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I. Introduction 

Paid sick leave (PSL) in the United States has recently received a flurry of attention at 

the federal, state, and local levels. President Obama has called for a federal bill that “gives 

every worker in America the opportunity to earn seven days of paid sick leave.”1 Several large 

cities and states have recently mandated that firms offer PSL to employees. For example, 

California’s Healthy Workplaces, Healthy Families Act of 2014 enables workers to accrue one 

hour of PSL for every 30 hours worked from July 2015 onward; it is expected to affect more 

than 6.5 million employees with no paid sick days, or roughly 40 percent of state’s labor force.2 

PSL campaigns were active in 22 states in 2014 (National Partnership for Women & Families, 

2014), and when put to the ballot, have been approved by voters by wide margins.3 The Council 

of Economic Advisers has recently published a report advocating for increased access paid sick 

and family leave, arguing that it would improve retention and raise productivity (CEA, 2014). 

The reasons for the current policy interest garnered by government sick leave mandates 

are many. Worker sickness has negative implications for not only the productivity of the 

employee him/herself, but may also create negative externalities for coworkers and/or 

customers that the sick employee interacts with. The largely voluntary nature of paid sick leave 

offering by firms may lead to sorting of workers who are most willing to use/abuse PSL towards 

generous firms, leading to a race-to-the-bottom as firms withdraw PSL as a benefit. The cost of 

                                                           
1
 Remarks by President Obama in State of the Union Address, January 20, 2015. See 

 https://www.whitehouse.gov/the-press-office/2015/01/20/remarks-president-state-union-address-january-20-

2015.  
2
 Press Release “Governor Brown Signs Legislation to Provide Millions of Californians with Paid Sick Leave.” See 

http://gov.ca.gov/news.php?id=18690.  
3
 The first PSL mandate was passed in San Francisco, CA in 2006. Other large cities with the mandate include New 

York, NY, Washington, DC, Seattle, WA, Portland, OR, and San Diego, CA. Both Connecticut and Massachusetts 

have passed state-level mandates. See http://www.nationalpartnership.org/research-library/campaigns/psd/state-

and-local-action-paid-sick-days.pdf.  

https://www.whitehouse.gov/the-press-office/2015/01/20/remarks-president-state-union-address-january-20-2015
https://www.whitehouse.gov/the-press-office/2015/01/20/remarks-president-state-union-address-january-20-2015
http://gov.ca.gov/news.php?id=18690
http://gov.ca.gov/news.php?id=18690
http://www.nationalpartnership.org/research-library/campaigns/psd/state-and-local-action-paid-sick-days.pdf
http://www.nationalpartnership.org/research-library/campaigns/psd/state-and-local-action-paid-sick-days.pdf
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providing PSL is perceived to be fairly inexpensive, since many workers do not use the full 

allotment of paid sick days offered to them; the U.S. Bureau of Labor Statistics reports that 

average cost for sick leave per employee was $0.23/hour (BLS, 2010). It is also a benefit that is 

not widely provided in the U.S. economy, especially for low wage workers. Roughly 80 percent 

of low wage workers in the U.S. are not guaranteed paid time off due to illness. Indeed, the U.S 

lags behind many other nations in mandating that employers offer PSL (Heymann et al., 2009). 

Much of our current understanding of the impact of PSL is based on studies from 

Northern Europe. These studies find that more generous benefits lead to a modest increase in 

work absenteeism (Johansson and Palme, 1996, 2002; Olsson, 2009; Ziebarth and Karlsson, 

2010; Puhani and Sonderhof, 2010). As useful as the insights from these studies are, there may 

be difficulties in translating the results wholesale to the American experience. In contrast to the 

U.S., PSL in Europe is provided to all workers as national insurance. As such, the representative 

recipient of PSL benefit in the U.S. looks starkly different from the average worker in Europe. In 

addition, the large differences in design of PSL in the U.S. compared to Europe imply that the 

worker’s utility optimization may operate at different margins. For example, German firms must 

offer six weeks of PSL with 100 percent replacement rate. Beyond the first six weeks, 

employees may receive 80 percent of their full salary up to 78 weeks. In contrast, less than 1 

percent of workers with PSL in the U.S. receive 6 weeks of paid sick days (U.S. Bureau of Labor 

Statistics, 2013). 

While these institutional differences call for a study of absenteeism response to PSL in 

the U.S., the literature has been silent due to two large problems that we surmount in this 

study. First, a data set must contain information on both whether a firm offered PSL and how 
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many days the employee was absent from work. The most frequently used labor market 

datasets by economists in the U.S. fail to ask at least one of these questions. However, the 

National Health Interview Survey (NHIS) asks about both.4 Although these questions have been 

asked in the NHIS for many years, this study is the first to analyze them. Additionally, the NHIS 

asks respondents how many days were spent severely sick (i.e. bed-ridden), allowing for a 

distinction between debilitating/severe sick days and moderate/discretionary sick days. Moral 

hazard due to PSL should manifest itself in increased moderate days but not severe days. 

Second, a study of PSL in the U.S. faces identification difficulties. The European studies 

are almost universally analyzed in a difference-in-differences framework arising from a 

legislative change at a point in time. The lack of legislative mandates in the U.S. (until very 

recently) have made such identification strategies impossible. In this study, we take a multi-

pronged approach to identifying the moral hazard effects of PSL. Using rich information on the 

respondent’s health status, employment, and demographics, we create a balanced sample of 

administrative workers – such as secretaries and administrative assistants – who are offered or 

not offered PSL largely based their industry draw. Because industries that tend to offer PSL may 

provide other job amenities or fringe benefits that affect absenteeism, we augment this 

analysis by exploiting regional flu outbreaks in the U.S. We merge Google Flu Trends data to the 

NHIS to exploit specific region/years where workers are hit with widespread, acute health 

shocks. Workers facing a severe flu season will be more likely to exhaust their PSL allowance, 

and their replacement rate will exogenously drop from 100 percent to zero. The difference in 

                                                           
4
 Widely-used data, like the PSID, NLSY, CPS, ACS, and SIPP fail to ask sufficient questions to address this issue. The 

American Time Use Survey (ATUS) does ask about paid sick leave. However, the snap-shot nature of the survey 

makes it impossible to gauge an individual’s use of paid sick leave throughout the year. In recent work, Susser and 

Ziebarth (2016) examine the sick leave landscape in the U.S. using the ATUS. 
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absenteeism behavior of workers with or without PSL in the “control region” (the severe flu 

outbreak region/years, where the replacement is low for both groups due to exhausting PSL 

benefits), compared to the difference in absenteeism behavior of workers in the “treatment 

region” (the mild flu outbreak region/years) identifies the change in the worker’s absence-

taking behavior in response to change in the replacement rate. 

We buttress our main results by analyzing the differential responses of workers whose 

wages are input-based (hourly wage or salaried) and output-based (tips or commission). 

Administrative workers (largely input-based pay) are more responsive to PSL compared to sales 

workers (largely output-based pay). We also confirm that absenteeism due to moderate illness 

is quite responsive to PSL, whereas absenteeism due to severe illness is unresponsive. Moral 

hazard exists, and workers do respond to PSL by taking more sick days. Being offered sickness 

insurance (in the range typically faced by U.S. workers – about 7 paid days per year) results in 

about 1.2 extra days of absenteeism; the magnitudes are in line with those found in the 

European studies. 

The remainder of the paper is arranged as follows. Section II describes the current state 

of the literature, differences between the European and U.S. experience in PSL, and challenges 

of estimating the impact of PSL on worker absenteeism in the U.S. Section III presents the data 

and identification strategy. Section IV shows the results. Section V concludes. 

 

II. Background 
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A small but vibrant strand of the economic literature has examined the impact of PSL, 

generally finding that more generous benefits lead to a relatively modest increase in work 

absenteeism. To date, academic studies of PSL have been almost exclusively focused on 

Northern Europe for two important reasons. First, mandated PSL is a much more widespread in 

Europe than in the United States. Germany, Austria, Sweden, and Norway (where most of the 

academic studies have been based) all have a long history of very generous national sickness 

insurance programs. Because of the perceived costs or benefits of PSL, these countries 

instituted large changes to structure or generosity of their programs. These structural breaks 

served as natural experiments for economists to analyze the impact of PSL, usually in a 

difference-in-differences framework. The studies almost universally find that more generous 

sick leave policy results in higher absenteeism. Elasticity of absenteeism with respect to the 

replacement rate (percentage of daily wage paid to the employees when they miss work due to 

sickness) is estimated to be about 0.6.
5
 Some studies conclude that reducing the net benefit of 

taking absence induces workers to return to work quicker (Johansson and Palme 2005; 

Markussen, Mykletun, and Røed 2012). 

Second, because of the universal nature of national sickness insurance in these 

countries, the data requirements to conduct an analysis are straightforward. Survey 

respondents do not have to be queried about whether their workplace offers PSL. There are no 

sample selection issues to worry about, at least with respect to PSL, as workers and firms do 

not match with each other based on this fringe benefit. Because changes in the sick leave law 

impact all workers at the same time, the control group is simply everyone in the data in the 

                                                           
5
 For example, a decline in replacement rate from 100 to 80 percent led to a 12 percent decline in the number of 

absent days taken (Ziebarth and Karlsson, 2010). 
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period prior to the law change, and the treatment group is everyone in the data after the 

change. 

Stark differences between the U.S. and Northern Europe warrant a separate analysis of 

PSL in the U.S. In contrast to the more ethnically and socio-economically homogenous 

populations in Northern Europe, the average U.S. worker earns less, is more likely to be black or 

Hispanic, and takes less than half the number of sick days.6 Voluntary PSL provision in the U.S. 

requires researchers to think carefully about non-random worker-firm matching. The PSL policy 

debate in the U.S. is fundamentally different, as it centers on a sharp increase in the 

replacement rate from zero to 100 percent for only a very short duration. Summary statistics 

from the National Compensation Survey, presented in Table 1, illustrates the U.S. PSL landscape 

in 2013 (U.S. Bureau of Labor Statistics, 2013). About two-thirds of workers in the U.S. are 

offered PSL; of those workers offered PSL, the majority receives less than 10 paid days off per 

year. A larger portion of workers are offered paid holidays or vacations, and these other 

benefits often go along with PSL. Larger firms are more likely to be generous in the provision of 

PSL; 85 percent of employees at very large firms receive PSL, compared with 52 percent in 

smaller firms. When PSL is offered, it is overwhelmingly offered in a fixed number of days per 

year, often with “use it or lose it” restrictions on the number of days that can be carried over 

from one year to the next. 

                                                           
6
 For example, manufacturing workers in Sweden from Johansson and Palme (2005) earned a wage of 

approximately $22 (in 2015 dollars) and took 10 to 12 sick days per year (Wage/demographic data extracted from 

Statistics Sweden: http://www.scb.se/statistik/AA/OV0904/2004A01/OV0904_2004A01_BR_SV_A01SA0401.pdf ). 

Manufacturing workers in the U.S. in 2015 earn 10 percent less and take fewer than 5 sick days 

(Wage/demographic data extracted from Bureau of Labor Statistics: 

http://www.bls.gov/news.release/empsit.t24.htm). 

http://www.scb.se/statistik/AA/OV0904/2004A01/OV0904_2004A01_BR_SV_A01SA0401.pdf
http://www.bls.gov/news.release/empsit.t24.htm
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Figure 1 and Table 2, derived from the NHIS, confirm that U.S. workers take far fewer 

sick days compared to their European counterparts. The average administrative worker takes 

less than 5 sick days a year. This magnitude is very similar to the findings for U.S. workers in 

Ziebarth and Karlsson (2010), where U.S. workers had the fewest absence days out of workers 

in 17 countries. In addition, the NHIS reveals the top 20 percent of workers account for 80 

percent of all sick days taken. Most employees do not come close to exhausting their allotment 

of sick days. These stark differences in the U.S. relative to Europe motivate the need to examine 

the potential impact of mandated (or expanded) PSL in the U.S. more systematically. However, 

the empirical issues are formidable in the U.S. The next section describes these issues in detail 

and outlines our solutions. 

 

III. Data and Identification Strategy 

A. Sick Leave Data 

Because U.S. states and cities are only now considering mandating PSL, there is almost a 

complete lack of natural experiments similar to the European cases that we can exploit for 

identification purposes.7 Thus, any current dataset used in the absenteeism analysis must 

contain both the number of sick days the employee took and whether the firm offered PSL.8 

Part of the reason why relatively little U.S. research has been done on the economic effects of 

                                                           
7
 Ahn and Yelowitz (2015) examine labor market effects of Connecticut’s statewide mandate, but the American 

Community Survey data does not have information on absenteeism. 
8
 Ideally, one would also want to know replacement rates for sick leave, accrued days, use-it-or-lose-it provisions 

from one year to the next, and substitutability with vacation days. We are not aware of any large scale dataset 

with such detailed information. 
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sick leave is due to lack of such data.9 In the subsequent analysis, we rely on the NHIS, which is 

conducted by the National Center for Health Statistics. The NHIS obtains information about the 

amount and distribution of illness, its effects in terms of disability and chronic impairments, and 

the kinds of health services people receive. It provides a continuous sampling and interviewing 

of the civilian, noninstitutionalized population of the United States. 

Starting in 1997, the NHIS was redesigned to include a basic module, a periodic module, 

and a topical module. The basic module corresponds to the NHIS core questionnaire and is 

made up of the family core, the sample adult core, and the sample child core questions. We use 

data from the 2005 to 2013 NHIS sample adult files, which ask, on an ongoing basis, sample 

adult workers both about PSL and absences from work due to illness. In addition, it asks about 

“bed days”, which can be thought of as severe sick days. 

The number of sick days taken captures the worker’s behavior, impacted partly by the 

presence of the sick leave benefit, where the worker may truly be incapacitated or engaging in 

moral hazard behavior. The number of bed days, in contrast, most likely captures the worker’s 

involuntary (or true) absence due to sickness.10 In essence, the difference between the former 

and the latter captures “moderate” sick days where the worker could be induced to return to 

work if necessary. Returning to Table 2, one observes that the typical administrative worker is 

absent from work for 4.2 days per year, and reported sick days are nearly evenly divided 

                                                           
9
 The General Social Survey (GSS), National Survey of America's Families (NSAF). American Time Use Survey (ATUS), 

National Longitudinal Study of Adolescent to Adult Health (Add Health), and A Three-City Study ask about paid sick 

leave. The PSID’s “Transition to Adulthood” subsample also asks about sick leave. 
10

 This is, of course, assuming that the worker responds truthfully to the survey. Our subsequent results make us 

confident that the responses are a valid measure of severe illness. 
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between severe and moderate days.11 We remain agnostic about whether workers taking these 

moderate days off is welfare enhancing. While from an employer’s naïve perspective, any 

productivity from a sick worker may be preferable to none (provided that the employer must 

pay full wages anyway), there are at least two reasons why the worker staying home to 

recuperate may benefit the firm. First, resting at home may accelerate the worker’s return to 

full productivity. Second, staying at home may prevent transmission of sickness to other 

employees and/or customers. 

 

B. Flu Data 

We augment the NHIS with data from Google Flu Trends. We focus on influenza because 

of the widely held belief in the literature that most sick leave days are taken for acute, short-

term illness such as the flu or the common cold, where symptoms that would incapacitate the 

worker usually lasts less than one week (Ziebarth, 2013; Johansson and Palme, 2005). Illnesses 

of longer duration would not be relevant for PSL in the U.S.  

Google Flu Trends measures flu prevalence using search data for about 40 flu-related 

queries.12 Researchers at Google have shown that the measures in Google Flu Trends track well 

                                                           
11

 The NHIS asks about sick days from work and bed-ridden days. Bed-ridden days is asked of both workers and 

non-workers, and includes both work days and non-work days (i.e. weekends). Thus, the sum of moderate days 

(created from the difference between sick days at work and bed-ridden days, and truncated at zero) and severe 

days does not equal sick days from work. However, Panel 2 shows that among those reporting bed-ridden days, 

they are more than twice as likely to report severe days in a work-week increment (5 days, 10 days, etc.) as a 

weekly increment (7 days, 14, days, etc.), suggesting that many workers perceive this as a question about the 

severity of work-related illness. As Panel 3 shows, virtually all individuals report fewer severe days than sick days 

from work. For example, just 4 percent of workers who took 3 or more sick days from work report more bed days 

than sick days. 
12

 Flu Search Activity, Google Flu Trends. See 

https://www.google.com/publicdata/explore?ds=z3bsqef7ki44ac_alse. 

https://www.google.com/publicdata/explore?ds=z3bsqef7ki44ac_alse
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with the data on flu severity (number of outpatient visits and/or hospitalizations from a sample 

of hospitals across the U.S.) released by the Center for Disease Control and Prevention (CDC) 

(Ginsberg, et al., 2009). 

However, research by Cook, et al. (2011) shows instances where Google Flu Trends 

measure of flu prevalence diverges sharply from data collected by the CDC.13 In particular, 

Google Flu Trends under-counted the severity of the H1N1 flu outbreak of 2009, in comparison 

to CDC data on hospitalizations. This divergence assists us in our identification, because the CDC 

data captures more severe cases of the flu that require hospital visits, while Google Flu Trends 

captures milder cases where the afflicted worker still feels well-enough to search the internet 

for information about the flu, or post status-updates indicating that he or she has the flu. 

Focusing on hospital visits may miss mild flu cases where the workers could return to work.14 

We use the CDC data as a robustness check to confirm that workers do not alter their behavior 

in response to PSL when the flu is severe enough to merit a visit to the hospital. 

 

C. Identification Approach 1: Balanced Sample of Administrative Workers 

The voluntary nature of PSL offers also means that we have to account for sample 

selection issues. In particular, if PSL is offered as a part of a more comprehensive benefits 

package, employees who highly value these benefits (who may differ in age, experience, 

                                                           
13

 The CDC data captures the degree of flu prevalence by counting the number of hospital visits and viral 

surveillance outcomes from hospital laboratory specimens for “influence-like-illnesses (ILI).” ILI is defined as “fever 

(temperature of 100°F [37.8°C] or greater) and a cough and/or a sore throat in the absence of a known cause other 

than influenza” (CDC). 
14

 That is, if a worker feels the need to visit the hospital or doctor’s office for an ILI, we do not regard it as moral 
hazard behavior. 
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productivity, and health) may match with firms that offer more generous compensation 

packages. A simple comparison of absenteeism between workers who have PSL and those who 

do not will be biased, since those who value sick leave most highly (and thus may be most 

inclined to use it, whether he/she needs to or not) will seek to match with the firms that are the 

most generous with this benefit. 

While the NHIS solves our problem of finding a dataset that identifies who has access to 

PSL and takes advantage of it, it does not solve our sample selection problem. The first column 

of summary statistics from Table 3, which separates roughly 66,000 workers from 2005-2013 by 

whether their employer offered PSL, shows large differences in observable characteristics. 

Workers with PSL take more sick days than those without, but also have large differences in 

lifestyle (smoking, exercise, and alcohol use), socioeconomic status (age, gender, marital status, 

race, education) and workplace characteristics (tenure, firm size, earnings, salaried workers, 

private sector, and health insurance). 

The fact that workplace characteristics vary between workers with and without PSL 

suggests non-random matching between workers and firms (Jovanovic, 1979; Postel-Vinay and 

Robin, 2002; Hwang, Mortensen and Reed, 1998; Garen, 1998; and Woodbury, 1983).15 

However, studies by Poterba, Venti and Wise (1995) and Chetty et al. (2014) argue that such 

                                                           
15

 Although some authors have estimated the effects of firm policies with an instrumental variables approach, it is 

often difficult to find compelling instruments. Evans, Farrelly and Montgomery (1999) estimate the impact of 

workplace smoking bans on the likelihood of smoking, using firm size as an instrumental variable. In our context, 

examining absenteeism, firm size is unlikely to be a valid instrument because it likely has a direct effect on 

absenteeism. For example, Alvarez (2002) examines work absences and finds firm size is one of the job-related 

characteristics that affect absenteeism.  



13 

 

worker-firm matching is likely unimportant for pension benefits.16 We expect that if worker-

firm matching is unimportant for secondary components of the compensation package (like 

pensions), such matching will be unaffected by tertiary features (like PSL, vacation days, 

wellness/exercise programs, employee discount programs, life insurance, and employee 

assistance programs).17 Even if such fringe benefits are initially unimportant for the worker-firm 

match, they may become more important over time through non-random worker attrition. 

Workers for whom such fringe benefits are quite valuable may be more likely to stay at the firm. 

In our work, we address this by examining workers with low tenure where non-random attrition 

should not be problematic, and find substantively similar effects to our main results. 

 To minimize the selection issue, we create a sample that is balanced on both sides of the 

treatment variable: “Do you have PSL on this MAIN job or business?” Broadly speaking, we 

attempt to isolate the sample to an occupation category that does not require a high amount of 

initial human capital (academic or experience), is relatively homogenous in job description (thus 

making employees easily substitutable from the firm’s perspective), does not lead to large 

increases in pay or status after years of employment with the firm (thus leading to workers and 

firms considering implications of a long term, sustained match), and is well-represented across 

all industry groups. These employees may or may not be offered PSL, but a firm is unlikely to 

design its human resources policy with this class of workers as a primary class of employees to 

                                                           
16

 Poterba, Venti and Wise (1995) argue “The first approach relies on the largely exogenous determination of 401(k) 

eligibility, given income. Eligibility is determined by employers. If household saving behavior is largely independent 

of individual characteristics related to the probability of working at a firm with a 401(k) plan, a hypotheses we 

evaluate based on saving behavior before 401(k)s became available, then a comparison of the financial assets of 

families with and without 401(k) eligibility can be used to infer the saving effect of these plans.” More recently, 

Chetty, et al. (2014) examine effects of automatic firm contributions in Denmark among those who switched firms. 

They show their results are not affected by endogenous sorting. 
17

 Harris and Yelowitz (2015) examine effects of employer sponsored life insurance. 
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satisfy. That is, from the employer’s perspective, whether they offer PSL for these employees 

would be incidental. 

We restrict the sample to non-elderly adult workers with exactly one job, who are paid 

either on a salaried or hourly basis, work in the public or private sector, and have at least one 

year of job tenure.18 Restricting the sample adults to non-elderly employed reduces the sample 

size by two-thirds. To balance the sample the best we can with respect to job 

characteristics/job amenities (other than PSL), we restrict the sample to workers in two 

common occupations: “Sales and Related Occupations” and “Office and Administrative Support 

Operations.” These are the largest single work categories (approximately 25% of the employed 

sample) and are prevalent across many industries which offer very different fringe benefit 

packages to workers.19 Restricting to these occupations further reduces the sample size by 

three-quarters; we retain approximately 2,000 observations per year.  

We use the Administrative Workers as the primary sample for analysis. Summary 

statistics in Table 3 from Administrative Worker sample, compared to the full sample from the 

NHIS, clearly shows that our sample is much more balanced. While similarities across 

demographic characteristics such as gender, race, and marital status are encouraging, the most 

salient feature of our sample is that the number of bed days is virtually identical, whether PSL 

was offered or not. This is clear indication that workers in this occupation category did not 

                                                           
18

 We also require that they provide valid, non-missing answers to all survey questions used. 
19

 In their analysis of health insurance, Einav, Finkelstein, and Cullen (2010) note that as a consequence of Alcoa’s 
business structure, “employees doing the same job in the same location may face different prices for their health 

insurance benefits due to their business unit affiliations.” 
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select into a particular job to take advantage of PSL because they were more or less susceptible 

to severe illnesses. 

Figures 2a and 2b confirm that PSL policies for Administrative Workers are broadly 

representative of PSL policies for all other worker categories across all industries. In addition, 

Figure 3 shows that Administrative Workers compose a sizable fraction of workers across many 

industries. Therefore, an analysis of the balanced category of Administrative workers is actually 

a substantively broad analysis of all industrial sectors in the economy.  

Although our sample is much more balanced across PSL status compared to the full 

sample, there are still some noteworthy differences. For example, workers with PSL are more 

likely to be working for public institutions and more likely to be offered employer-sponsored 

health insurance. These workers are also more highly paid, but this could be attributable for 

higher average tenure at the job. Although it is unsurprising that workers in firms that offer PSL 

would also be offered better overall compensation packages, this may lead to some systematic 

differences in the budget constraint of workers. As most of these differences mildly increase 

the budget of those employees who have PSL, the estimated impact of sick leave on worker 

absenteeism is expected to be an upper-bound.20 We include firm-level characteristics, such as 

firm size, in an attempt to account for these unobserved differences. Our specifications also 

include controls for other employer benefits/amenities (ESHI, any health insurance, earnings, 

class of worker, tenure, hourly vs. salaried), demographics (age, gender, race/ethnicity, marital 

                                                           
20

 This follows from assuming that the generous benefits and salaried status are treated as non-labor income. 

Therefore, in a labor-leisure choice model, we expect pure income effects from these compensation characteristics, 

leading to more leisure time taken (in the form of more sick leave days taken), compared to the case where sick 

leave is not offered and non-labor income is lower.  
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status, education) geography, health status (chronic conditions, BMI), health habits (smoking, 

exercise, alcohol), and year. 

We also attempt to spot discernable sick-day taking patterns of workers who have PSL. 

If PSL is pivotal in worker decisions to call in sick, we may be able to observe workers “bunching” 

at the PSL limit, where the replacement rate changes from 100 percent to zero. As shown in 

Table 2, some workers report that they take five sick days, while others report seven days. We 

suspect both sets of workers may be indicating that they took one week off from work. Our 

categories attempt to account for this ambiguity by combining days strategically. Table 1 (from 

the National Compensation Survey) shows considerable variation exists in benefits packages 

beyond our coarser measure of PSL offered or not (from the NHIS). Ideally, we would like to 

have fine-grained provision details, which would allow for sharp hypothesis testing on bunching, 

but unfortunately do not have it in the NHIS. 

 

D. Identification Approach 2: Exploit Regional Flu Shocks 

We divide the U.S. into four Census regions (and years) and capture the virulence of the 

influenza virus to construct a proxy for latent sickness conditions. This allows us to further 

explore whether any moral hazard effects we find related to “legitimate” versus “abusive” use 

of sick leave (as well as bed days). Data constraints from the public-use file of the NHIS restrict 

us from using finer geographic areas, and it is fair to ask if this introduces significant 

measurement error by hiding variation in flu rates within a region. 
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Using finer geography as the catchment area creates its own issues. Research has shown 

a strong spatial pattern to flu transmission, as the prevalence of flu in own and neighboring 

areas is strongly correlated (Trogdon and Ahn, 2015). Thus using a finer geographic area as an 

“exogenous” treatment would be problematic, even if the data were available.  

To gauge the appropriateness of using Census regions, we use a variant of a test that 

evaluates whether peers groups are randomly assigned (Sacerdote, 2011). The own 

characteristic is the dependent variable, and peer characteristic is the independent variable. 

The insight is that if assignment is random, peer characteristic should not predict own 

characteristic. We show the opposite: that “assignment” is not random. Using state-level 

variation in the Google Flu Trends data, we construct two flu exposure rates: an “own” 

exposure that averages over states in the Census region except the state in question and an 

“other” exposure that averages over states outside the Census region. If region is an 

appropriate level of flu catchment, we would expect “own” flu exposure to be more highly 

correlated with the state’s flu exposure. We estimate the parameter on the “own” to be 0.69 

(s.e.=0.11), showing that it is highly predictive of the state’s flu exposure. The estimate on 

“other” is one-third in size and statistically insignificant. 

The structure of PSL in the U.S., along with the severity or prevalence of the flu, creates 

an interesting optimization problem for the worker. Unsurprisingly, areas with high prevalence 

of the flu (across time) will exhibit more sick leave being taken on average. However, in a year 

where the flu hits particularly hard, workers may quickly run up against the PSL limit and face a 

replacement rate of zero. Therefore, while the level of sick leave taken should be positively 

correlated with the average level of influenza prevalence, the rate of increase in sick days taken 
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should be negatively correlated with prevalence. Using a balanced group of workers and 

exogenous flu shocks gets us as close as possible to a natural experiment, given the current 

legislative landscape of the United States. 

 

IV. Econometric Model and Results 

Our basic model uses our balanced Administrative Worker sample and estimates the 

impact of being offered PSL on the use of sick days. 

𝑆𝑖𝑐𝑘𝐷𝑎𝑦𝑠𝑖𝑗𝑡 = 𝛽0 +  𝛽1𝑃𝑆𝐿𝑖𝑡 + 𝛽2𝑋𝑖𝑡 + 𝛽3𝑍𝑖𝑡 + 𝛿𝑗 + 𝛿𝑡 + 𝜀𝑖𝑗𝑡 

Where 𝑆𝑖𝑐𝑘𝐷𝑎𝑦𝑠𝑖𝑗𝑡 is the number of sick days that the worker reported taking in the past 12 

months. 𝑃𝑆𝐿𝑖𝑡 is an indicator equal to one if the worker has PSL. 𝑋𝑖𝑡 and 𝑍𝑖𝑡 represent 

individual (age, gender, etc.) and firm level (firm size, ESHI benefits, public vs. private, etc.) 

characteristics that can influence a worker’s decision to take sick days. 𝛿𝑗 and 𝛿𝑡 are region and 

time fixed effects. 

In this basic specification, with our detailed individual/firm characteristics and 

restriction of the sample to a homogenous occupation, the assignment of sick leave for an 

employee will be close to random. Therefore, 𝛽1 should be a measure of the causal effect of 

sick leave, at least for the balanced group considered. If 𝛽1 > 0, then moral hazard exists: 

individuals take more sick days in the presence of PSL insurance compared to the absence of 

such an insurance. 
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Table 4 presents these initial results. The first column shows that having PSL results in 

workers taking an additional 1.2 days off from work due to sickness, compared to workers 

without PSL. In addition, the likelihood of extended absences (either 5 or 10 days absent during 

the year) increases by 1.5 to 3.1 percentage points when PSL is offered, from baseline rates of 

7.4 to 15.7 percent. The next two rows show that both workers with children and without 

children respond similarly to PSL provisions. 

Stratifying workers by tenure (divided at the median of 5 years of tenure) shows that 

workers with higher tenure take more sick days compared to low tenure workers when offered 

PSL. This may be due to accumulated sick days that carry over from one year to the next.21 

Importantly, the effect is also significant for the low tenure group as well. If workers who 

remain at a firm for many years are a better match to the firm’s fringe benefits, then the 

interpretation of PSL causing absences would not be justified; rather, the interpretation could 

be that absence-prone workers remain at firms with PSL. The fact that a similar pattern 

emerges for low tenure administrative workers suggests that such non-random attrition is not 

an important concern. 

The final row in Table 4 examines sales workers, whose compensation is mostly output-

based. If such a worker takes paid time off from work, the implicit replacement rate is much 

lower since base salary is a small component of total compensation. Consistent with this, the 

impact of PSL is one-third the size of that for administrative workers and is insignificant. 

                                                           
21

 NCS summary statistics from Table 1 shows that over half of workers who are offered paid sick leave have some 

type of carryover provision for sick days. 
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Returning to the first row, when sick days are divided between severe sick days and 

moderate sick days, we find that PSL only impacts moderate sick days. The interpretation is 

then that most of the increase in the number of sick days taken due to PSL can be attributed to 

moral hazard. 

Next, we turn to the model incorporates the flu data from Google Flu Trends to estimate 

the impact of the “treatment” of receiving more or less negative health shocks in a given 

region/year. Table 5 shows that workers who live in a high flu prevalence region are more likely 

that a worker will take more sick days. Controlling for region and year, being in a high flu region 

(defined as being above the median for the Google Flu Trend measure), is associated with 

roughly 0.85 more days of sick days taken.  

It is worth noting that when we substitute our preferred measure of influenza with data 

from the CDC, residing in a high flu region is no longer associated with a statistically significant 

increase in sick days. This lack of correspondence between the two measures can be explained 

by understanding what types of influenza cases Google Flu Trends and the CDC are measuring. 

Google Flu Trends captures the overall level of influenza in a region by people’s internet search 

and social media postings. The CDC, on the other hand, captures influenza-associated 

hospitalizations. While 5 to 20 percent of the population catches the flu in any given year, less 

than 0.1 percent is hospitalized due to influenza-like symptoms. In addition, the elderly, the 

very young, and those with pre-existing medical conditions are at higher risk for serious 

complications from the flu, leading to a higher likelihood of hospitalization.22 Therefore, the 

                                                           
22

 Seasonal Influenza Q & A, CDC. See http://www.cdc.gov/flu/about/qa/disease.htm. 

http://www.cdc.gov/flu/about/qa/disease.htm
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CDC data captures the extreme right-tail of the distribution of influenza severity for a subset of 

the population that is less likely to be in the labor market. 

Having established that workers in high flu regions get sick more often, Table 6 shows 

our preferred results, which stratifies the administrative sample into high and low prevalence 

regions. The control group is administrative workers in high flu prevalence regions, and is 

shown in the first row. For the control group, regardless of whether they have PSL or not, they 

are more likely to have more bouts of influenza in a given flu season. As such, workers with PSL 

are more likely to have used up their allotment of sick days and face a replacement rate of zero 

for marginal absences. When the replacement rate declines, the propensity to take additional 

sick days also declines. The results indicate the impact of having PSL is substantively smaller 

(0.69 sick days versus 1.2 for the full sample), and is statistically insignificant. 

In contrast, workers in low flu regions, shown in the second row, display markedly 

different behavior. Because all workers in these regions are less likely to have received negative 

health shocks, workers with PSL will be more likely to have full replacement rate sick days 

available for use. These workers are much more inclined to take sick days (at an additional 1.75 

days), compared to workers in the same region who do not have PSL, and the result is highly 

significant. 

Several alternative specifications buttress our main result. The final columns show that 

the number of severe sick days and hospitalizations that a worker had over the last year is 

unresponsive to whether he or she worked in a high or low flu region. The intuition is that if a 
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worker is sick enough to be bed-ridden, the presence of PSL should not be pivotal in deciding to 

take time off. 

The final two rows of Table 6 use Sales Workers instead. As expected, the results show 

that whether sales workers reside in high or low flu regions, their response to PSL is similar, and 

modest in size. Having PSL results in approximately 0.4 more sick days taken. 

Finally, Table 7 examines “bunching” behavior of workers at common PSL durations – 

such as one week (measured as 5-7 days, given the difficulties of reporting in the NHIS in Table 

2). The 2013 National Compensation Survey (Table 1) showed that conditional on being offered 

PSL, it was by far the most common for workers in small firms (less than 500 employees) to 

have 5-9 days of sick leave. Despite data limitations in the NHIS, the analysis finds some 

evidence of workers changing absence-taking behavior. The “dip” at 0-4 days (nearly 4 

percentage points) and “bump” at 5-7 days (nearly 3 percentage points) for workers in small 

firms may be showing strategic absence-taking behavior by fully utilizing their PSL benefits and 

no other days beyond. No such evidence of bunching at one week is found for workers in large 

firms. However, Table 2 shows that PSL tends to be more generous in large firms, with the 

plurality of employees receiving two weeks of paid sick leave. There is evidence of extended 

sick leave spells for workers at large firms, consistent with more generous base level offerings 

and roll-over provisions. Approximately 11 percent of workers at large firms (500 or more 

employees) have 15 or more days of paid sick leave. Although these NHIS results are suggestive 

of bunching, more detailed data with information on PSL provisions would be needed to 

conclusively show that this behavior is driven by PSL. 
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V. Discussion 

Using the only publicly available US dataset (NHIS) that asks respondents about the 

number of moderate and severe sick days taken off from work, whether the firm that employs 

them offers PSL, and other detailed information about both workers and firms, we find that 

employees react to PSL by taking roughly 40 percent more sick days, compared to workers that 

are demographically similar yet work in firms that do not offer PSL. Importantly, PSL only 

impacts the workers’ propensity to take moderate sick days. Neither severe, bed-ridden sick 

days nor hospitalizations are affected by PSL. 

Augmenting this data with Google Flu Trends allows us to identify groups of workers 

where the annual allotment of PSL may be exhausted, due to regional differences in the 

severity of influenza outbreaks. We find that when workers are more likely to have exhausted 

their PSL, they are no longer more likely to take sick days, as compared to their counterparts 

who were never offered PSL. This behavior is consistent with rational workers responding to 

the replacement rate changing from 100 percent to zero when PSL is exhausted. Our basic 

findings are further confirmed by examining sales workers, whose compensation is output-

based, sharply lowering the replacement rate even if PSL is offered. We find that these workers 

are less sensitive to the provision of PSL. Finally, we find some suggestive evidence of bunching 

behavior by workers at the PSL limit. 

In interpreting these findings, we must be careful in assigning value judgements to the 

increase in propensity to take days off. Most of the literature on European PSL to date has been 

agnostic about whether workers are abusing the benefit, because while a change in worker 

absence is easy to demonstrate, the severity of illness during the absence is essentially 
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unknown. The data simply has not been robust enough to differentiate workers’ intentions 

when it comes to taking days off for short, acute illnesses. The popular press, in contrast, tends 

to present PSL mandates in sharply differing tones. The “virtuous use” of PSL, helping to protect 

low-income employees when medical issues arise, is sometimes highlighted, while the potential 

for utilizing the benefit as substitute vacation days is emphasized elsewhere (Miller, 2009; 

Needleman, 2012; Noguchi, 2015; Boston Globe, 2015; Davis, 2015). 

Whether a worker “should” use PSL is a much more nuanced question. At one end, all 

would agree that a worker taking a sick day to enjoy the sunny weather or to extend a weekend 

vacation would constitute abuse of the benefit. At the other, if a worker is sick enough to be a 

health hazard to himself or herself as well as co-workers and customers, it is in everyone’s best 

interest for the employee to stay home and recuperate.23 Most worker absences fall 

somewhere between these two extremes. In the data, we showed that the majority of workers 

do not exhaust their PSL benefit. The generosity of PSL, in replacement rate as well as duration, 

may be pivotal in determining how ill an employee has to feel before he or she decides to call in 

sick. 

Our analysis goes beyond simply documenting an increase in absenteeism when PSL is 

offered. Because of the rich NHIS dataset and the use of exogenous variation in influenza 

prevalence in different regions, we are able to show that the increase in worker absence when 

PSL is offered is observed mostly on moderate sick days in low influenza regions. This provides 

stronger evidence that some of increase in absenteeism may be arising due workers abusing 

                                                           
23

 A smaller strand of the literature examines presenteeism – the act of attending work while sick – more explicitly. 

See, for example, Pichler and Ziebarth (2015), Markussen, Mykletun, and Røed (2012), and Dew, Keefe, and Small 

(2005).  
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the PSL benefit. Because workers stop taking absences for moderate sickness when they are 

more likely to have exhausted their PSL days (in the high influenza regions), mandating more 

generous PSL policy by increasing the number of benefit days may have a sizable impact on the 

labor market. Workers will increase the number of sick days taken, and marginal workers who 

did not have the flexibility to stop taking sick days at the PSL cap may be induced to seek 

employment.  

To more fully understand worker behavior, data at the firm level that identifies the 

generosity of the PSL and the exact dates at which workers use the benefit would be required. 

For example, if we observe that workers have a higher propensity to call in sick right before 

major holidays, Mondays, and Fridays, we could more confidently categorize such absences as 

abuse. Ultimately, our research shows that workers will respond to PSL by taking more 

absences, and at least some of these absences will be workers misusing the system. Worker 

response to PSL is a complex question, and more research with richer data is required to fully 

parse how much of the change in absenteeism is abuse and how much is workers optimally 

responding to changing incentives. 

  



26 

 

VI. References 

 

Ahn, T. and A. Yelowitz, 2015. “The Short-Run Impacts of Connecticut’s Paid Sick Leave 
Legislation,” Applied Economics Letters, 22(15): 1267-1272. 

 

Alvarez, B., 2002. “Family Illness, Work Absence and Gender,” Mimeo, Universidade de Vigo. 

Retrieved from http://webx06.webs.uvigo.es/sites/default/files/wp0210.pdf. 

 

Boston Globe, 2015. “Paid Sick Leave: A Good Law and a Good Process.” Retrieved from 

https://www.bostonglobe.com/opinion/editorials/2015/06/23/paid-sick-leave-good-law-and-

good-process/kq35QDG8ixIKMgCqIpyl9I/story.html. 

 

Cameron, A.C., J.B. Gelbach, and D.L. Miller, 2011. “Robust Inference with Multiway Clustering,” 

Journal of Business & Economic Statistics, 29(1): 238-249. 

 

Chetty, R., J.N. Friedman, S. Leth-Petersen, T.H. Nielsen, and T. Olsen, 2014. “Active vs. Passive 

Decisions and Crowd-Out in Retirement Savings Accounts: Evidence from Denmark,” Quarterly 

Journal of Economics 129(3): 1141–1219. 

 

Cook S., C. Conrad, A.L. Fowlkes, and M.H. Mohebbi, 2011. “Assessing Google Flu Trends 

Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandemic.” PLoS 

One 6(8): e23610. 

 

Council of Economic Advisers, 2014 “The Economics of Paid and Unpaid Leave.” Retrieved from 

https://www.whitehouse.gov/sites/default/files/docs/leave_report_final.pdf. 

 

Davis, P. 2015. “In spotlight, Md. lawmakers take on paid sick leave.” Retrieved from 

http://www.usatoday.com/story/news/nation/2015/03/15/md-paid-sick-leave-bill/24807669/. 

 

Dew, K., V. Keefe, and K. Small, 2005. “’Choosing’ to Work When Sick: Workplace Presenteeism,” 

Social Science and Medicine, 60(10): 2273-2282. 

 

Einav, L., A. Finkelstein, and M.R. Cullen, 2010. “Estimating Welfare in Insurance Markets Using 

Variation in Prices,” Quarterly Journal of Economics, 125(3): 877-921. 

 

Evans, W.N., M.C. Farrelly, and E. Montgomery, 1999. “Do Workplace Smoking Bans Reduce 

Smoking?” American Economic Review, 89(4): 728-747. 

 

Garen, J., 1988. “Compensating Wage Differentials and the Endogeneity of Job Riskiness,” The 

Review of Economics and Statistics, 70(1): 9-16. 

 

Ginsberg, J., M.H Mohebbi, R.S. Patel, L. Brammer, M.S. Smolinski, and L. Brilliant, 2009. 

“Detecting Influenza Epidemics Using Search Engine Query Data,” Nature, 457: 1012-1014. 

 

http://webx06.webs.uvigo.es/sites/default/files/wp0210.pdf
https://www.bostonglobe.com/opinion/editorials/2015/06/23/paid-sick-leave-good-law-and-good-process/kq35QDG8ixIKMgCqIpyl9I/story.html
https://www.bostonglobe.com/opinion/editorials/2015/06/23/paid-sick-leave-good-law-and-good-process/kq35QDG8ixIKMgCqIpyl9I/story.html
https://www.whitehouse.gov/sites/default/files/docs/leave_report_final.pdf
http://www.usatoday.com/story/news/nation/2015/03/15/md-paid-sick-leave-bill/24807669/


27 

 

Harris, T. and A. Yelowitz, 2015. “Nudging Life Insurance Holdings in the Workplace,” Mimeo, 

University of Kentucky. Retrieved from http://ssrn.com/abstract=2671846. 

 

Heymann, J., H.J. Rho, J. Schmitt, and A. Earle, 2009. “Contagion Nation: A Comparison of Paid 

Sick Day Policies in 22 Countries,” Mimeo, Center for Economic Policy and Research. Retrieved 

from http://cepr.net/documents/publications/paid-sick-days-2009-05.pdf. 

 

Hwang, H. S., Mortensen, D. T., and W.R. Reed, 1998. “Hedonic Wages and Labor Market 

Search,” Journal of Labor Economics, 16(4): 815-847. 

 

Johansson, P. and M. Palme, 1996. “Do Economic Incentives Affect Work Absence? Empirical 

Evidence using Swedish Micro Data,” Journal of Public Economics, 59(2): 195-218. 

 

Johansson, P. and M. Palme, 2002. “Assessing the Effect of Public Policy on Worker 

Absenteeism,” Journal of Human Resources, 37(2): 381-409. 

 

Johansson, P. and M. Palme, 2005. “Moral Hazard and Sickness Insurance,” Journal of Public 

Economics, 89(9-10): 1879-1890. 

 

Jovanovic, B., 1979. “Job Matching and the Theory of Turnover” The Journal of Political 

Economy, 87(5): 972-990. 

 

Markussen, S., A. Mykletun, and K. Røed, 2012. “The Case for Presenteeism – Evidence from 

Norway's Sickness Insurance Program,” Journal of Public Economics, 96(11–12): 959–972. 

 

Miller, J.W., 2009. “Belgians Take Lots of Sick Leave, And Why Not, They’re Depressed,” Wall 

Street Journal. Retrieved from http://www.wsj.com/articles/SB123145414405365887. 

 

National Partnership for Women and Families, 2015 “Workers’ Access to Paid Sick Days in the 
States.” Retrieved from http://www.nationalpartnership.org/research-library/work-

family/psd/workers-access-to-paid-sick-days-in-the-states.pdf. 

 

Needleman, S.E., 2012. “Sick-Time Rules Re-Emerge: More Governments Look to Require Small 

Businesses to Provide Time-Off Benefits,” Wall Street Journal. Retrieved from 

http://www.wsj.com/articles/SB10001424052970203986604577253550802792104. 

 

Noguchi, Y., 2015. “Obama’s Big Bid to Change Sick-Leave Laws May Hinge on Small Business.” 

Retrieved from http://www.npr.org/sections/health-shots/2015/01/22/379102675/obamas-

big-bid-to-change-sick-leave-laws-may-hinge-on-small-business. 

 

Olsson, M. 2009. “Employment Protection and Sickness Absence,” Labour 

Economics, 16(2): 208-214. 

 

http://ssrn.com/abstract=2671846
http://cepr.net/documents/publications/paid-sick-days-2009-05.pdf
http://www.wsj.com/articles/SB123145414405365887
http://www.nationalpartnership.org/research-library/work-family/psd/workers-access-to-paid-sick-days-in-the-states.pdf
http://www.nationalpartnership.org/research-library/work-family/psd/workers-access-to-paid-sick-days-in-the-states.pdf
http://www.wsj.com/articles/SB10001424052970203986604577253550802792104
http://www.npr.org/sections/health-shots/2015/01/22/379102675/obamas-big-bid-to-change-sick-leave-laws-may-hinge-on-small-business
http://www.npr.org/sections/health-shots/2015/01/22/379102675/obamas-big-bid-to-change-sick-leave-laws-may-hinge-on-small-business


28 

 

Pichler, S. and N.R. Ziebarth, 2015. “The Pros and Cons of Sick Pay Schemes: Testing for 

Contagious Presenteeism and Shirking Behavior,” IZA Discussion Paper 8850. 

 

Postel-Vinay, F. and J. M. Robin, 2002. “Equilibrium Wage Dispersion with Worker and 

Employer Heterogeneity,” Econometrica, 70(6): 2295-2350. 

 

Poterba, J.M., S. F. Venti, and D. A. Wise, 1995. “Do 401(k) Contributions Crowd Out Other 

Personal Saving?” Journal of Public Economics, 58(1): 1-32. 

 

Puhani, P. and K. Sonderhof, 2010. “The Effects of a Sick Pay Reform on Absence and on Health-

Related Outcomes,” Journal of Health Economics, 29(2): 285-302. 

 

Sacerdote, B., 2001. “Peer Effects With Random Assignment: Results for Dartmouth 

Roommates,” Quarterly Journal of Economics, 116(2): 681-704. 

 

Susser, P. and N. R. Ziebarth, 2016. “Profiling the US Sick Leave Landscape,” IZA Discussion 

Paper 9709. 

 

Trogdon J. and T. Ahn, 2015.” Geo-spatial Patterns in Influenza Vaccination: Evidence from 

Uninsured and Publicly-Insured Children in North Carolina,” American Journal of Infection 

Control, 43(3): 234-240. 

 

U.S. Bureau of Labor Statistics, 2013. “National Compensation Survey: Employee Benefits in the 

United States, March 2013” Washington, DC: U.S. Department of Labor. Retrieved from 

http://www.bls.gov/ncs/ebs/benefits/2013/ebbl0052.pdf. 

 

Woodbury, S. A., 1983. “Substitution between Wage and Nonwage Benefits,” The American 

Economic Review, 73(1): 166-182. 

 

Ziebarth, N.R. and M. Karlsson, 2014. “The Effects of Expanding the Generosity of the Statutory 

Sickness Absence Insurance,” Journal of Applied Econometrics, 29(2): 208-230. 

 

Ziebarth, N.R., 2013. “Long-Term Absenteeism and Moral Hazard – Evidence from a Natural 

Experiment,” Labour Economics 24: 277-292. 

 

Ziebarth, N.R. and M. Karlsson, 2010. “A Natural Experiment on Sick Pay Cuts, Sickness Absence, 

and Labor Costs,” Journal of Public Economics, 94(11-12): 1108-1122. 

http://www.bls.gov/ncs/ebs/benefits/2013/ebbl0052.pdf


Table 1 

Sick Leave Benefits in the U.S., March 2013 

 

  Selected 

Leave Benefits 

 Type of Provision 

for Paid Sick Leave 

 Paid Sick Days 

by Length of Service 

 Carryover 

Provisions 

 

  Has 

Paid 

Sick 

Leave? 

Has Paid 

Holidays? 

Has Paid 

Vacations? 

Has PSL 

and 

Vacation 

 Fixed 

days 

As 

needed 

Consolidated 

plan 

 <5 

days 

5-9 

days 

10-

14 

days 

15-

29 

days 

 Unlimited 

Accum. 

Limit 

on 

Days 

No 

Carryover 

 

  (1) (2) (3) (4)  (5) (6) (7)  (8) (9) (10) (11)  (12) (13) (14)  

All 

Workers 

 65% 

(0.6) 

76% 

(0.7) 

74% 

(0.7) 

59% 

(0.6) 

 72% 

(0.8) 

6% 

(0.6) 

22% 

(0.7) 

      23% 

(0.9) 

33% 

(0.8) 

44% 

(1.0) 

 

1+ years 

of 

tenure 

          18% 

(0.8) 

45% 

(0.8) 

30% 

(0.8) 

6% 

(0.5) 

     

5+ years 

of 

tenure 

          17 

(0.7) 

45 

(0.8) 

30 

(0.8) 

7 

(0.4) 

     

10+ 

years of 

tenure 

          17 

(0.7) 

45 

(0.8) 

30 

(0.8) 

7 

(0.5) 

     

Office & 

Admin 

 75 

(1.1) 

87 

(0.9) 

86 

(1.1) 

73 

(1.2) 

 72 

(1.4) 

5 

(0.6) 

23 

(1.3) 

      19 

(1.4) 

33 

(1.2) 

48 

(1.4) 

 

Sales & 

Related 

 52 

(1.2) 

67 

(0.9) 

68 

(1.1) 

50 

(1.2) 

 80 

(1.7) 

5 

(0.8) 

15 

(1.3) 

      10 

(0.9) 

43 

(2.0) 

47 

(2.1) 

 

1-99 

Workers 

 52 

(1.1) 

68 

(1.1) 

69 

(1.1) 

49 

(1.0) 

 70 

(1.6) 

9 

(1.4) 

21 

(1.3) 

 22 

(1.7) 

55 

(1.7) 

17 

(1.3) 

3 

(0.3) 

 11 

(1.2) 

25 

(1.1) 

64 

(1.4) 

 

100-499 

Workers 

 69 

(1.2) 

82 

(1.0) 

81 

(1.0) 

64 

(1.2) 

 75 

(1.7) 

3 

(0.7) 

21 

(1.4) 

 18 

(1.3) 

51 

(1.4) 

25 

(1.3) 

6 

(0.6) 

 18 

(1.2) 

45 

(1.7) 

37 

(1.8) 

 

500+ 

Workers 

 85 

(0.9) 

82 

(0.8) 

78 

(0.8) 

71 

(0.9) 

 72 

(1.3) 

4 

(0.4) 

25 

(1.3) 

 12 

(1.1) 

29 

(1.4) 

47 

(1.6) 

11 

(1.0) 

 40 

(1.7) 

32 

(1.2) 

28 

(1.8) 

 

Source: Various tables in the “National Compensation Survey: Employee Benefits in the United States, March 2013” (U.S. Bureau of Labor Statistics, 2013). Standard errors in 

parentheses. A consolidated leave plan (column 7) provides a single amount of time-off for workers to use for multiple purposes, such as vacation, illness, or personal business. 

Plans that allow employees to accumulate unused sick leave from year to year (column 12). The NCS represents 124,992,900 civilian workers and 5,361,947 establishments, 

based on a sample of 7,633 establishments responding to the survey. 

 



Figure 1 

Use of Sick Days By Administrative Workers 

 
Notes: Data Source is 2005-2013 National Health Interview Survey. 

 

  



Table 2 

Annual Absenteeism Among Administrative Workers 

 

Panel 1: Distribution of absences over previous 12 months 

(N=9,632) 

 

  Number of sick days 

from work 

 Number of 

moderate days 

 Number of 

severe days 

 

Mean 

(SD) 

 4.24 

(13.36) 

 2.44 

(9.72) 

 2.22 

(9.01) 

 

50th percentile  1  0  0  

75th percentile  3  2  2  

90th percentile  8  5  5  

95th percentile  15  8  8  

99th percentile  60  42  30  

        

Panel 2: Reporting of absences over previous 12 months by time units, conditional on <31 sick days 

(N=9,422) 

  Fraction reporting 

sick days in this group 

 Fraction reporting 

moderate days in this 

group 

 Fraction reporting 

severe days in this 

group 

 

No absences 

(0 days) 

 .441  .620  .573  

Work week 

(5, 10, 15, 20, or 

25 days) 

 .103  .041  .044  

Calendar week 

(7, 14, 21, or 28 

days) 

 .032  .016  .018  

Calendar month 

(30 days) 

 .009  .001  .003  

            

Panel 3: Severe sick days and work absences 

 

  All sick days  0 sick days  1 sick day  2 sick days  3+ sick days  

Severe days 

≤Sick days 

 .914  .872  .884  .950  .961  

Notes: Data Source is 2005-2013 National Health Interview Survey. 

 

  



Figure 2a: Distribution of Paid Sick Leave across Industry (All Occupations, N=66,535) 

 
Figure 2b: Distribution of Paid Sick Leave across Industry (Administrative Workers, N=9,632) 

 
Notes: Data Source is 2005-2013 National Health Interview Survey. 
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Figure 3 

Distribution of Administrative Workers across Industry (N=66,535) 

 
Notes: Data Source is 2005-2013 National Health Interview Survey. 
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Table 3 

Summary Statistics 

 

  All Occupations  Admin Only  Sales Only  

  PSL=1 PSL=0  PSL=1 PSL=0  PSL=1 PSL=0  

  (1) (2)  (3) (4)  (5) (6)  

Number of sick days from work  3.720 

(0.057) 

3.027 

(0.086) 

 4.542 

(0.154) 

3.210 

(0.293) 

 3.075 

(0.170) 

2.827 

(0.221) 

 

5 Or More Sick Days?  0.176 

(0.002) 

0.133 

(0.002) 

 0.217 

(0.005) 

0.157 

(0.008) 

 0.141 

(0.006) 

0.133 

(0.007) 

 

10 Or More Sick Days?  0.077 

(0.001) 

0.064 

(0.002) 

 0.102 

(0.003) 

0.074 

(0.006) 

 0.060 

(0.004) 

0.061 

(0.005) 

 

Number of moderate days  2.278 

(0.045) 

1.792 

(0.065) 

 2.712 

(0.119) 

1.516 

(0.155) 

 1.773 

(0.125) 

1.655 

(0.171) 

 

Number of severe days  1.752 

(0.032) 

1.726 

(0.060) 

 2.216 

(0.096) 

2.241 

(0.239) 

 1.667 

(0.105) 

1.800 

(0.165) 

 

Hospitalizations?  0.055 

(0.001) 

0.050 

(0.001) 

 0.064 

(0.003) 

0.057 

(0.005) 

 0.056 

(0.004) 

0.058 

(0.005) 

 

Functional Limitations?  0.223 

(0.002) 

0.219 

(0.003) 

 0.271 

(0.005) 

0.271 

(0.010) 

 0.200 

(0.007) 

0.203 

(0.008) 

 

Never smoked?  0.636 

(0.002) 

0.575 

(0.003) 

 0.630 

(0.006) 

0.595 

(0.011) 

 0.593 

(0.008) 

0.606 

(0.010) 

 

Never Exercise?  0.237 

(0.002) 

0.341 

(0.003) 

 0.272 

(0.005) 

0.304 

(0.010) 

 0.245 

(0.007) 

0.327 

(0.010) 

 

BMI Overweight or Obese  0.654 

(0.002) 

0.637 

(0.003) 

 0.653 

(0.006) 

0.599 

(0.011) 

 0.645 

(0.008) 

0.602 

(0.010) 

 

Abstain from alcohol  0.143 

(0.002) 

0.186 

(0.003) 

 0.157 

(0.004) 

0.182 

(0.008) 

 0.121 

(0.005) 

0.205 

(0.008) 

 

Age?  42.249 

(0.053) 

39.500 

(0.086) 

 42.758 

(0.133) 

39.859 

(0.282) 

 40.283 

(0.191) 

38.135 

(0.276) 

 

Male?  0.478 

(0.002) 

0.539 

(0.003) 

 0.244 

(0.005) 

0.255 

(0.009) 

 0.516 

(0.008) 

0.440 

(0.010) 

 

Married?  0.510 

(0.002) 

0.448 

(0.003) 

 0.464 

(0.006) 

0.441 

(0.011) 

 0.471 

(0.008) 

0.401 

(0.010) 

 

Non-White  0.369 

(0.002) 

0.454 

(0.003) 

 0.411 

(0.006) 

0.372 

(0.010) 

 0.318 

(0.008) 

0.389 

(0.010) 

 

High School Grad or Dropout  0.589 

(0.002) 

0.827 

(0.003) 

 0.797 

(0.005) 

0.844 

(0.008) 

 0.669 

(0.008) 

0.810 

(0.008) 

 

Job Tenure  9.532 

(0.039) 

6.800 

(0.049) 

 9.530 

(0.097) 

6.418 

(0.146) 

 8.385 

(0.123) 

5.834 

(0.132) 

 

Firm Size < 100  0.485 

(0.002) 

0.737 

(0.003) 

 0.494 

(0.006) 

0.691 

(0.010) 

 0.612 

(0.008) 

0.822 

(0.008) 

 

Earnings Under $35000  0.344 

(0.002) 

0.713 

(0.003) 

 0.511 

(0.006) 

0.815 

(0.008) 

 0.396 

(0.008) 

0.726 

(0.009) 

 

Hourly Worker  0.525 

(0.002) 

0.754 

(0.003) 

 0.698 

(0.005) 

0.835 

(0.008) 

 0.473 

(0.008) 

0.641 

(0.010) 

 

Private Sector Worker?  0.754 

(0.002) 

0.940 

(0.002) 

 0.763 

(0.005) 

0.924 

(0.006) 

 0.983 

(0.002) 

0.990 

(0.002) 

 

Covered through employer 

plan? 

 0.904 

(0.001) 

0.567 

(0.003) 

 0.907 

(0.003) 

0.678 

(0.010) 

 0.895 

(0.005) 

0.574 

(0.010) 

 

Sample Size  45,250 21,285  7,467 2,165  3,757 2,365  

Data Source: 2005-2013 National Health Interview Survey. Standard errors in parentheses. 

 

Office and Administrative Support Occupations (51 groups): First-line supervisors/managers of office and administrative support 

workers, Switchboard operators, including answering service, Telephone operators, Communications equipment operators, all 

other, Bill and account collectors, Billing and posting clerks and machine operators, Bookkeeping, accounting, and auditing 

clerks, Gaming cage workers, Payroll and timekeeping clerks, Procurement clerks, Tellers, Brokerage clerks, Correspondence 

clerks, Court, municipal, and license clerks, Credit authorizers, checkers, and clerks, Customer service representatives, Eligibility 



interviewers, government programs, File Clerks, Hotel, motel, and resort desk clerks, Interviewers, except eligibility and loan, 

Library assistants, clerical, Loan interviewers and clerks, New accounts clerks, Order clerks, Human resources assistants, except 

payroll and timekeeping, Receptionists and information clerks, Reservation and transportation ticket agents and travel clerks, 

Information and record clerks, all other, Cargo and freight agents, Couriers and messengers, Dispatchers, Meter readers, 

utilities, Postal service clerks, Postal service mail carriers, Postal service mail sorters, processors, and processing machine 

operators, Production, planning, and expediting clerks, Shipping, receiving, and traffic clerks, Stock clerks and order fillers, 

Weighers, measurers, checkers, and samplers, recordkeeping, Secretaries and administrative assistants, Computer operators, 

Data entry keyers, Word processors and typists, Desktop publishers, Insurance claims and policy processing clerks, Mail clerks 

and mail machine operators, except postal service, Office clerks, general, Office machine operators, except computer, 

Proofreaders and copy markers, Statistical assistants, Office and administrative support workers, all other 

 

Sales and Related Occupations (18 groups): First-line supervisors/managers of retail sales workers, First-line 

supervisors/managers of non-retail sales workers, Cashiers, Counter and rental clerks, Parts salespersons, Retail salespersons, 

Advertising sales agents, Insurance sales agents, Securities, commodities, and financial services sales agents, Travel agents, 

Sales representatives, services, all other, Sales representatives, wholesale and manufacturing, Models, demonstrators, and 

product promoters, Real estate brokers and sales agents, Sales engineers, Telemarketers, Door-to-door sales workers, news and 

street vendors, and related workers, Sales and related workers, all other 

 

See http://www.bls.gov/tus/census02iocodes.pdf , p. 12-13. 
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Table 4 

Does PSL Affect Absences? 

              

  

Number 

of 

Sick Days  

5 or more 

Sick Days? 

(0/1)  

10 or 

more 

Sick Days? 

(0/1)  

Moderate 

Sick 

Days  

Severe 

Sick 

Days  

Hospitalized 

During Year? 

(0/1) 

 

              

  Administrative Workers (N=9,632)  

PSL? 

(0/1) 

 1.20*** 

(0.38) 

 0.031*** 

(0.011) 

 0.015* 

(0.008) 

 0.98*** 

(0.28) 

 0.21 

(0.26) 

 0.007 

(0.007) 

 

              

  Administrative Workers With Kids (N=3,937)  

PSL? 

(0/1) 

 1.16* 

(0.61) 

 0.018 

(0.017) 

 0.015 

(0.013) 

 1.11** 

(0.45) 

 -0.13 

(0.39) 

 -0.001 

(0.010) 

 

              

  Administrative Workers Without Kids (N=5,695)  

PSL? 

(0/1) 

 1.27*** 

(0.50) 

 0.038** 

(0.015) 

 0.015 

(0.011) 

 0.87** 

(0.36) 

 0.53 

(0.36) 

 0.014 

(0.009) 

 

              

  Administrative Workers with Low Job Tenure (1-5 years, N=4,627)  

PSL? 

(0/1) 

 0.98** 

(0.44) 

 0.033** 

(0.015) 

 0.018* 

(0.010) 

 0.96*** 

(0.36) 

 0.05 

(0.25) 

 0.003 

(0.009) 

 

              

  Administrative Workers with High Job Tenure (6+ years, N=5,005)  

PSL? 

(0/1) 

 1.30* 

(0.66) 

 0.022 

(0.018) 

 0.013 

(0.013) 

 1.00** 

(0.46) 

 0.30 

(0.48) 

 0.018* 

(0.010) 

 

              

  Sales Workers (N=6,122)  

PSL? 

(0/1) 

 0.40 

(0.33) 

 0.010 

(0.011) 

 0.003 

(0.007) 

 0.263 

(0.250) 

 0.092 

(0.221) 

 0.004 

(0.007) 

 

Notes: Sample adults in 2005-2013 NHIS. Standard errors in parentheses. Covariates include: quartic in 

age, region effects, year effects, job tenure, functional limitations, current/former smoker, never 

exercise, obesity, current alcohol consumption, gender, marital status, number of children of each age, 

education, race, earnings bins, health insurance status, hourly worker and interaction of public/private 

sector with industry effects and firm size. 

  



Table 5 

Does Living in a High Flu Region Increase Sick Days? 

(Administrative workers) 

High Google Flu Region (0/1) 

 

0.85*** 

(0.28) 

 

High CDC Flu Region (0/1) 

 

 0.03 

(0.51) 

Region 2 (Midwest Region) -0.25 

(0.28) 

-0.27 

(0.30) 

Region 3 (South Region) -0.82*** 

(0.24) 

-0.55 

(0.58) 

Region 4 (West Region) -0.71*** 

(0.25) 

-0.72*** 

(0.24) 

Year 2006 -0.31 

(0.43) 

-0.63 

(0.42) 

Year 2007 0.38 

(0.38) 

0.07 

(0.29) 

Year 2008 -0.49 

(0.41) 

-0.48 

(0.37) 

Year 2009 -1.32*** 

(0.19) 

-0.80*** 

(0.20) 

Year 2010 -0.67** 

(0.31) 

-0.97*** 

(0.21) 

Year 2011 -0.90* 

(0.47) 

-0.91** 

(0.36) 

Year 2012 -1.24*** 

(0.39) 

-0.69* 

(0.41) 

Year 2013 -1.38*** 

(0.24) 

-0.86*** 

(0.33) 

Notes: Sample adults in 2005-2013 NHIS. Sample size in all specifications is 9,632. Standard errors in 

parentheses. High flu region defined at the REGION*YEAR level from Google Flu Trends (See 

https://www.google.org/flutrends/us/#US ) or CDC. Standard errors corrected for non-nested two-way 

clustering at the REGION and YEAR levels, using methods described in Cameron, Gelbach and Miller 

(2011). 
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Table 6 

Using Regional Flu Shocks to Create Exogenous Variation in Replacement Rate 

              

  

Number 

of 

Sick Days  

5 or more 

Sick Days? 

(0/1)  

10 or 

more 

Sick Days? 

(0/1)  

Moderate 

Sick 

Days  

Severe 

Sick 

Days  

Hospitalized 

During Year? 

(0/1) 

 

              

  Administrative Workers in High Google Flu Regions (N=5,027)  

PSL? 

(0/1) 

 0.69 

(0.53) 

 0.021 

(0.016) 

 0.006 

(0.012) 

 0.73* 

(0.41) 

 -0.11 

(0.33) 

 0.006 

(0.009) 

 

              

  Administrative Workers in Low Google Flu Regions (N=4,605)  

PSL? 

(0/1) 

 1.76*** 

(0.57) 

 0.041*** 

(0.017) 

 0.025** 

(0.012) 

 1.20*** 

(0.39) 

 0.63 

(0.42) 

 0.011 

(0.010) 

 

              

  Administrative Workers in High CDC Flu Regions (N=4,956)  

PSL? 

(0/1) 

 1.03** 

(0.52) 

 0.021 

(0.016) 

 0.007 

(0.012) 

 1.016*** 

(0.385) 

 -0.011 

(0.326) 

 0.003 

(0.009) 

 

              

  Administrative Workers in Low CDC Flu Regions (N=4,676)  

PSL? 

(0/1) 

 1.393** 

(0.579) 

 0.038** 

(0.016) 

 0.023* 

(0.012) 

 0.857** 

(0.422) 

 0.588 

(0.418) 

 0.013 

(0.010) 

 

              

  Sales Workers in High Google Flu Regions (N=3,267)  

PSL? 

(0/1) 

 -0.12 

(0.43) 

 0.012 

(0.01) 

 -0.007 

(0.010) 

 -0.053 

(0.334) 

 0.076 

(0.239) 

 0.000 

(0.009) 

 

              

  Sales Workers in Low Google Flu Regions (N=2,855)  

PSL? 

(0/1) 

 0.967* 

(0.52) 

 0.009 

(0.016) 

 0.012 

(0.011) 

 0.620 

(0.389) 

 0.010 

(0.395) 

 0.004 

(0.011) 

 

Notes: Sample adults in 2005-2013 NHIS. Standard errors in parentheses. Covariates include: quartic in 

age, region effects, year effects, job tenure, functional limitations, current/former smoker, never 

exercise, obesity, current alcohol consumption, gender, marital status, number of children of each age, 

education, race, earnings bins, health insurance status, hourly worker and interaction of public/private 

sector with industry effects and firm size. 

 

  



Table 7 

Is There Bunching at Sick Day Limits? 

  0-4 

days 

 5-7 

days 

 8-9 

days 

 10-14 

days 

 15-21 

days 

 >21 

days 

 

              

  Full Sample of Admin Workers (N=9,632)  

PSL? 

(0/1) 

 -0.031*** 

(0.011) 

 0.016** 

(0.009) 

 0.000 

(0.003) 

 0.001 

(0.006) 

 0.002 

(0.004) 

 0.012** 

(0.005) 

 

   

Small Firms (N= 5,183) 

 

PSL? 

(0/1) 

 -0.038*** 

(0.014) 

 0.028*** 

(0.010) 

 0.001 

(0.004) 

 0.004 

(0.007) 

 0.001 

(0.005) 

 0.003 

(0.006) 

 

   

Large Firms (N=4,449) 

 

PSL? 

(0/1) 

 -0.017 

(0.020) 

 -0.006 

(0.015) 

 -0.003 

(0.006) 

 -0.005 

(0.010) 

 0.005 

(0.007) 

 0.026*** 

(0.009) 

 

   

Exclude top 1% of users (N=9,513) 

 

PSL? 

(0/1) 

 -0.023** 

(0.011) 

 0.018** 

(0.009) 

 0.001 

(0.003) 

 0.001 

(0.006) 

 0.003 

(0.004) 

 0.001 

(0.004) 

 

Notes: Sample adults in 2005-2013 NHIS. Standard errors in parentheses. Covariates include: quartic in 

age, region effects, year effects, job tenure, functional limitations, current/former smoker, never 

exercise, obesity, current alcohol consumption, gender, marital status, number of children of each age, 

education, race, earnings bins, health insurance status, hourly worker and interaction of public/private 

sector with industry effects and firm size. 

 


