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1 Introduction

The theory of imperfect competition is dominated by two approaches that seem to clash with each other.

Whereas industrial organization stresses the importance of strategic interactions among firms, the model of

imperfect competition used in economic fields such as trade, economic geography and growth is the CES model of

monopolistic competition developed by Dixit and Stiglitz (1977). In this model, any form of interaction among

firms is absent. In addition, in oligopolistic markets, price (Bertrand) and quantity (Cournot) competition

deliver market solutions that typically differ, making it hard to formulate robust predictions. The purpose of

this paper is to contribute to this debate by providing a comparison of these three types of competition. This

is accomplished in an economy involving one sector and a population of consumers endowed with separable

preferences and a finite number of labor units. Although we recognize that additive preferences are restrictive,

they are widely used in the literature and suffice to shed new light on old questions. Note also that the budget

constraint implies that firms do not behave like monopolists.

According to the “Folk Theorem of Competitive Markets,” perfect competition almost holds when firms

are small relative to the size of the market. In the same spirit, there has been a vivid debate in the 1930s

between, on the one side, Chamberlin (1933) and, on the other, Robinson (1934) and Kaldor (1935) about the

relevance of monopolistic competition as a possible market structure. Robinson and Kaldor maintained against

Chamberlin that perfect competition must emerge when the number of firms becomes arbitrarily large relative

to market size. No clear answer came out of this debate because these authors lacked the analytical tools to

study the convergence issue. Our paper shows that the answer depends on the nature of preferences.

It was not until 1980 that Novshek was able to tackle the convergence issue rigorously for Cournot games

in which firms produce a homogeneous good and face U-shaped average costs. In the spirit of methods used in

general equilibrium theory, Novshek (1980) chose to make firms small relative to the market by replicating the

demand side. When the number of replications is sufficiently large, the equilibrium is nearly competitive. As for

Bertrand differentiated oligopoly, Novshek and Chowdhury (2003) showed that the convergence of the Bertrand

equilibria toward the perfectly competitive equilibrium may not take place, even under strong assumptions on

technologies.

Our main findings are as follows. We first show that a Cournot differentiated oligopoly generates a higher

markup than a Bertrand differentiated oligopoly when the number of firms is exogenously given. This is

in accordance with the folk wisdom of industrial organization according to which Cournot competition is

softer than Bertrand competition. Second, as the number of competitors becomes arbitrarily large, both

types of competition deliver the same equilibrium outcome. Whether the limit of Cournot and Bertrand

competition is perfectly competitive or monopolistically competitive depends on consumers’ attitude toward

product differentiation. Using the concept of relative love for variety, which measures the intensity of the

preference for variety, we show that each firm operating in a large economy retains enough market power to

enjoy a positive markup when the relative love for variety remains bounded away from zero at arbitrarily low

consumption levels. On the contrary, when the relative love for variety vanishes at zero, consumers cease to value
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product differentiation. A growing number of firms thus leads to the perfectly competitive outcome. In sum,

the market structure that emerges as the limit of oligopolistic competition depends on the nature of preferences.

Last, when firms are free to enter the market, monopolistically competitive firms are more aggressive than

oligopolistic firms in that these firms charge lower prices, while the mass of varieties provided by the market is

smaller $$under oligopolistic competition than under monopolistic competition.$$ If the economy is sufficiently

large, Cournot, Bertrand and Chamberlin solutions converge toward the same market outcome, which need not

be a competitive equilibrium.

2 The model

2.1 Firms and consumers

There is one sector supplying a horizontally differentiated good and one production factor - labor - and a mass

L of identical consumers. Each consumer supplies one unit of labor and owns 1/L of firms’ profits. The labor

market is perfectly competitive and labor is chosen as the numéraire. The differentiated good is made available

under the form of a finite number n ≥ 2 of varieties. Each variety is produced by a single firm and each firm

produces a single variety. To operate every firm needs a fixed requirement f ≥ 0 and a marginal requirement

c > 0 of labor. Since wage is normalized to 1, the cost of producing qi units of variety i = 1, ..., n is equal to

f + cqi.

Consumers share the same additive preferences given by

U(x) =
n�

i=1

u(xi), (1)

where u is thrice continuously differentiable, strictly increasing and strictly concave over R+. The strict

concavity of u implies that consumers have a love for variety: when a consumer is allowed to consume X

units of the differentiated good, she strictly prefers the consumption profile xi = X/n to any other profile

x = (x1, ..., xn) such that
�
i xi = X.

Following Zhelobodko et al. (2012), we define the relative love for variety (RLV) as follows:

ru(x) ≡ −
xu′′(x)

u′(x)
,

which is strictly positive for all x > 0. Very much like the Arrow-Pratt’s relative risk-aversion, the RLV is a

local measure of consumers’ variety-seeking behavior. A higher value of the RLV means a stronger love for

variety. On the contrary, ru(x) = 0 means that the consumer perceives the varieties as perfect substitutes.

Under the CES, we have u(x) = xρ where ρ is a constant such that 0 < ρ ≤ 1, thus implying a constant

RLV given by 1− ρ. Other examples include: (i) the CARA utility u(x) = 1 − exp(−αx) where α > 0 is the

absolute love for variety (Behrens and Murata, 2007), while the RLV is increasing and given by αx; and (ii)

the quadratic utility u(x) = αx− βx2/2, with α, β > 0; the RLV is increasing and given by βx/(α− βx).
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The budget constraint is given by
n�

i=1

pixi = y. (2)

A consumer’s income y is equal to her wage plus her share of total profits:

y = 1+
1

L

n�

i=1

Πi ≥ 1,

where the profits earned by firm i is given by

Πi = (pi − c)qi − f, (3)

pi being the price of variety i.

The first-order condition for utility maximization yields

u′(xi) = λpi,

where λ is the Lagrange multiplier defined by

λ(x, y) =

�n
j=1 xju

′(xj)

y
≥ 0. (4)

A consumer’s inverse demand for variety i is such that

pi(xi,x−i, y) =
u′(xi)

λ
, (5)

where x−i = (x1, ..., xi−1, xi+1, ...xn).

2.2 Market equilibrium

The market equilibrium is defined by the following conditions.

(E.1) Each consumer maximizes her utility (1) subject to (2).

(E.2) Each firm i maximizes its profit (3) with respect to qi (Cournot) or pi (Bertrand).

(E.3) Product market clears:

Lxi = qi for i = 1, ..., n.

(E.4) Labor market clears:

nf + c
n�

i=1

qi = L.

The last condition implies that

q̄ ≡
1

c

�
L

n
− f

�
⇐⇒ x̄ ≡

1

c

�
1

n
−
f

L

�
(6)

are the only candidate symmetric equilibrium output and consumption, which both decrease with n. As a

consequence, Cournot competition and Bertrand competition are equally efficient when the number of firms
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is the same, which contradicts Vives (1985). The reason for this difference in results lies in the wide-spread

assumption made in standard oligopoly models: the labor (or input) supply is perfectly elastic. In contrast,

labor supply is perfectly inelastic in our setup. Between these two extreme cases, there is a continuum of

possibilities. To be specific, a labor supply with a positive and finite elasticity implies that things work as if a

firm’s marginal cost $$γ(q)$$ were increasing. In this case, the equilibrium consumption and output $$are the

same under Bertrand and Cournot and given by$$

Lx∗ = q∗ ≡ β−1
�
L

n
− f

�
,

where β(q) ≡ qγ(q) is strictly increasing from 0 to ∞. Note also than nf is the minimum labor requirement

for n firms to operate. Therefore, n cannot exceed L/f , which implies x̄ ≥ 0.

2.2.1 Cournot

Using (4) and (5), we obtain firm i’s inverse demand:

pi(x) =
yCu′(xi)�n
j=1 xju

′(xj)
, (7)

where yC is a consumer’s income under Cournot competition. Firm i’s profit function is then given by

ΠCi (x) = [pi(xi,x−i)− c]Lxi − f =

�
yCu′(xi)�n
j=1 xju

′(xj)
− c

�

Lxi − f. (8)

For any given n ≥ 2, a Cournot equilibrium is a vector x∗=(x∗1, . . . , x
∗
n) such that each strategy x∗i is firm

i’s best reply to the strategies x∗−i chosen by the other firms. This equilibrium is symmetric if x∗i = xC for all

i = 1, ..., n.

2.2.2 Bertrand

Assume now that firms compete in prices. Let p = (p1, ..., pn) be a price vector. In this case, consumers’

demand functions xi(p) are obtained by solving the system of equations (7) with i = 1, ..., n, where yC is

replaced with yB that is, a consumer’s income under Bertrand competition. A consumer’s demand for variety

i is then

xi(p) = ξ(piλ(pi,p−i)), (9)

where ξ(·) is the inverse function of u′(·). Thus, firm i’s profits are given by

ΠBi (p) = (pi − c)qi(p)− f = (pi − c)Lξ(piλ(pi,p−i))− f. (10)

It follows from (4) and (9) that λ can be rewritten as a function of p. Indeed, the budget constraint

n�

j=1

pjxj(p) = yB
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implies that

λ(p) =
1

yB

n�

j=1

xj(p)uj (x(p)) ,

where the income yB is given by

yB = 1+
1

L

n�

j=1

ΠBi (p).

A Nash equilibrium p∗ = (p∗1, ..., p
∗
n) of this game is called a Bertrand equilibrium. This equilibrium is

symmetric if p∗i = pB for all i.

3 Comparing Cournot and Bertrand

One major difficulty in general equilibrium with oligopolistic firms is the income effect. Ever since Gabszewicz

and Vial (1972), it is well known that firms operating in an imperfectly competitive environment are able to

manipulate individual incomes through the profits they redistribute to consumers. By changing consumers’

incomes, firms affect their demand functions, whence their profits. Accounting for such feedback effects typi-

cally leads to the nonexistence of an equilibrium because the resulting profit functions are not quasi-concave

(Roberts and Sonnenschein, 1977). This negative result probably explains why many economic models involv-

ing imperfectly competitive product markets rely on the CES model of monopolistic competition, where the

existence of an equilibrium $$is easy to show because firms are non-strategic.$$ In this paper, we assume that

firms recognize that income is endogenous because they operate in a general equilibrium environment. How-

ever, firms treat income parametrically, which means that they behave like “income-takers.” This approach is

in the spirit of Hart (1985) for whom firms may take into account only some effects of their policy on the whole

economy.1 Even though our model does not capture all possible strategic aspects, it is a full-fledged general

equilibrium model in which oligopolistic firms account for strategic interactions within their group, as well as

for endogenous incomes through the distribution of profits.

A consumer’s income

y = 1+
1

L

n�

j=1

[(pj − c)qj − f ] = 1− nf/L+
n�

j=1

(pj − c)xj

depends on x under Cournot and p under Bertrand. Firms are said to be income-takers when they are aware

that the income is endogenous, but treat y parametrically:

∂y

∂xi
= 0

�
∂y

∂pi
= 0

�
for all i. (11)

1When product markets are imperfectly competitive, it is common to assume that firms do not manipulate wages, even though

firms also have market power on the labor market. d’Aspremont et al. (1996) is a noticeable exception.
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3.1 Cournot

Firm i’s profits may be expressed as follows:

ΠCi =

�
yCu′(xi)�n
j=1xju

′(xj)
− c

�

Lxi − f.

Using (11), the first-order condition for profit maximization yields

yCu′(xi)�n
j=1xju

′(xj)
− c+

u′′(xi)
�n
j=1xju

′(xj)− u′(xi) [u′(xi) + xiu′′i (xi)]
��n

j=1xju
′(xj)

�2 xiy
C = 0.

Given (7), this expression is equivalent to

mC
i ≡

pi − c
pi

=
xi

u′(xi)

u′(xi) [u
′(xi) + xiu

′′
i (xi)]− u′′(xi)

�n
j=1xju

′(xj)�n
j=1xju

′(xj)
.

Along the diagonal, the candidate equilibrium markup mC is equal to

mC = ru
	
xC


+
xCu′(xC)

	
1− ru(xC)




nxCu′(xC)
=
1

n
+
n− 1
n

ru
	
xC


, (12)

where xC = x̄. Note that ru
	
xC



must be smaller than 1 for mC < 1 to be satisfied. Since xC can take on any

positive value, for an equilibrium to exist under any collection of the parameter values, it must be that

ru(x) < 1 for all x ≥ 0. (13)

It is well known that a firm’s profit function is strictly quasi-concave if the second-order condition for

profit-maximization is satisfied at any solution to the first-order condition. We show in Appendix A that the

second-order condition always holds if

ru′(x) = −
xu′′′(x)

u′′(x)
< 2. (14)

This condition highlights the need to impose restrictions on the third derivative of the utility u to prove the

existence and uniqueness of a Nash equilibrium. $$The HARA functions satisfy both (13) and (14) conditions,

but the CARA does not because ru(x) = ru′(x) = αx. However, our results remain valid when the number of

firms is sufficiently large for x̄ ∈ (0, α−1) to hold (see (6)).$$

To sum up, if (13) and (14) hold, then (12) is the unique symmetric equilibrium markup of the Cournot

game.

3.2 Bertrand

Applying the first-order condition to (10) yields the markup

mB
i ≡

pi − c
pi

= −
ξ(piλ)

ξ′(piλ)pi

�
λ+ pi

∂λ
∂pi

� , (15)
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which involves ∂λ/∂pi because λ depends on p. Differentiating both sides of the budget constraint

n�

j=1

pjξ(pjλ(p)) = yB (16)

with respect to pi when yB is treated parametrically, we get

ξ(piλ(p)) + piξ
′(piλ(p))λ+

n�

j=1

p2jξ
′(pjλ(p))

∂λ

∂pi
= 0,

or, equivalently,
∂λ

∂pi
= −

ξ(piλ(p)) + piλ(p)ξ′(piλ(p))�n
j=1 p

2
jξ
′(pjλ(p))

. (17)

Substituting (17) into (15) and symmetrizing leads the candidate equilibrium markup:

mB = −
ξ(λp)

ξ′(λp)λp
	
1− 1

n
+ ru(ξ(λp))


 =
n

n− 1 + ru (xB)
ru
	
xB


< 1, (18)

where we have used the identity

ru(x) ≡ −
ξ(λp)

ξ′(λp)λp
,

along the diagonal. As in the Cournot case, xB is equal to x̄.

We show in Appendix B that the second-order condition is satisfied if (13) and (14) hold. Under these

circumstances, (18) is the unique symmetric markup of the Bertrand game.

Using (6) and comparing (12) and (18), we have the following proposition.

Proposition 1. Assume that a symmetric equilibrium exists under Cournot and Bertrand competition when

the number of firms is equal to n < L/f . If firms are income-takers, the equilibrium markups are given by

mC(n) =
1

n
+
n− 1
n

ru

�
1

cn
−

f

cL

�
mB(n) =

n

n− 1 + ru
�
1

cn −
f
cL

�ru
�
1

cn
−

f

cL

�
,

while

mC(n) > mB(n).

The following remarks are in order. First, when the number of firms is given and the same, Cournot com-

petition always generates a higher markup than Bertrand competition. This reflects the folk wisdom according

to which Cournot competition is “softer” than Bertrand competition (Vives, 1985). However, the mechanism

leading to this result differs from that used in standard industrial organization models where the marginal util-

ity of income is constant and the same under the two competition regimes, while Bertrand firms supply more

output than Cournot firms. In contrast, the marginal utility of income is variable here. Since the consumption

and output of each variety is the same under both regimes while the residual demand curve is steeper under

Bertrand than under Cournot, firms charge $$lower prices and earn smaller profits in the former case than in

the latter, which implies yC > yB.$$ By (4), the marginal utility of income is thus lower under Cournot, making

competition softer under this regime. Second, when f/L→ 0, which may be interpreted as f → 0 or L→∞,
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the number n of competitors can become arbitrarily large. In this event, both types of oligopolistic competition

deliver similar market outcomes, as the two markups are approximately equal to ru(0). Whether the limit of

Cournot and Bertrand competition is perfectly competitive or monopolistic competitive thus depends on the

value of ru(0) ≥ 0, $$which is finite as implied by (13).$$

When ru(0) = 0, an infinitely large number of firms always leads to the perfectly competitive outcome, as

maintained by Robinson (1934) and Kaldor (1935). The intuition is easy to grasp. When the love for variety

vanishes at 0, consumers no longer value product differentiation and treat varieties as perfect substitutes. In

this case, it is hardly a shock that perfect competition prevails. On the contrary, when ru(0) > 0, a very

large number of firms whose size is small relative to the market size is consistent with the idea that firms

retain enough market power for their markup to be bounded away from zero. Intuitively, the love for variety

is now strong enough to overcome the decrease in consumption. Since consumers still perceive varieties as

being differentiated, firms retain some monopoly power, and thus price above marginal cost. This agrees with

Chamberlin (1933). In short, the nature of the limit of oligopolistic competition depends on preferences.

To illustrate, consider the HARA utility

u(x) = (a+ x)ρ − aρ,

where a is a non-negative constant while 0 < ρ < 1. We have

ru(x) = (1− ρ)
x

a+ x
∈ (0, 1).

Therefore, as long as a > 0, monopolistic competition is not the limit of a large group of firms. In contrast,

when a = 0, we have ru(0) = 1−ρ > 0. Therefore, the CES model of monopolistic competition is the limit of a

large group of firms, but the other HARA models of monopolistic competition, as well as CARA and quadratic,

are not. Another example of preferences that lead to a monopolistically competitive limit is obtained when the

subutility is given by **the convex combination of two** CES functions:

u(x) = θxρ1 + (1− θ)xρ2 ,

where $$0 < θ < 1 and$$ 0 < ρ1 ≤ ρ2 < 1. When ρ1 = ρ2, we fall back on the CES case. Otherwise, the

elasticity of substitution is variable while the RLV is

ru(x) =
θρ1(1− ρ1) + (1− θ)ρ2(1− ρ2)xρ2−ρ1

θρ1 + (1− θ)ρ2xρ2−ρ1
,

and thus ru(0) = 1− ρ1 > 0.
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4 Free entry

4.1 Oligopolistic competition

In this section, we assume that fixed costs act as an entry barrier (f > 0). In equilibrium, profits must be

non-negative for firms to operate. The budget constraint can be rewritten as follows:

y = 1−
nf

L
+
1

L

n�

j=1

pj − c
pj

pjqj,

which, after symmetrization, yields

y = 1−
nf

L
+
1

L
m · np · q = 1−

nf

L
+m · y ⇐⇒ y =

1− nf/L
1−m

.

Ignoring the integer problem, profits are zero or, equivalently, y = 1 if and only if the equilibrium number of

firms under free entry is

nkF =
L

f
mk
F <

L

f
, (19)

for k = C,B, while the subscript F stands for free entry. Therefore, the equilibrium number of firms increases

with the market size and the degree of firms’ market power, which is measured by the Lerner index, and

decreases with the level of fixed cost. Note also that

x̄kF =
f(1−mk

F )

cLmk
F

> 0, (20)

provided that mk
F satisfies 0 < mk

F < 1. This implies that the equilibrium markups under free-entry must solve

the following equations:

mC
F =

f

LmC
F

+

�
1−

f

LmC
F

�
ru


f

cLmC
F

(1−mC
F )

�
, (21)

mB
F =

f

L
+

�
1−

f

L

�
ru


f

cLmB
F

(1−mB
F )

�
. (22)

Under the CES, the right-hand side (22) is a constant K while the right-hand side of (21) is a decreasing

function of mC
F , which exceeds K over [0, 1]. Therefore, it must be that mB

F < mC
F . It then follows from (19)

and (20) that nCF > nBF and qCF < qBF . The next proposition is our main result. First, we determine sufficient

conditions on preferences and market size for a free-entry equilibrium to exist and to be unique. Second, we

show that the above inequalities hold for any utility u.

Proposition 2. Assume that (13) and (14) hold. If f > 0, then there is a value L0 > 0 such that, for every

L ≥ L0, there exists a unique symmetric free-entry Cournot equilibrium and a unique symmetric free-entry

Bertrand equilibrium. The equilibrium markups, outputs and numbers of firms satisfy

mC
F > mB

F qCF < qBF nCF > nBF

10



and

lim
L→∞

mC
F (L) = lim

L→∞
mB
F (L) = ru(0).

Proof. We show that under each competition regime the first-order condition has a unique solution, while

we prove in Appendix A that firms’ profit functions are strictly quasi-concave. Therefore, the solution to the

first-order condition is the unique symmetric Nash equilibrium.

(i) Existence. Setting ϕ ≡ f/L, we have the following functions:

FC(m,ϕ) ≡
ϕ

m
+
�
1−

ϕ

m

�
ru


ϕ(1−m)

cm

�
−m,

FB(m,ϕ) ≡ ϕ+ (1− ϕ) ru

ϕ(1−m)

cm

�
−m,

which are defined for all ϕ ∈ (0, 1) and m ∈ (0, 1). Using (21), (22) and (27), the equilibrium markup mk solves

the equations F k(m,ϕ) = 0 for k = C,B.

Note that F k(1, ϕ) < 0 for all admissible values of ϕ and k = C,B. Since ru(1/2c) > 0, ϕ̄ ∈ (0, 1/2) exists

such that

G(ϕ) ≡ ru


1− 2ϕ
2c

�
− 2ϕ > 0

holds for all ϕ ∈ (0, ϕ̄). Then, FC(2ϕ, ϕ) > FB(2ϕ, ϕ) > G(ϕ) > 0 implies that for any ϕ ∈ (0, ϕ̄) and

k = C,B, the equation F k(m,ϕ) = 0 has at least one solution mk(ϕ) ∈ (2ϕ, 1). Thus, an equilibrium markup

mk(ϕ) exists if ϕ is sufficiently small (ϕ < ϕ̄).

(ii) Uniqueness. This is done by showing that the derivative of F k(m,ϕ) with respect to m is always

negative at any solution to F k(m,ϕ) = 0.

Note that the equilibrium individual consumption is such that

xk(ϕ) =
ϕ

cmk(ϕ)
(1−mk(ϕ)).

Therefore, we have

∂FC

∂m
(mC(ϕ), ϕ) = −

�
ϕ

(mC)2
	
1− ru

	
xC



+
�
1−

ϕ

mC

� r′u
	
xC


xC

mC(1−mC)
+ 1

�

. (23)

Differentiating ru(x) and rearranging terms yields

r′u(x)x = (1 + ru(x)− ru′(x))ru(x)

for all x > 0. Substituting FC(mC , ϕ ) = 0 and this expression into this (23), we obtain

∂FC

∂m
(mC , ϕ) = −

1

mC

�

2
ϕ

mC

	
1− ru

	
xC



+
ru
	
xC

 	
2− ru′

	
xC




1− ru (xC)

�

< 0.

Repeating the same arguments mutatis mutandis for Bertrand competition, we get

∂FB

∂m
(mB, ϕ) = −

1

mB

�
ru
	
xB

 	
2− ru′

	
xB




1− ru (xB)
+ ϕ

	
1− ru

	
xB



�

< 0.
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To sum up, when (13) and (14) hold, for all L ≥ L0 ≡ f/ϕ̄ > 0 there exists a unique symmetric free-entry

equilibrium under Cournot and Bertrand given by (mk(L), nk(L)) for k = C,B.

(iii) Ranking. Note that for any given m and ϕ values of functions are ranked as follows:

FC(m,ϕ) > FB(m,ϕ),

which, together with
∂F k

∂m
(mk, ϕ) < 0,

implies that for any given ϕ the symmetric free-entry equilibrium markups are ranked as follows:

mC
F (ϕ) > mB

F (ϕ).

Since

qkF =
f(1−mk

F )

cmk
F

and nkF =
L

f
mk
F ,

we obtain the ranking for outputs and numbers of firms.

(iv) Limit markups. We show that

lim
ϕ→0

mC(ϕ) = lim
ϕ→0

mB(ϕ) = ru(0)

hold. Observe, first, that

lim
ϕ→0

ϕ

mC(ϕ)
= lim
ϕ→0

ϕ

mB(ϕ)
= 0, (24)

so that

lim
L→∞

nCF (L) = lim
L→∞

nBF (L) =∞ (25)

because ϕ ≡ f/L and nk = mkL/f .

To show (24), we consider an arbitrary sequence ϕn → 0. Since mk(ϕ) > 2ϕ, the sequence ϕn/m
k(ϕn)

belongs to the compact set [0, 1/2]. Therefore, there exists a subsequence nj → ∞ such that ϕnj/m
k(ϕnj ) is

convergent. Let δ be the limit of this subsequence. If δ > 0, it must be that mk(ϕnj )→ 0. Since

mC(ϕnj ) =
ϕnj

mC(ϕnj )
+

�
1−

ϕnj
mC(ϕnj )

�
ru


ϕnj

mC(ϕnj )
(1−mC(ϕnj ))

�
,

mB(ϕnj ) = ϕnj + (1− ϕnj)ru


ϕnj
mB(ϕnj )

(1−mB(ϕnj ))

�
,

taking the limit implies, correspondingly, that δ + (1 − δ)ru(δ) = 0 and/or ru(δ) = 0. This contradicts the

inequality ru(x) > 0 for all x > 0. As a consequence, it must be that δ = 0, which implies (24) due to

arbitrariness of sequence ϕn.

Given that F k(mk(ϕ), ϕ) = 0, taking the limit of F k(mk(ϕ), ϕ) for ϕ→ 0 shows that the limits of mC(ϕ)

and mB(ϕ) are equal to ru(0). Q.E.D.
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Thus, regardless of the type of competition, the limit outcome is determined by the very same condition on

ru(0), no matter how market size is measured, that is, an exogenously high number of firms or a large population

of consumers. Indeed, as shown by (25), the number of firms grows unboundedly with L/f . Proposition 2

also highlights the existence of a trade-off between per variety consumption and product diversity. To be

precise, when free entry prevails, Cournot competition leads to a larger number of varieties, but to a lower

consumption level per variety, than Bertrand competition. Therefore, the comparison between V C = nCF ·u(x
C
F )

and V B = nBF · u(x
B
F ) is a priori ambiguous. $$We return to this question in subsection 4.4.$$In the CES case

(u(x) = xρ), the argument goes as follows. Note that the equilibrium number of firms and the per variety

consumption may be expressed as functions of the markup:

nkF =
L

f
mk
F xkF =

1

cnkF
−

f

cL
=

f

cL
·
1−mk

F

mk
F

,

which implies

V C < V B ⇐⇒ (mC
F )
1−ρ(1−mC

F )
ρ < (mB

F )
1−ρ(1−mB

F )
ρ.

Since m1−ρ(1 −m)ρ increases for all 0 < m < 1 − ρ and decreases for all 1 − ρ < m < 1, while mC
F > mB

F

by Proposition 2, it is sufficient to show that mB
F > 1 − ρ. Using ru(x) = 1 − ρ and (22), we obtain mB

F =

1 − ρ + ρf/L > 1 − ρ. As a consequence, Bertrand is more efficient than Cournot (V C < V B), as in Vives

(1985). However, this result need not hold for other utility functions. To show it, assume that u(x) =
√
x+2x

and set f = 1, c = 0.1 and L = 100. Then, using Wolfram Mathematica, we get nCF = 18.3367 > nBF = 12.3127

and xC = 0.4454 < xB = 0.7122, and thus V C = 28.5696 > V B = 27.9282, which runs against the conventional

wisdom that holds that Bertrand is more efficient than Cournot.

4.2 Monopolistic competition

Whereas the set of firms is finite in oligopolistic competition, in monopolistic competition the set of firms/varieties

is given by a continuum of mass M , which is endogenous and pinned down by zero-profit condition (we assume

that f > 0). The utility function (1) is replaced by the functional

U(X) =

� M

0

u(xi)di

where X is a consumption profile defined on [0,M ], while the budget constraint is

� M

0

pixidi = y.

The inverse demand for variety i is then given by

pi(xi, λ) =
u′(xi)

λ
,

so that firm i’s profits are defined as follows:

πMCi (qi, λ) =


u′(qi/L)

λ
− c
�
qi − f. (26)
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Each firm being negligible to the market, it accurately treats the Lagrange multiplier λ as a parameter

in (26). However, firms are aware that λ is endogenous. As a consequence, to determine whether it enters

the market a firm must guess what the equilibrium value of the Lagrange multiplier is. Observe the difference

between (7) and (26): the former depends on the output vector q, whereas the latter depends on qi and λ. The

Lagrange multiplier has the nature of a market statistic that binds together the markets of all varieties, very

much as the budget constraint (2) does under Cournot and Bertrand.

Since u′(x) is strictly decreasing, the demand function for variety i is given by

xi(pi, λ) = ξ(λpi),

where ξ is the inverse function of u′. Thus,

πMCi (pi, λ) = (pi − c)Lξ(λpi)− f.

Because each firm treats λ as a given, it behaves like a monopolist facing its own demand and, therefore,

choosing price or quantity as a strategy yields the same market outcome. For a given the mass M of firms,

an equilibrium is a function q̄i defined over [0,M ] such that (almost) no firm i ∈ [0,M ] finds it profitable to

deviate unilaterally from q̄i while anticipating accurately the equilibrium value of λ.

A monopolistic competitive equilibrium is defined by the conditions (E.1)-(E.4) plus the zero-profit condition:

ΠMCi (pi, λ) = 0 for (almost) all i. Since firms face the same Lagrange multiplier, the solution to the profit-

maximizing condition is the same across firms, i.e. qi = q̂ for (almost) all i ∈ [0,M ]. In other words, if a

monopolistic competitive equilibrium exists, it must be symmetric. As for the equilibrium value of λ, it is given

by

λ̂ =M
q̂

L
u′
�
q̂

L

�
,

which implies that q̂ depends on M . A MC-equilibrium may thus be defined by a pair (q∗,M∗) such that

(almost) every firm i ∈ [0,M∗] maximizes its profits at qi = q∗, while the mass M∗ of firms is such that these

firms earn zero profits: πMC(q∗,M∗) = 0.

The equilibrium markup under monopolistic competition is the solution to the implicit equation (Zhelobodko

et al., 2012):

mMC = ru


f

cLmMC
(1−mMC)

�
, (27)

which tends to ru(0) when L/f becomes arbitrarily large, as do the markups under Cournot and Bertrand.

In this case, the markup mMC is positive if and only if ru(0) > 0, and thus operating profits are positive as

predicted by Proposition 2.

4.3 Comparing Cournot, Bertrand and Chamberlin

Comparing directly Cournot and Bertrand with Chamberlin is a hard task because oligopolistic competition

involves a finite number of firms, whereas monopolistic competition relies on a continuum of firms. Rigorous

14



techniques have been developed to study when the former models “converge” toward the latter, but such an

analysis cannot be developed within the format of this paper (Hildenbrand, 1974). Therefore, in what follows,

we propose two heuristic, but intuitive, approaches that both lead to similar results.

In the first one, the number of firms is finite regardless of the competition regime. In this case, what

distinguishes monopolistic competition from oligopolistic competition is that each firm treats the marginal

utility of income as a parameter in the former, whereas a firm manipulates this magnitude in the latter. To

make the comparison possible with a finite number n of firms, we assume here that each firm behaves as if

it were a monopolistically competitive firm, that is, ∂λ/∂xi = 0 or ∂λ/∂pi = 0. Under these circumstances,

the above analysis holds true provided that M is replaced with n. Since ru(x) < 1, comparing (22) and (27)

shows that mB
F is larger than mMC

F . Furthermore, taking the limit of (21)-(22) and (27), using arguments

similar to those developed in part (iv) of the proof of Proposition 2, and summarizing, we obtain the following

proposition.

Proposition 3. Assume that symmetric free-entry Cournot, Bertrand and monopolistic competitive equi-

libria exist. Then, the corresponding markups are such that

mC
F > mB

F > mMC
F . (28)

Furthermore, limmC
F (L/f) = limm

B
F (L/f) = limm

MC(L/f) = ru(0) when L/f →∞.

Hence, monopolistic competition is tougher than Cournot and Bertrand competition, where the former is

less aggressive than the latter. Furthermore, for a given market size, monopolistic competition is a better

approximation of Bertrand than of Cournot.

In the second approach, we assume that an oligopolistic firm is a cartel formed by a mass of negligible firms,

which produce each a single firm-specific variety and act at the unison by choosing the output or price that

maximizes joint profits. For Proposition 2 to be applied to such cartels, each one must involves a unit mass of

negligible firms associated with the interval [i− 1, i]. In other words, the n cartels provide a total mass n of

varieties. In this context, consumers’ preferences must be reformulated as follows:

U(X) =
n�

i=1

� i

i−1

u(xij)dj,

so that varieties produced by firms belonging to the same cartel, or to different cartels, enter preferences

symmetrically. By the mean-value theorem, k ∈ [i− 1, i] exists such that

xi = xik u(xi) =

� i

i−1

u(xij)dj,

and thus u(xi) = u(xij) for all j ∈ [i− 1, i] at any outcome symmetric over [i− 1, i]. The profits earned by a

cartel are then given by (8) under Cournot and by (10) under Bertrand. Since the cartels behave strategically,

the free entry equilibrium is described by Proposition 2.

Using (19) and (28) yields nCF > nBF > M∗. Since each cartel supplies a unit mass of varieties, the range

of available varieties provided by the market is the widest under monopolistic competition and the narrowest
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under Cournot competition. This is consistent with the above markup ranking: a soft (tough) competition

regime leads to more (fewer) varieties under free entry.

5 Concluding remarks

Additive preferences are widely used in theoretical and empirical applications of monopolistic competition.

This is why we have chosen to compare the market outcomes under three different competitive regimes when

consumers are endowed with such preferences. It is our belief, however, that most of our results hold true in

the case of well-behaved symmetric preferences. Unlike most models of industrial organization which assume

the existence of an outside good, we have used a limited labor constraint. This has allowed us to highlight the

role of the marginal utility of income in firms’ behavior. Another distinctive feature of our approach is that

firms recognize that consumers’ incomes are endogenous through the distribution of profits. The assumption

of income-taking firms seems to be a reasonable alternative to the polar cases in which incomes are taken as

exogenous, as in partial equilibrium analyses, or incomes are strategically manipulated by firms, which leads

to intractable general equilibrium models. In brief, even though our setup is restrictive, it is sufficient to show

that whether monopolistic competition can be the limit of oligopolistic competition depends on the nature of

preferences.
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Appendix

A. Second-order conditions under Cournot

Differentiating (8) twice and evaluating this expression at symmetric solution qi = q̄, we obtain

∂2ΠCi
∂q2i

����
qi=q̄

= −
(n− 1)yC

n2 (q̄)2


ru(q̄)(2− ru′(q̄)) +

2

n
(1− ru(q̄))2

�
< 0.

B. Second-order conditions under Bertrand

It is readily verified that the following two identities hold:

ru(x) = −
ξ(λp)

ξ′(λp)λp
ru′(x) =

ξ(λp)ξ′′(λp)

(ξ′(λp))2
. (A.1)

Differentiating twice (10) with respect to pi yields

∂2ΠBi
∂p2i

= 2ξ′(piλ)

�
λ+ pi

∂λ

∂pi

�
+ (pi − c)ξ

′′

(piλ)

�
λ+ pi

∂λ

∂pi

�2
+ (pi − c)ξ′(piλ)

�
2
∂λ

∂pi
+ pi

∂2λ

∂p2i

�
. (A.2)

Differentiating (16) with respect to pi, we obtain

ξ(piλ) + piξ
′(piλ)λ+

n�

j=1

p2jξ
′(pjλ)

∂λ

∂pi
= 0,

which implies
∂λ

∂pi
= −

ξ(piλ) + piξ
′(piλ)λ�n

j=1 p
2
jξ
′(pjλ)

.
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Substituting this into the right-hand side of (A.2), symmetrizing and using (A.1), we get that second-order

condition for any symmetric outcome:

2ξ′
λ

n
(n− 1 + ru(x̄)) +

p− c
p

pξ
′′ λ2

n2
(n− 1 + ru(x̄))2 +

p− c
p

pξ′

−2

λ

n
(1− ru(x̄)) + p

∂2λ

∂p2

�
< 0.

Substituting the first-order condition

m =
p− c
p

=
nru(x̄)

n− 1 + ru(x̄)

shows that (A.2) evaluated at any solution to the first-order solution is such that

2ξ′λ

n


(n− 1 + ru(x̄))−

nru(x̄)(1− ru(x̄))
n− 1 + ru(x̄)

�
+ λp

ξ
′′
λ

n
ru(x̄) (n− 1 + ru(x̄)) +

ru(x̄)np
2ξ′ ∂

2λ
∂p2

n− 1 + ru(x̄)
< 0.

Differentiating (16) twice with respect to pi, symmetrizing and rearranging terms leads to the following

expression:

np2ξ′
∂2λ

∂p2
= −

2ξ′λ

n
(n− 2(1− ru(x̄))− p

ξ
′′
λ2

n2

�
(n− 1 + ru(x̄))2 + (1− ru(x̄))2

�
,

which allows one to rewrite (A.2) as follows:

2ξ′
�
(n− 1 + ru(x̄))2 − nru(x̄)(1− ru(x̄))− ru(x̄)(n− 2(1− ru(x̄)))

�

−ru(x̄)λpξ
′′


(n− 1 + ru(x̄))2 −

1

n

	
(n− 1 + ru(x̄))2 + (1− ru(x̄))2


�
< 0.

Using (A.1), this inequality is equivalent to

2

�
A−

ru′(x̄)

2
B

�
ξ′ < 0,

where

A ≡ (n− 1 + ru(x̄))2 − nru(x̄)(1− ru(x̄))− ru(x̄) [n− 2(1− ru(x̄))]

B ≡ (n− 1 + ru(x̄))2 −
1

n

�
(n− 1 + ru(x̄))2 + (1− ru(x̄))2

�
.

Since ξ′ = 1/u′′ < 0, it is sufficient to show that the term between parentheses is positive. Note that (13)

implies

B =
n− 1
n

(n− 1 + ru(x̄))2 −
1

n
(1− ru(x̄))2 > 0

for all n ≥ 2. It then follows from (14) that

A−
ru′(x̄)

2
B > A−B =

(1− ru(x̄))2

n

�
(n− 1)2 + 1

�
> 0,

which yields the desired inequality. Q.E.D.
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