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Making the Rules of Sports Fairer 

 

Abstract 

 
The rules of many sports are not fair—they do not ensure that equally skilled competitors 

have the same probability of winning. As an example, the penalty shootout in soccer, wherein a 

coin toss determines which team kicks first on all five penalty kicks, gives a substantial 

advantage to the first-kicking team, both in theory and practice. We show that a so-called Catch-

Up Rule for determining the order of kicking would not only make the shootout fairer but also is 

essentially strategyproof. By contrast, the so-called Standard Rule now used for the tiebreaker in 

tennis is fair. We briefly consider several other sports, all of which involve scoring a sufficient 

number of points to win, and show how they could benefit from certain rule changes, which 

would be straightforward to implement. 
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Making the Rules of Sports Fairer1 

 

1. Introduction 

 
In this paper, we show that the rules for competition in some sports are not fair. By “fair,” 

we mean that they give equally skilled competitors the same chance to win—figuratively, they 
level the playing field. Later we will be more precise in defining “fairness.”   
 

We first consider knockout (elimination) tournaments in soccer (i.e., football, except in 
North America), wherein one team must win. We show that when a tied game goes to a penalty 
shootout, the rules are not fair. On the other hand, the tiebreak in tennis tournaments, when a set 
is tied at six games apiece, is fair. We briefly comment on the fairness of the rules in other 
sports, including three racquet sports and volleyball.  

 
But more than pointing a finger at sports whose rules favor one competitor, we suggest 

two new rules, one old (Win-by-Two Rule) and one new (Catch-Up Rule), that can ameliorate 
unfairness in some sports. As we will show, the lack of fairness arises not because the present 
rules are inherently unfair, always favoring one player, but rather because they involve an 
element of chance, such as  

 
• which team wins the coin toss in a penalty shootout in soccer and almost invariably  
   elects to kick first; 
 
• which team initially serves in volleyball, in which the team to score 25 points first and  
   be ahead by a margin of at least two points, wins.  

 
We use ideas from fair division and game theory. In game theory, a game is defined by 

“the totality of the rules that describe it” (von Neumann and Morgenstern, 1953, p. 49). In almost 
all competitive sports, the rules allow for some element of chance, such as who gets to move 
first.2 In the final round of a golf tournament, it is in fact the players who get to play last—the 
order is not fixed by the rules—who know what they must score to win. This knowledge may 
help them decide whether to try a risky shot or not, which is information the first players to 
finish do not have.  

 
What we do not assume in our analysis is that the players or teams in a contest are 

differently skilled. We do this to rule out situations in which winning can be attributed to the 
superior ability of one player or team.  

                                                
1 We gratefully acknowledge the valuable comments of John D. Barrow and Aaron Isaksen. 
2 In the National Football League, if a game ends in a tie, a coin toss determines which team decides whether to kick 
or receive in the overtime period. Almost always, the winner of the coin toss elects to receive, which statistics 
indicate gives it a substantial advantage of winning the game. Che and Henderson (2008, 2009) proposed that the 
teams bid on the yard line that would make them indifferent between kicking and receiving; Brams and Sanderson 
(2013) and Granot and Gerschak (2014) further analyzed this application and discussed the extension of bidding to 
soccer and chess to render competition fairer. In this paper, we propose very different solutions to the fairness 
problem in sports when bidding may be deemed unacceptable.   
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Handicaps are sometimes used in these situations to make contests more competitive. In 

golf, for example, if A has a handicap of four strokes and B has a handicap of two strokes, then 
A, with a score of 80, can beat B, with a score of 79 (lower scores win in golf), because  

 
80 – 4 = 76      <     79 – 2 = 77. 

 
That is, when the handicaps are subtracted to give net scores, B beats A 76 to 77. Thereby the 
handicaps turn B from a loser into a winner.     

 
Handicaps in sports take different forms. In horse racing, horses may carry additional 

weight according to their speed in past performances, with the fastest horse carrying the most 
weight (other factors also matter, such as post position and the jockey). Handicapping is also 
done by starting horses at different points, with the fastest horse having the greatest distance to 
run in order to win.  

 
In general, handicapping gives an advantage to weaker competitors—as compensation for 

their lower level of skill—to equalize the chances that all competitors can win. Handicapping is 
used in a variety of sports and games, including bowling, chess, Go, sailboat racing, baseball, 
basketball, football (American), and track and field events, where it serves as the basis for 
wagering on the outcomes of these contests. Thus, a weak player or team can beat a strong one if 
the point spread that the strong one must win by is sufficiently large.  

 
Because we assume in the subsequent analysis that all players and teams are equally 

skilled and, therefore, equally competitive, there is no need to give one side a predetermined 
advantage. Instead, handicapping, if any, occurs in the course of play. More specifically, the 
Catch-Up Rule takes into account the results of competition in the preceding contest: Players or 
teams that do worse in the preceding contest are afforded the opportunity to catch up.3 Greater 
fairness can also be engendered by the Win-by-Two Rule, which precludes a player or team from 
winning by just one point and can minimize, or even eliminate, the role of chance. 

 
The paper is organized as follows. In Section 2, we define the Catch-Up Rule and apply it 

to penalty kicks in soccer, the world’s most widely played and popular sport. In Section 3, we 
show how this rule tends to equalize the probability of each side winning, compared with what 
we call the Standard Rule, based on a coin toss. The Standard Rule, which varies from sport to 
sport, determines in soccer which team kicks first on every round of the penalty shootout. This 
rule gives the team that wins the coin toss, and generally chooses to kick first, a decided edge.      

 
In Section 4, we consider the situation when, after five penalty kicks, the teams remain 

tied. Then the outcome is determined by sudden death, whereby the first team to score two points 
in a row, without the other team scoring, wins. In this infinite-horizon situation (there is no 
definite termination), we analyze the probability of each side winning under the Standard Rule 
and the Catch-Up Rule. We also consider the incentive that a team might have to try to 
manipulate the outcome by not making a maximal effort to win a point, either when it kicks or 

                                                
3 This idea is incorporated in a game, Catch-Up, (http://game.engineering.nyu.edu/projects/catch-up/), which is 
analyzed in Isaksen, Ismail, Brams, and Nealen (2015).  
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when its opponent kicks, and show that, for all practical purposes, the Catch-Up Rule is incentive 
compatible or strategyproof.  

 
In Section 5, we turn to tennis, one of the most popular two-person sports, showing that 

the Standard Rule in the tiebreak, when a set is tied at six games apiece, is fair, primarily because 
of the alternation in serving and the Win-by-Two rule. In Section 6, we briefly consider other 
sports and games and comment on the fairness of their rules. In Section 7, we offer some 
concluding thoughts on the practicality of changing the rules of sports to render them fairer.  

 

2. The Catch-Up Rule and Its Application to Soccer 
 
Suppose that a soccer game, after regulation play and sometimes extra-time periods, ends 

in a tie. Because soccer is a low-scoring game, ties, which may be as low as 0-0, are common. To 
break ties in a knockout tournament, there is a penalty-kick shootout, whereby a different player 
from each team, over five rounds, is given the chance to score a goal from 11 meters in front of 
the goal line, which is defended by the other team’s goal-keeper.  

 
The team that scores more goals in the shootout wins. If the scores are tied at the end of 

the five rounds of the shootout, then the game goes to sudden death. If one team (say, A) gains an 
insurmountable lead over the other (B), the shootout terminates early: Even if B scores on all the 
remaining rounds and A does not, A would still win. In particular, if A leads 3-0 or 4-2 in the 
shootout, there is no possibility that B can win or tie, even if it scores and A does not score on 
any remaining rounds.  
 

The reason for having five rounds in penalty shootouts is to ensure, insofar as seems 
reasonable, that the stronger team wins with a high probability. If play were immediately to go to 
sudden death, luck would play an unduly large role, making it more chance than skill that one 
team happens to score, and the other does not, on a single round. But over five rounds there is 
less variance in the probability that the better team will win.4 

 
Which team kicks first on each of the five rounds of kicks, when each team has one kick, 

is determined by a coin toss. This is the Standard Rule in penalty shootouts. The team that wins 
the toss almost always elects to kick first, because doing so is generally considered 
advantageous. It puts psychological pressure on the team that kicks second, especially if the team 
kicking first scores on its kick (Palacios-Huerta, 2014, pp. 70–77, 165–173). 

 
In major tournaments between 1970 and 2013, the team that kicked first won the penalty 

shootout 60.6% of the time (Palacios-Huerta, 2014, p. 76), giving it a substantial 3:2 advantage, 
or 50% greater probability, of winning the tied game.5 When coaches and players were asked in a 

                                                
4 But “better” in this case means a team’s ability, in several two-person competitions between a kicker and a 
defender, to score and to prevent the other team from scoring. This ability, however, may have little relationship to 
the ability of an 11-person team to win in regular play, which is why penalty shootouts are unpopular with many 
fans. 
5 More specifically, Apesteguia and Palacios-Huerta (2010) found a 60.5% first-mover advantage, using a dataset of 
269 shootouts from 1970 to 2008; later, Kocher, Lenz and Sutter (2012) observed a 53.3% advantage, using a 
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survey about whether they would choose to go first or second if they won the coin toss, more 
than 90% said they would go first (Apesteguia and Palacios-Huerta, 2010). Clearly, the 
advantage of kicking first is not only perceived, but it is, in fact, large. 6 

 
The Catch-Up Rule is designed to mitigate this bias. To make it applicable to sports other 

than soccer, we formulate it below for all sports with multiple contests.  
 
More specifically, we assume there is a series of contests (penalty kicks in soccer) in 

which, in each contest, there is an advantaged and a disadvantaged player or team (the 
advantaged team in soccer is the team that kicks first in a round). If a player or team wins a 
contest, call it W; if it loses, call it L. When no player or team wins or loses a contest, call the 
contest unresolved (U). 
 
Catch-Up Rule  

  
1. In the first contest, a coin is tossed to determine which player or team is advantaged and 

which is disadvantaged.  
  

2. In this contest and every subsequent contest in which one player or team becomes W and 
the other L, the player or team that was L becomes advantaged in the next contest. 

 
3. If a contest is U because both teams become L or both become W, the player or team that 

was advantaged in it becomes the other player or team in the next contest.  
 

In soccer, the contests are rounds, in which each team has one kick. In the first round, one 
team is advantaged (by kicking first). If it is successful (W) and the other team is not (L), rule 2 
says that L becomes advantaged on the next round (whether it was advantaged or disadvantaged 
in the current round). If both teams on a round are either successful or unsuccessful in scoring a 
point, neither team becomes L or W—the contest is U.7 Rule 3 says that the team that was 
advantaged in a U round becomes disadvantaged in the next round.8   

                                                                                                                                                       
dataset of 540 shootouts from 1970 to 2003; finally, Palacios-Huerta (2014) found a 60.6% first-mover advantage, 
using a dataset of 1001 shootouts from 1970 to 2013. 
6 A partial solution to the first-kicker bias would be to use a coin toss on each round of the penalty shootout to 
determine the order of kicking.  Like the present rule, this would be ex ante but not ex post fair.  For example, a 
team that wins three tosses in a row, which is not a rare event, would get a nice break from this rule, whereas our 
Catch-Up Rule, as discussed next, would halt a string of successes because of such a break. 
7 In tennis, as we will see, U cannot occur, because a player either wins or loses a point in the tiebreaker. 
8 The Catch-Up Rule differs from the “behind first, alternating order” mechanism of Anbarci, Sun, and Ünver 
(2014), which depends on the current score: If one team is behind, it kicks first on the next round; if the score is tied, 
the order of kicking alternates (i.e., switches on the next round). By comparison, the Catch-Up Rule depends only on 
the performances of the teams on the previous round. To illustrate the difference between the two mechanisms, 
suppose that X is behind by one point, and the game has not yet ended. The Anbarci et al. mechanism says that Y 
will kick first on the next round, whereas the Catch-Up Rule allows for the possibility that X will kick first if it failed 
to score, and Y succeeded, on the last round. Another difference is that the Anbarci et al. mechanism posits a game 
in which, in equilibrium, the kicker tries harder when its team is behind. (How to measure and compare levels of 
effort of different kickers is not clear to us.)  In the Markov decision process we assume (more on this later), the 
probability of success under the Catch-Up Rule is independent of the score—it depends only on the order of kicking 
of the two teams, not on level of effort. 



 7 

 

 
 

Figure 1. Possible States of Catch-Up over Two Rounds in the Penalty Shootout 

 
Let the two teams in soccer be X and Y. In the first round, assume that X wins the coin 

toss and, therefore, is advantaged. If the contest turns out to be U, Y will be advantaged on the        
next round; Y will also be advantaged if X wins on the first round. Only if X loses and Y wins on 
the first round will X be advantaged in the next round.  

 
In the subsequent analysis, we assume that X wins the coin toss, so it kicks first. To 

illustrate our analysis in a simple case, assume that there are just two rounds in the penalty 
shootout, allowing X and Y two kicks each.  
 

In Figure 1, we illustrate all the possible states of a two-round penalty shootout, wherein 
the order in which we write X and Y indicates which team shoots first, and which second, 
according to the Catch-Up Rule (e.g., XY indicates that X shoots first and Y second). The 
numbers in parentheses, (I-J), give the scores of X and Y, respectively, in that state. The first- 
round states are unshaded and the second-round states are shaded. 

 
The shootout starts in the center, XY(0-0), in which X kicks first, Y second, and the score 

is 0-0. There are four cases of continuation, whereby in the first round X and Y both score (++), X 
scores and Y does not (+–), X does not score and Y does (–+), and neither players scores (– –).  
Arrows point to these four states from XY(0-0).  

 
Emanating from each of these four states are four more arrows, pointing to four shaded 

states, which constitute the second round, in which both, one, or neither team scores. Observe 
that if both teams score on both rounds, play ends at XY(2-2) in the lower right shaded state, in 
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which X kicks first because Y did at YX(1-1). This order also holds at XY(0-0) in the upper left, in 
which neither player scores on both rounds.  

 
Before reaching either of these two shaded states, the order of kicking switches to YX—at 

YX(1,1) in the first case, and YX(0,0) in the second case. Only when X fails to score and Y does 
score at XY(0-1) in the first round does the order of kicking not switch (it stays XY), because by 
rule 2 X is still advantaged since it did not score when Y did.  

 

3. Probabilistic Analysis of the Penalty Shootout 
 
Let 𝑝 be the probability that a team is successful if it kicks first on a round, and let 𝑞 be 

the probability that it is successful if it kicks second, where kicks by each team are assumed to be 
independent events. Because we assume that the teams are equally competitive, 𝑝 and 𝑞 are the 
same for both X and Y and do not depend on a specific round.  

 
Let Pr(X) denote the probability of X winning (by at least one point), Pr(Y) the probability 

of Y winning, and Pr(T) the probability of a tie (T) over r rounds. We calculate separately these 
probabilities under the Standard Rule and the Catch-Up Rule. 
 
Standard Rule 

 
Under this rule, because X won the coin toss, it kicks first on every round. When r = 2, X 

can win with scores of 2-0, 2-1, or 1-0, whose three probabilities, respectively, are given by the 
three bracketed expressions below:    

 
P

2(X) = [p2(1-q)2] + [2p
2
q(1-q)] + [2p(1-p)(1-q)2]. 

 
The factor of 2 in the second bracketed expression reflects the fact that Y may score 1 point by 
winning on the first round and losing on the second, or losing on the first round and winning on 
the second. Similarly, the factor of 2 in the third bracketed expression reflects the fact that X can 
score 1 point by winning on the first round and losing on the second, or losing on the first round 
and winning on the second.  
 

Y can win with scores of 0-2, 1-2, and 0-1, whose three probabilities, respectively, are 
given by the three bracketed expressions below: 

 
P

2(Y) = [q2(1-p)2] + [2q
2
p(1-p)] + [2q(1-q)(1-p)2]. 
 

This formula interchanges p and q in the formula for P(X). 
 

Finally, the probability of a tie (T), which may be 0-0, 1-1, or 2-2, is given, respectively, 
by the three probabilities in the three bracketed expressions below: 

 
P

2(T) = [(1-p)2(1-q)2] + [4p(1-p)q(1-q)] + [p2
q

2]. 
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The factor of 4 in the second bracketed expression reflects the fact that X and Y can each score, 
or not score, one point on either the first or the second round, giving 2× 2 = 4 different ways in 
which a 1-1 tie can be achieved. As a check on these formulas, one can verify that  
 

P
2(X) + P2(Y) + P2(T) = 1. 

 
To illustrate the advantage that the Standard Rule confers on X, assume p = 3/4 and q = 

2/3,9 favoring X on each round by the ratio (3/4)/(2/3), which gives X a 9:8 advantage, or a 1/8 = 
12.5% greater probability than Y of winning on each round. Over the two rounds, this advantage 
is significantly magnified: 
 
             P

2(X) = 51/144 = 0.354;     P2(Y) = 32/144 = 0.222;     P2(T) = 61/144 = 0.424.       (1) 
 

The first two probabilities give X a 51:32 advantage, or a 19/32 = 59.4% greater probability than 
Y, of winning. Notice, however, that P2(T) is the biggest of the three probabilities; we will show 
later how sudden death, when there is a tie, reallocates this probability to P2(X) and P2(Y).  

 
Proposition 1 (Standard Rule). Assume there are r rounds, on each of which the 

advantaged team (first kicker) has probability p of scoring and the disadvantaged team (second 

kicker) has probability q of scoring. If X kicks first,  

 

P
r
(X) =

r
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Proof. The number of ways in which X can win by scoring on m out of the r rounds is the 

number of ways in which Y’s score is less than m, which is 
 

r

m

!

"
#

$

%
&

r

m− i

!

"
#

$

%
&  

 
for all values of 1 < m ≤ r and 1 ≤ i ≤ m. The double summation on the left side of Pr(X) gives all 
ways in which X can beat Y—1-0, 2-0, 2-1, …, r-(r – 1)—multiplied by the corresponding 
probability for each of the ways. Pr(Y) interchanges p and q in the formula for Pr(X). Pr(T) 

                                                
9 In Section 4, we illustrate winning probabilities of teams for different values of p and q. 
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reflects the fact that X and Y obtain the same score, with the single summation over all ways in 
which this can occur. Q.E.D. 

 
Catch-Up Rule     

 
We next consider the effects of the Catch-Up Rule over two rounds of penalty kicks. X 

and Y can win, lose, or tie with the same scores as under the Standard Rule. But the ways these 
scores are realized are different: The ordering of kicking on each round is endogenous (i.e., 
dependent on the previous round) rather than exogenous (i.e., fixed in advance). We list below 
the three ways that X can win with scores of (i) 2-0, (ii) 2-1, and (iii) 1-0:  

 (i) 2-0: X scores on both rounds while Y fails to score on both. On the first round, X 
succeeds and Y fails with probability p(1-q). On the second round, Y kicks first and fails while X 
kicks second and succeeds with probability (1-p)q. The joint probability of this outcome over 
both rounds is p(1-q)(1-p)q = pq(1-p)(1-q). 

 
(ii) 2-1: X scores on both rounds while Y fails to score on one of these rounds. There are 

two cases: 
 

• Assume Y scores on the first round. On this round, both players succeed with 
probability pq. On the second round, Y kicks first and fails, after which X 
succeeds, with probability (1-p)q. The joint probability over both rounds is 
pq(1-p)q = p(1-p)q2. 

 
• Assume Y scores on the second round. On the first round, X succeeds and Y 

fails with probability p(1-q). On the second round, Y kicks first and succeeds, 
after which X succeeds, with probability pq. The joint probability over both 
rounds is p(1-q)pq = p2

q(1-q). 
 
Thus, the probability that the outcome is 2-1 is  
 

p(1-p)q2  + p2
q(1-q) = pq[q(1-p) + p(1-q)] = pq(p+q-2pq). 

 
(iii) 1-0: X scores on one round while Y fails to score on both rounds. There are two 

cases: 
 

• Assume X scores on the first round. On this round, X succeeds and Y fails with 
probability p(1-q). On the second round, Y kicks first and fails, after which X 
fails, with probability (1-p)(1-q). The joint probability over both rounds is 
p(1-q)(1-p)(1-q) = p(1-p)(1-q)2.  

 
• Assume X scores on the second round. On the first round, both players fail 

with probability (1-p)(1-q). On the second round, Y kicks first and fails, after 
which X succeeds, with probability (1-p)q. The joint probability over both 
rounds is (1-p)(1-q)(1-p)q = (1-p)2

q(1-q).  
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Thus, the probability that the outcome is 1-0 is  
 

p(1-p)(1-q)2 + (1-p)2
q(1-q) = (1-p)(1-q)[(p(1-q) + (1-p)q] = (1-p)(1-q)(p+q-2pq). 

Summing the probabilities that X wins in cases (i), (ii), and (iii), given by each of the 
summands in brackets below, yields   

 
P

2(X) = [pq(1-p)(1-q)] + [pq(p+q-2pq)] + [(1-p)(1-q)(p+q-2pq] 
 
                                    =  pq(1-pq) + (1-p)(1-q)(p+q-2pq). 
 
An analogous formula for P2(Y) for cases (i), (ii), and (iii), given by each of the summands, 
yields 
 

P
2(Y) = [(1-p)2

q
2] + [pq(p+q-2pq)] + (1-p)(1-q)[q(1-p) + p(1-q)] 

                                   = (1-p)2
q

2 + (1-p-q+2pq)(p+q-2pq). 

Because P2(T) = 1 – P2(X) – P2(Y), we have 

P
2(T) = 1 – pq(1-pq) – (1-p)2

q
2 – (2-2p-2q+3pq)(p+q-2pq) 

                                         = 1 – pq – q2(1-2p) – (2-2p-2q+3pq)(p+q-2pq). 

For the values of p = 3/4 and q = 2/3 assumed earlier, we obtain 
 
              P

2(X) = 41/144 = 0.284;    P2(Y) = 39/144 = 0.270;     P2
(T) = 64/144 = 0.444.            (2)                  

 
Comparing the values of (1) and (2), we see that the Catch-Up Rule tends to equalize the 

values of P2(X) and P2(Y) over those given by the Standard Rule. More specifically, X is favored 
in 2/39 = 5.1% more cases than Y, whereas recall that under the Standard Rule X was favored in 
59.4% more cases than Y. Thus, the Catch-Up Rule cuts the bias in favor of X by a factor of more 
than ten.  
 

For the values of p and q assumed above, how does the number of rounds affect the 
advantage of X over Y?  First, consider the trivial case for one round, in which the Standard Rule 
and the Catch-Up Rule give the same probabilities.  
 

P
1(X) = p(1-q) = 1/4 = 0.250;     P1(Y) = (1-p)q = 1/6 = 0.167;     P1(T) = 7/12 = 0.583. 

 
Intuitively, without a second round, the Catch-Up Rule cannot change the order of kicking from 
that of the Standard Rule.  
 

As the number of rounds increases from two to five, we have calculated Pr(X), Pr(Y), and 
P

r(T) for the Standard Rule from the formulas given by Proposition 1. However, there are no 
simple formulas for the Catch-Up Rule, because who kicks first and who second on each round 
depends on the outcome of the previous round, making the process fundamentally iterative 
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(actually, Markovian, because the dependence goes back only one round). We have written a 
computer program to iterate the process to five rounds for the calculation given below.     

 
It is worth pointing out that our probabilistic calculations are not affected if a shootout 

ends early—before five rounds are completed—should one team attain an insurmountable lead 
(see Section 2). This is so because a victory that occurs before the completion of five rounds 
would be a victory after the completion of five rounds and, consequently, would have the same 
probability of occurrence. 

 
The results for shootouts lasting five or fewer rounds, where p = 3/4 and q = 2/3, are 

shown in Table 1: 
 

 1 Round 2 Rounds 3 Rounds 4 Rounds 5 Rounds 

 

Standard 

Rule 

 
P

1(X) = 0.250 
P

1(Y) = 0.167 
P

1(T) = 0.583 

 
P

2(X) = 0.354 
P

2(Y) = 0.222 
P

2(T) = 0.424 

 
P

3(X) = 0.411 
P

3(Y) = 0.244 
P

3(T) = 0.344 

 
P

4(X) = 0.450 
P

4(Y) = 0.254 
P

4(T) = 0.296 

 
P

5(X) = 0.479 
P

5(Y) = 0.258 
P

5(T) = 0.263 
 

Catch-Up 

Rule 

 
P

1(X) = 0.250 
P

1(Y) = 0.167 
P

1(T) = 0.583 

 
P

2(X) = 0.285 
P

2(Y) = 0.271 
P

2(T) = 0.444 

 
P

3(X) = 0.344 
P

3(Y) = 0.296 
P

3(T) = 0.361 

 
P

4(X) = 0.351 
P

4(Y) = 0.331 
P

4(T) = 0.319 

 
P

5(X) = 0.375 
P

5(Y) = 0.342 
P

5(T) = 0.284 
      
Table 1. Probability That X Wins, Y Wins, or There Is a Tie after 1-5 Rounds  

 when p = 3/4 and q = 2/3 for the Standard Rule and the Catch-Up Rule   

 
 
As the number of rounds r increases from 1 to 5, we summarize below how the values of Pr(T), 
P

r(X), and Pr(Y) change for the Standard Rule and the Catch-Up Rule:  
 

1. For both rules, Pr(T) decreases by a factor of more than 2—from 0.583 to (i) 0.263 for 
the Standard Rule and (ii) 0.284 for the Catch-Up Rule. 

  
2. For the Standard Rule, Pr(X) increases by a factor of about 1.9 (0.479/0.250), whereas 

P(Y) increases by a factor of about 1.5. 
  

3. For the Catch-Up Rule, Pr(X) increases by a factor of 1.5, whereas P(Y) increases by a 
factor of about 2.0. 

 
Clearly, as Pr(T) decreases, Pr(X) and Pr(Y) tend to diverge under the Standard Rule but 

converge under the Catch-Up Rule. More specifically, the Catch-Up Rule gives Y the ability 
almost to catch up to X by giving it more opportunities to kick first, whereas the Standard Rule, 
by never allowing this, increases the disparity between the advantaged and the disadvantaged 
teams.  
 

In relative terms, the ratio, P(X)/P(Y), is 1.5 on the first round for both the Standard Rule 
and the Catch-Up Rule. While it increases to about 1.9 for the Standard Rule after five rounds, it 
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hovers around 1.1 for the Catch-Up Rule from rounds two to five. Hence, if there is more than 
one round, the Catch-Up Rule quickly reduces the big advantage that X enjoys over Y, whereas 
the Standard Rule increases X’s advantage. 
 

After five rounds, both rules show that there is more than a 25% chance (26.3% for the 
Standard Rule, 28.5% for the Catch-Up Rule) that a penalty shootout will end in a tie. Therefore, 
one must invoke sudden death to produce a winner.  

 

4. Sudden Death and Strategic Manipulation in the Penalty Shootout 
 

After five rounds of a shootout, the six states in which X and Y can be tied are 0-0, 1-1, 2-
2, 3-3, 4-4, or 5-5. When sudden death is applied to break a tie, the first team to score a point on 
a round when the other team does not becomes the winner. For both the Standard Rule and the 
Catch-Up Rule, we next calculate the probability, W(X), that X—the first team to kick in sudden 
death—wins; the probability that Y wins is the complement, W(Y) = 1 – W(X).  

 
If there is a tie after five rounds, under the Standard Rule, X will kick first on every round 

until the tie is broken. X will win on the first round with probability p(1-q); if it fails, it can still 
win subsequently if both players either score or do not score, which occurs with probability [pq + 
(1-p)(1-q)]. For the Standard Rule (S), X will win with probability WS(X), which gives the 
following recursion:   

 
W

S(X) = p(1-q) + [pq + (1-p)(1-q)]WS(X). 
 

Solving for WS(X) yields  
 

W
S
(X) =

p(1− q)

p+ q− 2pq
 

 
For the Catch-Up Rule, X will win on the first round with probability p(1-q); if that fails, 

it can win subsequently if both players either score or do not score, which occurs with 
probability [pq + (1-p)(1-q)]. Because the score remains tied, and X kicked first, by rule (3) of 
the Catch-Up Rule, Y will kick first next (see Section 2). Y, now in the same position as X was at 
the outset, will win with the same probability, WC(X). Consequently, X will win with probability 
[1 – WC(X)]—that is, the probability Y will not win—which gives the following recursion:   

 
W

C(X) = p(1-q) + [pq + (1-p)(1-q)][1 – WC(X)]. 
 

Solving for WC(X) yields  
 

W
C
(X) =

1− q+ pq

2− p− q+ 2pq
 

 
For p = 3/4 and q = 2/3, WS(X)  = 3/5 = 0.600. Under the Catch-Up Rule, by contrast, WC(X) = 
10/19 = 0.526, which is substantially closer to 50%, rendering X and Y more competitive.  
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But these results hold only if the penalty shootout goes to sudden death. More likely, the 
shootout will be resolved by round five, or possibly on an earlier round if one team jumps ahead 
of the other in successful kicks. To foreclose the possibility of a tie in a knockout tournament, we 
use the sudden death formulas, WT(X) and WS(X), to apportion the tied probabilities, Pr(T) in 
Table 1, to Pr(X) and Pr(Y), on each round r.  

 
For example, as we showed in Section 3, after two rounds, the probability of a tie under 

the Standard Rule is P2(T) = 61/144 = 0.424. Because WS(X)  = 3/5 = 0.600 and WS(Y) = 2/5 = 
0.400, X and Y’s probabilities of winning in Table 1 with sudden death will be augmented by 
their apportioned tied probabilities—(61/144)(3/5) = 183/720 = 0.254 for X and (61/144)(2/5) = 
122/720 = 0.169 for Y—giving the following revised probabilities of winning over two rounds 
that incorporate sudden death: 

 
Q

2(X) = 0.354 + 0.254 = 0.608;    Q2(Y) = 0.222 + 0.169 = 0.391.10 
 

These and the other probabilities for penalty shootouts lasting five or fewer rounds, 
where p = 3/4 and q = 2/3, are shown in Table 2 for Qr(X). Under the Standard Rule, as r 
increases from 1 to 5, Qr(X) increases from 60% to about 64%, which is close to the empirical 
bias favoring X. By contrast, under the Catch-Up Rule, Qr(X) stays close to 0.500, so it tends to 
equalize the probabilities that X and Y win.  

 
There is a small odd-even effect for both rules. Most salient is that after five rounds, and 

with sudden death if the shootout is still unresolved, the Catch-Up Rule reduces the Standard 
Rule’s bias favoring X from 64% to 51%, making the contest essentially even-steven, though X 
kicks first on the first round.    
 

 
 1 Round 2 Rounds 3 Rounds 4 Rounds 5 Rounds 

 

Standard 

Rule 

 
Q

1(X) = 0.600   
 

 
Q

2(X) = 0.608  
 

 
Q

3(X) = 0.618   
 

 
Q

4(X) = 0.628  
 

 
Q

5(X) = 0.637  
 

 

Catch-Up 

Rule  

 
Q

1(X) = 0.526   
 

 
Q

2(X) = 0.516   
 

 
Q

3(X) = 0.518  
 

 
Q

4(X) = 0.513  
 

 
Q

5(X) = 0.514  
 

      
Table 2. Probability That X Wins, with Sudden Death, after 1 to 5 Rounds  

when p = 3/4 and q = 2/3 for the Standard Rule and the Catch-Up Rule  

The Catch-Up Rule can also be modeled as a Markov chain, with its transition probability 
matrix based on the transitions shown in Figure 1.11 From this matrix one can derive the 
probability that X wins, Y wins, or there is a tie (if there is not sudden death), either after a 
specified number of rounds or in the limit as the number of rounds goes to infinity.  

 

                                                
10 The sum of the two probabilities that are shown for Q2(Y) is 0.391, but the correct rounded value is 0.392. 
Because the possibility of ties has been eliminated, the sum, Q2(X) + Q2(Y), must be equal to 1. In Table 2, we show 
only Qr(X) since Qr(Y) = 1 – Qr(X). 
11 Such matrices are constructed for tennis and baseball in Kemeny and Snell (1960, pp. 161–170). 
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If there is sudden death and, therefore, no possibility of a tie, the limit probabilities are 
those we give for X (Y’s are their complements) in Table 2. Because the transitions of the Catch-
Up Rule depend on the prior state, it is a Markov process.  

 
For the Standard Rule and the Catch-Up Rule, we can also calculate, recursively, the 

expected length (EL) in rounds of a penalty shootout with sudden death, which is 
 

EL = [p(1− q)+ q(1− p)](1)+[pq+ (1− p)(1− q)](1+EL)]  

 
The two bracketed expressions, multiplied respectively by 1 and (1 + EL), signify the following: 
 

(i) the game ends in one round (X and Y each kick once) when X scores and Y does not 
with probability p(1-q), or Y scores and X does not with probability (1-p)q  

 
(ii) the game continues to a second round, and possibly beyond, with an expected length 

of (1 + EL), with probability pq (when both players score) plus (1-p)(1-q) (when both 
players do not score) in the second and possibly additional rounds (represented by 
EL).  

 
Solving for 𝐸𝐿 yields  

 

EL =
1

p+ q− 2pq
 

 
For p = 3/4 and q = 2/3, EL = 2.4. Thus, if there is sudden death after five penalty kicks, which 
will occur in more than 25% of games under both the Standard Rule and the Catch-Up Rule (see 
Table 1), the expectation is that it will take about half as many more rounds to determine the 
winner.  
 

FIFA World Cup matches since 1982 and UEFA European Championship matches since 
1976 have produced only seven penalty shootouts that were decided by sudden death. Five of 
these lasted one round, one lasted two rounds, and one lasted four rounds, giving an average 
length of 1.57 rounds.12 
  

EL does not depend on whether one uses the Standard Rule or the Catch-Up Rule. Under 
the Standard Rule, X kicks first and Y second on every round, whereas under the Catch Rule 
there is typically alternation. But this difference does not change the values of p and q, 
whichever team kicks first or second, in the formula for EL.   

 

                                                
12 For the list of these games, see https://en.wikipedia.org/wiki/List_of_FIFA_World_Cup_penalty_shoot-outs and 
https://en.wikipedia.org/wiki/List_of_UEFA_European_Championship_penalty_shoot-outs; for details of the 
shootouts, see http://www.fifa.com and http://www.uefa.com.	   
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Figure 2. Q
5
(X) and Q

5
(Y) for Standard Rule (Left Three Bars) and Catch-Up Rule  

(Right Three Bars) for Three Different Pairs of (p, q) 

   
So far we have illustrated our results only for p = 3/4 and q = 2/3. In Figure 2, we 

compare Q5(X) and Q5(Y) using the Catch-Up Rule (left three bars) and the Standard Rule (right 
three bars) for three different pairs of (p, q)—(2/3, 3/5), (3/4, 2/3), and (3/4, 3/5). Observe that 
the Catch-Up Rule comes close to equalizing Q5(X) and Q

5(Y) at 0.50 each, whereas the Standard 
Rule gives X a substantial advantage—Q

5(X) averages about 0.65.  
 
When there is sudden death with the Catch-Up Rule, we can ask how often it originates 

from ties of 0-0 up to 5-5. In Figure 3, we have given these probabilities for the three different 
pairs of (p, q) used in Figure 2.  

 
For these probabilities, games are most likely to go to sudden death from ties of 3-3 and 

4-4. When p and q are close, as is the case for (2/3, 3/5), sudden death occurs more often from 3-
3, but when these probabilities are farther apart, as in the case of (3/4, 2/3) and (3/4, 3/5), they 
occur more often from 4-4.  

 
We next ask whether there are any circumstances in which a team would ever try not to 

score a goal, or block a goal, in the penalty shootout. If neither team can increase its probability 
of winning by deliberately missing a kick or not blocking a kick, we say that the rule for 
determining the order of kicking on each round is incentive compatible or strategyproof.13 

 
The Standard Rule, in which one team shoots first on every round if it wins the coin toss, 

is strategyproof. Because neither team can change the order of shooting, each team will always 
try to make and block as many goals as possible, including during sudden death if the score is 
tied after five rounds. 
 

                                                
13 For an informative analysis of strategizing in sports competitions, and a discussion of its possible occurrence in 
the 2012 Olympic badminton competition, see Pauly (2014). 
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Figure 3. Probability of Sudden Death under the Catch-Up Rule, Originating  

from Ties of 0-0 up to 5-5, for Three Different Pairs of (p, q) 

 

In the case of the Catch-Up Rule, can a team, by deliberately missing a kick, change the 
order of kicking on the next round to its advantage?  It might do so if, by missing on round i, it 
can increase its probability of winning eventually.  
 

Proposition 2. The Catch-Up Rule is strategyproof if (p–q) ≤ 1/2. 
 
Proof. If a team is the first kicker on a round i (say, X), it will succeed with probability p 

and will have no incentive to deliberately miss. If it is the second kicker (Y), it will succeed with 
probability q < p, so conceivably it may deliberately miss on round i in order that it can kick first 
in round i+1, when its probability of scoring is higher. 

 
But if X succeeds on round i, Y, regardless of whether or not it is also successful, will 

always kick first on round i+1 anyway, so there is no reason for Y to deliberately miss in this 
case. Y will also kick first on round i+1 if X fails and it does so, too, by rule 3 of the Catch-Up 
Rule.  

 
The only circumstance in which Y will not kick first on round i+1 is if it tries and 

succeeds on round i after X fails. In this circumstance, Y does better on round i (scoring 1 goal), 
and on round i+1 (scoring 1 goal with probability q) than scoring on round i+1 with probability  
p < 1 (because, by deliberately missing on round i, Y kicks first on round i+1). (Note that if Y 
tried and and did not succeed on round i, it would go first on round i+1 and so succeed with 
probability p.) In sum, by trying and succeeding on round i after X fails, Y gains an average of 
(1+q) goals, and by not trying it gains an average of p goals, so Y’s net gain from trying and 
succeeding after X fails is (1+q–p) expected goals.   

 
As for X, if Y tries and succeeds, it gains an average of p goals on round i+1; if Y does not 

try, it gains an average of q goals. This makes X’s net gain p–q expected goals when Y tries and 
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succeeds. Subtracting X’s net gain from Y’s net gain yields the following net difference in 
expected goals between X and Y at the end of round i+1:14 

 
(1+q–p) – (p-q) = 1 – 2(p–q). 

 
This net difference is positive, and therefore favorable to Y’s trying and succeeding after 

X fails on round i, if (p–q) ≤ 1/2. In other words, there would be no incentive for a player to 
deliberately miss, when it kicks second on round i, unless its ability to score when it kicks first 
(with probability p) is much, much larger than its ability to score when it kicks second (with 
probability q). An analogous argument shows that when a team plays defense, it should always 
try to block a shot when the condition of Proposition 1 is met. Q.E.D.  
 

Because the condition of Proposition 1 seems highly likely to be met, there seems almost 
no circumstance in which Y would not try to score when it kicks second in a round. If play goes 
to sudden death, then by rule 3 of the Catch-Up Rule, the order of kicking on each round will 
alternate, which a player cannot manipulate without deliberately losing in sudden death. Hence, 
while the Catch-Up Rule is not strategyproof for all values of p and q, in practice it is probably 
as invulnerable to strategizing as the Standard Rule is. 

 

5. The Tiebreaker in Tennis 

 
 We next extend our analysis to tennis—in particular, to the tiebreaker, which is invoked 
in almost all professional tennis tournaments when a set is tied at 6-6 in games. The tennis 
tiebreaker differs from the penalty shootout in soccer in not being played in rounds, whereby 
each team is given one chance to score.  
 

In the tiebreaker, the player who would normally serve after a 6-6 tie begins by serving 
once, followed by the other player then serving twice. Thereafter, the two players alternate, each 
serving twice. We assume the server is the advantaged player in tennis.   

 
Assume that X begins by serving for one point. If X succeeds, it wins a point; otherwise, 

Y does. Regardless of who succeeds, the order of serving is followed by a fixed alternating 
sequence of double serves, YYXXYYXX …. When X starts, the entire sequence can be viewed as 
one of two alternating single serves, broken by the slashes shown below, 

 
XY/YX/XY/YX … 

 
where, between each pair of adjacent slashes, the order of X and Y changes as one moves from 
left to right.  
 

                                                
14 This holds for rounds later than i+1, because if Y deliberately misses on round i, it definitely goes first on round 
i+1. If Y succeeds on round i+1, which it does with probability p, this puts Y in a disadvantageous position on round 

i+2—besides its expected score being less at the end of round i+1. 
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Unlike soccer, we do not attribute any value to serving first or second between adjacent 
slashes, which we call a block. A player is advantaged only from serving, not from whether the 
sequence of the block is XY or YX.15 

 
The first player to score six points, whether or not on its serve, wins the tiebreaker. But 

the winner must win by at least two points, so a score of 6-5 in favor of X is not winning, 
whereas 7-5 is.  

 
Notice that because 6-5 sums to 11, an odd number, it must occur in the midst of a block, 

because each block adds two points. In fact, that block is XY, which occurs on odd blocks 1, 3, 5, 
…, so being in the midst of this block puts X one serve ahead. When Y serves next to complete 
the block, it will render the score either 7-5 or 6-6. 

 
Because these scores sum to an even number (12), each player will have had the same 

number of serves. Thus, if X wins by 7-5, it could not have won only because it started first and 
had more serves than Y. 

 
From 6-6 on, the rule that a player must win by two points ensures that a player can win 

only by winning twice in a block—when it serves and when its opponent serves. If the players 
split in each block, the tiebreaker continues, because neither player will move ahead by two 
points.  
 
Standard Rule and Catch-Up Rule 

 
Let p be the probability that a player is successful if it serves in the tiebreaker. Because 

the order of serving in blocks (XY or YX) does not matter—unlike penalty kicks in soccer, 
wherein shooting first is preferable to shooting second (p > q)—p is the only parameter we need 
to model the tie-breaker in tennis if the players are equally skilled in serving and not serving.16     

 
To illustrate our analysis of the tiebreaker in a simple case, assume that the first player to 

win at least 2 points (instead of 6), by a margin of 2 more points than its opponent, wins the 
tiebreaker. (Thus, 2-1 is not winning for X, but 2-0 and 3-1 are.17)  If neither player manages this 
feat because the score after each player serves twice is 2-2, the tiebreaker goes to sudden death. 
Then the first player to score 2 points in a row—once on its serve and once on its opponent’s 
serve—wins the tiebreaker. 

 
Let P2(X), P2(Y), and P2(T), be the probabilities, respectively, that X wins the tiebreaker, 

Y wins the tiebreaker, or there is a tie (T) after each player serves a maximum of twice. Assume, 
as before, that the sequence starts with X—XY/YX—but it may terminate early if either X or Y 
wins the first two points. We derive only P2(X) under the Standard Rule and the Catch-Up Rule, 

                                                
15 Arguably, the tiebreaker creates a balance of forces: X is advantaged by serving at the beginning, but Y is then 
given a chance to catch up, and even move ahead, by next having two serves in a row.    
16 An obvious extension of our model would be to assume that this is not the case; instead, X and Y’s skills in 
serving are given by p and q, respectively, and p ≠ q. 
17 If the criterion for victory were the first player to win 6 points rather than 2, then the margin of victory could be 
greater than 2 (at scores of 6-0, 6-1, 6-2, or 6-3 rather than 2-0 and 3-1).  
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because the calculations for P2(Y) and P2(T) are similar, and follow the same pattern as those we 
showed for the penalty shootout in soccer in Section 3. 
 

For the Standard Rule, which is presently used, there is one sequence in which X wins at 
2-0, and two sequences in which X wins at 3-1: (i) X (serves and) wins, and Y loses; (ii) X wins, Y 
wins, Y loses, and X wins; (iii) X loses, Y loses, Y loses, and X wins. The probabilities for these 
three sequences sum to 

 
P

2(X) = p(1-p) + p(p)(p)(1-p) + (1-p)(1-p)(p)(1-p) = 2p(1-p)(1-p+p
2). 

 
For the Catch-Up Rule, the winning sequences are: (i) X (serves and) wins, and Y loses; 

(ii) X wins, Y wins, X wins, and Y loses; (iii) X loses, X wins, Y loses, and Y loses. The latter 
sequence reflects the fact that after a player loses, it serves again, making the ordering, as in 
soccer, endogenous rather than exogenous. The probabilities for the one 2-0 sequence and the 
two 3-1 sequences sum to 

 
P

2(X) = p(1-p) + p(p)(p)(1-p) + (1-p)(p)(1-p)(1-p) = p(1-p)(2-2p+2p
2). 

 
Unlike the comparable formulas for penalty kicks in soccer after two rounds (see Section 

3), P2(X) = P2(Y) for the tiebreaker in tennis under the Standard Rule. Thus, equally skilled 
players have the same probability of winning under the Standard Rule, the complement of which 
is the probability of a tie. If p = 2/3, for example,   
 

P
2(X) = P2(Y) = 28/81 = 0.346;      P2(T) = 25/81 = 0.309. 

 
But for the Catch-Up Rule, these probabilities differ significantly:  

 
P

2(X) = 28/81 = 0.346;      P2(Y) = 17/81 = 0.210;      P2(T) = 0.444. 
 

Thus, it is the Standard Rule, not the Catch-Up Rule, that equalizes the probabilities that each 
player wins, at least without sudden death, by at least two points.  
 

This margin of victory under the Standard Rule ensures that each player serves the same 
number of times. Because p is the same for X and Y, and the order of serving does not matter, it 
follows that the players will have the same probability of winning, independent of the winning 
score. 
 

In Table 3, we present Pr(X), Pr(X), and P
r(X) for the Standard Rule and the Catch-Up 

Rule in tennis, wherein each block consists of two serves. To make these results comparable to 
those for the penalty shootout in soccer (Table 1), we assume p = 3/4, so 1–p = 1/4. This is surely 
an unrealistically low value for the receiver’s winning a point in most matches, compared with q 
= 2/3 in in the penalty shootout in soccer, when a team kicks second. But we use it only to 
illustrate how the probabilities of each player’s winning or tying, before sudden death, change as 
the number of blocks in the tiebreaker increases.  
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 1 Block 2 Blocks 3 Blocks 4 Blocks 5 Blocks 6 Blocks 

 

Standard 

Rule 

 
P

1(X) = 0.188 
P

1(Y) = 0.188 
P

1(T) = 0.625 

 
P

2(X) = 0.305 
P

2(Y) = 0.305 
P

2(T) = 0.391 

 
P

3(X) = 0.356 
P

3(Y) = 0.356 
P

3(T) = 0.288 

 
P

4(X) = 0.383 
P

4(Y) = 0.383 
P

4(T) = 0.235 

 
P

5(X) = 0.399 
P

5(Y) = 0.399 
P

5(T) = 0.203 

 

P
6(X) = 0.409 

P
6(Y) = 0.409 

P
6(T) = 0.181 

 

Catch-Up 

Rule 

 
P

1(X) = 0.188 
P

1(Y) = 0.062 
P

1(T) = 0.750 

 
P

2(X) = 0.305 
P

2(Y) = 0.133 
P

2(T) = 0.563 

 
P

3(X) = 0.354 
P

3(Y) = 0.186 
P

3(T) = 0.460 

 
P

4(X) = 0.379 
P

4(Y) = 0.225 
P

4(T) = 0.397 

 
P

5(X) = 0.393 
P

5(Y) = 0.253 
P

5(T) = 0.354 

 

P
6(X) = 0.404 

P
6(Y) = 0.274 

P
6(T) = 0.323 

 

Table 3. Probability That X Wins, Y Wins, or There Is a Tie after 1-6 Blocks in a Tennis 

Tiebreaker when p = 3/4 for the Standard Rule and the Catch-Up Rule  

 
For the Standard Rule, as this maximum number increases, the probability of a tie, and 

having to go to sudden death, declines rapidly, going from 63% (1 block) to 18% (6 blocks). For 
the Catch-Up Rule, the percentage decline is almost the same, going from 75% (1 block) to 32% 
(6 blocks).  

 
The Catch-Up Rule is decidedly unfair, favoring X by a ratio of 0.404/0.274 = 1.474 

when the players have a maximum of six serves each. This gives X almost a 50% greater 
probability of winning before sudden death, whereas the Standard Rule equalizes Pr(X) and Pr(Y) 
for all r.       

 
As we show in Table 4, incorporating sudden death into these probabilities reduces the 

bias of the Catch-Up Rule but does not eliminate it. At six blocks, X is favored over Y by a ratio 
of 0.566/0.434 = 1.152, but this still gives X more than a 15% advantage over Y, compared with 
the Standard Rule’s complete elimination of bias. 

 
 

 1 Block 2 Blocks 3 Blocks 4 Blocks 5 Blocks 6 Blocks 

 

Standard Rule 

 
Q

1(X) = 0.500   
 

 
Q

2(X) = 0.500  
 

 
Q

3(X) = 0.500   
 

 
Q

4(X) = 0.500  
 

 
Q

5(X) = 0.500  
 

 

Q
6(X) = 0.500  

 
 

Catch-Up Rule  

 
Q

1(X) = 0.600   
 

 
Q

2(X) = 0.600   
 

 
Q

3(X) = 0.590  
 

 
Q

4(X) = 0.580  
 

 
Q

5(X) = 0.573  
 

 

Q
6(X) = 0.566  

 

 
Table 4. Probability That X Wins, with Sudden Death, after 1-6 Blocks in a Tennis 

Tiebreaker when p = 3/4 for the Standard Rule and the Catch-Up Rule 

 

The Standard Rule for tennis, like the Standard Rule for soccer, is predetermined. In 
tennis, it fixes the order of serving, the number of serves of each player, and the winning score in 
the tiebreaker, just as the Standard Rule in soccer fixes the order of kicking and the number of 
rounds in the penalty shootout.  

 
The Catch-Up Rule in both sports, by contrast, makes who serves and who kicks, and 

when, dependent on how each side performed previously. What is striking is that it is the Catch-
Up Rule in soccer that tends to level the playing field, whereas it is the Standard Rule in tennis 
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that does so—in fact, the Standard Rule equalizes the probability that each player wins the 
tiebreaker in tennis.  

 
Up to five kicks by each team in soccer, and up to six serves by each player in tennis, 

seem to have been chosen to give the superior team a higher probability of winning after a tie. 
They surely do, instead of going to sudden death immediately, if one side is indeed superior.18   

 
But in our analysis, we have assumed that each side is equally skilled, so the question in 

this case is whether the Standard Rule in each sport gives each side the same chance of winning. 
Our analysis shows that this is in fact the case in the tennis tiebreaker, but the Catch-Up Rule 
would work better in the penalty shootout of soccer. Can other sports or games benefit from the 
Catch-Up Rule, or the Standard Rule that includes a Win-by-Two Rule?   

 

6. Fairer Rules for Sports and Games 
    
Many sports require the winner to be the first player or team to win a certain number of 

points. For example, in badminton and squash, the first player to score 21 and 11 points, 
respectively, and win by a margin of at least two points if there is a tie at 20 each in badminton 
or 10 each in squash, wins a game. In each of these sports, points are awarded to whoever wins, 
whether that player is the server or not.  

 
This is not true in another sport, racquetball, in which the winning score is 15 points by a 

margin of at least two. In racquetball, only the server wins a point when it serves successfully;19 
if it fails, the nonserver becomes the new server, as is true in badminton and squash. In all three 
racquet sports, the server is considered to be advantaged.  

 
But in a nonracquet sport, volleyball, wherein the winning score is usually 25 points by a 

margin of at least two and scoring is the same as it is in badminton and squash, it is the 
nonserving team that is advantaged (Schilling, 2009, p. 30). This is because the serving team 
does not usually win a point on its serve alone; instead, the nonserving team uses the serve to set 
up an attack, in which it is often able to win with a spike that cannot be returned.  

 

                                                
18 Before tiebreakers for sets were introduced into tennis in the 1970s, Kemeny and Snell (1960; reprinted 1976, pp. 
161–164) showed how the effect of being more skilled in winning a point in tennis ramified to a game, a set, and a 
match. For example, a player with a probability of 0.51 (0.60) of winning a point—whether it served or not—had a 
probability of 0.525 (0.736) of winning a game, a probability of 0.573 (0.966) of winning a set, and a probability of 
0.635 (0.9996) of winning a match (the first player to win three sets). In tennis, to win a game or a set requires, 
respectively, winning by at least two points or at least two games (if there is no tiebreaker). In effect, tiebreakers 
change the margin by which a player must win a set from at least two games in a set to at least two points in the 
tiebreaker. 
19 This was formerly the case in badminton, squash, and volleyball (discussed next), but this could lengthen games 
in each sport by as much as a factor of two, which caused problems in tournaments and discouraged TV coverage 
(Barrow, 2012, p. 103). The rule in racquetball that only the server can win a point is similar to the penalty shootout 
in soccer, wherein only the kicker can score a point. However, unlike soccer, the server in racquetball, if successful, 
continues to serve, whereas in the penalty shootout there are rounds, in which each team has the opportunity to kick.  
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In all these sports in which the first team to score a certain number of points wins, one 
might think that the Win-by-Two Rule in each would, as in the tennis tiebreaker, make them fair. 
But unlike tennis, wherein both players always serve the same number of times in the tiebreaker, 
this is not in general true in badminton, squash, racquetball, and volleyball. The player who 
serves more in the three racquet sports will enjoy an advantage, whereas the team that serves less 
in volleyball will gain this advantage.  

 
The Catch-Up Rule can be applied to these sports in the following manner: Whenever the 

advantaged player or team wins a point (as the server in badminton, squash and racquetball; as 
the receiver in volleyball), the other player or team becomes advantaged on the next point (by 
serving in the three racquet sports, by receiving in volleyball). If the players or teams are equally 
skilled, this will make for frequent switches of servers and will tend to equalize the number of 
times each side serves and does not serve.20   

 
However, as the Catch-Up Rule in the tennis tiebreaker demonstrates, it would not 

completely eliminate the bias that favors the advantaged player or team that, based on a coin 
toss, goes first. This is the server in the three racquet sports and the nonserver in volleyball, but 
the bias is reduced the higher the score needed to win is.21       

 
It would be fairer to use a sequence like that for tennis,  
 

XY/YX/XY/YX … 
 

but there are other alternating sequences that also create adjacent XY or YX blocks. For example, 
the strict alternation sequence, 

 
XY/XY/XY/XY … 

 

or the balanced alternation sequence, 
 

 XY/YX/YX/XY … 

 

are fair for the same reason that the tennis sequence, coupled with the Win-by-Two Rule, is 
fair—the players are advantaged the same number of times (see Section 5).22 However, if a block 

                                                
20 If the players are not equally skilled, the Catch-Up Rule will give a break to the less skilled players, who will lose 
more frequently and, therefore, be advantaged more often (e.g., by serving more frequently in the racquet sports). In 
effect, with differently skilled players, the Catch-Up Rule gives a boost to the less skilled players, downgrading the 
more skilled players. This makes competition among all players keener, which may make competition in a league or 
tournament more suspenseful. However, by helping the weaker players, it diminishes the superiority of the stronger 
players, which might be desirable, as with handicapping, for enhancing competition but not for singling out the 
players who most deserve to win.  
21 In Table 4, notice how Q1(X) decreases as r increases for the Catch-Up Rule.  
22 Strict alternation and balanced alternation are the terms used in Brams and Taylor (1999), who refer to the latter 
as “taking turns taking turns taking turns ….”  This sequence was originally proposed and analyzed by several 
scholars and is known as the Prouhet-Thue-Morse (PTM) sequence (Palacios-Huerta, 2014, pp. 82–85). Notice that 
the tennis sequence maximizes the number of double repetitions when written as X/YY/XX/YY/X …, because after the 
first serve by one player, there are alternating double serves by each player. This minimizes changeover time and 
thus the “jerkiness” of switching serves.            
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is thought of as a round, and one team benefits from always going first in the round (as in the 
penalty shootout in soccer), then the alternating sequence is definitely not fair.  
 

7. Conclusions 
 
To summarize, we have analyzed the rules of two sports, soccer and tennis, in detail, but 

only at the tiebreaking phase. We showed that the Catch-Up Rule is fairer than the Standard Rule 
in the penalty shootout of soccer, and in practice it is essentially invulnerable to strategizing. But 
the Standard Rule is fairer than the Catch-Up Rule in the tennis tiebreaker. 

 
For the four other sports (badminton, squash, racquetball, and volleyball) that we briefly 

considered in this section, the present rules do not equalize the probability that equally skilled 
players or teams will win, primarily because they do not ensure that each side is advantaged the 
same number of times. The tennis rule, or some other rule in which there are alternating blocks 
of XY and YX, would do exactly that, but are they practicable? 

 
There is little doubt that suspense is created, which renders play more exciting, by 

making who serves next dependent on the success or failure of the server—rather than fixing in 
advance who serves, and when, with one of the alternating rules. Moreover, the Win-by-Two 
Rule makes who ultimately wins less a matter luck and more a matter of skill, but it does not 
eliminate entirely the bias favoring the advantaged player who serves first.  

 
But a sport can generate keen competition, as the tennis tiebreaker does, without leaving 

uncertain who will be the server during the competition. To be sure, it is one thing to break a tied 
set in tennis, which is not usually how most sets are resolved, and another to use it in every game 
played in the three other racquet sports and volleyball. 

 
Of all the sports we have discussed, soccer, we think, is the sport that most needs reform. 

There is little excuse to continue to use the Standard Rule in penalty shootouts, which both in 
theory and practice gives the first kicker on every round a substantial advantage. Either the 
Catch-Up Rule, or the tennis or another alternation rule, seems justified and easy to implement.23 
 

Tournament play of many games, including chess, would be fairer using the tennis rule. 
In chess, playing white is considered to a give a player a small advantage, but in chess 
tournaments it is not always possible to ensure that all competitors play white and black equally. 
Even if it is, rising to the top of a tournament can occur by drawing most games and winning a 
few, or drawing few games but winning somewhat more of the other games, so the possibility of 
a draw in chess leaves inconclusive who should win, using points, between these two types of 
winners.  

                                                
23 We qualify this statement by pointing out that complete fairness will not be achieved unless there is an even 
number of penalty kicks (say, four or six), enabling each team to kick first in half of them. Even though the tennis 
rule completely eliminates the bias in the tiebreaker, it does not do so in the penalty shootout partly because of the 
odd number of kicks of each team. The mechanism proposed by Anbarci, Sun, and Ünver (2014) (see note 4) also 
requires an even number of penalty kicks to guarantee that each side kicks first in half of them.   
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To conclude, we have said nothing about the rules of major professional sports like 
American football, baseball, basketball, and hockey. In these, a team is significantly advantaged, 
especially in basketball, by playing games at home rather than away. But it would be logistically 
difficult, if not impossible, quickly to switch venues, based on the Catch-Up Rule, when teams’ 
home locations might be separated by 3,000 miles. Also impeding quick switches are that fans 
need advance notice of games, and broadcast networks need considerable setup time.  

 
But when the competitors are all in one place, such as in tournaments where games (e.g., 

chess) and sports (e.g., tennis) are often played, this is not a problem. We think it is appropriate 
to consider rule changes that foster greater fairness in these competitions as well as in sports, 
including those we have discussed, in which there are multiple, repeated contests that determine 
the outcome of a game.  
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