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Abstract 

What happens when the capital asset pricing model (CAPM) is adjusted for the anchoring and 

adjustment heuristic of Tversky and Kahneman (1974)? The surprising finding is that adjusting 

CAPM for anchoring provides a plausible unified framework for understanding almost all of the 

key asset pricing anomalies. The anomalies captured in the theoretical framework include the 

well-known size, and value effects, high-alpha-of-low-beta-stocks, accruals, low volatility, 

momentum effect, stock-splits, and reverse stock-splits. The equity premium is also larger with 

anchoring. This suggest that the anchoring adjusted capital asset pricing model (ACAPM) may 

provide the needed unifying structure to behavioral finance. 
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Anchoring Adjusted Capital Asset Pricing Model 

 

What happens when the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) 

is adjusted for the anchoring heuristic of Tversky and Kahneman (1974)? The surprising finding 

is that it provides a unified theoretical framework for understanding key asset pricing anomalies. 

The anchoring model converges to CAPM if there is no anchoring bias. Hence, CAPM is 

obtained as a special case of the anchoring adjusted model. 

This article develops the theoretical framework without asserting that the proposed 

framework completely explains all of the anomalies discussed here. Such an assertion demands a 

comprehensive empirical examination of a large number of anomalies, which no single article can 

hope to achieve. The primary aim of this article is to demonstrate that the anchoring and 

adjustment heuristic must be considered as an alternative explanation that demands 

comprehensive empirical scrutiny. An often mentioned weakness of behavioral finance is that it 

is a collection of ad hoc models without a unifying structure (Shefrin (2010)). By potentially 

capturing almost all of the key asset pricing anomalies in a single framework, this article shows 

that the anchoring adjusted capital asset pricing model (ACAPM) may provide the needed 

unifying structure to behavioral finance. 

Starting from Tversky and Kahneman (1974), over 40 years of research has demonstrated 

that while forming estimates, people tend to start from what they know and then make 

adjustments to their starting points. However, adjustments typically remain biased towards the 

starting value known as the anchor (see Furnham and Boo (2011) for a general review of the 

literature). Describing the anchoring heuristic, Epley and Gilovich write (2001), “People may 

spontaneously anchor on information that readily comes to mind and adjust their response in a direction that seems 

appropriate, using what Tversky and Kahneman (1974) called the anchoring and adjustment heuristic. Although 

this heuristic is often helpful, the adjustments tend to be insufficient, leaving people’s final estimates biased towards 

the initial anchor value.” (Epley and Gilovich (2001) page. 1).  

A few examples illustrate this heuristic quite well. When respondents were asked which 

year George Washington became the first US President, most would start from the year the US 

became a country (in 1776). They would reason that it might have taken a few years after that to 

elect the first president so they add a few years to 1776 to work it out, coming to an answer of  

1778 or 1779. George Washington actually became president in 1789. Similarly, most people 

would know the freezing point of  water (0 degrees Celsius) as compared to vodka. So if  they 
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were asked what the freezing temperature of  vodka is, they would tend to start from 0 and adjust 

downwards. The freezing temperature of  vodka is around -24 degrees Celsius, much lower than 

what people usually answer. What is the fair price of  a 3-bedroom house in a particular 

neighbourhood of  Chicago? If  you know that price of  a 4-bedroom house in the same 

neighbourhood but in a slightly better location, you would probably start from that price and 

adjust for differences between the two properties.  Anchoring bias implies that such adjustments 

tend to be insufficient. 

The initial experiments of  Tversky and Kahneman (1974) have led to numerous studies 

in which robust influence of  anchoring in various decision-making situations is found. The 

situations tested are diverse and include price estimation (Amado et al (2007)), probability 

calculations (Chapman and Johnson (1999)), as well as factual knowledge (Blankenship et al 

(2008), Wegener et al (2001)). Expertise does not seem to reduce the anchoring bias supporting 

the notion that experts and novices alike are prone to anchoring (Englich and Soder (2009)).  

Overall, the anchoring bias is “exceptionally robust, pervasive and ubiquitous” (Furnham and 

Boo 2011, p. 41) regarding experimental variations.   

Any financial asset is just a label given to a future payoff  stream. So, knowing the future 

payoff  distribution is crucial for valuing assets. In a standard application of  CAPM, rational 

expectations are assumed about every asset irrespective of  whether it belongs to a well-

established firm or a relatively new firm (ex-ante expectations are assumed to coincide with ex-

post realizations on average). In reality, stocks differ in terms of  analyst and media coverage, 

history, and data availability. Well-established stocks, known as blue-chips get a lion’s share of  

coverage, and have large comprehensive datasets available about them. The coverage bias is 

substantial with 83% of  full time analysts only covering the blue-chip stocks (4% of  the firms)1. 

Prominent blue-chips also remain in focus because stock analysts typically analyse a given firm in 

comparison with the sector leader (typically a prominent blue-chip company). MBA and CFA 

texts teach the same approach2. Furthermore, industry analysis, which is a universal part of  

almost every analyst research note also brings prominent blue-chips into focus as shapers of  the 

particular industry under consideration. 

Given the key role of  prominent blue-chips in stock analysis, and the exceptional 

pervasiveness and ubiquity of  anchoring, it is plausible that a typical investor uses the payoffs of  

                                                           
1 http://punchinvest.com/wp-content/uploads/2011/11/The-Blind-Spot-Impact-of-Analyst-Coverage1.pdf 
 
2 One example is the popular textbook on financial management of Petty and Titman (2012). 

http://punchinvest.com/wp-content/uploads/2011/11/The-Blind-Spot-Impact-of-Analyst-Coverage1.pdf
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prominent blue-chips as starting points, which are then adjusted to form judgments about other 

firms. Consider the following firms: Apple, Applied Materials, and Auto Desk. All three are large 

information technology firms included in the S&P 500 index. However, Apple is a household 

name that clearly stands out. Apple is the largest information technology firm in the world, and 

gets a lion’s share of  analysts and media coverage when compared with the other two firms. 

Given its prominence, a typical investor may start from Apple and then attempt to make 

appropriate adjustments to form judgments about the other two firms.  

A key stylized fact noted in the anchoring literature is that higher the task complexity or 

cognitive load involved in a judgment task, larger is the error caused by anchoring (Kudryavtsev 

and Cohen (2010), Meub and Proeger (2014), references therein). From a given starting 

distribution, adjusting for volatility perhaps requires more effort than adjusting for expected 

payoffs. In principle, the only adjustment required for expected payoff  is “size adjustment”; 

however, in order to estimate volatility, many other differences such as the differential response 

to external shocks must also be accounted for. Plausibly, due to the higher cognitive load 

involved, the anchoring bias is larger in volatility estimation. For simplicity, I assume that 

expected payoffs are correctly estimated and the anchoring bias is displayed in volatility 

estimation only. Alternatively, without changing results, one could assume that the anchoring bias 

is present in both expected payoff  and volatility estimation with the bias being larger in volatility 

estimation. This focus on volatility instead of  expected payoffs is also typical of  the Bayesian 

learning literature (see Weitzman (2007) and references therein). This is in sharp contrast with 

other asset pricing literature that allows for errors in expected payoffs while assuming that 

volatilities are correctly estimated (partly because of  convenience).  

Another key stylized fact from the anchoring literature is that greater the distance 

between the starting point and the correct value, larger is the error due to anchoring (Epley and 

Gilovich (2006) (2001) and references therein). When considering payoff  volatilities, one simple 

way of  capturing this is to use the following formulation: 

 𝜎𝐴2(𝑋𝑇𝑎𝑟𝑔𝑒𝑡) = (1 − 𝑚)𝜎2(𝑋𝐵𝑙𝑢𝑒𝐶ℎ𝑖𝑝) + 𝑚𝜎2(𝑋𝑇𝑎𝑟𝑔𝑒𝑡) with 0 ≤ 𝑚 ≤ 1 

In the above formulation, if  𝑚 = 1, there is no anchoring bias and the anchoring influenced 

value, 𝜎𝐴2(𝑋𝑇𝑎𝑟𝑔𝑒𝑡), is equal to the correct value, 𝜎2(𝑋𝑇𝑎𝑟𝑔𝑒𝑡) . In this case, ACAPM would 

converge to CAPM. If  𝑚 = 0, the anchoring bias is maximal and the anchoring influenced value 

is equal to the starting value. Consistent with the anchoring literature, for a given positive 𝑚, 
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greater the distance between the starting value, 𝜎2(𝑋𝐵𝑙𝑢𝑒𝐶ℎ𝑖𝑝), and the correct value, 𝜎2(𝑋𝑇𝑎𝑟𝑔𝑒𝑡), larger is the error due to the anchoring bias.  

 To sum up, the notion that the payoff  distributions of  prominent blue-chips may be 

starting points for forming judgments about the payoff  distributions of  other firms can be made 

precise by using the following stylized facts: Stylized fact #1) Error due to anchoring is larger if  

the cognitive load involved in the judgment task is higher => focus on payoff  volatilities instead 

of  expected payoffs. Stylized fact #2) Error due to anchoring is larger if  the distance between 

the starting value and the correct value is larger. A simple formulation capturing this is: 𝜎𝐴2(𝑋𝑇𝑎𝑟𝑔𝑒𝑡) = (1 − 𝑚)𝜎2(𝑋𝐵𝑙𝑢𝑒𝐶ℎ𝑖𝑝) + 𝑚𝜎2(𝑋𝑇𝑎𝑟𝑔𝑒𝑡). 

 Section 1 develops the anchoring adjusted model (ACAPM) by adjusting the standard 

CAPM for anchoring in the light of  the above mentioned stylized facts. ACAPM converges to 

CAPM if  the adjustments are correct. Hence, CAPM is obtained as a special case of  ACAPM. 

Section 2 shows that ACAPM provides a unified explanation for key asset pricing anomalies. 

Section 3 concludes.  

I complete a brief  literature review of  the role of  anchoring in financial decision making 

in the remaining part of  this section. Hirshleifer (2001) considers anchoring to be an “important 

part of psychology based dynamic asset pricing theory in its infancy” (p. 1535). Shiller (1999) argues that 

anchoring appears to be an important concept for financial markets. This argument has been 

supported quite strongly by recent empirical research on financial markets. Anchoring has been 

found to matter for credit spreads that banks charge to firms (Douglas et al (2015), it matters in 

determining the price of target firms in mergers and acquisitions (Baker et al (2012), and it also 

affects the earnings forecasts made by analysts in the stock markets (Cen et al (2013)). 

Furthermore, Siddiqi (2015) shows that anchoring provides a unified explanation for a number 

of key puzzles in options market. Given the importance of this bias in financial decision making, 

it is natural to see what happens when a canonical asset pricing model of the stature of CAPM is 

adjusted for anchoring. This is the contribution of this article. 

 

1. Anchoring Adjusted CAPM 

A typical derivation of CAPM via utility maximization starts by considering an overlapping 

generations (OLG) economy with agents having identical beliefs. Each agent lives for two 

periods. Agents that are born at 𝑡 aim to maximize their utility of wealth at 𝑡 + 1. Their utility 
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functions are identical and exhibit mean-variance preferences. They trade securities 𝑠 = 1,… . , 𝑆 

where security 𝑠 pays dividends 𝛿𝑡𝑠and has 𝑥∗𝑠shares outstanding, and invest the rest of their 

wealth in a risk-free asset that offers a rate of 𝑟𝐹.  

 

Market dynamics can be described by a representative agent who maximizes: 

 max 𝑥′{𝐸𝑡(𝑃𝑡+1 + 𝛿𝑡+1) − (1 + 𝑟𝐹)𝑃𝑡} − 𝛾2 𝑥′Ω𝑡𝑥  

 

where 𝑃𝑡 is the vector of prices, Ω𝑡 is the variance-covariance matrix of 𝑃𝑡+1 + 𝛿𝑡+1, and 𝛾 is 

the risk-aversion parameter. 

 The maximization problem described above has three decision primitives, which are as 

follows: 1) Vector of expected payoffs in the next period, 𝐸𝑡(𝑃𝑡+1 + 𝛿𝑡+1). 2) Expected 

variances associated with these payoffs, that is, the diagonal elements in the variance-covariance 

matrix Ω𝑡. 3) Expected covariances associated with these payoffs, which are the off-diagonal 

elements in Ω𝑡. 
 Once the above three decision primitives are specified, CAPM follows via a series of 

logical steps, with applications usually assuming that expectations coincide with reality.  

 How does anchoring influence this picture? I assume that the representative agent forms 

correct judgments about expected payoffs and displays the anchoring bias in estimating 

volatilities. This is line with the stylized fact#1 discussed in the introduction. The variance-

covariance matrix includes variances as well as covariances. Assuming that they have similar 

cognitive loads, one can allow the anchoring bias to matter equally for both variances as well as 

covariances. However, without changing results, a much simpler way is to allow for the bias in 

variances while assuming that covariances are also correctly estimated. This is the approach taken 

here. 

Another modelling choice is whether to use a representative agent who is anchoring 

prone or to mix the two types of agents with one type anchoring prone and the other type 

holding rational expectations with limits to arbitrage ensuring survival. The results are identical in 

both cases; however, the former approach is mathematically simpler. Furthermore, it is more 
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reasonable to think that ex-ante nobody knows the exact future payoff volatility of a typical firm. 

Hence, I choose the former approach for reasons of simplicity and realism.  

 To illustrate the implications of anchoring, I start by considering the simplest case of one 

prominent blue-chip stock and one normal or typical stock in section 1.1. Section 1.2 considers 

the case of one prominent blue-chip and many typical stocks, and section 1.3 adds a large 

number of prominent blue-chip stocks to the picture with one blue-chip corresponding to each 

sector of the economy. 

 

1.1 Anchoring Adjusted CAPM: The Simplest Case 

Consider an overlapping-generations (OLG) economy in which agents are born each period and 

live for two periods. For simplicity, in the beginning, I assume that they trade in the stocks of 

two firms and invest in a risk-free asset. One firm is well-established with large payoffs (the 

prominent blue-chip or leader firm), and the second firm is a relative new-comer with much 

smaller payoffs (typical or normal firm). The next period payoff per share of the leader firm is 

denoted by 𝛿𝐿𝑡+1 = 𝑃𝐿𝑡+1 + 𝑑𝐿𝑡+1 where 𝑃𝐿𝑡+1 is the next period share price and 𝑑𝐿𝑡+1 is the 

per share dividend of the large firm. Similarly, the next period payoff per share of the normal 

firm is defined by 𝛿𝑆𝑡+1 = 𝑃𝑆𝑡+1 + 𝑑𝑆𝑡+1. The risk-free rate of return is 𝑟𝐹. At time 𝑡, each agent 

chooses a portfolio of stocks and the risk-free asset to maximize his utility of wealth at 𝑡 + 1. 

There are no transaction costs, taxes, or borrowing constraints.  

The market dynamics are described by a representative agent who maximizes utility: 

  𝑛𝐿{𝐸𝑡(𝛿𝐿𝑡+1) − (1 + 𝑟𝐹)𝑃𝐿𝑡} + 𝑛𝑆{𝐸𝑡(𝛿𝑆𝑡+1) − (1 + 𝑟𝐹)𝑃𝑆𝑡}− 𝛾2 {𝑛𝐿2𝜎𝐿2 + 𝑛𝑆2𝜎𝑆2 + 2𝑛𝐿𝑛𝑆𝜎𝐿𝑆}  
 

where 𝑛𝐿 , 𝑛𝑠, 𝑎𝑛𝑑 𝛾 denote the number of shares of the leader firm, the number of shares of the 

normal firm, and the risk aversion parameter respectively.  Next period variances of the leader 

firm and the normal firm payoffs per share are 𝜎𝐿2 = 𝑉𝑎𝑟(𝛿𝐿𝑡+1) and 𝜎𝑆2 = 𝑉𝑎𝑟(𝛿𝑆𝑡+1) 

respectively with 𝜎𝐿2 > 𝜎𝑆2, and 𝜎𝐿𝑆 denotes their covariance. Note, that payoff variances are 

different from return variances. The payoff variance of the normal firm’s stock, 𝜎𝑆2, is smaller 
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than the payoff variance of the leader firm’s stock, 𝜎𝐿2, because of the much smaller size of its 

payoffs. In contrast, the return variance of the normal firm may be much larger than the return 

variance of the large firm’s stock because of the smaller share price of the normal firm.  To see 

this clearly, consider an example. Suppose the possible payoffs of the leader firm stock, in the 

next period, are 300, 350, and 400 with equal chance of each. The variance of these payoffs can 

be calculated easily and is equal to 1666.667. In a risk-neutral world, with zero risk-free interest 

rate, the price must be 350, so corresponding (gross) returns are: 0.857, 1, 1.143.  The return 

variance is 0.010.  Assume that the next period payoffs of the normal firm are 0, 35, and 70. The 

variance of these payoffs is 816.667. The risk neural price (with zero risk-free rate) is 35 leading 

to possible returns of 0, 1, and 2. The corresponding return variance is 0.66. As can be seen in 

this example, the payoff variance of the normal firm stock is smaller than the payoff variance of 

the leader firm stock, whereas the return variance of the normal firm is much larger.  

The first order conditions of the maximization problem are: 𝐸𝑡(𝛿𝐿𝑡+1) − (1 + 𝑟𝐹)𝑃𝐿𝑡 − 𝛾𝑛𝐿𝜎𝐿2 − 𝛾𝑛𝑆𝜎𝐿𝑆 = 0                                     (1) 𝐸𝑡(𝛿𝑆𝑡+1) − (1 + 𝑟𝐹)𝑃𝑆𝑡 − 𝛾𝑛𝑆𝜎𝑆2 − 𝛾𝑛𝐿𝜎𝐿𝑆 = 0                                     (2) 

Solving (1) and (2) for prices yields: 

𝑃𝐿𝑡 = 𝐸𝑡(𝛿𝐿𝑡+1) − 𝛾𝑛𝐿𝜎𝐿2 − 𝛾𝑛𝑆𝜎𝐿𝑆1 + 𝑟𝐹  

𝑃𝑆𝑡 = 𝐸𝑡(𝛿𝑆𝑡+1) − 𝛾𝑛𝑆𝜎𝐿2 − 𝛾𝑛𝐿𝜎𝐿𝑆1 + 𝑟𝐹  

If the number of shares of the leader firm outstanding is 𝑛𝐿′ , and the number of shares of the 

normal firm outstanding is 𝑛𝑆′ , then the equilibrium prices are: 

𝑃𝐿𝑡 = 𝐸𝑡(𝛿𝐿𝑡+1) − 𝛾𝑛𝐿′ 𝜎𝐿2 − 𝛾𝑛𝑆′ 𝜎𝐿𝑆1 + 𝑟𝐹                                                     (3) 

𝑃𝑆𝑡 = 𝐸𝑡(𝛿𝑆𝑡+1) − 𝛾𝑛𝑆′ 𝜎𝑆2 − 𝛾𝑛𝐿′ 𝜎𝐿𝑆1 + 𝑟𝐹                                                     (4) 

Next, I show how anchoring alters the above equilibrium. I assume that the representative agent 

is unsure about the variance of the normal firm’s payoffs, and to form his judgment, he starts 

from the variance of the leader firm and subtracts from it.  
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The agent knows that as the normal firm has smaller payoffs, its payoff variance must 

also be smaller. So, he starts from the variance of the leader firm and subtracts from it to form 

his judgment about the normal firm’s variance: �̂�𝑆2 = 𝜎𝐿2 − 𝐴. If he makes the correct 

adjustment, then 𝐴 = 𝜎𝐿2 − 𝜎𝑆2. Anchoring bias implies that the adjustment falls short. That is, 𝐴 = 𝑚(𝜎𝐿2 − 𝜎𝑆2) with 0 ≤ 𝑚 < 1. Hence, �̂�𝑆2 = (1 − 𝑚)𝜎𝐿2 + 𝑚𝜎𝑆2. If the adjustment is 

correct then 𝑚 = 1. Note, that this formulation is consistent with the stylized fact#2 discussed 

in the introduction which says that greater the distance between the starting value and the correct 

value, larger is the error due to anchoring.  

With anchoring, the equilibrium price of the normal firm falls, however, the equilibrium 

price of the leader firm remains unchanged. 

The equilibrium price of the normal firm with anchoring is: 𝑃𝑆𝑡= 𝐸𝑡(𝛿𝑆𝑡+1) − 𝛾𝑛𝑆′𝑚𝜎𝑆2 − 𝛾𝑛𝑆′ (1 − 𝑚)𝜎𝐿2 − 𝛾𝑛𝐿′ 𝜎𝐿𝑆1 + 𝑟𝐹                                                                 (5)    
Adding and subtracting 𝛾𝑛𝑆′ 𝜎𝑆2 to the numerator of the above equation and using 𝑐𝑜𝑣(𝛿𝑆𝑡+1, 𝑛𝐿′ 𝛿𝐿𝑡+1 + 𝑛𝑆′ 𝛿𝑆𝑡+1) = 𝑛𝐿′ 𝜎𝐿𝑆 + 𝑛𝑆′ 𝜎𝑆2 leads to: 

 𝑃𝑆𝑡= 𝐸𝑡(𝛿𝑆𝑡+1) − 𝛾[𝑐𝑜𝑣(𝛿𝑆𝑡+1, 𝑛𝐿′ 𝛿𝐿𝑡+1 + 𝑛𝑆′ 𝛿𝑆𝑡+1) + 𝑛𝑆′ (1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆2)]1 + 𝑟𝐹                         (6)    
 

With correct adjustment, that is, with 𝑚 = 1, there is no anchoring bias and (6) reduces to (4). 

 Expressing (6) in terms of the expected stock return leads to: 

𝐸𝑡(𝑟𝑆) = 𝑟𝐹 + 𝛾𝑃𝑆𝑡 [𝑐𝑜𝑣(𝛿𝑆𝑡+1, 𝑛𝐿′ 𝛿𝐿𝑡+1 + 𝑛𝑆′ 𝛿𝑆𝑡+1) + 𝑛𝑆′ (1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆2)]                      (7) 

Anchoring does not change the share price of the leader firm. By re-arranging (3), the expected 

return expression for the stock price of the leader firm is obtained: 

𝐸𝑡(𝑟𝐿) = 𝑟𝐹 + 𝛾𝑃𝐿𝑡 [𝑐𝑜𝑣(𝛿𝐿𝑡+1, 𝑛𝐿′ 𝛿𝐿𝑡+1 + 𝑛𝑆′𝛿𝑆𝑡+1)]                                                                   (8) 
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Expected return on the total market portfolio is obtained by multiplying (7) by 
𝑛𝑆′ 𝑃𝑆𝑡𝑛𝐿′ 𝑃𝐿𝑡+𝑛𝑆′ 𝑃𝑆𝑇 

and (8) by 
𝑛𝐿′ 𝑃𝑆𝑡𝑛𝐿′ 𝑃𝐿𝑡+𝑛𝑆′ 𝑃𝑆𝑇 and adding them: 

𝐸𝑡[𝑟𝑀] = 𝑟𝐹 + 𝛾𝑛𝐿′ 𝑃𝐿𝑡 + 𝑛𝑆′𝑃𝑆𝑡 [𝑉𝑎𝑟(𝑛𝐿′ 𝛿𝐿𝑡+1 + 𝑛𝑆′𝛿𝑆𝑡+1) + 𝑛𝑆′2(1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆2)]            (9) 

 

Proposition 1 The expected return on the market portfolio with anchoring is larger than 

the expected return on the market portfolio without anchoring. 

Proof. 

Follows directly from (9) by realizing that with anchoring 𝑃𝑆𝑡 is smaller than what it would be 

without anchoring, and the second term, 𝑛𝑆′2(1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆2), which is positive with 

anchoring is equal to zero without anchoring. 

 ▄ 

 

 From (9), one can obtain an expression for the risk aversion coefficient, 𝛾, as follows: 

𝛾 = (𝐸𝑡[𝑟𝑀] − 𝑟𝐹) ∙ (𝑛𝐿′ 𝑃𝐿𝑡 + 𝑛𝑆′ 𝑃𝑆𝑡)𝑉𝑎𝑟(𝑛𝐿′ 𝛿𝐿𝑡+1 + 𝑛𝑆′ 𝛿𝑆𝑡+1) + 𝑛𝑆′2(1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆2)                                                        (10) 

 

Substituting (10) in (7) and (8) and using 𝑃𝑀𝑡 = 𝑛𝐿′ 𝑃𝐿𝑡 + 𝑛𝑆′𝑃𝑆𝑡 leads to: 

𝐸𝑡(𝑟𝑆) = 𝑟𝐹 + 𝐸𝑡[𝑟𝑀 − 𝑟𝐹] ∙ 𝐶𝑜𝑣(𝑟𝑆, 𝑟𝑀) + 𝑛𝑆′ (1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆2)𝑃𝑆𝑡𝑃𝑀𝑡𝑉𝑎𝑟(𝑟𝑀) + 𝑛𝑆′2(1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆2)𝑃𝑀𝑡2                                      (11) 

𝐸𝑡(𝑟𝐿) = 𝑟𝐹 + 𝐸𝑡[𝑟𝑀 − 𝑟𝐹] ∙ 𝐶𝑜𝑣(𝑟𝐿 , 𝑟𝑀)𝑉𝑎𝑟(𝑟𝑀) + 𝑛𝑆′2(1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆2)𝑃𝑀𝑡2                                          (12) 

Equations (11) and (12) are the expected return expressions for the normal stock and the leader 

stock respectively with anchoring. They give the expected return under the anchoring adjusted 
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CAPM (ACAPM). It is straightforward to see that substituting 𝑚 = 1 in (11) and (12) leads to 

the classic CAPM expressions. That is, without anchoring ACAPM converges to CAPM, with 

beta being the only priced risk factor, 𝛽𝑆 = 𝐶𝑜𝑣(𝑟𝑠,𝑟𝑀)𝑉𝑎𝑟(𝑟𝑀) , and 𝛽𝐿 = 𝐶𝑜𝑣(𝑟𝐿,𝑟𝑀)𝑉𝑎𝑟(𝑟𝑀) . 

 Proposition 2 shows that anchoring implies that the normal firm has a larger beta-

adjusted return than the leader firm. 

 

Proposition 2 The beta-adjusted excess return on the normal stock is larger than the 

beta-adjusted excess return on the leader stock. 

Proof. 

From (12): 𝐸𝑡[𝑟𝐿 − 𝑟𝐹]𝐶𝑜𝑣(𝑟𝐿 , 𝑟𝑀)𝑉𝑎𝑟(𝑟𝑀) < 𝐸𝑡[𝑟𝑀 − 𝑟𝐹] 
and from (11) 𝐸𝑡[𝑟𝑆 − 𝑟𝐹]𝐶𝑜𝑣(𝑟𝑠, 𝑟𝑀)𝑉𝑎𝑟(𝑟𝑀) > 𝐸𝑡[𝑟𝑀 − 𝑟𝐹] 
Hence, the beta-adjusted excess return on the normal stock must be larger than the beta-adjusted 

excess return on the leader stock. 

▄ 

 

In the next two sub-sections, the above results are generalized. In section 1.2, the results are 

generalized to include a large number of normal firms while keeping the number of leader firm at 

one. In section 1.3, the results are generalized to include a large number of leader firms as well.  
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1.2 Anchoring adjusted CAPM with many normal firms 

It is straightforward to extend the anchoring approach to a situation in which there are a large 

number of normal firms. Equation (6) remains unchanged. However, equation (9) changes 

slightly to the following: 

𝐸𝑡[𝑟𝑀] = 𝑟𝐹 + 𝛾𝑃𝑀𝑡 [𝑉𝑎𝑟(𝛿𝑀𝑡+1) + ∑𝑛𝑆𝑖′2(1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆𝑖2 )𝑘
𝑖=1 ]                                       (13) 

where 𝛿𝑀𝑡+1 is the payoff associated with the aggregate market portfolio in the next period, and 𝑘 is the number of normal firms in the market. 

 From (13), it follows that: 

𝛾 = (𝐸𝑡[𝑟𝑀] − 𝑟𝐹) ∙ (𝑃𝑀𝑡)𝑉𝑎𝑟(𝛿𝑀𝑡+1) + ∑ 𝑛𝑆𝑖′2(1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆𝑖2 )𝑘𝑖=1                                                                 (14) 

 

The corresponding expression for a normal firm j’s expected return can be obtained by 

substituting (14) in (7): 

𝐸𝑡(𝑟𝑆𝑗) = 𝑟𝐹 + 𝐸𝑡[𝑟𝑀 − 𝑟𝐹] ∙ 𝐶𝑜𝑣(𝑟𝑆𝑗 , 𝑟𝑀) + 𝑛𝑆𝑗′ (1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆𝑗2 )𝑃𝑆𝑗𝑡𝑃𝑀𝑡𝑉𝑎𝑟(𝑟𝑀) + ∑ 𝑛𝑆𝑖′2(1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆𝑖2 )𝑃𝑀𝑡2𝑘𝑖=1                          (15) 

The corresponding expression for the leader firm is obtained by substituting (14) in (8): 

𝐸𝑡(𝑟𝐿) = 𝑟𝐹 + 𝐸𝑡[𝑟𝑀 − 𝑟𝐹] ∙ 𝐶𝑜𝑣(𝑟𝐿 , 𝑟𝑀)𝑉𝑎𝑟(𝑟𝑀) + ∑ 𝑛𝑆𝑖′2(1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆𝑖2 )𝑃𝑀𝑡2𝑘𝑖=1                           (16) 

(15) and (16) provide the expected return expressions corresponding to a situation in which there 

are a large number of normal firms and one leader firm. It is straightforward to check that in the 

absence of the anchoring bias, that is, when 𝑚 = 1, the anchoring model converges to the 

classic CAPM expressions of expected returns. In the next section, I generalize the model to 

include a large number of leader firms as well. 
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1.3 ACAPM with 𝑸 leader firms and 𝑸 × 𝒌 normal firms 

It is natural to expect that every sector has its own leader firm whose stock is used as a starting 

point to form judgments about other firms in the same sector. I assume that there are 𝑄 sectors 

and every sector has one leader firm. I assume that the number of normal firms in every sector is 𝑘. That is, the total number of normal firms in the market is 𝑄 × 𝑘. As the total number of 

leader firms is 𝑄. The total number of all firms (both leader and normal) in the market is 𝑄 +(𝑄 × 𝑘). 

 Following a similar set of steps as in the previous two sections, the expected return 

expression for a normal firm 𝑗 in sector 𝑞 ∈ 𝑄 is given by: 𝐸𝑡(𝑟𝑞𝑆𝑗) = 𝑟𝐹 + 𝐸𝑡[𝑟𝑀 − 𝑟𝐹]
∙ 𝐶𝑜𝑣(𝑟𝑞𝑆𝑗, 𝑟𝑀) + 𝑛𝑞𝑆𝑗′ (1 − 𝑚)(𝜎𝑞𝐿2 − 𝜎𝑞𝑆𝑗2 )𝑃𝑞𝑆𝑗𝑡𝑃𝑀𝑡𝑉𝑎𝑟(𝑟𝑀) + ∑ ∑ 𝑛𝑞𝑆𝑖′2 (1 − 𝑚)(𝜎𝑞𝐿2 − 𝜎𝑞𝑆𝑖2 )𝑃𝑀𝑡2𝑘𝑖=1𝑄𝑞=1                          (17) 

 

The corresponding expression for the leader firm in sector 𝑞 is given by: 

𝐸𝑡(𝑟𝑞𝐿) = 𝑟𝐹 + 𝐸𝑡[𝑟𝑀 − 𝑟𝐹] ∙ 𝐶𝑜𝑣(𝑟𝑞𝐿 , 𝑟𝑀)𝑉𝑎𝑟(𝑟𝑀) + ∑ ∑ 𝑛𝑞𝑆𝑖′2 (1 − 𝑚)(𝜎𝑞𝐿2 − 𝜎𝑞𝑆𝑖2 )𝑃𝑀𝑡2𝑘𝑖=1𝑄𝑞=1             (18) 

(17) and (18) are the relevant expected return expressions under ACAPM. As before, it is easy to 

see that, in the absence of the anchoring bias, that is, if 𝑚 = 1, ACAPM expressions converge to 

the classic CAPM expressions. 

Section 1.4 presents an alternate derivation of ACAPM by using portfolio expected 

returns and standard deviations. 

 

1.4 ACAPM: A derivation based on portfolio expected return and standard deviation 

In this section, I show that ACAPM can also be derived by directly considering returns and 

variances of returns instead of starting from the decisions primitives of expected payoffs and 
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payoff variances as needed for utility maximization. With anchoring in judgments regarding 

payoff variances, the return variance of a normal firm stock 𝑖 in sector 𝑞 is: 

�̂�𝑅𝑞𝑖2 = (1 − 𝑚)𝜎𝐿𝑞2 + 𝑚𝜎𝑞𝑖2𝑃𝑞𝑖2  

where �̂�𝑅𝑞𝑖2  is the estimated return variance of a normal stock 𝑖 in sector 𝑞, 𝜎𝐿𝑞2  is the payoff 

variance of the leader stock, 𝜎𝑞𝑖2  is the payoff variance of the normal stock, and 𝑃𝑞𝑖 is the price of 

the normal stock. It is easy to see that the estimated return variance with anchoring is larger than 

the actual return variance: 

�̂�𝑅𝑞𝑖2 = (1 − 𝑚)𝜎𝐿𝑞2𝑃𝑞𝑖2 + 𝑚𝜎𝑅𝑞𝑖2  

As 𝜎𝐿𝑞2  is larger than 𝜎𝑞𝑖2 , it follows: 

�̂�𝑅𝑞𝑖2 > 𝜎𝑅𝑞𝑖2  

 ACAPM can be derived by minimizing portfolio standard deviation for a given level of 

expected return. 

I illustrate the two asset case below with one leader stock and one normal stock. 

Generalizations to large number of normal and leader stocks are straightforward. The portfolio 

standard deviation is: 

𝜎0 = √𝑤𝐿2𝜎𝑅𝐿2 + 𝑤𝑆2�̂�𝑅𝑆2 + 2𝑤𝐿𝑤𝑆𝐶𝑜𝑣(𝑟𝐿 , 𝑟𝑆) 

where 𝑤𝐿 and 𝑤𝑆 are portfolio weights of leader and normal stock respectively. 𝜎𝑅𝐿2 is the 

variance of leader stock’s return. �̂�𝑅𝑆2  is the judgment of the anchoring prone investor regarding 

the return variance of normal stock.  

Anchoring bias implies the following:  �̂�𝑅𝑆2 = (1 − 𝑚)𝜎𝐿2𝑃𝑆2 + 𝑚𝜎𝑅𝑆2 > 𝜎𝑅𝑆2  

where 𝜎𝐿2 is the payoff variance of the leader firm’s stock, and 𝑃𝑆 is the normal stock’s price. 
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The optimization problem of the representative agent is as follows: 𝐿 = 𝜎0 + 𝜆(𝐸(𝑟0) − 𝑤𝐿𝐸(𝑟𝐿) − 𝑤𝑆𝐸(𝑟𝑆) − (1 − 𝑤𝐿 − 𝑤𝑆)𝑟𝐹) 

The first order conditions are: 1𝜎0 (𝑤𝐿𝜎𝑅𝐿2 + 𝑤𝑆𝐶𝑜𝑣(𝑟𝐿 , 𝑟𝑆)) = 𝜆(𝐸(𝑟𝐿) − 𝑟𝐹) 

1𝜎0 (𝑤𝑆𝑚𝜎𝑅𝑆2 + 𝑤𝑆(1 − 𝑚)𝜎𝐿2𝑃𝑆2 + 𝑤𝐿𝐶𝑜𝑣(𝑟𝐿, 𝑟𝑆)) = 𝜆(𝐸(𝑟𝑆) − 𝑟𝐹) 

Multiply the first equation with 𝑤𝐿, multiply the second equation with 𝑤𝑆, add them together 

and carry out a little algebraic manipulation to arrive at the following result at the point where 𝑤𝐿 + 𝑤𝑆 = 1: 1𝜆 = [𝐸[𝑟𝑀] − 𝑟𝐹]𝜎𝑀𝜎𝑀2 + 𝑤𝑆2(1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆2)𝑃𝑆2  

where  𝐸[𝑟𝑀] and 𝜎𝑀 identify the portfolio expected return and the portfolio standard deviation 

at the point 𝑤𝐿 + 𝑤𝑆 = 1. That is, they correspond to the market portfolio. 𝜎𝑆2 is the payoff 

variance of the normal stock. Note, if there is no anchoring bias, then the expression 

corresponding to the classical CAPM is obtained: 
1𝜆 = [𝐸[𝑟𝑀]−𝑟𝐹]𝜎𝑀 . 

As 𝑤𝑠 = 𝑛𝑠′𝑃𝑠𝑃𝑀 , it follows that: 

1𝜆 = [𝐸[𝑟𝑀] − 𝑟𝐹]𝜎𝑀𝜎𝑀2 + 𝑛𝑠′2(1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆2)𝑃𝑀2
 

Substituting 
1𝜆 in the first order conditions and carrying out a little algebraic manipulation leads 

to: 

𝐸𝑡(𝑟𝑆) = 𝑟𝐹 + 𝐸𝑡[𝑟𝑀 − 𝑟𝐹] ∙ 𝐶𝑜𝑣(𝑟𝑆, 𝑟𝑀) + 𝑛𝑆′ (1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆2)𝑃𝑆𝑡𝑃𝑀𝑡𝑉𝑎𝑟(𝑟𝑀) + 𝑛𝑆′2(1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆2)𝑃𝑀𝑡2                                       
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𝐸𝑡(𝑟𝐿) = 𝑟𝐹 + 𝐸𝑡[𝑟𝑀 − 𝑟𝐹] ∙ 𝐶𝑜𝑣(𝑟𝐿 , 𝑟𝑀)𝑉𝑎𝑟(𝑟𝑀) + 𝑛𝑆′2(1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆2)𝑃𝑀𝑡2                                           
The above two equations are identical to equations (11) and (12) respectively. 

It is straightforward to generalize to the case of 𝑄 leader firms and 𝑄 × 𝑘 normal firms to obtain 

expressions identical to 17 and 18. 

 

2. Anchoring Adjusted CAPM and Asset Return Anomalies 

Finance theory predicts that risk adjusted returns from all stocks must be equal to each other. 

The starting point for thinking about the relationship between risk and return is the Capital Asset 

Pricing Model (CAPM) developed in Sharpe (1964), and Lintner (1965). CAPM proposes that 

beta is the sole measure of priced risk. If CAPM is correct then the beta-adjusted returns from all 

stocks must be equal to each other. A large body of empirical evidence shows that beta-adjusted 

stock returns are not equal but vary systematically with factors such as “size” and “value”. Size 

premium means that small-cap stocks tend to earn higher beta-adjusted returns than large-cap 

stocks.3 Value premium means that value stocks tend to outperform growth stocks.4  Value 

stocks are those with high book-to-market value. They typically have stable dividend yields. 

Growth stocks have low book-to-market value and tend to reinvest a lot of their earnings. Value 

stocks are typically less volatile than growth stocks. Fama-French (FF) value and growth indices 

(monthly returns data from July 1963 to April 2002) show the following standard deviations: FF 

small value: 19.20%, FF small growth: 24.60%, FF large value: 15.39%, and FF large growth: 

16.65%.  That is, among both small-cap and large-cap stocks, value stocks are less volatile than 

growth stocks. 

 Intuitively, the value premium is even more surprising than the size premium as it is 

plausible to argue that small size means higher risk (such as business cycle or liquidity risk) with 

                                                           
3 Size effect is documented in Banz (1981), Reinganum (1981), Blume and Stambaugh (1983), Brown et al 

(1983), and more recently in Hou, Xue, and Zhang (2014), and Fama and French (2015) among many others. 

 
4 Value premium is documented in Fama and French (1998) among many others. 
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size premium being compensation for higher risk; however, how can less volatility be more risky 

as the value premium seems to suggest?5  

 The existence of size and value premiums has led to a growing body of research that 

attempts to explain them. In particular, there is the empirical asset pricing approach of Fama and 

French (1993) in which these factors are taken as proxies for risks with the assumption that all 

risks are correctly priced.6   The task then falls to the asset pricing branch of theory to explain the 

sources of these risks. Fama and French (1997) argue that value firms are financially distressed, 

and the existence of the value premium is a compensation for bearing this risk.  However, the 

empirical evidence is largely inconsistent with this view as distressed firms are found to have low 

returns rather than high returns (see Dichev (1998), Griffin and Lemmon (2002), and Campbell 

et al (2008) among others). Behavioral explanations of the value premium have also been put 

forward. In particular, Debondt and Thaler (1987), Lakonishok et al (1994), and Haugen (1995) 

argue that traders overreact to news, and overprice “hot” stocks which tend to be growth firms, 

and underprice out of favor stocks which tend to be value firms. When this overreaction is 

eventually corrected, value premium arises.  

Apart from size and value, there also exists, what is known as, the momentum effect in 

the stock market. Momentum effect refers to the tendency of “winning stocks” in recent past to 

continue to outperform “losing stocks” for an intermediate horizon in the future. Momentum 

effect has been found to be a robust phenomenon, and can be demonstrated with a number of 

related definitions of “winning” and “losing” stocks.  Jegadeesh and Titman (1993) show that 

stock returns exhibit momentum behavior at intermediate horizons. A self-financing strategy that 

buys the top 10% and sells the bottom 10% of stocks ranked by returns during the past 6 

months, and holds the positions for 6 months, produces profits of 1% per month. George and 

Hwang (2004) define “winning’ stocks as having price levels close to their 52-week high, and 

“losing” stocks as those with price levels that are farthest from their 52-week high, and show that 

a self-financing strategy that shorts “losing” stocks and buys “winning” stocks earns abnormal 

profits over an intermediate horizon (up to 12 months) consistent with the momentum effect.  

 

                                                           
5 Researchers appeal to other dimensions of risk different from volatility in attempts to explain value premium. 

However, no consensus explanation exists as to the source of value premium. 
6 Recently Fama and French (2015) show that value premium is also captured by adding “investment” and 
“profitability” factors to size and beta factors. 



18 

 

Other well documented anomalies include: 

Low β High 𝜶 

It is well known that the relation between univariate market β and average stock return is flatter 

than predicted by the CAPM of Sharpe (1964) and Lintner (1965) (see Black, Jensen, and Scholes 

(1972), Fama and MacBeth (1973), Frazzini and Pedersen (2014) among others). This is known 

as the low-beta-high-alpha anomaly.  

Low Volatility Anomaly 

Stocks with highly volatile returns tend to have low average returns irrespective of whether 

volatility is measured as the variance of daily returns or as the variance of the residuals from the 

FF three-factor model (see Baker and Haugen (2012), Wurgler et al (2010), and Ang et al (2006) 

among others). 

Accruals 

Sloan (1996) is the first paper to find that low returns are associated with high accruals. Accruals 

arise because accounting decisions cause book earnings to differ from cash earnings. The puzzle 

is that equity in firms that have a large accrual component of earnings performs worse than the 

equity in firms that have a lower accrual component.  

Stock-Splits and Reverse Stock-Splits 

Using data from 1975 to 1990, Ikenberry et al (1996) shows that stock-splits are associated with 

8% positive abnormal returns after one year, and 16% abnormal returns over three years.  

Ikenberry et al (2003) uses data from 1990 to 1997 and confirms the earlier findings. Ohlson and 

Penman (1985) are the first to show that return volatility increases by about 30% following a 

stock split. Kim et al (2008) examine the long-run performance of 1600 firms with reverse stock-

splits and reports negative abnormal returns. Koski (2007) shows a decrease in return volatility of 

25% subsequent to a reverse stock-split. 

 

2.1 Anchoring Adjusted CAPM as a Unified Framework for Asset Return Anomalies 

Without asserting that the anchoring adjusted CAPM provides a complete explanation for the 

puzzles mentioned above, which requires a comprehensive empirical examination beyond the 

scope of any one article, I show that it provides a plausible unified explanation for the puzzles. I 
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am not aware of any other approach, either traditional or behavioral, that provides such a unified 

explanation. Given the large number of puzzles addressed, careful empirical evaluation of each 

puzzle is beyond the scope of this article or any one article. As this article is purely theoretical, 

the aim is modest, which is to lay the theoretical groundwork for future comprehensive empirical 

work that checks the anchoring based explanation against other proposed explanations.  

 

2.1.1 ACAPM and the Size Effect 

The size effect with anchoring can be easily seen after a little algebraic manipulation of (17). 

Beta-adjusted excess return on a normal firm’s stock is: 

𝐵𝑒𝑡𝑎𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑒𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛 = 𝐸(𝑟𝑞𝑆𝑗) − 𝑟𝐹𝐶𝑜𝑣(𝑟𝑞𝑆𝑗, 𝑟𝑀)𝑉𝑎𝑟(𝑟𝑀)  

Beta-adjusted excess return on a normal firm’s stock can be written as: 𝐵𝑒𝑡𝑎𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑒𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛 (𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑜𝑐𝑘) = [ℎ] ∙ [1 + 𝑔] 
where 𝑔 = 𝑛𝑞𝑆𝑗′ (1−𝑚)(𝜎𝑞𝐿2 −𝜎𝑞𝑆𝑗2 )𝑃𝑞𝑆𝑗𝑡𝑃𝑀𝑡∙𝐶𝑜𝑣(𝑟𝑞𝑆𝑗,𝑟𝑀) = 𝑛𝑞𝑆𝑗′ (1−𝑚)(𝜎𝑞𝐿2 −𝜎𝑞𝑆𝑗2 )𝐶𝑜𝑣(𝑠𝑡𝑜𝑐𝑘′𝑠 𝑝𝑎𝑦𝑜𝑓𝑓,𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑎𝑦𝑜𝑓𝑓) 
and ℎ = 𝑉𝑎𝑟(𝑟𝑀)∙𝐸𝑡[𝑟𝑀−𝑟𝐹]𝑉𝑎𝑟(𝑟𝑀)+∑ ∑ 𝑛𝑞𝑆𝑖′2 (1−𝑚)(𝜎𝑞𝐿2 −𝜎𝑞𝑆𝑖2 )𝑃𝑀𝑡2𝑘𝑖=1𝑄𝑞=1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

In a given cross-section of stocks, ℎ is a constant. So, in order to make predictions about what 

happens to beta-adjusted return when size varies, we need to look at how 𝑔 =𝑛𝑞𝑆𝑗′ (1−𝑚)(𝜎𝑞𝐿2 −𝜎𝑞𝑆𝑗2 )𝐶𝑜𝑣(𝑠𝑡𝑜𝑐𝑘′𝑠 𝑝𝑎𝑦𝑜𝑓𝑓,𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑎𝑦𝑜𝑓𝑓) changes with size. 

 

Proposition 3 (The Size Premium): 

Beta-adjusted excess returns with anchoring fall as payoff size increases. In the absence 

of anchoring, beta-adjusted excess returns do not vary with size and are always equal to 

the market risk premium. 
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Proof. 

𝐵𝑒𝑡𝑎𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑒𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛 = 𝐸(𝑟𝑞𝑆𝑗) − 𝑟𝐹𝐶𝑜𝑣(𝑟𝑞𝑆𝑗, 𝑟𝑀)𝑉𝑎𝑟(𝑟𝑀)  

Substituting from (17) and re-arranging leads to: 𝐵𝑒𝑡𝑎𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑒𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛
= [  

  𝑉𝑎𝑟(𝑟𝑀) ∙ 𝐸𝑡[𝑟𝑀 − 𝑟𝐹]𝑉𝑎𝑟(𝑟𝑀) + ∑ ∑ 𝑛𝑞𝑆𝑖′2 (1 − 𝑚)(𝜎𝑞𝐿2 − 𝜎𝑞𝑆𝑖2 )𝑃𝑀𝑡2𝑘𝑖=1𝑄𝑞=1 ]  
  

∙ [1 + 𝑛𝑞𝑆𝑗′ (1 − 𝑚)(𝜎𝑞𝐿2 − 𝜎𝑞𝑆𝑗2 )𝑃𝑞𝑆𝑗𝑡𝑃𝑀𝑡 ∙ 𝐶𝑜𝑣(𝑟𝑞𝑆𝑗, 𝑟𝑀) ] 
That is, beta-adjusted excess return can be written in the form: 𝐵𝑒𝑡𝑎𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑒𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛 = [ℎ] ∙ [1 + 𝑔] 
where 𝑔 = 𝑛𝑞𝑆𝑗′ (1−𝑚)(𝜎𝑞𝐿2 −𝜎𝑞𝑆𝑗2 )𝑃𝑞𝑆𝑗𝑡𝑃𝑀𝑡∙𝐶𝑜𝑣(𝑟𝑞𝑆𝑗,𝑟𝑀) = 𝑛𝑞𝑆𝑗′ (1−𝑚)(𝜎𝑞𝐿2 −𝜎𝑞𝑆𝑗2 )𝐶𝑜𝑣(𝑠𝑡𝑜𝑐𝑘′𝑠 𝑝𝑎𝑦𝑜𝑓𝑓,𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑎𝑦𝑜𝑓𝑓) 
and ℎ = 𝑉𝑎𝑟(𝑟𝑀)∙𝐸𝑡[𝑟𝑀−𝑟𝐹]𝑉𝑎𝑟(𝑟𝑀)+∑ ∑ 𝑛𝑞𝑆𝑖′2 (1−𝑚)(𝜎𝑞𝐿2 −𝜎𝑞𝑆𝑖2 )𝑃𝑀𝑡2𝑘𝑖=1𝑄𝑞=1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Clearly, as payoff variance and covariance with the market increase, 𝑔 falls. Payoff variance and 

covariance with the market increase with size. It follows that beta-adjusted excess returns must 

fall as payoff size increases when there is anchoring bias. In the absence of anchoring bias, that 

is, with 𝑚 = 1, it follows that 𝑔 = 0 and ℎ = 𝐸[𝑟𝑀 − 𝑟𝐹]. Hence, in the absence of anchoring, 

beta-adjusted excess return does not change with payoff covariance and payoff variance, and 

remains equal to the market risk premium. 

▄ 
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2.1.2 ACAPM and the Value Effect 

Value stocks have less volatile returns than growth stocks. Fama-French (FF) value and growth 

indices (monthly returns data from July 1963 to April 2002) show the following standard 

deviations: FF small value: 19.20%, FF small growth: 24.60%, FF large value: 15.39%, and FF 

large growth: 16.65%.  That is, among both small-cap and large-cap stocks, value stocks returns 

are less volatile than growth stocks. By definition, value stocks have high book-to-market ratio 

when compared with growth stocks. It follows that, for a given book value of equity, value 

stocks have lower market prices when compared with growth stocks. Hence, the value stocks not 

only have smaller return volatility, but must also have smaller payoff volatility.  

 

Proposition 4: (The Value Premium): 

Beta-adjusted excess return on stocks with smaller payoff volatility is larger than the 

beta-adjusted excess returns on stocks with higher payoff volatility. In the absence of 

anchoring, beta-adjusted returns do not vary with payoff volatility and are always equal 

to the market risk premium. 

Proof. 

From the proof of proposition 3, we know that: 𝐵𝑒𝑡𝑎𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑒𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛 = [ℎ] ∙ [1 + 𝑔] 
where 𝑔 = 𝑛𝑞𝑆𝑗′ (1−𝑚)(𝜎𝑞𝐿2 −𝜎𝑞𝑆𝑗2 )𝑃𝑞𝑆𝑗𝑡𝑃𝑀𝑡∙𝐶𝑜𝑣(𝑟𝑞𝑆𝑗,𝑟𝑀) = 𝑛𝑞𝑆𝑗′ (1−𝑚)(𝜎𝑞𝐿2 −𝜎𝑞𝑆𝑗2 )𝐶𝑜𝑣(𝑠𝑡𝑜𝑐𝑘′𝑠 𝑝𝑎𝑦𝑜𝑓𝑓,𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑎𝑦𝑜𝑓𝑓) 
and ℎ = 𝑉𝑎𝑟(𝑟𝑀)∙𝐸𝑡[𝑟𝑀−𝑟𝐹]𝑉𝑎𝑟(𝑟𝑀)+∑ ∑ 𝑛𝑞𝑆𝑖′2 (1−𝑚)(𝜎𝑞𝐿2 −𝜎𝑞𝑆𝑖2 )𝑃𝑀𝑡2𝑘𝑖=1𝑄𝑞=1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Note, that 𝑔 = 𝑛𝑞𝑆𝑗′ (1−𝑚)(𝜎𝑞𝐿2 −𝜎𝑞𝑆𝑗2 )𝐶𝑜𝑣(𝑠𝑡𝑜𝑐𝑘′𝑠 𝑝𝑎𝑦𝑜𝑓𝑓,𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑎𝑦𝑜𝑓𝑓). As payoff volatility rises, 𝑔 falls because 

numerator falls and denominator rises. It follows that beta-adjusted excess return falls as payoff 

volatility rises, holding all else constant. 

▄ 
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Corollary 4.1: (The Value Premium Falls with Size): 

At larger payoff sizes, the impact of an increase in payoff volatility (due to a given 

change in payoffs) on beta-adjusted excess returns is smaller. 

 

2.1.3 ACAPM and the Low-β-High-𝜶 Anomaly 

Stocks with low betas tend to have low return volatilities and stocks with high betas tend to have 

high return volatilities (Baker et al (2011), Chow et al (2014)).  Also, it is well known that 

earnings volatility is positively related to stock return volatility (see Beaver et al (1970), Ryan 

(1997) among others). One can safely conclude that low beta stocks also have low earnings 

volatility, and high beta stocks have high earnings volatility.  

From (17): 

𝐸𝑡(𝑟𝑞𝑆𝑗) = 𝑟𝐹 + 𝐸𝑡[𝑟𝑀 − 𝑟𝐹] ∙ 𝐶𝑜𝑣(𝑟𝑞𝑆𝑗, 𝑟𝑀) + 𝑛𝑞𝑆𝑗′ (1 − 𝑚)(𝜎𝑞𝐿2 − 𝜎𝑞𝑆𝑗2 )𝑃𝑞𝑆𝑗𝑡𝑃𝑀𝑡𝑉𝑎𝑟(𝑟𝑀) + ∑ ∑ 𝑛𝑞𝑆𝑖′2 (1 − 𝑚)(𝜎𝑞𝐿2 − 𝜎𝑞𝑆𝑖2 )𝑃𝑀𝑡2𝑘𝑖=1𝑄𝑞=1                           
As can be seen from above, in a given cross-section, stocks with higher value of the anchoring 

term 
𝑛𝑞𝑆𝑗′ (1−𝑚)(𝜎𝑞𝐿2 −𝜎𝑞𝑆𝑗2 )𝑃𝑞𝑆𝑗𝑡𝑃𝑀𝑡  outperform stocks with a lower value of the anchoring term on beta-

adjusted basis. The anchoring term is larger for stocks with less volatile earnings. As low beta 

stocks tend to have low earnings volatility, the anchoring term is higher for them. Hence, with 

anchoring, stocks with low CAPM betas must have high CAPM alphas leading to a flatter 

relationship between CAPM beta and average returns.  

 

2.1.4. ACAPM and the Low Volatility Anomaly 

As stocks with less volatile stock returns typically belong to firms with less volatile earnings (see 

Beaver et al (1970), Ryan (1997) among others), the anchoring term in (17) is larger for them. 

Hence, the anchoring explanation for the low volatility anomaly is very similar to the anchoring 

explanation for low-beta-high-alpha anomaly. 
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2.1.5 ACAPM and the Accruals Anomaly 

Sloan (1996) finds that low returns are associated with high accruals. Accruals arise because 

accounting decisions cause book earnings to differ from cash earnings. One expects that firms 

with large accrual component of earnings will have less persistent (more volatile earnings) when 

compared with firms with smaller accrual component of earnings. Sloan (1996) explicitly tests 

for this and finds strong support. The anchoring based explanation is straightforward. As high 

accruals imply high earnings volatility, and high earnings volatility reduces the anchoring term, 

average returns from high accrual firms must be lower. Note, that the explanation for accruals 

has the same underlying logic as the explanations for low-beta-high-alpha and low volatility 

anomalies. Hence, the anchoring approach suggests that these seemingly different anomalies are 

much the same phenomena. 

 

2.1.6 ACAPM, Stock-Splits, and Reverse Stock-Splits 

A stock-split increases the number of shares proportionally. In a 2-for-1 split, a person holding 

one share now holds two shares. In a 3-for-1 split, a person holding one share ends up with 

three shares and so on. A reverse stock-split is the exact opposite of a stock-split. Stock-splits 

and reverse stock- splits appear to be merely changes in denomination, that is, they seem to be 

accounting changes only that should not have any real impact on returns. With CAPM, stock-

splits and reverse stock-splits do not change expected returns. To see this clearly, consider 

equation (4), which is reproduced below: 

𝑃𝑆𝑡 = 𝐸𝑡(𝛿𝑆𝑡+1) − 𝛾𝑛𝑆′𝜎𝑆2 − 𝛾𝑛𝐿′ 𝜎𝐿𝑆1 + 𝑟𝐹                                                                                               
A 2-for-1 split in the small firm’s stock divides the expected payoff by 2, divides the variance by 

4 and covariance by 2, while multiplying the number of shares outstanding by 2.  That is, a 2-for-

1 split leads to: 

𝑃𝑆𝑡𝑆𝑝𝑙𝑖𝑡 = 𝐸𝑡(𝛿𝑆𝑡+1)2 − 𝛾 2𝑛𝑆′ 𝜎𝑆24 − 𝛾𝑛𝐿′ 𝜎𝐿𝑆21 + 𝑟𝐹                                                                                
It follows that 𝑃𝑆𝑡𝑆𝑝𝑙𝑖𝑡 = 𝑃𝑆𝑡2 . 
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That is, the price with split is exactly half of what the price would have been without the split. As 

both the expected payoff and the price are divided by two, there is no change in expected returns 

associated with a stock-split under CAPM. An equivalent conclusion follows for a reverse stock-

split as well. For a reverse split, both the expected payoffs and the price increase by the same 

factor. 

With anchoring, the price given in (6) is as follows: 

𝑃𝑆𝑡 = 𝐸𝑡(𝛿𝑆𝑡+1) − 𝛾[𝑐𝑜𝑣(𝛿𝑆𝑡+1, 𝑛𝐿′ 𝛿𝐿𝑡+1 + 𝑛𝑆′ 𝛿𝑆𝑡+1) + 𝑛𝑆′ (1 − 𝑚)(𝜎𝐿2 − 𝜎𝑆2)]1 + 𝑟𝐹                             
As can be seen from the above expression, a 2-for-1 stock-split reduces the price by more than 

half. It follows that, with anchoring, stock-split increases returns as well volatility of returns. A 

reverse stock-split of 1-for-2, on the other hand, more than doubles the price, reducing returns 

as well as volatility of returns.   

 

2.1.7 ACAPM and the Momentum Effect 

From (17), one can see that, in a given cross-section of stocks, keeping everything else the same, 

low “m” stock do better than high “m” stocks. But, how can we identify low vs high “m” 

stocks? Plausibly, we can identify them by looking at their recent performances. Winning stocks 

are likely to get more strongly anchored to the leader stock as their recent success makes them 

more like the leader. For losing stocks, their recent bad spell makes them less like the leader. 

That is, “m” falls for winning stocks and rises for losing stocks. So, winning stocks continue to 

outperform losing stocks till the effect of differential news on “m” dissipates, and “m” returns to 

its normal level. Of course, there could be multiple ways of identifying “low m” vs. “high m” 

stocks. Plausibly, stocks with prices at or closest to their 52-week high can be considered as 

stocks with low “m” values, and stocks with prices at or near their 52-week low, can be 

considered as high “m” stocks. It takes a series of positive news to get to the 52-week high, and a 

series of negative news to get to the 52-week low. Alternatively, recent high returns is another 

way of separating the winners.  

The ACAPM based explanation for the momentum effect is related to the explanations 

offered in Barberis, Shleifer, and Vishny (1998), and Daniel, Hirshleifer, and Subrahmanyam 

(1998). The explanation in Barberis et al (1998) is based on the idea that traders are slow to 

update their priors when new information arrives. That is, traders under-react to new 
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information. In contrast, Daniel et al (1998) argue that momentum occurs because traders 

overreact to prior information if the new information confirms it. With ACAPM, the payoff 

volatility judgment about a normal firm’s stock is anchored to the payoff volatility of a 

prominent blue-chip stock in the same sector: �̂�𝑆2 = (1 − 𝑚)𝜎𝐿2 + 𝑚𝜎𝑆2 

One can see both under-reaction and overreaction in the above expression. Firm specific news, 

that is, news specific to 𝜎𝑆2 is under-reacted to. However, an anchoring prone trader also reacts 

to unrelated news. He overreacts by also responding to news only related to the leader firm. That 

is, he overreacts by responding to news only related to 𝜎𝐿2. Even though ACAPM explanation of 

the momentum effect is different from previous explanations, it has aspects of under-reaction 

and overreaction that other explanations appeal to. 

 

2.1.8 ACAPM and the High Equity Premium 

Since its identification in Mehra and Prescott (1985), a large body of research has explored what 

is known in the literature as the equity premium puzzle. It refers to the fact that historical 

average return on equities (around 7%) is so large when compared with the historical average 

risk-free rate (around 1%) that it implies an implausibly large value of the risk aversion 

parameter. Mehra and Prescott (1985) estimate that a risk-aversion parameter of more than 30 is 

required, whereas a much smaller value of only about 1 seems reasonable.  

 If one is unaware of the phenomenon of anchoring, and uses CAPM to estimate risk-

aversion then the following equation is appropriate: 

𝐸𝑡[𝑟𝑀] = 𝑟𝐹 + 𝛾𝑃𝑀𝑡 [𝑉𝑎𝑟(𝛿𝑀𝑡+1)]                                                                                                 (19) 

One may recover the corresponding value of 𝛾, the risk-aversion parameter from (19) by 

substituting for all other variables and parameters in (19). The equity premium puzzle, when 

translated in the CAPM context, is that the recovered value of risk-aversion parameter is 

implausibly large. 
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With CAPM adjusted for anchoring, the expected return on the market portfolio is given 

by: 

𝐸𝑡[𝑟𝑀] = 𝑟𝐹 + 𝛾𝑃𝑀𝑡 [𝑉𝑎𝑟(𝛿𝑀𝑡+1)
+ ∑ ∑𝑛𝑞𝑆𝑖′2 (1 − 𝑚)(𝜎𝑞𝐿2 − 𝜎𝑞𝑆𝑖2 )𝑘

𝑖=1
𝑄

𝑞=1 ]                                                           (20) 

A comparison of (20) and (19) shows that, with anchoring accounted for, a much smaller value 

of the risk-aversion parameter is required to justify the observed equity premium. Hence, 

ACAPM may be relevant for the equity premium puzzle. 

 

2.2. ACAPM: A Numerical Example 

In this section, a numerical example is presented, which considers the implications of ACAMP 

and CAPM when there is one leader firm and three normal firms of similar size in the market. It 

is shown that under CAPM, beta-adjusted excess returns of all four firms are equal to each other, 

whereas, under ACAPM beta-adjusted excess returns are larger for normal firms when compared 

with the leader firm.  The three normal firms, although of similar size (similar expected payoffs 

and market capitalizations) vary in one crucial way. Their payoff variances are different with S1 

having the highest payoff variance, followed by S2, and then by S3. We will see that, in line with 

the value premium, less volatile payoffs lead to higher beta-adjusted excess returns among similar 

size firms. 

 Suppose there are four types of stocks with next period payoffs as shown in Panel A of 

Table 1. Type “Large” belongs to a large well-established firm with large cash flows. Types S1, 

S2, and S3 are smaller firms with equal expected payoffs, however, their payoff volatilities are 

416.667, 216.667, and 66.667 respectively. That is, among the small firms, S1 is the most volatile, 

followed by S2, and then S3. Panel B of Table 1 shows the associated covariance matrix. The risk 

aversion parameter is assumed to be 0.001, and the one period risk-free rate is 0.01. Every type is 

assumed to have exactly one share outstanding.  Another way of seeing the difference between 

S1, S2, and S3 is to calculate the quantity: 
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑠𝑡𝑜𝑐𝑘 𝑝𝑎𝑦𝑜𝑓𝑓)𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑠𝑡𝑜𝑐𝑘 𝑝𝑎𝑦𝑜𝑓𝑓,𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑎𝑦𝑜𝑓𝑓).  The values for 

S1, S2, and S3 are 0.238, 0.161, and 0.095 respectively. S1 is akin to growth stock due to high 

payoff volatility, whereas S3 is similar to a value stock due to low payoff volatility. One can verify  
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Table 1 

CAPM Returns and Prices 𝜸 = 𝟎. 𝟎𝟎𝟏, 𝒂𝒏𝒅 𝒓𝑭 = 𝟎.𝟎𝟏 

Panel A: Payoffs 

 Large S1 S2 S3 

 100 5 10 20 

 150 30 30 30 

 200 55 50 40 

     

Expected Payoff 150 30 30 30 

Panel B: The Covariance Matrix 

 Large S1 S2 S3 

Large 1666.667 833.333 666.667 333.333 

S1 833.333 416.667 333.333 166.667 

S2 666.667 333.333 216.667 133.333 

S3 333.333 166.667 133.333 66.667 

Panel C: CAPM Prices 

 Large S1 S2 S3                     Mkt Portfolio Value 

Price 145.0495 27.9703 28.3168 29.0099                   230.3465 

Expected Returns 0.03413       0.0726        0.0594        0.03413                  0.0419 

Variance of Mkt Portfolio’s Return 0.1385 

Covariance with Mkt Portfolio’s Return 0.10475 0.2716 0.2146 0.10475                     0.1385 

Panel D: CAPM Beta and Beta-Adjusted Excess Returns 

CAPM Beta 0.75622 1.96081 1.54945 0.75622                          1 

Beta Adjusted Excess Returns 0.03191 0.03191 0.03191 0.03191                      0.03191 

 

that 𝑔 is smallest for S1, and largest for S3. So, beta-adjusted excess returns on S3 must be larger 

than the beta-adjusted excess returns on S1 with anchoring, in line with the value premium. 

 Prices implied by CAPM can be calculated for each stock from (3) and (4) and are shown 

in Panel C of Table 1. Panel C also shows expected returns, the value of the aggregate market 

portfolio, the variance of the market portfolio’s return, and the covariance of each stock’s return 

with the market portfolio’s return. Panel D shows each stocks beta and the corresponding beta- 
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Table 2 

ACAPM Returns and Prices 𝜸 = 𝟎. 𝟎𝟎𝟏, 𝒓𝑭 = 𝟎. 𝟎𝟏, 𝒂𝒏𝒅 𝒎 = 𝟎. 𝟗𝟎 

Panel A: ACAPM Prices 

 Large S1 S2 S3 Mkt Portfolio 

Price 145.0495 27.84653 28.18722 28.85149 229.9257 

Expected Return 0.03413 0.0773 0.0647 0.0398 0.0438 

Variance of Mkt Portfolio’s Return 0.139031 

Covariance with Mkt Portfolio’s 

Return 

0.1049 0.2733 0.2161 0.1055 0.139031 

Panel B: CAPM Beta and Beta Adjusted Returns under ACAPM 

CAPM Beta 0.7548 1.9659 1.5542 0.75898 1 

Beta Adjusted Excess Returns 0.031967 0.03425 0.035164 0.039274 0.0338 

 

adjusted excess return. It can be seen that all stocks have the same beta-adjusted excess return, 

which is equal to the excess return on the market portfolio. 

 The key prediction of CAPM can be seen in the last line of Table 1. That is, beta-

adjusted excess returns of all assets must be equal. In other words, beta is the only measure of 

priced risk in CAPM. And, investors are rewarded based on their exposure to beta-risk. Once 

beta-risk has been accounted for, there is no additional return. 

 Next, we will see what happens with anchoring. Table 2 shows the results from ACAPM. 

Everything is kept the same except that now anchoring is allowed in variance judgments. The 

anchoring prone marginal investor starts from the variance of the large firm and subtracts from 

it to form variance judgments about the small stocks. For the purpose of this illustration, I 

assume that he goes 90% of the way. That is, 𝑚 = 0.90. As can be seen, price of the large firm 

does not change, however, the prices of small firms change, and can be calculated from (6). As 

expected, expected return on the large firm’s stock does not change. However, as the market 

portfolio changes, all betas change. Expected returns on small firms can be calculated from (15). 

 As can be seen from Table 2, beta-adjusted excess returns on normal stocks are larger 

than the beta-adjusted excess return on the leader stock. Furthermore, the value premium can be 

seen in Table 2 among normal firms. Highest payoff volatility S1 has the smallest excess return 
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of 0.03425, whereas the lowest volatility S3 has the highest excess return of 0.039274. As value 

stocks typically have lower payoff volatility than growth stocks, in this example, S3 is like a value 

stock, and S1 is like a growth stock.  

 

3. Conclusions and Discussion 

A challenge for asset pricing theory is to modify the basic framework while maintaining its 

elegance in order to capture the large number of anomalies that empirical literature has 

uncovered over the years. Anchoring bias in volatility estimates is one such modification. 

Arguably, it is simpler than Fama-French three or Five factor models, and is able to capture 

anomalies which are difficult to explain in other frameworks (one example: momentum effect). It 

is also theoretically satisfying as one can see how anomalies arise from the first principles. One 

criticism of behavioral finance is that it seems to be a collection of ad hoc models without a 

unifying structure. This article shows that adjusting CAPM for anchoring potentially provides a 

unifying framework in which almost all key asset return anomalies can be seen as arising from 

the first principles. CAPM is obtained as a special case corresponding to correct adjustments.  

 The essential idea is that the volatility judgment about an average stock is influenced by 

the payoff volatilities of prominent blue-chip stocks as they are the starting points. An interesting 

question is, which are the most prominent blue-chip stocks? Oil, energy, and commodity stocks 

are among the most prominent blue-chips, and plausible rest of the market may be anchored to 

them. A way to test for this is to look at periods of unusually high volatility in oil and energy, and 

see how the rest of the market is impacted. The market behavior in early 2016 is a case in point 

as it corresponds to unusually high uncertainty about oil. If the anchoring approach is correct, 

unusually high uncertainty about oil should impact the rest of the market negatively. This 

appears to be the case with stock markets around the world closely following oil dynamics. This 

is quite puzzling from a purely fundamentals based economic perspective.7  

This article develops the basic theoretical framework. Comprehensive empirical 

evaluation of anchoring vs other explanations is the subject of future research. 

                                                           
7 http://blogs.piie.com/realtime/?p=5341 

 

http://blogs.piie.com/realtime/?p=5341
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