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Abstract: This paper employs the autoregressive distributed lag (ARDL) approach and 

Granger causality tests to examine the dynamic causal links between per capita combustible 

renewables and waste (CRW) consumption,  agricultural value added (AVA), carbon dioxide 

(CO2) emissions, and real gross domestic product (GDP) for the case of Brazil, spanning the 

period 1980-2011. The Fisher statistic of the Wald test confirms the existence of long-run 

cointegration between the considered variables. Short-run empirical findings reveal that there 

is a unidirectional causality running from agriculture to CO2 emissions and to GDP. However, 

there is long-run bidirectional causality between all considered variables. The ARDL long-run 

estimates show that both CRW consumption and AVA contribute to increase economic 

growth and to decrease CO2 emissions. Agricultural production and CRW consumption seem 

to play substitutable roles in the Brazilian economy as increasing CRW consumption reduces 

AVA in the long-run, and vice versa. In addition, economic growth increases agricultural 

production at the expense of CRW production. We recommend that Brazil should continue to 

encourage agricultural and biofuels productions. The actual substitutability between 

agricultural and biofuels production should be reduced or even stopped by encouraging 

second-generation biofuels and discouraging first-generation biofuels. This may be done by 

policies of subsidization or taxation, encouraging R&D, and giving competitive credits.  

 

Keywords: Autoregressive distributed lag; Granger causality; combustible renewables 

and waste; agricultural value added; Brazil. 
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1. Introduction 

Renewable energy use is expanding considerably throughout the world. Indeed, renewable 

energy accounted for more than 71% of total electric capacity additions in the European 

Union (EU) during 2011, while renewable energy markets and industries expanded into new 

countries and regions and all end-use sectors experienced significant growth (REN21, 2012). 

Growing concerns about GHG emissions and energy security led many countries to 

implement ambitious biofuels targets and encouraging measures to the biofuels sector. 

Biomass is a source of food, fibre, and feed for livestock. It accounts for over 10% of global 

primary energy supply and is the world’s fourth important source of energy after oil, coal, and 

natural gas. Biomass feedstocks come in solid, gaseous, and liquid forms and can be 

converted through a variety of technologies to produce heat, electricity, and transport fuels. 

During 2007-2011 international liquid biofuels production increased at an average annual rate 

of 17% for ethanol and 27% for biodiesel.  

Brazil has experienced a continuous important economic growth during the preceding 

decades ejecting millions of Brazilians out of poverty and redistributing the fruits of its 

abundant natural resources. Agriculture played a pivotal role in this transformation and 

government policies have been decisive. The comfortable agricultural position of Brazil today 

is due to courageous decisions taken decades ago by the government regarding agricultural 

and rural development policies through high investments in infrastructure and research and 

development (R&D). The productivity in the agricultural sector has considerably increased 

transforming Brazil from a net food importer into one of the largest exporters of agricultural 

goods in the world (Marques de Magalhaes and Lunas Lima, 2014). Brazil is the fourth 

largest greenhouse gas (GHG) emitter in the world. However, it is among the five countries 

with the biggest potential to curb emissions. Nowadays Agriculture in Brazil supplies almost 

half of the total energy supply. Renewable energy from agriculture comprises sugarcane 

biomass (42%), hydraulic energy (28%), firewood (20%) and other sources (10%). Through 

promoting environmentally and low carbon agricultural practices, and supporting biofuels 

production, agriculture is expected to make an increasing contribution to environmental 

sustainability (OECD/FAO, 2015). It is sure that there is a strong link between economic 

growth, agriculture, renewable energy use and carbon dioxide emissions in Brazil that 

deserves more attention.  

To the best of our knowledge, there is no econometric study focusing on studying the 

relationship between agriculture and renewable energy in Brazil. The objective of the present 

paper is to investigate the dynamic causal links between per capita combustible renewables 
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and waste (CRW) consumption, agricultural value added (AVA), CO2 emissions, and real 

gross domestic product (GDP) for the case of Brazil. Our empirical analysis considers the 

autoregressive distributed lag (ARDL) bounds approach and Granger causality tests to 

examine the short and long-run relationships between the considered variables and to estimate 

their relative long-run elasticity. 

Our paper is organized as follows: Section 2 deals with agriculture and CRW in Brazil. 

Section 3 is concerned by the literature review. Section 4 presents the data and empirical 

methodology used in the analysis. Section 5 reports the results of the empirical study, and 

Section 6 concludes. 

 

2. CRW and Agriculture in Brazil 

The gross domestic product (GDP) share of agriculture in Brazil is 5.4% during the period 

2010-13 (OECD/FAO, 2015) and this sector absorbed about 13% of Brazil’s employment in 

2012. This relative low agriculture’s labor productivity reflects in part the dualistic nature of 

farming in Brazil, where large-scale and capital intensive production co-exists with traditional 

farms. Brazilian agriculture has seen an important growth during the last three decades. Total 

agricultural production has more than doubled in volume compared to its 1990 level and the 

production of livestock has almost trebled, mainly because of productivity improvements. 

Agriculture contributes importantly to the Brazil’s trade balance because exports by 

agriculture and agro-food industries totaled over US$ 86 billion in 2013, accounting for 36% 

of total exports. Brazil is a major player on international agricultural markets as it is the 

world’s second largest agricultural exporter, an important exporter of soybeans, tobacco and 

poultry, and the first supplier of orange juice, sugar and coffee. It is also a major producer of 

maize, rice and beef and has a large consumer domestic market. 

Brazil is the fourth largest greenhouse gas (GHG) emitter in the world. However, it 

represents one of the five countries with the biggest potential to curb emissions. The main 

sources of GHG emissions are power, transportation, and agriculture sectors. Agriculture 

(including cattle), accounts for 25% of the current Brazil emissions. Cattle represent the half 

of agriculture emissions and the other half comes from farming activities (McKinsey & 

Company, 2012). Agricultural policy in Brazil has increasingly focused on sustainable 

development. The increased productivity of agricultural production reduces the pressure on 

deforestation and the biofuels production increases the range of renewable sources that can be 

substituted to fossil fuels. Agricultural zoning is an important instrument conditioning 

agricultural support to environmental sustainability of farming activity (OECD/FAO, 2015). 
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The respect of zoning rules is a necessary condition for producers’ eligibility for concessional 

credit and subsidized insurance programs. Brazil has voluntarily committed to reduce its GHG 

emissions by nearly 37% in 2020. To do this, the government launched in 2010 an important 

credit program named Plano ABC for low carbon agriculture and a range of other specific 

programs. These programs include credits for plantings on unproductive and degraded soils, 

or for forest planting including palm oil for biofuels production, or for modernizing 

production systems that preserve natural resources. 

According to REN21 (2012) report, Brazil is ranked among the top five countries for 

renewable energy. Indeed, in 2011 it has the third renewable energy capacity (including 

hydro) after China and the United States, the second biomass power capacity and the second 

hydro power capacity after the United States and China. In terms of annual production 

addition in 2011, it is the fourth for biodiesel after the United States, Germany and Argentina, 

and is the second for ethanol after the United States. Most of the biodiesel in Brazil comes 

from soybean oil, although the use of palm oil is increasing. In 2011, the United States and 

Brazil accounted for 63% and 24% of global ethanol production, respectively. In Brazil, 

biomass accounts for 34% of final energy consumption in the cement industry and for 40% in 

the iron and steel industries.  

These remarkable results of Brazil in terms of renewable fuels are due to many practical 

decisions: i) the Renewable Fuel Standard (RFS2), set in 2007 in the United States, qualified 

the Brazilian sugarcane based ethanol as an advanced fuel, and this increased the demand for 

Brazilian ethanol; ii) the introduction of flex-fuel vehicles in March 2003 contributed to the 

expansion of the ethanol industry. Flex-fuel vehicles represented 22% of light vehicles sales 

in Brazil in 2004, and this share reached more than 88% in 2014. Domestic Brazilian ethanol 

demand jumped from about four billion liters to 16.5 billion from 2003 to 2009, boosted by 

the increase in the use of fuel and by the competitive price of hydrous ethanol compared to 

gasohol. Total ethanol production increased from 14.5 to 26.1 billion liters during the same 

period mainly because increasing international demand; iii) extensive financing realized by 

the sugar and ethanol industries; iv) the Brazilian government gave strong support for biofuels 

production via incentive measures including credits to construct ethanol plants and storages, 

incentive taxes on flex-fuel cars running on any combination of ethanol and gasoline, 

mandatory blending ratios for both gasoline and diesel with ethanol and biodiesel, 

respectively; v) differentiated taxation in favor of renewable fuels. Indeed, the lowest tax rate 

for hydrous ethanol is charged in São Paulo State (12%), which is the largest producer and 
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consumer state, and the average country tax rate is 16%. Comparatively, the average country 

tax rate is about 25% for gasoline (OECD/FAO, 2015). 

To conclude this section we can say that Brazil has proved to the world that agricultural 

and environmental issues are not substitutes but rather are complements since increasing 

productivity and efficiency in agriculture benefits also to environmental protection. This 

reinforces the position of Brazil considered as an international environmental creditor because 

of its biomes (Amazon Forest, Pantanal, Cerrado, Caatinga, Atlantic Forest). 

 

3. Literature review 

Many empirical studies have been interested by the causal relationships between 

renewable energy consumption and other economic variables like economic growth, pollution 

emission, or international trade (Apergis and Payne, 2010b, 2011; Ben Jebli and Ben Youssef, 

2015c; Ben Jebli et al., 2015b; Menyah and Wolde-Rufael, 2010; Sadorsky, 2009b; Tugcu et 

al., 2012). Sadorsky (2009a) examines the dynamic causal links between renewable energy 

consumption, economic growth and CO2 emissions for G7 countries. Using panel 

cointegration techniques, he shows that in the long-run the increase in per capita real GDP 

and CO2 emissions are two major drivers behind renewable energy increase. He also finds that 

an increase in oil price has a negative and small impact on renewable energy consumption. By 

considering a panel of twenty OECD countries, Apergis and Payne (2010a) study the causal 

relationships between renewable energy consumption, GDP, capital and labor. Their Granger 

causality tests reveal the existence of short and long-run bidirectional causalities between 

renewable energy consumption and economic growth. Al-Mulali et al. (2014) examine the impact 

of renewable and non-renewable electricity consumption on economic growth for 18 Latin American 

countries. They show the existence of long-run bidirectional causality between GDP, renewable and 

non-renewable electricity consumption, capital, labor and trade. They also come to the conclusion that 

renewable electricity is more significant than non-renewable electricity in promoting economic growth 

in both the short and long-run for this panel of countries.  

Few studies have been interested by renewable energy in Brazil and its causal 

relationships with other variables as economic growth and pollution emission. Pao and Fu 

(2013a) examine the causal relationships between GDP and four types of energy 

consumption: non-hydroelectric renewable energy consumption (NHREC), total renewable 

energy consumption (TREC), non-renewable energy consumption (NREC), and the total 

primary energy consumption (TEC). Their results reveal the existence of short-run 

bidirectional causality between NHREC and GDP, long-run bidirectional causality between 
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TREC and GDP, and long-run unidirectional causality running from NHREC to GDP. Their 

long-run parameter estimates show that increasing NHREC or TREC increases GDP. Pao and 

Fu (2013b) investigate the relationships between different types of energy resources and 

economic growth. Their analysis suggests short and long-run negative bidirectional causality 

between new renewables and fossil fuels indicative of substitutability between these two 

energy sources.  

To the best of our knowledge there is no econometric study investigating the relationship 

between energy consumption and agriculture in Brazil. However, there are some studies 

concerned by other countries (Karkacier et al., 2006; Mushtaq et al., 2007). Turkful and 

Unakitan (2011) study the relationship of per capita energy consumption (diesel, electricity) 

for agriculture, agricultural GDP, and energy prices for the case of Turkey. A unidirectional 

causality running from diesel and electricity consumption to agricultural GDP is found. 

Increasing agricultural GDP, increases diesel and electricity consumption in the long-run. 

These authors recommend continuing supporting energy use in Turkish agriculture in order to 

increase international market competitiveness, and balance the revenue of farmers. The causal 

relationships between AVA, consumption of energy (oil, electricity), and trade openness in 

Tunisia is studied by Sebri and Abid (2012). They show the existence of short and long-run 

unidirectional causality running from total energy and from oil energy to AVA, and a long-

run unidirectional causality running from AVA to oil consumption. They conclude that energy 

can be considered as a limiting factor to agriculture and shocks to energy supply should be 

carefully managed. 

Recently, two studies focused on the causal relationships between renewable energy and 

agriculture. The first one is Ben Jebli and Ben Youssef (2015a) investigating short and long-

run relationships between per capita CO2 emissions, economic growth, renewable and non-

renewable energy consumption, trade openness and agricultural value added in Tunisia. 

Granger causality tests show the existence of short-run bidirectional causalities between AVA 

and pollution emissions, and between AVA and trade openness. There are also long-run 

bidirectional causalities between all considered variables. Long-run estimates confirm that 

non-renewable energy, trade and agriculture increase CO2 emissions, whereas renewable 

energy consumption reduces it. These authors recommend subsidize renewable energy use in 

the agricultural sector because it helps it to become more competitive on the international 

markets while being more environmentally friendly. The second study is Ben Jebli and Ben 

Youssef (2015b) that uses panel cointegration techniques and investigates the dynamic causal 

links between per capita renewable energy consumption, agricultural value added, CO2 
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emissions, and real gross domestic product for a panel of five North Africa countries. Short 

and long-run Granger causality tests show the existence of bidirectional causality between 

CO2 emissions and AVA, and a unidirectional causality running from renewable energy 

consumption to AVA. Long-run parameter estimates indicate that an increase in economic 

growth and in renewable energy increase emissions, whereas an increase in AVA reduces 

emissions. Thus, North African authorities should encourage renewable energy use, and 

particularly clean renewable energy such as solar or wind, because this improves agricultural 

production and helps to mitigate global warming. 

 

4. Data and empirical methodology 

4.1. Data 

Annual data are collected from the World Bank (2015) for the case of Brazil spanning the 

period 1980-2011. Data include CO2 emissions (e) measured in metric tons, real GDP (y) 

measured in constant 2005 US dollars, combustible renewables and waste (crw) consumption 

measured in metric tons of oil equivalent (Mtoe), and agricultural value added (AVA, agr) 

measured in constant 2005 US dollars. CRW comprise solid biomass, liquid biomass, biogas, 

industrial waste, and municipal waste.  Agriculture comprises forestry, hunting, fishing, 

cultivation of crops, and livestock production. The value added of a sector is its net output 

after adding up all outputs and subtracting intermediate inputs. The data concerning emissions 

and GDP are in per capita, and those concerning CRW and AVA are divided by the 

population number to get the per capita units. Data are collected to get the maximum number 

of observation depending on their availability and are converted into natural logarithms prior 

to conducting the empirical analysis. All estimates are done using Eviews 9.0.   

 

Insert Figure 1 and Table 1 Here 

Figure 1 and Table 1 present some graphical representation and descriptive statistics of the 

analysis variables in order to better understand their tendency during the selected period. 

According to these plots, almost all series have an upward trend across time, except for 

combustible renewables and waste consumption plots that have a drop trend across time. The 

level of CRW consumption reaches its peaked level in 1984 with 40.42 Mtoe, while its lowest 

level is reached in 2000 with 24.87 Mtoe. We also observe that the evolution of CO2 

emissions is too similar to that of economic growth across time indicative of a strong 

correlation between the two variables. Indeed, Brazil has reached the lowest levels of per 

capita economic growth in 1983 (3596.31 constant 2005 US dollars) and CO2 emissions in 



8 

 

1984 (1.26 metric tons). However, the highest levels have been realized in 2011 for per capita 

GDP (5744.49 constant 2005 US dollars) and for emissions (2.19 metric tons). Regarding the 

AVA plot, we observe that the agricultural sector in Brazil is in positive growth across time. 

The lowest level of per capita agricultural added value is 150.77 constant 2005 US dollars in 

1986, while the highest level is 260.72 constant 2005 US dollars in 2011. 

 

4.2. Stationary tests 

The Zivot and Andrews (1992) unit root test with structural break is considered to check 

for the integration order of each variable. This kind of test seems to be more powerful than 

traditional unit root tests (augmented Dickey and Fuller, 1979; Phillips and Perron, 1988, etc.) 

because it gives more information about structural change. Three models have been 

considered in this stationary test. The first model assumes that, at level, there is one-time 

change in the variable. The second model suggests that there is one-time change in the trend 

coefficient. The third model allows that there is one-time change in both intercept and 

deterministic trend. The null hypothesis of this test suggests that the series contain unit root 

with one-time change, while the alternative hypothesis suggests that the variable is stationary 

with one-time change. In the present study, unit root tests with structural change are done for 

the case with intercept and trend. 

 

Insert Table 2 Here 

The unit root test results reported in Table 2 indicate that, at level, all the variables are 

non-stationary except for agricultural value added variable. However, after first difference, all 

time series are stationary. Thus, we conclude that per capita CO2 emissions, real GDP, CRW 

consumption and AVA variables are integrated of order one, i.e. are I(1).  

 

4.3. Cointegration tests  

The present empirical study employs the ARDL bounds approach to check for long-run 

cointegration between variables. This powerful cointegration technique has been developed 

by Pesaran and Pesaran (1997), Pesaran and Smith (1998), Pesaran and Shin (1999), and 

Pesaran et al. (2001). The ARDL technique has numerous advantages compared to other 

cointegration approaches, among which: (a) the series can be either integrated of order zero, 

of order one, or fractionally integrated; (b) the short and long-run parameters are estimated 

with the same model; (c) it provides interesting results even with small samples; (d) 

endogeneity problems are avoided.  
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The representations of the ARDL equations are as follows: 

2 1 2 2 3 4

1 1 1 1

5 2 1 6 1 7 1 8 1 1

q q q q

t i t i i t i i t i i t i
i i i i

t t t t t

co co y crw agr

co y crw agr

α α α α α

α α α α ε

− − − −
= = = =

− − − −

∆ = + ∆ + ∆ + ∆ + ∆ +

+ + + +

∑ ∑ ∑ ∑

                             

(1) 

1 2 2 3 4

1 1 1 1

5 2 1 6 1 7 1 8 1 2

q q q q

t i t i i t i i t i i t i
i i i i

t t t t t

y co y crw agr

co y crw agr

β β β β β

β β β β ε

− − − −
= = = =

− − − −

∆ = + ∆ + ∆ + ∆ + ∆ +

+ + + +

∑ ∑ ∑ ∑
                                (2) 

1 2 2 3 4

1 1 1 1

5 2 1 6 1 7 1 8 1 3

q q q q

t i t i i t i i t i i t i
i i i i

t t t t t

crw co y crw agr

co y crw agr

θ θ θ θ θ

θ θ θ θ ε

− − − −
= = = =

− − − −

∆ = + ∆ + ∆ + ∆ + ∆ +

+ + + +

∑ ∑ ∑ ∑
                               (3) 

1 2 2 3 4

1 1 1 1

5 2 1 6 1 7 1 8 1 4

q q q q

t i t i i t i i t i i t i
i i i i

t t t t t

agr co y crw agr
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λ λ λ λ ε

− − − −
= = = =

− − − −

∆ = + ∆ + ∆ + ∆ + ∆ +

+ + + +

∑ ∑ ∑ ∑

  

                            (4) 

where ∆ , ε , and q are the first differences, error terms, and the number of lags, 

respectively. According to Pesaran et al. (2001), the ARDL bounds technique follows two 

steps: the first step consists in selecting the required number of lags. For the vector 

autoregressive (VAR) model, the number of lags selected is based on various criteria 

comprising the Log likelihood (LogL), Log likelihood ratio (LR), final prediction error (FPE), 

Akaike information criterion (AIC), Schwarz information criterion (SIC), and Hannan-Quinn 

information criterion (HQ). Once the number of lags has been selected, then in the second 

step, the ARDL bounds equations can be run for estimation using the ordinary least square 

(OLS) method. 

Based on the Wald test of the Fisher statistic, the joint significance of the long-run 

estimated coefficients are tested in order to check for long-run cointegration between 

variables. The null hypothesis of no long-run cointegration for each equation (

5 6 7 8 0α α α α= = = = ; 5 6 7 8 0β β β β= = = = ; 5 6 7 8 0θ θ θ θ= = = = ; 5 6 7 8 0λ λ λ λ= = = = ), 

against the alternative hypothesis of long-run cointegration ( 5 6 7 8 0α α α α≠ ≠ ≠ ≠ ; 

5 6 7 8 0β β β β≠ ≠ ≠ ≠ ; 5 6 7 8 0θ θ θ θ≠ ≠ ≠ ≠ ; 5 6 7 8 0λ λ λ λ≠ ≠ ≠ ≠ ). According to Pesaran et 

al. (2001), the estimated F-statistic of the Wald test should be compared to two terminal 

critical values: the lower critical value assumes that series are integrated of order zero, i.e. 

I(0), and the upper critical value assumes that series are integrated of order one, i.e. I(1). 

Thereby, if the computed value of F-statistic is greater than the upper critical value, then the 

null hypothesis of no cointegration is rejected. If the computed F-statistic falls between the 

lower and upper critical values, then the result is inconclusive. In this case, we run the vector 
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error correction model (VECM) to test the significance of the error correction term (ECT) for 

the long-run cointegration. Finally, if the computed value of F-statistic is weaker than the 

lower critical value, then the null hypothesis of no cointegration is not rejected. Then, the 

robustness of the estimation will be examined through the statistics of serial correlation, 

residual heteroscedasticity, and normality tests. 

Based on the two steps of the ARDL bounds test to cointegration, we first check for the 

number of lag length determined by the statistics of AIC and SIC criteria which are run 

through the unrestricted VAR model. The results show that the number of lags is equal to one 

(VAR(p=1)). In the second step, the OLS approach is used to estimate the ARDL equations in 

order to check for the significance of the Fisher test (Wald test).   

 

Insert Table 3 Here 

Table 3 reports the results from the Wald test indicating that all estimated Fisher statistics 

are statistically significant confirming the existence of long-run cointegration among our 

variables. All the Fisher statistics of the Wald test are estimated for the case of no trend and 

unrestricted intercept. Finally, diagnostic tests indicate no serial correlation, no white 

heteroscedasticity, and residuals are normally distributed confirming our results of 

cointegration.  

 

5. Econometric results 

5.1. Long-run estimates 

Short and long-run ARDL estimates reported in Table 4 are established using the OLS 

method. All the long-run estimated coefficients are statistically significant at the 1% level, 

except for CO2 emissions coefficient of the agricultural value added equation. 

 

Insert Table 4 Here 

When CO2 emissions is the dependent variable (Eq. (1)), our long-run estimates show that 

any increase in GDP increases emissions. Indeed, economic growth needs more energy, and 

particularly more fossil energy, for production purposes leading to an increase in emissions.  

This result is similar to that of Apergis et al. (2010) demonstrated for a group of 19 developed 

and developing countries. We also show that increasing CRW consumption reduces 

emissions. This interesting result may be due to the fact that CRW resources are less polluting 

than fossil resources while being substitutes to them. This finding is contrary to that reached 

by Ben Jebli et al. (2015a) for Tunisia, because we think that in this last country CRW and 
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fossil energy are not substitutes but rather complements, while in Brazil these two energy 

sources are in strong competition. Interestingly, increasing Brazilian agricultural production 

reduces emissions. This finding may be explained by the more efficient energy use and/or 

more renewable energy use of the agricultural sector compared to the other economic sectors 

in Brazil. This result is similar to that of Ben Jebli and Ben Youssef (2015b) for a panel of 

North Africa countries but it differs from that of Ben Jebli and Ben Youssef (2015a)’s study 

on Tunisia. 

When GDP is the dependent variable (Eq. (2)), our long-run estimates show that 

increasing CRW consumption increases economic growth because energy is an essential input 

for production. This result is in accordance with that found by Pao and Fu (2013a, b) for 

Brazil as they show that increasing renewable energy consumption increases GDP in the long-

run. In addition, increasing AVA generates economic growth. The long-run estimates of Eq. 

(3) and Eq. (4) show that increasing agricultural value added reduces combustible renewables 

and waste consumption, and increasing the latter reduces the former. Thus, agriculture 

production and CRW production appear to be substitute activities in Brazil. Indeed, arable 

lands could be either used for agricultural production or for CRW production like biofuels. 

This constitutes an interesting result that has not been previously demonstrated. In addition, 

these equations show that economic growth increases agricultural production but reduces 

CRW consumption in the long-run. Thus, it seems that economic growth pushes Brazil to 

abandon CRW production in favor of agricultural production.  

 

Insert Figures 2-5 Here 

It is worth interesting to test the stability of the short and long-run estimated coefficients 

by considering the cumulative sum (CUSUM) and the cumulative sum of squares 

(CUSUMSQ) statistics developed by Brown et al. (1975). These statistic tests are presented 

graphically. When the plots of these statistics fall inside the critical bounds of 5% 

significance, we can assume that the estimated coefficients of a given regression are stable. 

The results from these statistic tests are represented graphically in Figures 2-5 showing that 

the statistics are well within the critical values at the 5% significance level. Thus, all the 

ARDL short and long-run estimated coefficients are stable. 

 

5.2. Granger causality 

To investigate short and long-run dynamic causal links between our variables, the Engle 

and Granger (1987)’s two steps procedure is considered. The first step consists in the 
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estimation of the long-run coefficients in order to recuperate the residuals. The second step 

estimates the parameters related to the short-run adjustment. Short-run relationships between 

variables are examined using the pairwise Granger causality tests (Fisher-statistics), while the 

long-run relationships between the variables are examined using the significance of the error 

correction terms (t-student statistics) corresponding to each equation. The VECM 

representation of the long-run equations is given as follows: 

1 11 12 13 14 1 1 1

1 1 1 1

p p p p

t i t i i t i i t i i t i t t
i i i i

e e y crw agr ECTφ φ φ φ φ τ ζ− − − − −
= = = =

∆ = + ∆ + ∆ + ∆ + ∆ + +∑ ∑ ∑ ∑               (5) 

2 21 22 23 24 2 1 2

1 1 1 1

p p p p

t i t i i t i i t i i t i t t
i i i i

y e y crw agr ECTφ φ φ φ φ τ ζ− − − − −
= = = =

∆ = + ∆ + ∆ + ∆ + ∆ + +∑ ∑ ∑ ∑             (6) 

3 31 32 33 34 3 1 3

1 1 1 1

p p p p

t i t i i t i i t i i t i t t
i i i i

crw e y crw agr ECTφ φ φ φ φ τ ζ− − − − −
= = = =

∆ = + ∆ + ∆ + ∆ + ∆ + +∑ ∑ ∑ ∑         (7) 

4 41 42 43 44 4 1 4

1 1 1 1

p p p p

t i t i i t i i t i i t i t t
i i i i

agr e y crw agr ECTφ φ φ φ φ τ ζ− − − − −
= = = =

∆ = + ∆ + ∆ + ∆ + ∆ + +∑ ∑ ∑ ∑         (8) 

where ∆  represents the first difference of variables;  p denotes the VAR lag length; 1tECT −  

indicates the lagged ECT corresponding to each equation; � measures the speed of adjustment 

from the short to the long-run equilibrium. 

 

Insert Table 5 Here 

Table 5 reports the Granger causality tests and indicates that there are short-run 

unidirectional causalities running from per capita agricultural value added to per capita real 

GDP and to per capita CO2 emissions, statistically significant at the 1% level. The estimated 

lagged error correction terms are comprised between -1 and 0 and are statistically significant 

indicating the existence of long-run bidirectional causalities between all considered variables. 

There is a short-run unidirectional causality running from AVA to emissions, and there is 

long-run bidirectional causality between these two variables.  Therefore, any change in the 

Brazilian agricultural production affects CO2 emissions in both the short and long-run, and 

any measures taken to reduce emissions have a long-run impact on agricultural production. 

There is also a short-run unidirectional causality running from AVA to GDP alongside long-

run bidirectional causality between these two variables. This means that any variation in 

agricultural production has an immediate, as well as a long-run, effect on GDP, and that 

economic growth impacts agricultural production in the long-run.  These long-run causalities 

are similar to those found by Ben Jebli and Ben Youssef (2015a). 
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Interestingly, there is long-run bidirectional causality between agricultural value added 

and combustible renewables and waste consumption. Thus, in the long-run, any change in 

CRW consumption has an impact on agricultural production and vice versa. In Brazil, 

agricultural and CRW productions seem to be substitute activities and should be handled 

carefully. This result is different from that reached by Turkful and Unakitan (2011) who 

found a unidirectional causality running from diesel and electricity consumption to 

agricultural GDP. We also show that there is long-run bidirectional causality between CRW 

consumption and emissions signifying the existence of long-run mutual impact of these two 

variables. 

 

6. Conclusion and policy implications 

This paper tries to investigate the dynamic short and long-run relationships between per 

capita CO2 emissions, real GDP, combustible renewables and waste consumption and 

agricultural value added for the case of Brazil over the period 1980-2011. We estimate the 

long-run elasticities of parameters by considering at each time one variable as dependent. Our 

empirical study employs the ARDL bounds for cointegration approach and Granger causality 

tests to examine the dynamic interactions between variables. Based on the Wald test (Fisher 

statistic), empirical estimates show that there is a long-run cointegration between variables for 

each considered equation.  

Granger causality tests show the existence of short-run unidirectional causalities running 

from AVA to emissions and to GDP. There are long-run bidirectional causalities between all 

considered variables. The existence of long-run bidirectional causality between combustible 

renewables and waste consumption and agricultural value added in Brazil is a new and 

interesting result. It means that agricultural and CRW productions are in mutual long-run 

interactions.  

Our long-run parameters estimates show that increasing CRW consumption reduces CO2 

emissions. This may be explained by the less polluting CRW resources compared to fossil 

resources while being substitutes to them. In addition, we show that increasing AVA reduces 

CO2 emissions. This is probably due to the more efficient energy use and/or more renewable 

energy use in the Brazil’s agricultural sector compared to the other economic sectors. We 

prove that increasing CRW consumption or AVA, increases GDP. Thus, combustible 

renewables and waste consumption and agricultural value added have a positive effect on both 

economic growth and the environment.  
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Our long-run parameter estimates show that increasing AVA reduces CRW consumption, 

and increasing CRW consumption reduces AVA. Therefore, agricultural production and 

combustible renewables and waste production seem to be substitute activities in Brazil. This 

new and interesting result may be due to the arable lands that could be used either for CRW 

production like biofuels or for agricultural production. We also show that economic growth 

increases agricultural production but reduces CRW consumption in the long-run. Thus, it 

seems that economic growth pushes Brazil to increase its agricultural production to the 

detriment of CRW production.  

Based on our econometric results and on the agricultural and energy sectors of Brazil, we 

recommend that Brazil should continue to encourage agricultural and biofuels productions 

because both have a positive impact on its economic growth and on the environment as they 

contribute to less carbon dioxide emissions. The actual substitutability between agricultural 

production and biofuels production should be reduced or even stopped, because with 

economic growth expanding, Brazil will choose agricultural production and abandon 

gradually biofuels production. Agricultural production and biofuels production should 

become complementary activities.   This may be done by encouraging second-generation 

biofuels production and discouraging first-generation biofuels production by appropriate 

subsidization or taxation. Indeed, first-generation biofuels are derived from sources such as 

sugarcane and corn starch and as such appear to be substitutes to agricultural production. In 

the contrary, second-generation biofuels utilize non-food-based biomass sources such as 

agriculture and municipal wastes and as such appear to be complementary to agricultural 

production. Unfortunately, this promoted alternative still face technological issues. This 

guides as to another policy recommendation consisting in that the Brazilian government 

should encourage R&D in renewable energy and especially in second-generation (or even in 

third-generation) biofuels production, and give competitive credits for installing the necessary 

production capacities. Tan et al. (2008) recommends policies or strategies that can help the 

second-generation biofuels, the cellulosic ethanol, to become the major biofuels in the world. 

Brazil has realized remarkable results during the last three decades in terms of biofuels due to 

its government policy and support and we think that if adequate courageous initiatives are 

taken for second-generation biofuels, we can expect interesting results in the following years 

in terms of economic growth, agricultural production and environmental protection. 
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Tables 

 

Table 1. Descriptive statistics of the data 

Variables per capita CO2 

 emissions 
per capita real GDP per capita CRW per capita AVA 

 Mean  1.648282  4382.835  32.00604  187.7807 

 Median  1.655065  4282.685  31.47338  173.5836 

 Maximum  2.191394  5744.487  40.42528  260.7172 

 Minimum  1.260216  3596.312  24.87103  150.7679 

 Std. Dev.  0.257127  531.1017  4.436251  33.92508 

 Skewness  0.215921  1.006751  0.270622  0.746654 

 Kurtosis  1.924077  3.372222  1.922459  2.118170 

Jarque-Bera  1.792132  5.590318  1.938719  4.010122 

 Probability  0.408172  0.061105  0.379326  0.134652 

 Sum  52.74502  140250.7  1024.193  6008.982 

 Sum Sq. Dev.  2.049547  8744139.  610.0900  35678.25 

 

Notes: CRW and AVA represent the combustible renewables and waste consumption, and agricultural value added variables, respectively. 

 

Table 2. Zivot and Andrews’s unit root test 

Variables Levels   1
st
 differences   

 
t-statitics Time break t-statitics Time break 

e -4.239330 2003 -5.940670* 2001 

y -3.846140 2003 -4.894539* 2003 

crw -3.664378 1995 -5.056935*** 2001 

agr -5.043443*** 1991 -8.083465** 1988 
 

Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10%, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 

 

Table 3. ARDL bounds to cointegration 

Estimated model Bounds testing to cointegration F-statistics Prob (F.stat) 

  optimal lag length       

F1(e/y,crw,agr) 5,4,5,5 

  

 9.833827   0.094400* 

F2(y/e,crw,agr) 5,5,5,5 

  

 431.3887 0.036100** 

F3(crw/y,e,agr) 4,5,5,3 

  

11.29091 0.018800** 

F4(agr/y,e,crw) 3,3,2,1     4.127866 0.020500** 

Critical values  Lower bounds I(0) 

  

Upper bounds I(1) 

1% 4.310 

   

5.544 

5% 3.100 

   

4.088 

10% 2.592       3.454 

 

Diagnostic tests 

 

  

   LM-test ARCH test   Normality test 

F1(e/y,crw,agr) 0.367839 0.060162 

 

0.014735 

 F2(y/e,crw,agr) 0.625857 0.155069 

 

1.484399 

 F3(crw/y,e,agr) 0.556444 0.661218 

 

1.460348 

 F4(agr/y,e,crw) 1.440433 1.068674   0.134940   

 

Notes: ** and * indicate statistical significance at the 5% and 10% levels, respectively. Critical values are obtained from Pesaran et al. 

(2001). The F(.) statistics are estimated for the case of unrestricted intercept and no trend. Diagnostic tests cover serial correlation (Breusch-

Godfrey Serial Correlation LM test), heteroscedasticity (ARCH test) and normality (Jarque-Bera) tests. 
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Table 4. Short and long-run ARDL estimates 

  Dependent variable: e y crw agr c 

 

ARDL estimates 3.367726  -1.278594  -0.848186  -16.78045 

 

p-value 0.000*** 0.000*** 0.000*** 0.000*** 

 

Dependent variable: y e crw agr c 

 

ARDL estimates 0.296936 0.379661 0.251857 4.982725 

 

p-value 0.000*** 0.000*** 0.000*** 0.000*** 

Long-run Dependent variable: crw y e agr c 

estimates ARDL estimates -2.633930  -0.782109  -0.663374  -13.12415 

 

p-value 0.000*** 0.000*** 0.000*** 0.000*** 

 

Dependent variable: agr y e crw c 

 

ARDL estimates 3.970504  -1.178987  -1.507445  -19.78393 

  p-value 0.000*** NS 0.000*** 0.000*** 

 

Dependent variable: d(y) d(e) d(crw) d(agr) c 

  

-0.133248 -0.174087 -0.018091  0.010390 

 

p-value NS NS NS NS 

 

Dependent variable: d(e) d(y) d(crw) d(agr) c 

  

 0.738532 -0.674871 -0.010074  0.010423 

Short-run p-value 0.0582* 0.0234** NS NS 

estimates Dependent variable: d(crw) d(y) d(e) d(agr) c 

  

 0.145054 -0.155840 -0.239733  0.005347 

 

p-value NS NS NS NS 

 

Dependent variable: d(agr) d(y) d(e) d(crw) c 

  

 0.682646 -0.096903  0.719116  0.064585 

  p-value 0.0692* NS 0.0125** 0.000*** 
 

Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. P-values are listed in parentheses. NS 

indicates that the estimated coefficient is statistically not significant. 

 

Table 5. Granger causality tests 

  Short-run       Long-run 

Variables �e �y �crw �agr ECT 

�e -  1.97321 0.09699  9.35642 -0.414451 

    (0.1711) (0.7578) (0.0049)*** [-2.70286]*** 

�y 0.24709 - 0.00076 10.4981 -0.665918 

  (0.6230)   (0.9782) (0.0031)*** [-2.70010]*** 

�crw 0.02345 0.25548 - 0.17898 -0.087880 

  (0.8794) (0.6172)   (0.6755) [-1.73675]* 

�agr  1.79401 0.85871 0.38965 - -0.181266 

  (0.1912) (0.3620) (0.5375)   [-2.00355]** 
 

Notes: ***, **, and* indicate statistical significance at the 1%, 5%, and 10% levels, respectively. P-values are listed in parenthesis and t-

statistics are presented in brackets. 
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Fig.1. Graphical representation of data variables 

 

 

 

 

 

 

 

Fig.2. CUSUM and CUSUM of Squares plots for per capita real GDP model 
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Fig.3. CUSUM and CUSUM of Squares plots for per capita CO2 emissions model 

 

 

 

 

 

 

 

 

Fig.4. CUSUM and CUSUM of Squares plots for per capita CRW consumption model 

 

 

 

 

 

 

 

 

 

Fig.5. CUSUM and CUSUM of Squares plots for per capita agricultural value added model 
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