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Abstract 

What happens when the anchoring and adjustment heuristic of Tversky and Kahneman (1974) is 

incorporated in the standard consumption-based capital asset pricing model (CCAPM)? The 

surprising finding is that it not only resolves the high equity-premium and low risk-free rate 

puzzles with a low risk-aversion coefficient, but also provides a unified framework for 

understanding countercyclical equity-premium, excess volatility, size, value, and momentum 

effects, and abnormal returns and volatilities following stock-splits and reverse stock-splits. The 

anchoring approach makes the following prediction: equity in firms with less volatile earnings 

would outperform equity in firms with more volatile earnings. 
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Anchoring Heuristic and the Equity Premium Puzzle 

 

What happens when the anchoring and adjustment heuristic of Tversky and Kahneman is 

incorporated in the standard consumption-based asset pricing model (CCAPM)? The surprising 

finding is that it not only resolves the high equity-premium (Mehra and Prescott (1985)) and low 

risk-free rate (Weil (1989)) puzzles with a low risk-aversion coefficient, but also provides a 

unified framework for understanding countercyclical equity-premium, excess volatility, size, 

value, and momentum effects, and abnormal returns and volatilities following stock-splits and 

reverse stock-splits.  

For explaining high average equity-premium, not requiring a high risk-aversion 

coefficient is important, because high risk-aversion makes the attitudes to large monetary 

gambles unreasonable (see the discussion in Barberis and Huang (2008)). It is precisely this 

difficulty of reconciling the high equity-premium with reasonable attitudes to large-scale 

monetary gambles that launched the equity-premium literature in the first place.2  

  This article develops the theoretical framework without asserting that the proposed 

framework completely explains all of the puzzles listed above. Such an assertion demands a 

comprehensive empirical examination of a large number of phenomena and a detailed 

comparison of the anchoring explanation with other explanations, a feat which no single article 

can achieve. The primary aim of this article is to demonstrate that the anchoring and adjustment 

heuristic must be considered as an alternative explanation. In this respect, the article makes a 

methodological contribution by showing how the anchoring and adjustment heuristic can be 

incorporated in the standard paradigm. The broad theme of this article is that we may be able to 

improve our understanding of the equity premium and other puzzles, by looking at how people 

make judgments in experimental settings. Specifically, this article argues that the anchoring and 

adjustment heuristic, a key idea that has emerged from over 40 years of extensive experimental 

investigation, may play an important role in asset pricing.   

By focusing on developing the theoretical foundations, the article aims to pave the way 

for future empirical testing of the anchoring-adjusted CCAPM. The anchoring-adjusted CCAPM 

makes the following prediction: Equity in firms with less volatile earnings would outperform equity in firms 

with more volatile earnings. This prediction is strongly counter-intuitive as it seems to suggest that 

less risk is rewarded with more return, instead of high risk getting high return. Although directly 

                                                           
2 Consult Mehra (2008) for a broad spectrum review of the literature on the equity premium puzzle. 
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testing this prediction is beyond the scope of this article, I discuss a large body of indirect 

evidence from the existing empirical literature that strongly supports this prediction.  

The standard CCAPM, despite being intuitive and theoretically appealing, has largely 

been an empirical failure.3 This article identifies a possible path to resurrecting CCAPM by 

incorporating the anchoring and adjustment heuristic in the standard paradigm. Hence, it builds 

the case that general equilibrium behavioral finance may save the CCAPM. 

If 𝑚𝑡+1 is the stochastic discount factor, then to generate a large equity premium, a 

mechanism is needed that increases its volatility across states of nature, 𝜎(𝑚𝑡+1). The average value 

of the discount factor across states, 𝐸(𝑚𝑡+1) must also be high to account for the low risk-free 

rate, whereas 𝜎(𝐸(𝑚𝑡+1)) must be low to be consistent with low interest rate variation over time. 

Furthermore, to generate a large equity premium (Sharpe ratio) in the long-run, we need the 

volatility of the discount factor, 𝜎(𝑚), to increase linearly with horizon. The anchoring approach 

achieves all of this surprisingly easily. This is in sharp contrast with the habit-formation literature 

that typically requires careful reverse-engineering to keep 𝜎(𝐸(𝑚𝑡+1)) low, and to keep 𝜎(𝑚) 

increasing linearly with the horizon.4 Furthermore, the anchoring approach also makes 𝜎(𝑚) 

counter-cyclical. 

Anchoring, as modeled here, is a rare bird among cognitive biases as it makes investors 

more cautious. An anchoring-prone investor underprices equities and invests more in the risk-

free asset. For other biases such as optimism or overconfidence, one may think of institutional 

mechanisms that make investors more cautious (such as cooling-off periods) in an attempt to “tie 

Ulysses to the mast to save him from the Sirens”. Not so for anchoring as modeled here, as the exact 

opposite of caution and prudence is required to mitigate anchoring. Hence, it is unlikely that the 

institutional mechanisms to mitigate anchoring will emerge. 

Starting from Tversky and Kahneman (1974), over 40 years of research has demonstrated 

that while forming estimates, people tend to start from what they know and then make 

adjustments to their starting points. However, adjustments typically remain biased towards the 

starting value known as the anchor (see Furnham and Boo (2011) for a general review of the 

literature). Describing the anchoring heuristic, Epley and Gilovich write (2001), “People may 

spontaneously anchor on information that readily comes to mind and adjust their response in a direction that seems 

appropriate, using what Tversky and Kahneman (1974) called the anchoring and adjustment heuristic. Although 

                                                           
3 See the discussion in Lettau and Ludvigson (2001) and references therein. 
4 See Cochrane (2008) for a detailed discussion of these points. 
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this heuristic is often helpful, the adjustments tend to be insufficient, leaving people’s final estimates biased towards 

the initial anchor value.” (Epley and Gilovich (2001) page. 1).  

 A few examples illustrate this heuristic quite well. When respondents were asked which 

year George Washington became the first US President, most would start from the year the US 

became a country (in 1776). They would reason that it might have taken a few years after that to 

elect the first president so they add a few years to 1776 to work it out, coming to an answer of 

1778 or 1779. George Washington actually became president in 1789, implying that, starting 

from 1776, adjustments are typically insufficient. Similarly, what is the fair price of a 3-bedroom 

house in a given neighbourhood of Melbourne? If you know the price of a 4-bedroom house in 

the same neighbourhood but in a slightly better location, you would probably start from that 

price and adjust for differences between the two properties.  Anchoring bias implies that such 

adjustments tend to be insufficient. The adjustments are insufficient because of the tendency to 

stop adjusting once a plausible value is reached (Epley and Gilovich (2006)).  

 Anchoring has been found to be a robust phenomenon in a wide variety of decision-

making contexts. The situations tested are diverse and include price estimation (Amado et al 

(2007)), probability calculations (Chapman and Johnson (1999)), as well as factual knowledge 

(Blankenship et al (2008), Wegener et al (2001)). Overall, the anchoring bias is “exceptionally 

robust, pervasive and ubiquitous” (Furnham and Boo 2011, p. 41) regarding experimental 

variations.  

Hirshleifer (2001) considers anchoring to be an “important part of psychology based dynamic 

asset pricing theory in its infancy” (p. 1535). Shiller (1999) argues that anchoring appears to be an 

important concept for financial markets. This argument has been supported quite strongly by 

recent empirical research on financial markets. Anchoring has been found to matter for credit 

spreads that banks charge to firms (Douglas et al (2015), it matters in determining the price of 

target firms in mergers and acquisitions (Baker et al (2012), and it also affects the earnings 

forecasts made by analysts in the stock markets (Cen et al (2013)). Furthermore, Siddiqi (2015) 

shows that anchoring provides a unified explanation for a number of key puzzles in options 

market. Siddiqi (2015a) extends the anchoring idea to CAPM. Given the importance of this bias 

in financial decision making, it is natural to see what happens when a canonical asset pricing 

model of the stature of CCAPM is adjusted for anchoring. This is the contribution of this article. 

  In the stock market, prominent blue-chips get a lion’s share of analyst and media 

coverage. A study suggests that about 83% of full time stock analysts only focus on the blue-
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chips, which are only 4% of the firms.5 Such companies are typically household names, are well-

established, and well-researched with plenty of data available about them. In a typical research 

report written by a stock analyst, the firm being analyzed is almost always compared with the 

sector leader, which typically is a prominent blue-chip company. Popular MBA and CFA texts 

teach the same approach.6 Industry analysis, which is almost a universal part of every research 

report written by stock analysts, naturally focuses on the major sectoral players (the prominent 

blue-chips).  

Given the key role of prominent blue-chips in stock analysis and the ubiquitous human 

reliance on anchoring, plausibly, a typical investor may use the payoffs of prominent blue-chips 

as starting points, which are then adjusted to form judgments about other firms. Consider the 

following firms: Apple, Applied Materials, and Auto Desk. All three are large information 

technology firms included in the S&P 500 index. However, Apple is a household name that 

clearly stands out. Apple is the largest information technology firm in the world, and gets a lion’s 

share of analysts and media coverage when compared with the other two firms. Given its 

prominence, a typical investor may start from Apple and then attempt to make appropriate 

adjustments to form judgments about the other two firms.  

A key stylized fact noted in the anchoring literature is that higher the task complexity or 

cognitive load involved in a judgment task, larger is the error caused by anchoring (Kudryavtsev 

and Cohen (2010), Meub and Proeger (2014), references therein). From a given starting 

distribution, adjusting for volatility perhaps requires more effort than adjusting for expected 

payoffs. In principle, the only adjustment required for expected payoff is “size adjustment”; 

however, in order to estimate volatility, many other differences such as the differential response 

to external shocks must also be accounted for. Plausibly, due to the higher cognitive load 

involved, the anchoring bias is larger in volatility estimation. For simplicity, I assume that 

expected payoffs are correctly estimated and the anchoring bias is displayed in volatility 

estimation only. Alternatively, without changing results, one could assume that the anchoring 

bias is present in both expected payoff and volatility estimation with the bias being larger in 

volatility estimation. This focus on volatility instead of expected payoffs is typical of the Bayesian 

learning literature (see Weitzman (2007) and references therein). This is in sharp contrast with 

                                                           
5 http://punchinvest.com/wp-content/uploads/2011/11/The-Blind-Spot-Impact-of-Analyst-Coverage1.pdf 
6 One example is the popular textbook on financial management of Petty and Titman (2012). 
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other asset pricing literature that allows for errors in expected payoffs while assuming that 

volatilities are correctly estimated (partly because of convenience).  

Another key stylized fact from the anchoring literature is that greater the distance 

between the starting point and the correct value, larger is the error due to anchoring (Epley and 

Gilovich (2006) (2001) and references therein). When estimating the population of New York 

(correct value: 8.5 million approx.), people make larger errors if the initial anchor is 1 million, 

when compared with 5 million. When considering payoff volatilities, one simple way of 

capturing this is to use the following formulation:  𝜎𝐴(𝑋𝑇𝑎𝑟𝑔𝑒𝑡) = (1 − 𝑚)𝜎(𝑋𝐵𝑙𝑢𝑒𝐶ℎ𝑖𝑝) +𝑚𝜎(𝑋𝑇𝑎𝑟𝑔𝑒𝑡) with 0 ≤ 𝑚 ≤ 1. 

In the above formulation, if 𝑚 = 1, there is no anchoring bias and the anchoring 

influenced value, 𝜎𝐴(𝑋𝑇𝑎𝑟𝑔𝑒𝑡), is equal to the correct value, 𝜎(𝑋𝑇𝑎𝑟𝑔𝑒𝑡) . If 𝑚 = 0, the 

anchoring bias is maximal and the anchoring influenced value is equal to the starting value. 

Consistent with the anchoring literature, for a given positive 𝑚, greater the distance between the 

starting value, 𝜎(𝑋𝐵𝑙𝑢𝑒𝐶ℎ𝑖𝑝), and the correct value, 𝜎(𝑋𝑇𝑎𝑟𝑔𝑒𝑡), larger is the error due to the 

anchoring bias.  

To sum up, the notion that the payoff distributions of prominent blue-chips may be 

starting points for forming judgments about the payoff distributions of other firms can be made 

precise by using the following stylized facts: Stylized fact #1) Error due to anchoring is larger if 

the cognitive load involved in the judgment task is higher => focus on payoff volatilities instead 

of expected payoffs. Stylized fact #2) Error due to anchoring is larger if the distance between the 

starting value and the correct value is larger. A simple formulation capturing this is: 𝜎𝐴(𝑋𝑇𝑎𝑟𝑔𝑒𝑡) = (1 − 𝑚)𝜎(𝑋𝐵𝑙𝑢𝑒𝐶ℎ𝑖𝑝) + 𝑚𝜎(𝑋𝑇𝑎𝑟𝑔𝑒𝑡). 

This paper is organized as follows. Section 1 illustrates the implications of incorporating 

anchoring in asset pricing through a simple numerical example.  
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1. Anchoring Heuristic in Asset Prices: A Numerical Example 

To fix ideas, consider a simple case of two risky assets (L and S) and one risk-free asset (F). 

There is one time-period marked by two points in time, 𝑡 and 𝑡 + 1. There are two states of 

nature at 𝑡 + 1 called the Green and Blue states. The chance of each is 50%. The current time is 𝑡. One risky asset (L) belongs to a well-established (prominent blue-chip) firm with large payoffs.  

The second risky asset belongs to a newer firm (S) with much smaller payoffs. The payoffs from 

L, S and F are shown in Table 1. 

 L is a well-established asset and investors know the true distribution which is 200 in the 

Green state and 100 in the Blue state, implying a mean of 150 and a standard deviation of 50. 

Investors do not know the correct distribution of payoffs associated with S. However, they know 

that the Green state payoff is larger than the Blue state payoff for S as well. Assume that they use 

the payoff distribution of L as a starting point to which a series of cognitive operations are 

applied to generate a plausible distribution for S. The idea is that S and L are similar (in the same 

sector). Investors understand L better than S, so they start from what they know and then 

attempt to make appropriate adjustments.  

 Assume that starting from the expected payoff of L (150), the expected payoff of S is 

correctly estimated as 15. However, the anchoring bias is displayed in volatility judgment, and 

starting from the standard deviation of L (50), the standard deviation of S is overestimated to be 

15 instead of the correct value of 10. It follows that the anchoring bias leads investors to believe 

that S pays 30 in the Green state and 0 in the Blue state, whereas the true state-wise payoffs are 

25 and 5 respectively.  

To fully appreciate the implications of this bias, we need to compare the outcomes under 

omniscience (when all payoffs are correctly known) with outcomes under anchoring (when the 

standard deviation of S is overestimated due to anchoring). In a typical application of CCAPM, 

omniscience is assumed. This article is aimed at replacing the assumption of omniscience with 

anchoring. This is the only change and the rest of the framework is left unchanged.  

 In section 1.1, in the context of the example in Table 1, I examine the case of 

omniscience. Continuing with the same example, in section 1.2, I look at the implications of the 

anchoring bias. 
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 Table 1 

Payoffs from well-established, relatively new, and risk-free assets 

Asset Type Price Green State Blue State 

L 𝑃𝐿 200 100 

S  𝑃𝑆 

25 (Omniscience) 

30 (Anchoring) 

5 (Omniscience) 

0 (Anchoring) 

F 𝑃𝐹 110 110 

Investors use the payoff distribution of L as a starting point for forming judgments about the payoff distribution 

of S. Anchoring bias implies that they fail to adjust fully and the volatility judgment remains biased towards the 

starting value. In this example, starting from the payoff standard deviation of L, which is 50, instead of correctly 

estimating the standard deviation of S to be 10, the standard deviation is overestimated to be 15. 

 

 

1.1. CCAPM with Omniscience 

Given the payoffs of L, F, and S (assuming omniscience) in Table 1, what are the equilibrium 

prices of these assets? This question is answered next. 

Suppose there exists a representative agent with a time-separable utility function who 

maximizes the following: 𝑚𝑎𝑥𝑛𝐿,𝑛𝑠,𝑛𝐹𝑈(𝑐𝑡) + 𝛽𝐸𝑡[𝑐𝑡+1] 
where 𝑛𝐿, 𝑛𝑠, and 𝑛𝐹 are the number of shares of L, S, and F respectively. The current and next 

period consumption are 𝑐𝑡 and 𝑐𝑡+1 respectively, and 𝛽 is the time discount factor. 

The agent maximizes expected utility of consumption subject to the following constraints: 𝑐𝑡 = 𝑒𝑡 − 𝑛𝐿𝑃𝐿 − 𝑛𝑠𝑃𝑠 − 𝑛𝐹𝑃𝐹 �̃�𝑡+1 = 𝑒𝑡+1 + 𝑛𝐿�̃�𝐿 + 𝑛𝑠�̃�𝑠 + 𝑛𝐹𝑋𝐹 

where �̃�𝐿, �̃�𝑠 𝑎𝑛𝑑 𝑋𝐹 are payoffs of L, S, and F respectively and are given in Table 1. The agent 

receives endowments 𝑒𝑡 and 𝑒𝑡+1 at 𝑡 and 𝑡 + 1 respectively. 𝑃𝐿, 𝑃𝑠, and 𝑃𝐹 denote prices. 

The first order conditions of the maximization problem are: 𝑃𝐿 = 𝐸𝑡[𝑆𝐷𝐹𝑖 ∙ 𝑋𝐿𝑖] 𝑃𝑠 = 𝐸𝑡[𝑆𝐷𝐹𝑖 ∙ 𝑋𝑠𝑖] 
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𝑃𝐹 = 𝐸𝑡[𝑆𝐷𝐹𝑖] ∙ 𝑋𝐹 

where 𝑆𝐷𝐹𝑖 = 𝛽𝑈′(𝑐𝑡+1𝑖)𝑈′(𝑐𝑡)  evaluated at optimal allocation, and 𝑖 is the state indicator. 

 Assume that the representative agent must hold one unit of each asset to clear the 

market. Assume that utility function is 𝑙𝑛(𝑐), 𝛽 = 1, and 𝑒𝑡 = 𝑒𝑡+1 = 500. Solving the model 

with these parameter values, the results are shown in Table 2. The second column in Table 2 

shows the results under “Omniscience”.  The SDF is {0.44326, 0.517637}. That is, 𝐸[𝑆𝐷𝐹] =0.480449, and 𝜎(𝑆𝐷𝐹) = 0.037189. The Sharpe ratio of the large asset is equal to the Sharpe 

ratio of the small asset at 0.077404. The present value of the Sharpe ratio is 0.037189. In other 

words, the present value of the Sharpe ratio is equal to the standard deviation of the stochastic 

discount factor. That is, the following is true: 𝐸𝑡[𝑅𝑖𝑡+1] − 𝑅𝐹𝑅𝐹 ∙ 𝜎𝑡(𝑅𝑖𝑡+1) = 𝜎𝑡(𝑆𝐷𝐹)                                                                                                           (1.1) 

(1.1) is the capital market line (Sharpe (1964)) equivalent of Hansen-Jagannathan bound 

(Hansen and Jagannathan (1991)), which corresponds to the mean-variance frontier. In our 

example, with omniscience, both the L.H.S and the R.H.S in (1.1) are equal to 0.037189. 

The equity premium puzzle is a puzzle because empirically L.H.S in (1.1) has been found 

to be much larger than the R.H.S in (1.1). With historical US data, the equity premium is 6%, the 

risk free rate is 1%, and the standard deviation of returns is 18%. This implies a present value of 

equity Sharpe ratio equal to 0.33.  The standard deviation of SDF estimated from consumption 

data with power utility (reasonable risk-aversion of less than 2) is around 0.02.  Hence, the L.H.S 

and the R.H.S are different by more than an order of magnitude. This is the equity premium 

puzzle in a nutshell. 

 

1.2 CCAPM with Anchoring 

Continue with the same example; however, replace the assumption of omniscience with the 

assumption that the agent uses the payoff distribution of the well-established asset as a starting 

point to which a series of cognitive operations are applied. Recall that we have assumed that the 

expected payoff is correctly estimated to be 15; however, there is anchoring bias in the standard 

deviation, as it is estimated to be 15, whereas the correct value is 10. It follows that the payoffs 

are estimated to be 30 and 0 in the Green and Blue states respectively, whereas, the 

corresponding correct values are 25 and 5. 
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 Table 2 

A Comparison of Anchoring with Omniscience 

 Omniscience Anchoring 𝑃𝐿 70.20785 70.16025 𝑃𝑆 6.83484 6.61245 𝑃𝐹 52.849335 52.930625 𝑆𝐷𝐹 − 𝐺𝑟𝑒𝑒𝑛 𝑆𝑡𝑎𝑡𝑒 0.44326 0.44083 𝑆𝐷𝐹 − 𝐵𝑙𝑢𝑒 𝑆𝑡𝑎𝑡𝑒 0.517637 0.521545 𝐸(𝑆𝐷𝐹) 0.480449 0.481188 𝜎(𝑆𝐷𝐹) 0.037189 0.040358 

Ex-ante 𝑢′(𝑐𝑡+1) − 𝐺𝑟𝑒𝑒𝑛 𝑆𝑡𝑎𝑡𝑒 1/835 1/840 

Ex-ante 𝑢′(𝑐𝑡+1) − 𝐵𝑙𝑢𝑒 𝑆𝑡𝑎𝑡𝑒 1/815 1/810 𝑆ℎ𝑎𝑟𝑝𝑒𝑅𝑎𝑡𝑖𝑜(𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒) 𝐿 0.037189 0.040358 𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜(𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒)𝑆 0.037189 0.060536 

 

Keeping everything else the same as in section 1.1, the prices of the three assets can be calculated 

and are shown in column three of Table 2. As can be seen, the equity prices are lower, and the 

risk-free asset price is higher with anchoring. The SDF is {0.44083, 0.521545}. That is, 𝐸[𝑆𝐷𝐹] = 0.481188, and 𝜎(𝑆𝐷𝐹) = 0.040358.  
Note that the distribution of SDF has changed: both the mean and standard deviation 

have gone up. The increase in 𝐸(𝑆𝐷𝐹) has lowered the risk-free rate, whereas the increase in 𝜎(𝑆𝐷𝐹) has increased equity returns.  

Changes in ex-ante marginal utility of consumption,  𝑢′(𝑐𝑡+1) − 𝐺𝑟𝑒𝑒𝑛 𝑆𝑡𝑎𝑡𝑒, and 𝑢′(𝑐𝑡+1) − 𝐵𝑙𝑢𝑒 𝑆𝑡𝑎𝑡𝑒, are the key drivers of changes in the distribution of SDF. Starting from 

the standard deviation of 50, estimating the standard deviation as 15 whereas the correct value is 

10 implies that the anchoring-prone investor goes 87.5% of the way. In other words, the 

anchoring error is (1 − 0.875)(50 − 10) = 5. So, one can write the ex-ante marginal utility as: 

𝑢′(𝑐𝑡+1) − 𝐺𝑟𝑒𝑒𝑛 𝑆𝑡𝑎𝑡𝑒 = 1840 = 1835 + 5 = 1835 + (1 − 0.875)(50 − 10)= 1𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 + (1 − 𝑚)(𝜎𝐿 − 𝜎𝑆) 
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Similarly, 

𝑢′(𝑐𝑡+1) − 𝐵𝑙𝑢𝑒 𝑆𝑡𝑎𝑡𝑒 = 1810 = 1815 − 5 = 1815 − (1 − 0.875)(50 − 10)= 1𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 − (1 − 𝑚)(𝜎𝐿 − 𝜎𝑆) 

where 𝜎𝐿 and 𝜎𝑆 are the correct payoff standard deviations of the prominent blue-chip and the 

newer asset respectively, and 𝑚 is the fraction of the distance the anchoring-prone investor goes 

while estimating the payoff volatility of the newer asset. If 𝑚 = 1, the marginal utilities converge 

to their correct values.  

 With anchoring, the ex-ante marginal utility in the good state is lower than the correct 

value, whereas the ex-ante marginal utility in the bad state is higher than the correct value. This 

increases the marginal-utility-weighted expected payoff from the risk-free asset, while lowering 

the marginal-utility-weighted expected payoffs from the risky assets.   

 Anchoring distorts ex-ante marginal utilities though the term (1 − 𝑚)(𝜎𝐿 − 𝜎𝑆). The 

same term lowers the “good state” marginal utility while increasing the “bad state” marginal 

utility. So, even if the magnitude of this term fluctuates a lot over time,  𝐸(𝑢′(𝑐𝑡+1)) and 𝐸(𝑆𝐷𝐹) 

may remain stable over time due to simultaneous increasing and decreasing effects on marginal 

utilities across states. Hence, anchoring keeps 𝜎(𝐸(𝑆𝐷𝐹)) naturally lower. Furthermore, as the 

payoff standard deviations increase with horizon, the anchoring distortion also increases with 

horizon. Hence, there is no difficulty in keeping 𝜎(𝑆𝐷𝐹) increasing with horizon. Hence, the 

two difficulties that commonly afflict habit-persistence models, which are 1) how to keep 𝜎(𝐸(𝑆𝐷𝐹)) low, and 2) how to keep 𝜎(𝑆𝐷𝐹) high at longer horizons, do not arise in the 

anchoring framework.  

 The anchoring bias is also, quite plausibly, higher in “bad economic times” such as 

recessions because payoff volatilities are higher. In our example, 𝜎𝐿 is 50 and 𝜎𝑆 is 10. Let’s say, 

in bad economic times, 𝜎𝐿 goes up by 10% to 55. Let’s say 𝜎𝑆 goes up by 30% to 13 as smaller 

firms are plausibly affected more in bad times. The anchoring bias goes up to 5.25 from 5 (the 

anchoring bias is higher as long as 𝜎𝑆 goes up by less than 50%). This pushes up 𝜎(𝑢′(𝑐𝑡+1)) 

and consequently 𝜎(𝑆𝐷𝐹). Hence, counter-cyclical variations are plausible in 𝜎(𝑆𝐷𝐹). 

The empirical Sharpe ratio of the prominent asset is now different from the empirical 

Sharpe ratio of the newer asset. The empirical Sharpe ratio of the prominent asset is 0.083871. 
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The present value is 0.040358. Hence, (1.1) still holds for the large asset. The empirical Sharpe 

ratio of the newer asset is 0.125806 with a present value of 0.060536, which is larger than the 

standard deviation of the SDF (0.040358). Hence, (1.1) does not hold for the newer asset. It is 

easy to verify that the following holds for the newer asset instead: 𝐸𝑡[𝑅𝑠𝑡+1] − 𝑅𝐹𝑅𝐹 ∙ {𝜎𝑡(𝑅𝑠𝑡+1) + (1 − 𝑚)(𝜎𝐿 − 𝜎𝑆)𝑃𝑠 }= 𝜎𝑡(𝑆𝐷𝐹)                                                                                                           (1.2) 

If 𝑚 = 1, there is no anchoring bias, and (1.2) converges to (1.1). If 0 ≤ 𝑚 < 1, then there is 

anchoring bias, and (1.2) and (1.1) are different. 

 With anchoring, as this example illustrates, Hansen-Jagannathan bound changes. The 

present value of the Sharpe ratio is no longer the lower bound for the standard deviation of the 

stochastic discount factor for anchoring influenced assets. Equity returns rise. The rise is 

substantially greater for anchoring-prone assets. The risk-free rate falls due to an increase in 

perceived aggregate risk. This looks promising regarding the equity premium puzzle. To directly 

address whether anchoring explains the equity premium puzzle, I consider the general case in 

section 2. I find that anchoring not only provides a plausible explanation for the equity premium 

puzzle, but also provides a unified explanation for a large number of other asset pricing puzzles.  

 

1.3 Learning  

Firms go through several classifications over their life-cycle, probably starting out as micro-caps 

with some eventually ending-up as blue-chips, if they survive and continue growing. The 

identifies of firms within each category keep on changing but the percentage of firms in a given 

category is approximately constant overtime. 50 years ago, roughly 4% of the firms were 

classified as blue-chips, and today the same percentage of firms are in the blue-chip category. 7 

Investors may learn the true distribution of S eventually, but the time it takes to do that, 

may mean a classification change for S, with S itself becoming L and some other newer firm 

taking its place.  To take a more concrete example, S could be Cisco system’s stock in 1990, and 

L could be IBM’s stock at that time. In 1990, Cisco was just a new firm with only 6 years of 

experience. Now Cisco is considered a prominent blue-chip (like IBM) with other firms in the 

                                                           
7 http://www.investopedia.com/articles/analyst/010502.asp 
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same spot where Cisco was in 1990 (even among blue-chips, some are more prominent than 

others. Apple, Applied Materials, and Autodesk are all blue-chip companies; however, Apple is 

much more prominent and substantially bigger). So, the role of the anchoring heuristic is unlikely 

to diminish with learning as there are always prominent blue-chips as well as lesser known firms 

in the market. Anchoring would not matter in the unlikely scenario in which the true payoff 

distribution of every firm in the market is accurately known. It is more likely that many such 

distributions are not merely unknown but perhaps are unknowable, a situation known as 

Knightian uncertainty. Plausibly, relying on the anchoring heuristic is a reasonable way to form 

judgments in such situations.  

 

2. Anchoring Heuristic and Asset Prices 

I consider a simple one-period situation with only two points in time, now and the future. 

(Mathematically, the first-order conditions from a multi-period version must decompose anyway 

into an overlapping sequence of first-order conditions from the two-points-in-time model. 

However, such details are not needed for the main message of this article, so I avoid creating 

unnecessary clutter of notation which could be distracting.). For the purpose of incorporating 

the anchoring heuristic into an otherwise standard CCAPM, I use a stark model in which 

everything except the most basic structure has been set aside.  

Suppose there is one time-period marked by two points in time: 𝑡, and 𝑡 + 1. I assume 

the existence of a representative agent who is a risk-averse expected utility maximizer, and who is 

anchoring-prone. The representative agent maximizes: 𝑈(𝑐𝑡) + 𝛽𝐸𝑡[𝑐𝑡+1] 
                                                  subject to:                                                                       𝑐𝑡 = 𝑒𝑡 − ∑ 𝑛𝑖𝑃𝑖𝑁𝑖=1   

�̃�𝑡+1 = 𝑒𝑡+1 + ∑ 𝑛𝑖�̃�𝑖𝑁
𝑖=1  

The total number of asset types is 𝑁. The other symbols have the same meanings as in the last 

section. 
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For each asset type, the following must be true in equilibrium: 𝑃𝑖 = 𝐸𝑡[𝑆𝐷𝐹ℎ ∙ 𝑋ℎ]                                                                                                                            (2.1) 

where  𝑆𝐷𝐹ℎ = 𝛽𝑈′(𝑐𝑡+1ℎ)𝑈′(𝑐𝑡)  evaluated at the optimal allocation, and ℎ is the state index. In general, 𝑆𝐷𝐹ℎ with anchoring is different from  𝑆𝐷𝐹ℎ with omniscience, as illustrated in the last section. 

For ease of reference, I label well-established stocks (prominent blue-chips) that supply 

the starting payoff distributions as the “leader” stocks. Other stocks are labeled as “normal” 

stocks. 

Well-established stocks have larger payoff variances (standard deviations) than their 

respective follower stocks. This is due to their larger payoff sizes. Typically, prominent blue-

chips have the largest asset bases in the industry, and consequently have the largest incomes. 

However, the leader stocks may have lower return variances (standard deviations) than their 

respective follower stocks. This is due to the larger prices of leader stocks. As an illustration of 

this feature, suppose the possible payoffs of the leader firm stock, in the next period, are 300, 

350, and 400 with equal chance of each. The variance of these payoffs can be calculated easily 

and is equal to 1666.667. In a risk-neutral world, with zero risk-free interest rate, the price must 

be 350, so corresponding (gross) returns are: 0.857, 1, 1.143.  So, the return variance is 0.010.  

Assume that the next period payoffs of the normal firm are 0, 35, and 70. The variance of these 

payoffs is 816.667. The risk neural price (with zero risk-free rate) is 35 leading to possible returns 

of 0, 1, and 2. The corresponding return variance is 0.66. As can be seen in this example, the 

payoff variance of the normal firm stock is smaller than the payoff variance of the leader firm 

stock, whereas the return variance of the normal firm is much larger.  

In sections 2.1, 2.2, and 2.3, the following three cases are described: 

1) One leader stock and one normal stock 

2) One leader stock and many normal stocks 

3) Many leader and many normal stocks  
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2.1 One Leader and One Normal Stock 

This is the simplest case as there are only three assets in the market: two risky assets, and one 

risk free asset. Using L for the leader stock, S for the normal stock and F for the risk-free asset, 

their respective prices in equilibrium (from (2.1)) must be: 

𝑃𝐿 = 𝐸[𝑋𝐿]𝑅𝐹 + 𝜌𝐿 ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝜎(𝑋𝐿)                                                                                               (2.2) 

𝑃𝑠 = 𝐸[𝑋𝑠]𝑅𝐹 + 𝜌𝑠 ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝜎𝐴(𝑋𝑠)                                                                                              (2.3) 

𝑃𝐹 = 𝐸[𝑆𝐷𝐹] ∙ 𝑋𝐹                                                                                                                              (2.4) 

where 𝜌𝑖 is the correlation coefficient of asset 𝑖 with the SDF. The superscript 𝐴 indicates that 

the standard deviation of the normal stock payoffs is anchoring influenced. In particular, the 

following simple form is assumed to be consistent with the key stylized fact discussed in the 

introduction: 𝜎𝐴(𝑋𝑠) = (1 − 𝑚)𝜎(𝑋𝐿) + 𝑚𝜎(𝑋𝑠)                                                                                            (2.5) 

where 𝑚 is the fraction of distance the representative agent goes while starting from the standard 

deviation of the leader firm’s payoffs. Note that if 𝑚 = 1, there is no anchoring bias.  

 Substituting (2.5) in (2.3) and re-arranging leads to: 

𝐸[𝑅𝑠] = 𝑅𝐹 − 𝜌𝑠 ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝜎(𝑅𝑠) ∙ 𝑅𝐹 − 𝜌𝑠 ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝑅𝐹 ∙ (1 − 𝑚) ∙ (𝜎(𝑋𝐿)−𝜎(𝑋𝑠))𝑃𝑠      (2.6)      

=> 𝐸[𝑅𝑠] − 𝑅𝐹𝑅𝐹 ∙ {𝜎(𝑅𝑠) + (1 − 𝑚)(𝜎(𝑋𝐿) − 𝜎(𝑋𝑠))𝑃𝑠 }= −𝜌𝑠 ∙ 𝜎(𝑆𝐷𝐹)                                                                                                     (2.7) 

As equities generally have higher expected returns than the risk-free rate, one can safely assume 

that −1 ≤ 𝜌𝑠 < 0 (one exception: gold stocks). In the rest of the article, from this point 

onwards, for simplicity and ease of exposition, I assume that all stock payoff correlations with 

the SDF are negative. It follows that, 



16 

 

𝐸[𝑅𝑠] − 𝑅𝐹𝑅𝐹 ∙ {𝜎(𝑅𝑠) + (1 − 𝑚)(𝜎(𝑋𝐿) − 𝜎(𝑋𝑠))𝑃𝑠 }= |𝜌𝑠| ∙ 𝜎(𝑆𝐷𝐹)                                                                                                     (2.8) 

 

So, 𝐸[𝑅𝑠] − 𝑅𝐹𝑅𝐹 ∙ {𝜎(𝑅𝑠) + (1 − 𝑚)(𝜎(𝑋𝐿) − 𝜎(𝑋𝑠))𝑃𝑠 }≤ 𝜎(𝑆𝐷𝐹)                                                                                                               (2.9) 

 Hence, the Hansen-Jagannathan bound is no longer valid for the normal stock, and is 

replaced by (2.9). It is straightforward to check that the Hansen-Jagannathan bound remains 

valid for the leader stock and is given by: 𝐸[𝑅𝐿] − 𝑅𝐹𝑅𝐹 ∙ {𝜎(𝑅𝐿)} ≤ 𝜎(𝑆𝐷𝐹)                                                                                                                 (2.10) 

 

It is easy to see that the aggregate market portfolio satisfies: 

  𝐸[𝑅𝑀] − 𝑅𝐹𝑅𝐹 ∙ {𝜎(𝑅𝑀) + |𝜌𝑠||𝜌𝑀| (1 − 𝑚)(𝜎(𝑋𝐿) − 𝜎(𝑋𝑠)) ∙ 𝑛𝑠′𝑃𝑀 }= |𝜌𝑀| ∙ 𝜎(𝑆𝐷𝐹)                                                                                                                             (2.11) 

where 𝑅𝑀 is the return on the market portfolio, 𝜌𝑀 is the correlation of the market portfolio’s 

return with the SDF, and 𝑛𝑠′  is the number of shares of the normal stock outstanding. It follows 

that: 𝐸[𝑅𝑀] − 𝑅𝐹𝑅𝐹 ∙ {𝜎(𝑅𝑀) + |𝜌𝑠||𝜌𝑀| (1 − 𝑚)(𝜎(𝑋𝐿) − 𝜎(𝑋𝑠)) ∙ 𝑛𝑠′𝑃𝑀 }≤ 𝜎(𝑆𝐷𝐹)                                                                                                          (2.12) 
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2.1 One Leader and Many Normal Stocks 

It is easy to extend the anchoring approach to a situation in which there is one well-established 

stock and a large number of normal stocks. Suppose there are 𝑘 types of normal stocks. By 

closely following the same steps as in the previous section, we obtain the following lower bound 

with the aggregate market portfolio: 𝐸[𝑅𝑀] − 𝑅𝐹𝑅𝐹 ∙ {𝜎(𝑅𝑀) + ∑ |𝜌𝑠𝑖||𝜌𝑀| (1 − 𝑚)(𝜎(𝑋𝐿) − 𝜎(𝑋𝑠𝑖)) ∙ 𝑛𝑠𝑖′𝑃𝑀𝑘𝑖=1 }≤ 𝜎(𝑆𝐷𝐹)                                                                                                      (2.13) 

 

2.2. Many Leader and Many Normal Stocks 

It is natural to expect that every sector has its own leader firm whose stock is used as a starting 

point to form judgments about other firms in the same sector. I assume that there are 𝑄 sectors 

and every sector has one leader firm. I assume that the number of normal firms in every sector is 𝑘. That is, the total number of normal firms in the market is 𝑄 × 𝑘. As the total number of 

leader firms is 𝑄. The total number of all firms (both leader and normal) in the market is 𝑄 +(𝑄 × 𝑘). 

 Following a similar set of steps as in the previous two sections, we obtain the following 

lower bound with the aggregate market portfolio: 𝐸[𝑅𝑀] − 𝑅𝐹𝑅𝐹 ∙ {𝜎(𝑅𝑀) + ∑ ∑ |𝜌𝑠𝑞𝑖||𝜌𝑀| (1 − 𝑚) (𝜎(𝑋𝐿𝑞) − 𝜎(𝑋𝑠𝑞𝑖)) ∙ 𝑛𝑠𝑞𝑖′𝑃𝑀𝑘𝑖=1𝑄𝑞=1 }
≤ 𝜎(𝑆𝐷𝐹)                                                                                                     (2.14) 

The expected return on the market portfolio is given by: 𝐸[𝑅𝑀] = 𝑅𝐹 + |𝜌𝑀| ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝜎(𝑅𝑀) ∙ 𝑅𝐹 + 𝜎(𝑆𝐷𝐹) ∙ 𝑅𝐹
∙ ∑ ∑|𝜌𝑠𝑞𝑖| (1 − 𝑚) (𝜎(𝑋𝐿𝑞) − 𝜎(𝑋𝑠𝑞𝑖)) ∙ 𝑛𝑠𝑞𝑖′𝑃𝑀

𝑘
𝑖=1

𝑄
𝑞=1                                  (2.15) 
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The price of the market portfolio is given by: 

𝑃𝑀 = 𝐸[𝑋𝑀]𝑅𝐹 − |𝜌𝑀| ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝜎(𝑋𝑀) − 𝜎(𝑆𝐷𝐹)
∙ ∑ ∑|𝜌𝑠𝑞𝑖|(1 − 𝑚) (𝜎(𝑋𝐿𝑞) − 𝜎(𝑋𝑠𝑞𝑖)) ∙ 𝑛𝑠𝑞𝑖′𝑘

𝑖=1
𝑄

𝑞=1                                      (2.16) 

where 𝑛𝑠𝑞𝑖′  is the number of shares outstanding of the normal stock 𝑖 belonging to sector 𝑞. 

  

3. Anchoring and Asset Pricing Puzzles 

The standard consumption-based asset pricing model is a general equilibrium model that 

assumes a representative agent who is omniscient (accurately knows the payoff distribution of 

every asset in the market). The empirical record of this model is quite poor and a large number 

of phenomena exist that are inconsistent with its predictions. The difficulty in reconciling the 

high average equity-premium with low risk-aversion coefficient (Mehra and Prescott (1985)) is 

generally considered as the first exhibit against the standard CCAPM. There are other key 

puzzles as well such as the low risk-free rate, counter-cyclical equity premiums, excess volatility, 

size, value, and momentum effects, and the anomalous stock returns and volatility after stock-

splits and reverse stock-splits. 

 In this section, I show that replacing the assumption of an omniscient representative 

agent with the assumption that the representative agent is anchoring-prone provides a plausible 

unified explanation for these puzzles. 

 

3.1 The Equity Premium Puzzle 

If there is no anchoring bias, then the following must be true: 𝐸[𝑅𝑀] − 𝑅𝐹𝑅𝐹 ∙ {𝜎(𝑅𝑀)} ≤ 𝜎(𝑆𝐷𝐹)                                                                                                                (3.1) 

The equity premium puzzle, first identified in Mehra and Prescott (1985), can be easily seen with 

the above formulation. The historical average return on US equity market is 6 to 7%, the average 

risk free rate is 1%, and the historical average standard deviation of returns is 18%. With these 
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values, the L.H.S in (3.1) is equal to 0.33. The R.H.S estimated from consumption data is around 

0.02 (power utility and risk-aversion less than 2). Hence, there is a very wide gap between the 

L.H.S and the R.H.S. This is the equity premium puzzle in a nutshell. 

 Considering a single stock, the corresponding bound with anchoring is given in (2.9): 𝐸[𝑅𝑠] − 𝑅𝐹𝑅𝐹 ∙ {𝜎(𝑅𝑠) + (1 − 𝑚)(𝜎(𝑋𝐿) − 𝜎(𝑋𝑠))𝑃𝑠 } ≤ 𝜎(𝑆𝐷𝐹)  
The Sharpe-ratio can be quite large when compared with 𝜎(𝑆𝐷𝐹) with the additional term in the 

denominator ensuring that L.H.S remains smaller than R.H.S in the above inequality. Even, if we 

consider assets with the highest Sharpe-ratios, the above inequality is quite easily satisfied. To 

take an example, assume that 𝐸[𝑅𝑠] is 1.1, 𝑅𝐹 is 1, and 𝜎(𝑅𝑠) is 0.20. This gives a Sharpe-ratio 

of 0.5. Continue to conservatively assume that 𝜎(𝑆𝐷𝐹) is correctly estimated from consumption 

data to be 0.02 (ex-ante 𝜎(𝑆𝐷𝐹) is higher with anchoring so assuming 0.02 is being conservative 

from the anchoring perspective). With these number, we need the anchoring term in the 

denominator to be only as large as 4.8. As prominent blue-chips have payoff volatilities many 

times larger than the payoff volatilities of penny stocks, the anchoring term may cross 4.8 quite 

easily. 

The resolution of the equity premium puzzle is even easier to see at the aggregate level. 

With anchoring, the corresponding lower bound at the aggregate level is given in (2.14). That is, 

there is an additional term in the denominator. The additional term is ∑ ∑ |𝜌𝑠𝑞𝑖||𝜌𝑀| (1−𝑚)(𝜎(𝑋𝐿𝑞)−𝜎(𝑋𝑠𝑞𝑖))∙𝑛𝑠𝑞𝑖′𝑃𝑀𝑘𝑖=1𝑄𝑞=1 . Anchoring provides a plausible explanation for the 

equity premium puzzle if for reasonable values for this term, the R.H.S and the L.H.S in (2.14) 

are equal to each other. As before, I create a higher obstacle for anchoring by assuming that 𝜎(𝑆𝐷𝐹) is correctly estimated from consumption data to be 0.02 even though with anchoring 

the ex-ante 𝜎(𝑆𝐷𝐹) must be higher.  

 With the above historical values, if the anchoring term is 2.79, then the L.H.S and the 

R.H.S in (2.14) are equal to each other. In order to make it harder for the anchoring explanation 

to be successful, while choosing values below, I always err on the side of choosing values that 

make this term smaller. 
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There are about 5000 listed firms in the US equity market. Assuming that 5% of these are 

prominent blue-chips or well-established, we get 4750 as the number of firms that are influenced 

by anchoring. Prominent blue-chips are much smaller in number (less than 1%) and are not 

more than few dozens. By assuming that 5% of the firms in the market are prominent blue-

chips, we are probably hugely overestimating their actual number (which is roughly 50). This 

means that the number of anchoring-prone firms is underestimated. Hence, my estimate of the 

number of anchoring- prone stocks is on the conservative side.  

I set the anchoring parameter at 𝑚 = 0.98. That is, the anchoring bias is kept quite small 

at only 2%. Continuing to make things difficult for the anchoring explanation, I underestimate 

typical  𝜎(𝑋𝐿𝑞) − 𝜎(𝑋𝑠𝑞𝑖) by assuming that a typical leader firm has a payoff standard deviation 

only 2 times larger than a typical normal firm. I assume that a typical normal firm has only 1000 

shares outstanding, and the value of market portfolio is overestimated to be worth 30000 times 

the typical standard deviation of a normal stock. Even with such large values chosen to create 

harder obstacles for the anchoring explanation, the anchoring term is equal to 2.85 if typical 
|𝜌𝑠𝑞𝑖||𝜌𝑀|  

is 0.45. 

 Hence, the equity premium puzzle is surprisingly easy to explain with anchoring. 

 

3.2 The Low Risk Free Rate Puzzle 

Weil (1989) is the first to point out that in a standard consumption-based asset pricing model, 

assuming a high risk-aversion coefficient makes the risk-free rate unreasonably high for 

reasonable values of the time discount factor. With anchoring, we do not need to invoke high 

risk aversion to explain the equity premium puzzle, so this problem is avoided. In fact, the risk-

free rate tends to be quite low naturally with anchoring as the perceived aggregate risk is high, 

which pushes up the price of the risk-free asset lowering the risk-free return. This has also been 

illustrated with the example in section 1.  

 With the risk-free rate denoted by 𝑅𝐹, and the stochastic discount factor given by 𝑚, the 

following is true: 𝑅𝐹 = 1𝐸[𝑚𝑡+1]. The anchoring bias increases 𝐸[𝑚𝑡+1]. Hence, the risk-free rate 

is naturally lower with anchoring, and there is no need to separate the intertemporal elasticity of 

consumption and risk-aversion in order to explain the low risk-free rates.  
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 The anchoring bias simultaneously decreases 𝑚 in the good state and increases 𝑚 in the 

bad state (see the example in section 1 for a clear illustration of this point). So, fluctuations in 𝑚 

over time may not show up in 𝐸[𝑚] as they may get cancelled across states, with 𝐸[𝑚] not 

fluctuating much over time. Hence, the anchoring bias keeps 𝜎(𝐸[𝑚]) naturally low. Hence, the 

low volatility of the risk-free rate is also easy to explain with anchoring.  

 

3.3 The Countercyclical Equity Premium 

With anchoring, the price of the market portfolio is given in (2.16): 

𝑃𝑀 = 𝐸[𝑋𝑀]𝑅𝐹 − |𝜌𝑀| ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝜎(𝑋𝑀) − 𝜎(𝑆𝐷𝐹)
∙ ∑ ∑|𝜌𝑠𝑞𝑖|(1 − 𝑚) (𝜎(𝑋𝐿𝑞) − 𝜎(𝑋𝑠𝑞𝑖)) ∙ 𝑛𝑠𝑞𝑖′𝑘

𝑖=1
𝑄

𝑞=1  

=> 𝑃𝑀 = 𝐸[𝑋𝑀]𝑅𝐹 − |𝜌𝑀|
∙ 𝜎(𝑆𝐷𝐹) {𝜎(𝑋𝑀) + ∑ ∑ |𝜌𝑠𝑞𝑖𝜌𝑀 | (1 − 𝑚) (𝜎(𝑋𝐿𝑞) − 𝜎(𝑋𝑠𝑞𝑖)) ∙ 𝑛𝑠𝑞𝑖′𝑘

𝑖=1
𝑄

𝑞=1 }   
That is, there is an additional term due to anchoring given by: 

∑ ∑ |𝜌𝑠𝑞𝑖𝜌𝑀 | (1 − 𝑚) (𝜎(𝑋𝐿𝑞) − 𝜎(𝑋𝑠𝑞𝑖)) ∙ 𝑛𝑠𝑞𝑖′𝑘
𝑖=1

𝑄
𝑞=1  

Plausibly, the above term is countercyclical as payoff volatilities are larger in recessions. The term 

remains countercyclical even if the percentage increase in 𝜎(𝑋𝑠𝑞𝑖) is substantially larger than the 

percentage increase in 𝜎(𝑋𝐿𝑞) because, typically, we expect, 𝜎(𝑋𝐿𝑞) ≫ 𝜎(𝑋𝑠𝑞𝑖). Plausibly, 𝜎(𝑆𝐷𝐹) is countercyclical as well as the example in section 1 illustrates. This means that the 

market price is lower in recessions and higher in expansions leading to a countercyclical equity 

premium. 

 In general, with anchoring, one expects the following to hold: 

Low prices, relative to fundamentals, precede high returns. High prices precede low returns. 
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3.4 High Stock Price Volatility 

Shiller (1981) and LeRoy and Porter (1981) show that market prices are much more volatile than 

what can be justified by fundamentals. This feature is also easily seen with anchoring. With 

anchoring, the price of a normal firm stock is given by: 

𝑃𝑠 = 𝐸[𝑋𝑠]𝑅𝐹 − |𝜌𝑠| ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝜎(𝑋𝑠) − |𝜌𝑠| ∙ 𝜎(𝑆𝐷𝐹) ∙ (1 − 𝑚)∙ (𝜎(𝑋𝐿) − 𝜎(𝑋𝑠))                                                                                                 (3.2) 

It follows that, 

𝑉𝑎𝑟(𝑃𝑠) = 𝐶𝑜𝑣 (𝑃𝑠, 𝐸[𝑋𝑠]𝑅𝐹 ) − 𝐶𝑜𝑣(𝑃𝑠, |𝜌𝑠| ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝜎(𝑋𝑠)) − 

                                                                      (1 − 𝑚) ∙ 𝐶𝑜𝑣 (𝑃𝑠, |𝜌𝑠| ∙ 𝜎(𝑆𝐷𝐹) ∙ (𝜎(𝑋𝐿) − 𝜎(𝑋𝑠)))    

Realizing that covariances in the second and third term in the above equation must be negative, 

we can write: 

𝑉𝑎𝑟(𝑃𝑠) = 𝐶𝑜𝑣 (𝑃𝑠 , 𝐸[𝑋𝑠]𝑅𝐹 ) + |𝐶𝑜𝑣(𝑃𝑠, |𝜌𝑠| ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝜎(𝑋𝑠))|
+ (1 − 𝑚) |𝐶𝑜𝑣 (𝑃𝑠, |𝜌𝑠| ∙ 𝜎(𝑆𝐷𝐹) ∙ (𝜎(𝑋𝐿) − 𝜎(𝑋𝑠)))| 

If there is no anchoring bias, that is, 𝑚 = 1, we are back to the standard formulation: 

𝑉𝑎𝑟(𝑃𝑠) = 𝐶𝑜𝑣 (𝑃𝑠 , 𝐸[𝑋𝑠]𝑅𝐹 ) + |𝐶𝑜𝑣(𝑃𝑠, |𝜌𝑠| ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝜎(𝑋𝑠))| 
Stock prices seem excessively volatile because the fluctuations in fundamentals, 𝐸[𝑋𝑠] and 𝜎(𝑋𝑠) 

do not seem to be enough to justify the fluctuations in 𝑃𝑠. Anchoring bias adds a third term to 

the picture, which is given by (1 − 𝑚) |𝐶𝑜𝑣 (𝑃𝑠, |𝜌𝑠| ∙ 𝜎(𝑆𝐷𝐹) ∙ (𝜎(𝑋𝐿) − 𝜎(𝑋𝑠)))|. Hence, 

news unrelated to fundamentals of a given stock, that is, idiosyncratic news only related to the 

leader stock in the sector also influences the stock price. Given the attention paid to prominent 

blue-chips, this additional term may dominate the other two firms. 
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3.5 Size, Value, and Momentum Effects 

Expected return on a normal firm stock with anchoring is given by: 

𝐸[𝑅𝑠] = 𝑅𝐹 + |𝜌𝑠| ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝑅𝐹 {𝜎(𝑅𝑠) + (1−𝑚)(𝜎(𝑋𝐿)−𝜎(𝑋𝑠))𝑃𝑠 }                                       (3.3) 

Keeping all else the same, smaller size payoffs (of small-cap firm stocks) mean lower price and 

lower 𝜎(𝑋𝑠). That is, the additional term due to anchoring 
(1−𝑚)(𝜎(𝑋𝐿)−𝜎(𝑋𝑠))𝑃𝑠  rises with smaller 

size. Hence, anchoring is consistent with the size premium: small-cap stocks tend to outperform 

large-cap stocks. 

 Value stocks tend to have smaller return volatility when compared with growth stocks. 

Fama-French (FF) value and growth indices (monthly returns data from July 1963 to April 2002) 

show the following standard deviations: FF small value: 19.20%, FF small growth: 24.60%, FF 

large value: 15.39%, and FF large growth: 16.65%.  That is, among both small-cap and large-cap 

stocks, value stocks have less volatile returns than growth stocks. By definition, value stocks have 

higher book-to-market value when compared with growth stocks. That is, they have lower 

market prices. It follows that the value stocks have lower payoff volatilities as well when 

compared with growth stocks. Having lower payoff volatility and lower market price implies a 

higher value for the anchoring term in (3.3), which means higher returns. Hence, value premium 

arises in the anchoring framework. 

 According to (3.3), in a given cross-section of stocks, keeping everything else the same, 

low “m” stocks do better than high “m” stocks. But, how can we identify low vs high “m” 

stocks? Plausibly, we can identify them by looking at their recent performances. Stocks that have 

received unusually good news recently are “winning stocks”, and stocks that have received 

unusually bad news recently are “losing stocks”. Winning stocks are likely to get more strongly 

anchored to the leader stock as their recent success makes them more like the leader. For losing 

stocks, their recent bad spell makes them less like the leader. That is, “m” falls for winning 

stocks and rises for losing stocks. So, winning stocks continue to outperform losing stocks till 

the effect of differential news on “m” dissipates, and “m” returns to its normal level. This could 

be the basis for the momentum effect.  
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3.6 Stock-Splits and Reverse Stock-Splits 

Stock-splits and reverse stock-splits appear to be merely accounting changes. A stock-split 

increases the number of shares proportionally. In a 2-for-1 split, a person holding one share now 

holds two shares. In a 3-for-1 split, a person holding one share ends up with three shares and so 

on. A reverse stock-split is the exact opposite of a stock-split. Stock-splits and reverse stock- 

splits appear to be merely changes in denomination, that is, they seem to be accounting changes 

only with no real impact on returns. With consumption-based asset pricing without anchoring, 

the impact of a stock-split on the equilibrium price of stock 𝑖 can be seen in the following 

equation: 

𝑃𝑖 = 𝐸[𝑋𝑖]𝑅𝐹 − |𝜌𝑖| ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝜎(𝑋𝑖)                                                                                               (3.4) 

A 2-for-1 split divides the standard deviation as well as the mean of payoffs by 2, so the price 

gets divided by 2 also. As both the price and the expected payoff are divided by 2, there is no 

change in expected return. As both the standard deviation of payoffs and the price are divided by 

2, there is no change in the standard deviation of returns either. Hence, a stock-split and a 

reverse stock-split should not change the expected return or the standard deviation of returns, 

according to the standard CCAPM. 

 The situation is considerable different with anchoring adjusted CCAPM. The equilibrium 

price of a ‘normal’ stock is now given by the following equation:  

𝑃𝑖 = 𝐸[𝑋𝑖]𝑅𝐹 − |𝜌𝑖| ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝜎(𝑋𝑖) − |𝜌𝑖| ∙ 𝜎(𝑆𝐷𝐹) ∙ (1 − 𝑚)∙ (𝜎(𝑋𝐿) − 𝜎(𝑋𝑖))                                                                                         (3.5) 

Due to the presence of an additional term in (3.5) when compared with (3.4), dividing the 

expected payoff and the standard deviation of 𝑖′𝑠 payoff by 2 lowers the price beyond division 

by 2. As price gets divided by more than 2, and the expected payoff and the standard deviation 

of payoff get divided by 2, both the expected return and the standard deviation of returns should 

rise after a split. The opposite conclusion holds for a reverse stock-split. The expected return as 

well as the standard deviation of returns should fall after a reverse stock-split. 

 Empirical evidence strongly supports the above predictions. Using data from 1975 to 

1990, Ikenberry et al (1996) shows that stock-splits are associated with 8% positive abnormal 

returns after one year, and 16% abnormal returns over three years.  Ikenberry et al (2003) uses 
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data from 1990 to 1997 and confirms the earlier findings. Ohlson and Penman (1985) are the 

first to show that return volatility increases by about 30% following a stock split. Kim et al 

(2008) examine the long-run performance of 1600 firms with reverse stock-splits and reports 

negative abnormal returns. Koski (2007) shows a decrease in return volatility of 25% subsequent 

to a reverse stock-split. 

 

4. Empirical Evidence 

For an anchoring influenced stock, the expected return is given by: 

𝐸[𝑅𝑠] = 𝑅𝐹 + |𝜌𝑠| ∙ 𝜎(𝑆𝐷𝐹) ∙ 𝑅𝐹 {𝜎(𝑅𝑠) + (1 − 𝑚)(𝜎(𝑋𝐿) − 𝜎(𝑋𝑠))𝑃𝑠 } 

A key prediction of the anchoring approach can be directly seen from the above equation. 

Keeping all else the same, equity with less volatile payoffs should earn higher returns than equity 

with more volatile payoffs. That is, having a low value of 𝜎(𝑋𝑠) is beneficial. This prediction can 

be tested by using financial statement information to infer 𝜎(𝑋𝑠). 

 There is strong (indirect) evidence for the above prediction. A significant body of 

empirical work has uncovered, what is known as, the low volatility anomaly. Stocks with highly 

volatile returns tend to have low average returns irrespective of whether volatility is measured as 

the variance of daily returns or as the variance of the residuals from the FF three-factor model 

(see Baker and Haugen (2012), Wurgler et al (2010), and Ang et al (2006) among others). Note, 

that even though the payoff or earnings volatility is not directly used, it is likely that stock return 

volatility and payoff volatility are closely related. In general, research in accounting, starting from 

Beaver et al (1970) confirms the positive association between payoff or earnings volatility from 

financial statements and stock return volatility as observed in financial markets.  

 Another set of indirect evidence comes from what is known as the accruals anomaly. 

Sloan (1996) is the first paper to find that low returns are associated with high accruals. Accruals 

arise because accounting decisions cause book earnings to differ from cash earnings. The finding 

is that equity in firms that have a large accrual component of earnings performs worse than the 

equity in firms that have a lower accrual component. One expects that firms with large accrual 

component of earnings have less persistent or more volatile earnings when compared with firms 

with smaller accrual component of earnings. Sloan (1996) explicitly tests for this and finds strong 
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support. Hence, to the extent, high accruals are a proxy for high earnings volatility, the anchoring 

prediction is supported.  

 Given a large body of empirical evidence on both the low volatility and the accruals 

anomaly, it would be very surprising, if one does not find confirmatory evidence by directly using 

the earnings or payoff volatility. 

 

4. Conclusions 

The standard consumption-based asset pricing model is a general equilibrium model which 

assumes an omniscient representative agent who is able to form correct expectations regarding 

the future payoff distributions of all available assets. I drop the assumption of omniscience and 

assume that investors use the payoff distributions of prominent blue-chips as starting points 

which are then adjusted to form the required judgments. Anchoring bias implies that such 

adjustments typically fall short. I propose only one change in the standard model: The 

replacement of an omniscient representative agent with an anchoring-prone representative agent. 

I show that this change is sufficient to provide a plausible unified explanation for key asset 

pricing puzzles including the equity premium puzzle. The anchoring model makes the following 

prediction: Equity in firms with less volatile earnings would outperform equity in firms with more volatile 

earnings. Indirect empirical evidence strongly supports this prediction.  
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