vol 1 pp 552 – 576 *John Wiley and Sons Inc* New York USA.

252. Slutsky E E 1913 On the criterion of goodness of fit of the regression lines and the best method of fitting them to the data *Journal Royal Statistics Society* vol 77 part I pp 8 – 84.

254. Slutsky E E 1915 Sulla teoria sel bilancio del consumatore *Giornale degli economisti e rivista di statistica* 51 no 1 pp 1 – 26 Italy.

256. Slutsky E E 1922b To the question of logical foundations of probability calculation *Statistics Bulletin* 9 - 12 pp 13 – 21.
261. Slutsky E E 1925b Ueber stochastische Asymptoten und Grenzwerte *Metron* Padova Italy vol 5 no 3 pp 3 – 89.
263. Slutsky E E 1927a The summation of random causes as sources of cyclic processes *Problems of Conjuncture (Voprosy Kon’yunktury)* vol 3 issue 1 pp 34 – 64 Moscow Russian Federation.
268. Slutsky E E 1937b The summation of random causes as the source of cyclical processes *Econometrica* 5 pp 105 – 146.
270. Slutsky E E 1960 Selected research works (Izbrannye trudy) *Academy of Sciences of USSR* Moscow Russian Federation.

274. Kolmogorov A N 1947 The contribution of Russian science to the development of probability theory Uchenye Zapiski Moskovskogo Universiteta no 91.

304. Mandelbrot B B 1977 Fractals: Form, chance and dimension *W H Freeman* San Francisco USA.

305. Mandelbrot B B 1982 The fractal geometry of nature *W H Freeman* San Francisco USA.

307. Gnedenko B V, Khinchin A Ya 1961 An elementary introduction to the theory of probability *Freeman* San Francisco USA.

332. Peskir G, Shiryaev A N 2006 Optimal stopping and free-boundary problems Lectures in Mathematics ETH Zürich Birkhäuser Switzerland MR2256030

335. du Toit J, Peskir G, Shiryaev A N 2007 Predicting the last zero of Brownian motion with driftCornell University NY USA pp 1 – 17

342. Karatzas I, Shiryaev A N, Shkolnikov M 2011 The one-sided Tanaka equation with drift Cornell University NY USA

349. Lamperti J 1966 Probability *Benjamin* New York USA.

355. Breiman L 1968 Probability *Addison-Wesley* Reading MA USA.

32

383. Taylor S 1986 Modeling financial time series *John Willey and Sons Inc* New York USA.
391. Lancaster T 1990 The econometric analysis of transition data *Cambridge University Press* Cambridge UK.
395. Cleveland W S 1993 Visualizing data *Hobart Press* Summit New Jersey USA.
396. Pesaran M H, Potter S M (editors) 1993 Nonlinear dynamics, chaos and econometrics *John Willey and Sons Inc* New York USA.

403. Moore G E 2003 No exponential is forever – but we can delay forever ISSCC.

412. Hubbard B B 1998 The world according to wavelets A K Peters Wellesley MA USA.

413. Mallat S A 1998 Wavelet tour of signal processing Academic Press San Diego CA USA.

414. Teolis A 1998 Computational signal processing with wavelets Birkhauser Switzerland.

421. Hayashi F 2000 Econometrics *Princeton University Press* Princeton NJ USA.

430. Woolridge J M 2002 Econometric analysis of cross section and panel data *MIT Press* Cambridge MA USA.

Selected Research Papers in Macroeconomics, Microeconomics & Nanoeconomics Sciences:

442. Ledenyov V O, Ledenyov D O 2012a Shaping the international financial system in century of globalization *Cornell University* NY USA pp 1 – 20

443. Ledenyov V O, Ledenyov D O 2012b Designing the new architecture of international financial system in era of great changes by globalization *Cornell University* NY USA pp 1 – 18

445. Ledenyov D O, Ledenyov V O 2012b On the risk management with application of econophysics analysis in central banks and financial institutions *Cornell University* NY USA pp 1 – 10

446. Ledenyov D O, Ledenyov V O 2013a On the optimal allocation of assets in investment portfolio with application of modern portfolio management and nonlinear dynamic chaos theories in investment, commercial and central banks *Cornell University* NY USA pp 1 – 34

454. Ledenyov D O, Ledenyov V O 2013i Venture capital optimal investment portfolio strategies selection in diffusion - type financial systems in global capital markets with nonlinearities *MPRA Paper no 51903* Munich University Munich Germany pp 1 – 81, *SSRN Paper no SSRN-id2592989* *Social Sciences Research Network* New York USA http://mpra.ub.uni-muenchen.de/51903/ ,
http://mpra.ub.uni-muenchen.de/61946/ ,

http://mpra.ub.uni-muenchen.de/53780/ ,

http://mpra.ub.uni-muenchen.de/61863/ ,

http://mpra.ub.uni-muenchen.de/61805/ ,

Ledenyov D O, Ledenyov V O 2014f MicroLBO software program with the embedded optimized near-real-time artificial intelligence algorithm to create winning virtuous strategies toward leveraged buyout transactions implementation and to compute direct/reverse leverage buyout transaction default probability number for selected public/private companies during private equity investment in conditions of resonant absorption of discrete information in diffusion - type financial system with induced nonlinearities.

ECE James Cook University Townsville Australia, Kharkov Ukraine.

Ledenyov D O, Ledenyov V O 2015a Nonlinearities in microwave superconductivity 8th edition Cornell University NY USA pp 1 – 923

http://mpra.ub.uni-muenchen.de/67470/ ,

473. Ledenyov D O, Ledenyov V O 2015m Quantum money MPRA Paper no 67982 Munich University Munich Germany, SSRN Paper no SSRN-id2693128 Social Sciences Research Network New York USA pp 1 – 70
http://mpra.ub.uni-muenchen.de/67982/ ,

http://mpra.ub.uni-muenchen.de/68404/ ,

http://mpra.ub.uni-muenchen.de/68730/ ,

http://mpra.ub.uni-muenchen.de/68960/ ,

http://mpra.ub.uni-muenchen.de/69405/ ,

478. Ledenyov D O, Ledenyov V O 2015r MicroID software program with the embedded optimized near-real-time artificial intelligence algorithm to create the winning virtuous business strategies and to predict the director’s election / appointment in the boards of directors in the firms, taking to the consideration both the director’s technical characteristics and the interconnecting interlocking director’s network parameters in conditions of the resonant absorption of discrete information in diffusion - type financial economic system
with induced nonlinearities *ECE James Cook University* Townsville Australia, Kharkov Ukraine.

479. Ledenyov D O, Ledenyov V O 2015s *MicroITF* operation system and software programs: 1) the operation system to control the firm operation by means of the information resources near-real-time processing in the modern firms in the case of the diffusion-type financial economic system with the induced nonlinearities; 2) the software program to accurately characterize the director’s performance by means of a) the filtering of the generated/transmitted/received information by the director into the separate virtual channels, depending on the information content, and b) the measurement of the levels of signals in every virtual channel with the generated/transmitted/received information by the director, in the overlapping interconnecting interlocking directors networks in the boards of directors in the firms during the Quality of Service (QoS) measurements process; and 3) the software program to create the winning virtuous business strategies by the interlocking interconnecting directors in the boards of directors in the modern firms in the case of the diffusion-type financial economic system with the induced nonlinearities, using the patented recursive artificial intelligence algorithm *ECE James Cook University* Townsville Australia, Kharkov Ukraine.

480. Ledenyov D O, Ledenyov V O 2015t *MicroIMF* software program: the *MicroIMF* software program to make the computer modeling of 1) the interactions between the information money fields of one cyclic oscillation and the information money fields of other cyclic oscillation(s) in the nonlinear dynamic economic system, 2) the interactions between the information money fields of cyclic oscillation and the nonlinear dynamic economic system itself, and 3) the density distributions of the information money fields by different cyclic oscillations (the economic continuous waves) in the nonlinear dynamic economic system *ECE James Cook University* Townsville Australia, Kharkov Ukraine.

481. Ledenyov D O, Ledenyov V O 2015u *MicroSA* software program 1) to perform the spectrum analysis of the cyclic oscillations of the economic variables in the nonlinear dynamic economic system, including the discrete-time signals and the continuous-time signals; 2) to make the computer modeling and to forecast the business cycles for a) the central banks with the purpose to make the strategic decisions on the monetary policies, financial stability policies, and b) the commercial/investment banks with the aim to make the business decisions on the minimum capital allocation, countercyclical capital buffer creation, and capital investments *ECE James Cook University* Townsville Australia, Kharkov Ukraine.
Ledenyov D O, Ledenyov V O 2015v *DNACode* software program 1) to model the Digital DNA’s complex knowledge base structure for the selected economy of the scale and scope in the case of the G20 nations; 2) to accurately forecast the generation/propagation of the Ledenyov discrete time digital waves of GIP(t)/GDP(t)/GNP(t)/PPP(t) (the discrete-time digital business cycles of GIP(t)/GDP(t)/GNP(t)/PPP(t)) in the G20 economies of the scales and scopes) ECE James Cook University Townsville Australia, Kharkov Ukraine.

Ledenyov D O, Ledenyov V O 2016w *MacroSoft* software program, which creates the proposed three dimensional (3D) wave diagram to accurately characterize and to finely display the GIP(t), GDP(t), GNP(t), PPP(t) dependences for the G7 economies of the scales and scopes in the time domain for the two possible cases: 1) the continuous-time waves of GIP(t), GDP(t), GNP(t), PPP(t), and 2) the discrete-time waves of GIP(t), GDP(t), GNP(t), PPP(t).

Continuous Time Signal, Analog Signals, Discrete Time Signal, Digital Signals, Spectrum of Signals, Electromagnetic Field, Gravitation Field, Calibrating Field, Information Field Theories in Physics and Engineering Sciences:

Maxwell J C 1890 Introductory lecture on experimental physics in Scientific papers of J C Maxwell Niven W D (editor) vols 1, 2 Cambridge UK.

Walsh J L 1923b A property of Haar’s system of orthogonal functions *Math Ann* 90 p 3845.

Wikipedia 2015d Joseph L Walsh *Wikipedia* USA

http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html.

http://dx.doi.org/10.1016%2FS0019-9958%2859%290376-6

495. Orfanidis S J 1995 Introduction to signal processing *Prentice-Hall* Englewood Cliffs NJ USA.

