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Abstract

The evolution of growth theories from the 1956 seminal work of Solow and
Swan to Aghion and Howitt’s 1992 Schumpeterian model is traced herein. How
growth empirics helped improve some existing theories is also presented. As a
matter of fact, the empirical evidence that countries were not converging as the
Solow-Swan model predicted led to the development of endogenous growth theories
pioneered by Romer (1986) and Lucas Jr (1988). Thereafter, semi-endogenous
growth models originated from the observation that growth rate across countries
was not proportional to the size of skilled labor as endogenous growth theories
predicted.

I also present my own empirical assessment of some predictions from growth
theories and find supporting evidence of (1) convergence of GDP across Canada
and the countries of the West African Economic and Monetary Union and (2) a
positive relationship between output and the accumulation of knowledge through
R&D across Canada. I also find, in Canada, the evidence of a positive relationship
between economic growth and skilled labor, as some model predicted.

Keywords: Economic Growth, endogenous growth, exogenous growth, growth
empirics
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1 Introduction

The main purpose of (economic) growth models is to explain the determinants of
the long-run growth in per capita output. On the contrary, real business-cycle
models deal with the determinants of the short-run fluctuations in output. In
terms of duration, i.e., number of months, quarters, or years, there is not a clear-
cut definition of the concepts of long and short-runs. According to the National
Bureau of Economic Research (NBER), the average duration of the thirty-three
cycles the United Sates (US) experienced between 1854 and 2009 is roughly fifty-
six months. 1 Baxter and King (1999), following the NBER’s investigations on
the US economy,defined the business cycle as lasting between eighteen months and
eight years. The long-run can therefore be defined as a period of time of at least
eight years.

Growth models are made up of both theories and cross-country empirical in-
vestigations also called growth regressions. The essential of the post World War II
(WWII) 2 growth models takes its inspiration from the neoclassical growth the-
ory simultaneously and independently developed by the American and Austrian
economists Robert Solow and Trevor Swan in 1956. Solow will be awarded the
Nobel Prize in 1987 for his contribution. 3 Before Solow and Swan’s contribu-
tions, the prevailing growth model was Roy Harrod’s 1939 and Evsey Domar’s 1946
AK model. The Harrod-Domar model assumes capital and labor are used in fixed
proportions by firms. It then predicts that long-run growth equilibrium is unsta-
ble. A slight deviation of an economy from its long-run growth equilibrium path
would result either in a growing unemployment or in a perpetual growth of idle
machinery. Solow and Swan questioned the lack of substitutability between capital
and labor in the Harrod-Domar model deeming the assumption implausible. They
therefore replaced the fixed proportion production function (also called Leontief
technology) in the Harrod-Domar model with a neoclassical production function.
A neoclassical production function is a function that assumes inter alia that both
capital and labor are needed to produce output, if the quantity used of both inputs
are simultaneously, say, doubled, output also doubles, the marginal product of each
of these inputs is positive but decreasing. A Cobb-Douglass production function
is an example. In the Solow-Swan model, only firms behave optimally maximizing
their profits. Households’ saving rate is constant and exogenous. In 1965, Cass and
Koopmans following Ramsey’s 1928 paper endogenized saving in the Solow-Swan
model assuming households also behave optimally choosing their consumption and
saving so as to maximize their lifetime utility.

The Solow-Swan and the Cass-Koopmans-Ramsey models and their many ex-
tensions make up what is called the neoclassical or exogenous growth models in the
sense they assume technological progress, the main determinant of long-run growth,
takes place outside the model. Technological progress is the improvement in the ex-
isting means and methods of production or the invention of new ones. 4 Exogenous

1http://www.nber.org/cycles.html
2WWII opposing, among others, Germany, Italy, and Japan (the Axis) to Poland, France, the United

Kingdom, the United States, and Canada (the Allied) broke out on September 1, 1939 with the German
invasion of Poland and ended on September 2, 1945 with Japan formally surrendering.

3On the fiftieth anniversary of his seminal work, Solow (2007, pp 3-4) humbly gave his account of
why his contribution and not Swan’s became the most popular. In short, he deemed his approach
simpler than Swan’s.

4The terminologies technological progress and technical progress are interchangeably used in the
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growth models also share a common feature: they assume the aggregate production
function exhibits diminishing returns. Because of the diminishing returns in capital
and labor, these models predict, in the long-run, per capita output across countries
would converge. That is, countries with low per capita output would grow faster to
catch up with countries with higher per capita output.

The 1980s witnessed the beginning of both the endogenous growth and the
growth regressions literature. Endogenous growth theories, contrary to neoclassi-
cal growth theories, explain technological progress as the result of firms’ research
and development (R&D) activities and human capital as the abilities acquired by
households through schooling and learning-by-doing. 5 Paul Romer (1986, 1990)
and Robert Lucas Jr (1988) were the first to motivate and elaborate these theories.
They were followed by Aghion and Howitt (1992). Romer (1990) dealt with what
is called horizontal innovations. According to him, technological progress arises
because firms engaged in R&D allocate resources to the design of new and dis-
tinct (producer) durables. As for Aghion and Howitt (1992), technological progress
arises because R&D firms are concerned with designing improved quality durables
that render previous ones out-of-date. That is what is called vertical innovations.
Here are some examples of each of these two types of innovations. One can see the
successive Microsoft Windows operating systems (Windows XP, Windows Vista,
Windows 7, &c) and the successive Apple Macintosh operating systems (System,
System Software, Mac OS, Mac OS X) as vertical innovations. On the other hand,
the introduction in 2001 of both Microsolt tablet personal computer and Sharp
Corporation’s camera cellphone, the J-SH04, are horizontal innovations. Note
that, earlier, Uzawa (1965) modeled technological change as an emanation from
the education sector. Lucas Jr (1988) using Uzawa’s framework introduced and
endogenized human capital in the neoclassical growth framework. 6 He kept
technological progress exogenous and presented human capital accumulation as an
alternative growth engine increasing productivity and thus raising output.

Growth regressions mainly purport to (i) assess empirically the success of ex-
isting growth models using cross-country time series data, (ii) find out stylized
facts across countries and over time in order to elaborate growth models consis-
tent with observations. The growth regressions literature has enormously benefited
from (i) the advances in econometrics particularly in the fields of cross-sectional
time series analysis (also knows as panel data analysis) and nonparametric estima-
tion along with (ii) the emergence of new and larger databases such as the Penn
World Table. 7 Earlier growth regressions include Solow (1957) who, using US
1909-1949 data, estimated the contribution of capital and technological change to
output growth. He attributed 87.5 % of the observed growth in ouptut to techno-
logical change. Then comes Romer (1986) who tested the convergence hypotheses.

literature. This paper holds on to the use of the former.
5Schultz (1960) and Becker (1964) introduced the concept of human capital. Becker was awarded

the Nobel Prize in 1992 for integrating human behavior and interaction into microeconomics.
6Other well-known contributions of Uzawa to the growth literature include two-sector growth models,

which are models attributing the production of consumption and investment goods to two different
sectors: the consumption and the investment sectors. Each of these sectors combines its own capital
and labor inputs to produce its output (Uzawa, 1961, 1963).

7The Penn World Table (http://pwt.econ.upenn.edu) is a database run at the University of Pennsyl-
vania which contains, among other things, data on per capita gross domestic product and capital stock
estimates for almost 190 countries over the whole or part of the sample period 1950-2004.
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Barro (1991) used ninety-eight countries’ data over the period 1960-1985 to test
the convergence hypotheses and the contribution of human capital, goverment con-
sumption, political stability, and market distortions to economic growth. He did
not find strong evidence in the support of the convergence hypotheses.

There is a feedback relationship between growth theories and growth empirics.
As an example, as said earlier, exogenous growth models predict that, in the long-
run, per capita output across different countries will converge. This prediction was
empirically tested by Romer (1986) and Lucas Jr (1988) among others who found no
strong supporting evidence. This lack of empirical evidence called the convergence
controversy led both of them to build alternative growth models consistent with
their empirical findings.

Most growth theorists work with continuous time models. They solve optimal
control problems and the tools often used are: differential calculus, the Pontrya-
gin’s maximum principle, and computer packages such as Maple and Matlab. The
appendix on mathematical methods of Barro and Sala-i Martin’s 2004 textbook
goes through these tools. Goergen (2006) presents how both Maple and Matlab
can be used to solve numerically growth models. Many growth theories assume
no uncertainty. Agents thus have perfect foresight, viz. an accurate knowledge of
the future. Some exceptions include Aghion and Howitt (1992), Azariadis (1981),
and Cass and Shell (1983). Aghion and Howitt modeled the duration between two
successive vertical innovations as a random variable following an exponential distri-
bution. As for Azariadis and Cass and Shell, they modeled extraneous or extrinsic
uncertainty, i.e., an uncertainty arising from agents’ subjective belief that prices
are stochastic. This latter kind of uncertainty is also referred to as self-fulfilling
prophecies.
As mentioned earlier, econometrics is the main tool used by growth empiricists.
In the appendix of Aghion and Howitt’s 2009 textbook, one can find some basic
econometric techniques such as multiple regression and hypothesis testing used in
the field. More advanced techniques include: cross-sectional time series regression
to estimate models using samples made up of several countries’ time series data,
and nonparametric estimation to test hypotheses without assuming any functional
relationship between the variables of interest.

Some concrete issues that growth economists investigate include fertility (Becker,
Murphy, and Tamura, 1990), migration (Beine, Docquier, and Rapoport, 2001), ed-
ucation (Hartwick, 1992; Tran-Nam, Truong, and Van Tu, 1995; Shimomura and
Tran-Nam, 1997; Ciriani, 2007), competition policy (Aghion, Harris, and Vickers,
1997; Aghion, Harris, Howitt, and Vickers, 2001; Acemoglu, Aghion, and Zilibotti,
2003; Aghion and Griffith, 2005), trade liberalization (Wacziarg and Welch, 2003),
and democracy (Sirowy and Inkeles, 1990). The field has its own academic journal,
the Journal of Economic Growth, established in 1996.

The rest of this paper is organized as follows. Section 2 presents some popular
exogenous growth models whereas Sections 3 deals with endogenous growth models.
Both theories and empirical evidence are presented. Most of the empirical evidence
relates to the Canadian economy. Section 4 concludes by presenting some prospects
for future research.
In Section 2, the evolution of growth theories from Solow and Swan’s contribution
to the convergence controversy is traced. The empirical investigations carried out
in that section are: (1) the estimation of the contribution of capital, labor and
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technological progress to growth in Canada 8 and (2) the assessment of the conver-
gence hypothesis using the data of the ten provinces of Canada and those of eight
countries making up the West African Monetary and Economic Union.
Section 3 presents the models of Lucas Jr, Romer, and Aghion and Howitt as well
as some empirical evidence. After presenting the model of Romer, I have reviewed
some contributions to that model by Jones (1995), Benassy (1998), and Alvarez-
Pelaez and Groth (2005). The contribution of Jones followed the observation that
growth rate and the size of skilled labor were not linearly related as endogenous
growth models predicted. As for Benassy and Alvarez-Pelaez and Groth, they re-
laxed the assumptions on some parameters to show that it is possible the model of
Romer generate excess R&D. The empirical investigations in that section consist
of: (1) the break down and analysis of the share of labor income in the aggregate
output by households’ educational attainment, (2) the study of the relationship
betwwn growth and skilled labor, and (3) the study of the relationship between
output and R&D expenditure in Canada. It appears throughout this paper that
each new growth theory is designed to amend or completement the prevailing one.

2 Some Exogenous Growth Models

Three exogenous growth theories are sketched in this section: the seminal Solow
and Swan’s model, the Cass-Koopmans-Ramsey and the overlapping generations
models. Then follow two empirical investigations. In the first one, I have estimated
the contribution of each of the three main inputs, which are capital, labor, and
technological progress, to growth in Canada over 1976-2005. I then compare my
estimates to two previous studies that covered the sample periods 1947-1973 and
1960-1995 in Canada. My second, investigations show convergence of GDP across
the ten provinces of Canada and the eight countries making up the West African
Monetary and Economic Union.

2.1 The Solow-Swan Model

The economy is composed of households and firms. Firms produce an aggregate
output Y using as inputs both (physical) capital K rented from households and
labor L. Each household inelastically supplies one unit of labor. Both inputs are
essential in the production of Y and are fully employed. This implies L equates the
population which grows exponentially at the constant rate n per time unit. As for
the aggregate capital stock, it depreciates at the constant rate 0 ≤ δ ≤ 1 per time
unit and its motion is described by the following relation

K̇ = I − δK

where the overdot denotes differentiation with respect to time t ≥ 0, K̇ is therefore
the rate of change of capital or the net investment and I denotes gross investment.

The aggregate production function F : Y = F (K,L) exhibits both diminishing
returns in capital and labor and constant returns to scale. By diminishing returns,
one means that the marginal products of both inputs, which are all positive, are de-
creasing. In mathematical terms, diminishing returns means the second derivatives
of F with respect to K and L are negative, FKK < 0 and FLL < 0. The constant

8This exercise is called growth accounting.
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returns to scale assumption means when it happens the quantities of capital and
labor used in the production process are simultaneously, say, doubled, output also
doubles, λY = F (λK, λL), λ > 0. The former assumption means the aggregate
production function is concave and the latter assumption has two implications.
First, with the optimizing firms paying capital and labor their marginal products,
the aggregate output equals the sum of the gross capital and labor incomes received
by households. 9 Second, the production function can be written in intensive form,
i.e per capita output can be expressed as a function of per capita capital stock,

y =
Y

L
= F

(

K

L
, 1

)

= f(k).

It is also assumed that the marginal products vanish when the quantities used
of the inputs become extremely large and they explode when the inputs are more
and more used in very small quantities. These last properties are called Inada
conditions. 10

At equilibrium, the aggregate supply of output equals its aggregate demand and,
as a consequence, households’ saving equates firms’ investment. Assuming further
that households save a constant fraction 0 < s < 1 of their income, one, after some
algebraic manipulations involving the law of motion of capital, ends up with what
is called the fundamental equation of the neoclassical growth theory (henceforth, the
fundamental equation) – for more details, see Appendix A.

k̇ = sf(k)− (n+ δ)k. (2.1)

When k̇ is positive this means per capita capital stock is rising over time because
new saving (or gross investment) sf(k) is greater than capital depreciation (n+δ)k.
A negative k̇ means it per capita capital stock is falling due to insufficient saving.
Balanced growth is defined as a situation characterized by a no growth in per capita
capital stock, k̇ = 0; aggregate capital stock and output growing at the same rate n
as population. Whatever the initial position of the economy – assume an initial per
capita capital stock k(0) lower than the balanced growth per capita capital stock k⋆

as in Figure 2.1, it will end up, in the long-run, at k⋆ due to the diminishing returns
in capital. Assume now the economy is experiencing balanced growth, i.e. k̇ = 0,
and the saving rate s has permanently increased. This will temporarily raise k̇ and
thus permanently raise the per capita capital stock and output. In the absence of
technological progress, the growth in k fades out as the economy is reaching its new
balanced growth path.

A further implication can be derived from the fundamental equation. The
growth rate and the level of per capita capital stock are negatively related. This
result is behind the conditional and absolute convergence hypotheses.
According to the conditional convergence hypothesis, an economy grows faster the
further it is from its own balanced growth path (Barro and Sala-i Martin, 2004,
pp 46-7). Consequently, if two economies are endowed with the same production
function and have the same population growth, saving, and depreciation rates (and
thus the same balanced growth per capita capital stock and output) but different
initial per capita capital stock and output, the poorer economy, i.e., the one with

9This is a result from the Euler theorem and the two first order conditions from firms’ profit maxi-
mization program.

10After its author, the Japanese economist Ken-Ichi Inada (1963).
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✑
✑
✑
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✑
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k⋆

sf(k)

(n+ δ)k

k✛✛✛

✻

❄

k̇ < 0

✻
❄

k̇ > 0

Figure 2.1: The Solow-Swan Model

the lowest per capita capital stock, will grow faster than the richer (Aghion and
Howitt, 1998, pp 16-7). As for the absolute convergence hypothesis, it predicts
that, in general, poor economies grow faster in per capita terms than rich ones.

On a balanced growth path, the only way to generate a sustainable growth in per
capita variables is to continually have a labor augmenting technological progress, i.e.,
technological knowledge appears in the production function as a multiple of labor.
The production function thus takes the form Y = F (K,A.L), where A denotes the
state of technological knowledge (see, for details, Barro and Sala-i Martin, 2004, pp
51-5).

On the fiftieth anniversary of his seminal work, Solow (2007) attributed the
unexpected success of his model to its simplicity, rightness, and plausibility. 11

Solow’s 1956 model is not difficult to grasp or deal with. He assigned no functional
form to the aggregate production function. Only its properties and shape are
defined. Compared to the prevailing Harrod-Domar model, the model of Solow was
plausible since it has matched some stylized facts as one will see in Subsection 2.5.

2.2 The Cass-Koopmans-Ramsey Model

The saving rate s in the Solow-Swan model is constant and exogenous. As a result,
households do not necessarily behave optimally in that model. Cass (1965) and
Koopmans (1965) inspired by Ramsey’s 1928 paper amended the Solow-Swan model
so as to explain households’ saving. They allow the saving rate to change over time
by assuming households choose their consumption and consequently their saving
to maximize their lifetime utility subject to their budget constraint. Households
are identical and infinitely lived. They derive utility from consumption. Their
aggregate lifetime utility discounted back to time 0, their birth date, is defined

11Trevor Swan passed away in 1989.
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by 12

U =

∫

∞

0

u [c(t)] exp [(n− ρ)t] dt

where the parameter 0 < ρ < 1 denotes the discount rate (also called time preference
rate), u denotes the representative household’s instantaneous utility function, and c
his consumption function. The function u is concave, i.e., the marginal utility u

′

(c)
is positive but decreasing, u

′

(c) > 0 and u”(c) < 0. There is no disutility of labor
and, each period, a household inelastically supplies one unit of labor in return of
the competitive real wage w. They hold (financial) assets rented to firms in return
of the real interest rate r. The aggregate budget constraint expressed in per capita
terms is

ȧ = w + (r − n)a− c,

where the variables a and ȧ denote respectively per capita assets and the accumula-
tion of new assets by a household. Maximizing the discounted lifetime utility func-
tion subject to the budget constraint yields the following condition which describes
the optimal path of consumption. The interested reader is referred to Appendix B
for some details on solving a dynamic optimization problem in continuous time.

−
u”(c)c

u′(c)
.
ċ

c
= r − ρ, (2.2)

The left hand side element in the above condition is the inverse of the elasticity
of inter-temporal substitution. Assuming a constant inter-temporal elasticity of
substitution (CIES) utility function, 13

u(c) =
c1−θ − 1

1− θ
, θ > 0, (2.3)

the optimal path of consumption described above becomes

θ
ċ

c
= r − ρ. (2.4)

It appears that the pattern of per capita consumption depends on the magnitude of
the difference between the interest and the discount rates. Consumption rises over
time when this difference is positive, it falls when the difference is negative and is
stable when it is nil.

At equilibrium, the assets held by households equal the capital stok rented by
firms, a(t) = k(t). Moreover, the real interest paid to households equal the marginal
product of capital net of depreciation r = f

′

(k)−δ. Substituting this latter relation
into the optimal path of consumption, on has

θ
ċ

c
= f

′

(k)− δ − ρ. (2.5)

In the previous subsection, the fundamental equation was expressed as: k̇ =
sf(k)− (n+ δ)k — relation (2.1), where the first right hand side element denotes

12A household’s birth date is the time he has become economically active.
13The shape of the CIES utility function depends on the value of the parameter θ. The utility function

is linear when θ = 0. When θ = 1, its shape is like that of a Cobb-Douglas function and when θ = −∞,
it looks like a Leontief utility function.
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per capita saving. Now that saving is endogenous, the fundamental equation can
be rewriten as follws:

k̇ = f(k)− c− (n+ δ)k. (2.6)

In the Solow-Swan model, the saving rate s is constant and exogenous. But,
in the Cass-Koopmans-Ramsey model, it is equal to 1 − c/f(k) and its dynamic
behavior depends on two offsetting effects: the substitution and the income effects.
When the capital stock rises, its marginal product f

′

(k) decreases and so does the
real interest rate r, which in its turn causes a fall in the saving rate. 14 This induced
effect is termed intertemporal substitution. As for the income effect, it causes the
saving rate to rise when per capita capital stock increases. The behavior of the
saving rate will therefore depend on the relative importance of these two effects.
Unlike the Solow model, inefficient oversaving cannot occur in the Cass-Koopmans-
Ramsey model because households are rational and are optimizing their welfare.
The dynamics of per capita capital stock and consumption can be represented in a
figure called phase diagram plotting relations (2.5) and (2.6) for when ċ and k̇ are
zeroh— for more details, see Barro and Sala-i Martin 2004, p 100 and Aghion and
Howitt 1998, p 20.

The Cass-Koopmans-Ramsey model has subsequently been extended to include
the government and foreign sectors, migration, desutility of labor, adjustment costs
for investment. These contributions are presented in Barro and Sala-i Martin’s 2004
textbook.

2.3 The Overlapping Generations Model

In the Cass-Koopmans-Ramsey model, households are identical and infinitely lived.
Their age does not matter and no one passes away. Samuelson (1958), considering
the undeniable fact that ”we live in a world where new generations are always com-
ing along” built a model in which new generations of households continually appear,
coexist with older generations, grow old, procreate, and pass away. Diamond (1965)
furthered Samuelson’s 1958 work by including a neoclassical production function
and capital as input into the overlapping generations model. Cass and Yaari (1967)
following Samuelson and Diamond elaborated a continous time version of the over-
lapping generations model. A variant of their model is here presented.

All households live for one year. Thus at time t ≥ 0, the population consists of
households born at time v ∈ [t− 1, t]. The size of the cohort born at time v — the
generation v— is exp(nv). Assuming no one retires, the size of the labor force at
time t is

L(t) =

∫ t

t−1

exp(nv)dv =
1− exp(−n)

n
exp(nt).

A household born at time v faces the following utility maximization problem

max
a(t,v), c(t,v)

∫ v+1

v

u [c(t, v)] exp [−ρ(t− v)] dt

subject to ȧ(t, v) = w(t) + r(t)a(t, v) − c(t, v),

a(v, v) = a(v + 1, v) = 0,

c(t, v) ≥ 0,

14Recall FKK < 0. So is f
′′

(k).
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where a(t, v) and c(t, v) respectively denote the asset holdings and the consumption
at time t of a household born at time v. 15 According to the second constraint
in the above optimization problem, a household does not inherit any asset at birth
and does not either leave any. Assuming a logarithmic utility function, the optimal
consumption path derived from the above program is

ċ(t, v)

c(t, v)
= r(t)− ρ. (2.7)

The per capita aggregate consumption and assets at time t are defined as

c(t) =
1

L(t)

∫ t

t−1

c(t, v) exp(nv)dv,

a(t) =
1

L(t)

∫ t

t−1

a(t, v) exp(nv)dv,

where c(t, v) and a(t, v) are the closed form solutions obtained from solving both
relation (2.7) and the budget constraint.

Assuming capital stock does not depreciate, the fundamental equation as it is
specified in (2.6) becomes

k̇(t) = f [k(t)]− c(t) − nk(t),

which, after some substitution and rearrangement, yields as a necessary condition
for a balanced growth equilibrium (k̇(t) = 0)

f(k)− nk

f(k)− f ′(k)k
=

n

1− exp(−n)

ρ

1− exp(−ρ)

1− exp(−r)

r
×

1− exp{−(n+ ρ− r)}

n+ ρ− r

ψ(r) = φ(r).

The per capita capital stock k such that

f ′(k) = r = ρ = n

could be one of the solutions to the above equation provided the curves ψ and φ
are tangent at r = n. On the existence of a balanced growth equilibrium, Cass and
Yaari (1967) ended up with the conclusion that there may be none or several which
are not necessarily efficient.

The overlapping generations framework has been used in the growth literature to
investigate many policy issues including education financing, social security, public
spending, and debt. For a revue, see de la Croix and Michel (2002) and Bewley
(2007).

2.4 Growth Accounting

Because technological progress is not a measurable parameter, Solow (1957) initi-
ated an indirect way of estimating, from known data, its contribution to growth.

15Apart from the fact that consumption and assets now depend on the household’s birth date and
the lifespan is finite, this optimization program looks like the one in Subsection 2.2.
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Table 2.1: Growth Accounting Estimates for Canada

Contribution from
GDP growth rate capital labor Solow residual Capital share

Christensen et al (1980) sample period: 1947-1973
.0517 .0254 .0088 .0175 .44

(49%) (17%) (34%)
Jorgenson and Yip (2001) sample period: 1960-1995

.0369 .0186 .0123 .0057 .42
(51%) (33%) (16%)

My estimates, sample period: 1976-2005
.0312 .0168 .0137 .0007 .4

(54%) (44%) (2%)

This technique received the name of growth accounting and the estimate it yields
was named, obviously after its author, Solow residual. Growth accounting is an
attempt to explain output growth rate in terms of the growth rates of all the inputs
used in the production process. Let’s use as an illustration the general specifica-
tion of an aggregate production technology with labor-augmenting technological
progress. Taking the natural logarithm of such a function, differencing it with
respect to the time variable, and then rearranging yields

Ẏ

Y
=

(

FKK

Y

)

K̇

K
+

(

FLL

Y

)

L̇

L
+ g, (2.8)

where FK = ∂F/∂K, FL = ∂F/∂L, and g = (FLL/Y ) Ȧ/A.

In (2.8), FKK/Y and FLL/Y , respectively the shares of aggregate output used
to remunerate capital and labor, and Ẏ

/

Y , K̇/K, and L̇/L, respectively the rates
of growth of output, capital, and labor, can be approximated using national ac-
count data. 16 The contribution of technological progress to output growth, g, is
thereafter estimated as a residual.

Growth accounting estimates for Canada produced by Christensen, Cunnings,
and Jorgenson (1980) for the sample period 1947-1973 and Jorgenson and Yip
(1980) for the period 1960-1995 are reported in Table 2.1 along with my own es-
timates for the period ranging from 1976 to 2005. The annual data used in my
investigations are from Statistics Canada and are the chained Fished quantity in-
dex of the business sector’s GDP at basic price, the chained Fisher aggregation
of hours worked by all workers, the chained Fisher aggregation of capital stock,
and the income-based GDP. The income-based GDP data are used to compute the
shares of aggregate output used to remunerate capital and labor (capital and labor
shares, in short). The growth rate of output, Ẏ /Y in (2.8), is approximated by the
first difference lnYt − lnYt−1; the growth rates of the capital and labor inputs are
computed along the same lines. The associated capital and labor shares are the
average values between periods t and t− 1.

16Cooley and Prescott (1995) and Gomme and Ruper (2005) detailed how to compute the shares of
aggregate output used to remunerate capital and labor.
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The sample average capital share I have reported is .4, which is almost the same
as the ones over the two other sample periods in the table. This observation is in
line with Kaldor’s 1957 stylized fact according to which capital share is constant
over time. Furthermore, the three empirical investigations indicate that capital
stock accounts for about half of the observed growth in real output. However,
there are some differences in the estimated rates of growth and the contributions
from labor and technological progress over the three sample periods. Real output
growth and the contribution of technological progress turns out to decrease over
time. Output growth was 5.17% over the period 1947-1973, 3.69% over 1960-1995,
and 3.12% over 1976-2005. As for the contribution of technological progress, it was
34% over the period 1947-1973, 16% over 1960-1995, and 2% over 1976-2005.

2.5 The Convergence Controversy

Equation (2.1), the fundamental equation, suggests a negative relationship between
growth and per capita capital stock

∂(k̇/k)

∂k
= s

kf ′(k)− f(k)

k2
< 0, (2.9)

with f(k)− kf ′(k) = FL, the marginal productivity of labor, which is positive.
Relations (2.1) and (2.9) thus lead to the following prediction called the con-

ditional convergence hypothesis: (1) two economies endowed with the same pro-
duction technology and the same saving, population, and depreciation rates have
the same balanced growth per capita capital and output, (2) if the only difference
between these two economies happens to be their starting level of per capita cap-
ital and output, then the economy with the lower per capita capital (the poorer
economy) will grow faster to catch up with the other one (the richer economy).
Relaxing the assumption on the underlying parameters leads to an alternative hy-
pothesis called the absolute convergence hypothesis which simply predicts that poor
economies tend to grow faster per capita than rich ones.

Romer (1986, pp 1008-9) observed a monotonic increase in the productivity
growth rate across such successive leading countries as the Netherlands, the UK,
and the US between 1700 and 1979. The productivity growth rate of the Nether-
lands, identified as a leader between 1700 and 1785, was nearly nil — -.07 %, more
precisely. During two subsequent periods, which are 1785-1820 and 1820-1890, the
UK was the leading country. It experienced a growth rate of .5 % and 1.4 %. Then,
came the US with a growth rate of 2.3 % between 1890 and 1979. Focusing on
the US, over five time periods ranging from 1800 to 1978, Romer also observed
an increase in the per capita growth rate, which was .58 % over the period 1800-
1840 and 2.47 % between 1960 and 1978. Comparing industrialized countries to
less developed ones, Romer (1986, p 1012) concluded that per capita growth rate
increased not only over time but also with countries’ level of development, which
meant industrialized countries grew faster than less developed ones. Lucas Jr (1988,
p 4) also came up with similar findings. These observations, i.e. the positive trend
in the per capita growth rate and the positive correlation between growth rate and
the level of development, led Romer (1986) to question the convergence hypotheses
derived from exogenous growth models. He sustained convergence did not occur be-
cause production function did not exhibit diminishing returns as exogenous growth
models assumed. He then posited that the positive trend in the growth rate was
due to increasing returns in the production function.
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To test empirically for absolute convergence, one estimates econometric models
of the form

ḡi = b0 − b1 ln yit0 + εi, (2.10)

where the explained variable ḡi denotes the average growth rate over the sam-
ple period of real per capita GDP in country i , the parameter 0 < b1 < 1
denotes the speed of convergence, the explanatory variable yit0 denotes the ini-
tial real per capita GDP, an εi is the normally distributed error term with a
zero mean and a constant variance. The average growth rate ḡi is computed
as (1/T )

∑t0+T−1
t=t0

(ln yit+1 − ln yit), which reduces to (ln yit0+T − ln yit0) /T . In-
stead of just using the sample endpoints to compute the average growth rate, one
can drop the logarithm and rather average year-to-year growth rates as follows
(1/T )

∑t0+T−1
t=t0

(yit+1 − yit) /yit.

I have used model (2.10) to test for convergence across the ten provinces of
Canada and the eight countries that makes up the customs and currency union
called UEMOA. 17 UEMOA is a French acronym standing for Union Économique
et Monétaire Ouest-Africain, which means in English the West African Economic
and Monetary Union. These countries share a common currency called the CFA
Franc. The UEMOA was created in January 1994. Its last member, which is also
the only non French speaking country of the organization, joined in May 1997. The
data for Canada come from Statistics Canada and those of the UEMOA from the
Central Bank of West African States.

The sample period used in testing for absolute convergence across Canada ranges
from 1981 to 2009. The ordinary least squares (OLS) estimates are reported below.
The t-ratios,i.e., the ratios of the estimated parameters to their respective standard
deviations, are put in brackets.

ˆ̄gi = .22− .02 ln y1981,i

(5.79) (−5.36)

R̄2 = .75 t5%(8) = 1.86

σln y1981
= .27 σln y2009

= .14.

(2.11)

The two estimated parameters are statistically significant, i.e., the absolute value of
their t-ratios, 5.79 and 5.36, are greater than the 5 percent critical value, 1.86. The
slope parameter points to convergence. The standard deviation of the logarithm of
real per capita GDP decreased in 2009 compared to 1981. This means a reduction
over time of disparities between the ten provinces. Figure 2.2 plots the actual and
fitted values. Note that a similar exercise by Barro and Sala-i Martin (2004, p
46-7) using personal income data over the period 1880-2000 also shows absolute
convergence across the US adjoining states. 18

For the UEMOA, the sample period, which ranges from 1971 to 2010, has been
subdivided into two: (1) 1971-1996 to test for absolute convergence across the eight
countries before the union was created in 1994 and before it was joined by its
last member country in 1997, and (2) 1997-2010 to test for convergence since the
last member country joined the union. The OLS estimates for the two subsample

17Canada is made up of ten provinces and three territories.
18US adjoining states are the forty eight US states that are located in the middle of North America.

This excludes, from the US, Alaska, Hawaii, and all the off-shore territories.
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Figure 2.2: Convergence of Real GDP across Canada’s Ten Provinces — Alberta (AB),
British Columbia (BC), Manitoba (MB), New Brunswick (NB), Newfoundland and
Labrador (NL), Nova Scotia (NS), Ontario (ON), Prince Edward Island (PE), Quebec
(QC), and Saskatchewan (SK).

periods are displayed below.

ˆ̄gi = .1− .006 ln y1971,i

(1.522) (−1.07)

R̄2 = .021 t5%(6) = 1.94

σln y1971
= .64 σln y1996

= .59

(2.12)

ˆ̄gi = .34− .023 lny1997,i

(2.23) (−2.02)

R̄2 = .31 t5%(6) = 1.94

σln y1997
= .59 σln y2010

= .47

(2.13)

Before 1997, even though the sign and the magnitude of the estimated speed of
convergence are correct, there is no statistically significant evidence of convergence
and the model only explains 2. 1% of the observed variability in the data. On the
other hand, for the subsample period 1997-2010, there are evidence supporting the
absolute convergence hypothesis. The estimated speed of convergence is statisti-
cally significant and higher. Besides, the explanatory power of the model improved.
One also observed a decrease in the dispersion of real per capita GDP across theses
countries. This means the creation of the customs and currency union indeed con-
tributed towards economic integration in the eight UEMOA’s members countries.
Figure 2.3 plots the actual and fitted data for the two subsample periods.
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Figure 2.3: Convergence of Real GDP across the Eight UEMOA’s Member Countries —
Benin (BEN), Burkina Faso (BFA), Côte d’Ivoire (CIV), Guinea-Bissau (GNB), Mali
(MLI), Niger (NER), Senegal (SEN), and Togo (TGO).

3 Some Endogenous Growth Models

Three popular endogenous growth theories are presented in this section. These
theories are the Uzawa-Lucas Jr, the Romer, and the Aghion and Howitt models.
In the Lucas Jr model, growth is driven by human capital accumulation whereas
in the other two models, it is driven by product innovations. These three mod-
els are sometimes referred to as the first generation of endogenous growth models.
Some criticisms and contributions to the model of Romer by Jones (1995), Benassy
(1998), and Alvarez-Pelaez and Groth (2005) are also presented. Thereafter, I have
carried out some empirical investigations. The first set of investigations shows the
importance of distinguishing, in a growth model, between different types of labor ac-
cording to households’ skills. As a matter of fact, in Canada, unskilled labor and its
share in aggregate income are decreasing whereas the proportion in the labor force
of workers with a university degree is increasing. The second set of investigations
show the positive contribution of labor broken down by educational attainment to
growth in Canada. The last investigations show the positive relationship between
GDP and the R&D expenditure across Canada.

3.1 The Uzawa-Lucas Model

Lucas Jr (1988), due to the inability of the Solow-Swan model to account for the
diversity observed between rich and poor countries, added to that model human cap-
ital accumulation as an engine of growth that complements technological progress.
Population grows at the exogenous rate n. Households are endowed with the CIES
utility function specified in (2.3) on page 9. Each household allocates his time
endowment normalized to unity between human capital accumulation through edu-
cation e(t) and labor 1−e(t). Lucas Jr endogenized human capital in the same way
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as Uzawa (1965) modeled technological change. The evolution of human capital
depends on e(t) as follows

ḣ(t) = ψe(t)h(t),

where the variable h(t) denotes human capital and ψ > 0 its productivity parame-
ter. The labor force is defined as

L =

∫

∞

0

L(h)dh,

where L(h) denotes the number of households with the skill level h. The effective
labor force is defined as Le = (1 − e)hL, where it is assumed that households are
identical and have the same level of human capital and supply the same hour. The
aggregate resource constraint is:

L(t)c(t) + K̇(t) = AK(t)α [(1− e(t))h(t)L(t)]
1−α

ha(t)
β ,

where the right-hand side element is the aggregate production function. The vari-
able ha(t), in the aggregate production function, is the average level of human
capital and equals h(t), and the term ha(t)

β captures the external effects of human
capital. The aggregate production function exhibits increasing returns due to the
presence of this term.

The Euler equations from maximizing households’ utility subject to the aggre-
gate resource constraint and the human capital production function are 19

θ
ċ

c
= α

Y (t)

K(t)
− ρ (3.1a)

Ẏ (t)

Y (t)
+

ė(t)

1− e(t)
+

1− α+ β

1− α
ψ = α

Y (t)

K(t)
+

1− α+ β

1− α
ψe(t), (3.1b)

where Y (t) = AK(t)α [(1 − e(t))h(t)L(t)]
1−α

ha(t)
β .

Relation (3.1a) governs the inter-temporal substitution of consumption while (3.1b)
governs the intra-temporal trade-off between education and labor.

Let now the constants ν and κ denote respectively the rate of growth of per
capita human capital and consumption along the balanced growth path (BGP).
One has κ = ν(1 − α + β)/(1 − α), which means consumption grows faster than
human capital. Both variables would grow at the same rate in the absence of the
external effect of human capital, viz, when β = 0.

The balanced growth share of time allocated to human capital accumulation is
constant. Both the aggregate stock of physical capital and output grow at the rate
κ+n. Evaluating the two Euler equations along the BGP gives the optimal rate of
growth of human capital

ν∗ =
ψ

θ
−

1− α

1− α+ β

ρ− n

θ
. (3.2)

This growth rate positively depends on the human capital productivity parameter ψ,
the parameter of its external effect β, and on the share of physical capital income
in the aggregate output α. On the other hand, it negatively depends on the time
preference rate ρ.

19See details in the appendix.
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3.2 The Romer Model

Romer’s 1990 model is based on three premises. First, technological progress is
instrumental in economic growth. Second, it results from the design of new and
distinct durables by private profit-maximizing R&D firms, viz. innovations are
horizontal. Third, it is a nonrival and partially excludable input. An input is
nonrival if it can be used simultaneously by several firms. An input is said to be
excludable if other firms can be prevented from using it. Technological knowledge
is nonrival because the knowledge underlying previous innovations is freely used
by all R&D firms in designing new durables. As examples, consider the use of the
microprocessor in the design of the first cellphone by Motorola, Inc or the use of
the charge-coupled device in the design of the first digital still camera by Kodak
Company. Technological progress is partially excludable because each R&D firm
obtains a patent for its design. This patent is then sold to a selected intermediate
firm who will manufacture the durable and be its exclusive supplier.

The economy consists of three production sectors: the R&D, the intermediate,
and the final sectors.

The R&D sector – It combines human capital HA with the existing stock of
technological knowledge A to design Ȧ new durables. A design is associated with
one unit of technological knowledge. Thus, A, in addition to being the level of
technological knowledge, also denotes the number of durables designed up to time t.

Ȧ(t) = BHA(t)A(t), (3.3)

where B denotes the productivity parameter. They face the following optimization
problem

max
HA(t)

PA(t)BHA(t)A(t) − w(t)HA(t)

HA(t) : PA(t)BA(t) = w(t),
(3.4)

where PA is the competitive price the patent of a design is sold to an intermediate
firm.

The intermediate sector – It produces durables out of the final good and the
designs purchased from the R&D firms. Let the continuous variable i ∈ [0, A] index
the durables. The production of one unit of each durable i requires η units of the
final good rented from households at the price r and purchasing beforehand from
the R&D firm i its license at the price PA

PA(t) =

∫

∞

t

π(τ, i) exp

{

−

∫ τ

t

r(s)ds

}

dτ, (3.5)

where r denotes the real interest rate and π the monopoly profit made by interme-
diate firm i

π(t, i) = max
x(t,i)

p(t, i)x(t, i)− ηr(t)x(t, i)

x(t, i) :
p(t, i)− ηr(t)

p(t, i)
= −

∂p(t, i)

∂x(t, i)

x(t, i)

p(t, i)

(3.6)

where p denotes the monopoly price at which the durable i is rented to the final
sector and x the quantity supplied. According to (3.6), the intermediate firm’s
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profit is maximized when its markup rate equals the inverse of the price elasticity
of demand.

The final sector – The final output Y is produced using as inputs unskilled
labor L, human capital HY , and the available set of durables rented from the
intermediate firms.

Y (t) =

[

∫ A(t)

0

x(t, i)αdi

]

HY (t)
βL(t)1−α−β (3.7)

In the production function (3.7), the elasticity of substitution between any pair of
durables, say durables 1 and 2, is 1/(1 − α) > 1. 20 This means no durable is a
close substitute (a case where the elasticity of substitution is infinite) or a perfect
complement (a case where the elasticity of substitution is zero) to any other. It
turns out from the final sector profit maximization problem that

x(t, i) : αx(t, i)α−1HY (t)
βL(t)1−α−β = p(t, i) (3.8a)

HY (t) : β
Y (t)

HY (t)
= w(t) (3.8b)

Substituting (3.8a) into (3.6), one has

p(t, i) = p(t) =
ηr(t)

α
(3.9a)

π(t, i) = π(t) = (1 − α)p(t)x(t), i ∈ [0, A(t)], (3.9b)

meaning all durables, at equilibrium, are supplied in the same quantity and at
the same price. It emerges from the above relations that the markup rate in the
intermediate sector equals 1− α

Durables do not depreciate and one has the following aggregate resource con-
straint K̇ = Y − C, where C denotes aggregate consumption and K, the capital
stock, is defined as follows

K(t) = η

∫ A(t)

0

x(t)di = ηA(t)x(t). (3.10)

Population, unskilled labor, and human capital are exogenous. Households are
endowed with a CIES utility function defined over consumption just as in (2.3) on
page 9.

Along the BGP, Y,K,C, and A all grow at the constant rate BHA.

g = BHA =
Ȧ

A
=
Ẏ

Y
=
K̇

K
=
Ċ

C
=
r − ρ

θ
(3.11)

All the other variables are constant. Evaluating the equations along the BGP and
after some substitution and rearrangement, the growth rate can be expressed in
terms of the fundamentals as follows 21

g =
BH − Λρ

1 + θΛ
, (3.12)

20Let F designate the production function specified in (3.7), the elasticity of substitution between
any two durables, say durables 1 and 2, is defined as d ln (x2/x1)

/

d ln (Fx1
/Fx2

), where Fx1
and Fx2

are respectively the marginal products of durables 1 and 2.
21See the details in Appendix D.
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where Λ = β/ [(1− α)α] and H = HA +HY .
According to (3.12), growth rate positively depends on the aggregate stcok of

human capital. This means an economy with a larger stock of human capital will
experience a faster growth than underdeveloped economies that have a low level of
human capital. It also appears that unskilled labor has no growth effect.

According to relation (3.11), the per capita output growth rate is proportional
to the number of households engaged in R&D. This implies that if the latter vari-
able, say, doubled, so should the former. This is termed the scale effect prediction.
Jones (1995) showed that between 1950 and 1087, the size of the labor force en-
gaged in R&D in the US quintupled whereas the per capita output growth rate
remained stationary. The same observation was made in such other advanced
economies as France, Germany, and Japan. This led Jones to develop what he
called a semi-endogenous growth model. His amendment to the model of Romer is
to replace (3.3), the R&D sector’s design production function, with the following
relation

Ȧ(t) = BHA(t)
χA(t)ξ , 0 < χ ≤ 1.

It follows that the growth rate becomes

g =
Ȧ

A
=
Ẏ

Y
=
K̇

K
=
Ċ

C
= BHA(t)

χA(t)ξ−1. (3.13)

Since g, the growth rate, is constant along the BGP, log-differentiating (3.13) yields

χ
ḢA

HA

+ (ξ − 1)
Ȧ

A
= 0 ⇔ χnA + (ξ − 1)g = 0.

It follows from the above relation that

g =
χnA

1− ξ
.

The contribution of Jones is qualified as semi-endogenous because it says the growth
rate depends not on the level of the human capital used in the R&D sector but rather
on its exogenous growth rate.

There are several other contributions to the model of Romer. Some of these
contributions relate to the magnitude of the human capital allocated to R&D. The
model of Romer predicts that too little human capital is allocated to R&D. This is
due to the fact that the knowledge underlying previous innovations are freely used
by the current R&D firms. Consequently, PA, the market price of a design, is lower
than its social value and human capital is under-compensated. Benassy (1998) and
Alvarez-Pelaez and Groth (2005) showed that the model of Romer can generate
excess R&D when one relaxes some strong assumptions on the parameters of (3.7),
the final output technology.

Benassy suggested replacing (3.7) with

Y (t) = Aα+υ−1

[

∫ A(t)

0

x(t, i)αdi

]

HY (t)
βL(t)1−α−β, υ > 0 (3.14)

The purpose of doing so is to dissociate, at equilibrium, the elasticity of the final
output with respect to the existing number of durables (also known as degree of
returns to specialization) from 1−α, the markup rate in the intermediate sector. In
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the model of Romer, at equilibrium, all durables are supplied in the same quantity
as it appears in (3.10) and consequently (3.7), the final output technology, becomes

Y (t) = A(t)1−α

[

K(t)

η

]α

HY (t)
βL(t)1−α−β ,

with the degree of returns to specialization being equal to 1− α. With (3.14), the
production function suggested by Benassy (1998), one instead has at equilibrium

Y (t) = A(t)υ
[

K(t)

η

]α

HY (t)
βL(t)1−α−β ,

=

[

K(t)

η

]α
[

A(t)
υ

1−αHY (t)
]β [

A(t)
υ

1−αL(t)
]1−α−β

,

and the degree of returns to specialization becomes υ. He then showed that with
a sufficiently low υ, too much R&D can occur in the model of Romer. The above
specification of the production function shows that, in the model of Benassy, out-
put and physical capital growth rate differs from the growth rate of technological
knowledge. Both growth rates are related as follows

gA =
1− α

υ
g, (3.15)

where g designates the growth rate of final output and physical capital and gA
designates the growth rate of technological knowledge. One can see from (3.15)
that, for υ sufficiently low, precisely for υ < 1− α, gA = BHA > g.

As for Alvarez-Pelaez and Groth (2005), they furthered the contribution of Be-
nassy by dissociating the capital share, α, from the markup rate. Recall from (3.9b)
that, in the model of Romer, the markup rate is 1−α. To have a markup of 1− ǫ in
the intermediate sector, they then suggested the following final output production
function

Y (t) = A(t)υ







A(t)

[

1

A(t)

∫ A(t)

0

x(t, i)ǫdi

]
1
ǫ







α

HY (t)
βL(t)1−α−β , 0 < ǫ < 1,

where ǫ is the substitution parameter. Technological knowledge growth rate ex-
pressed in terms of the fundamentals then becomes 22

g = υ
BH − Λ′ρ

1− α+ Λ′ [(θ − 1)υ + 1− α]

where Λ′ =
β

(1 − ǫ)α
. (3.16)

Observe that for υ = 1 − α and ǫ = α, (3.16) equals (3.12), the growth rate in
the model of Romer. For just ǫ = α, it is equal to the growth rate in the model
of Benassy. The lower are υ, the return to specialization, and ǫ, the substitution
parameter, the higher the growth rate of technological knowledge and accordingly
the human capital used in R&D are.

22See details in Appendix E.
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3.3 The Aghion and Howitt Model

Schumpeter (1942) presented the concept of creative destruction as the essence of
capitalism. By the oxymoron creative destruction, he was referring to the continuing
invention or discovery of new goods, methods of production, and markets, which
keeps revolutionizing fundamentally the economic structure, destroying the old one
after creating a new one. Aghion and Howitt (1992), following Schumpeter, built
a model in which growth is driven by the innovation of improved quality durables
that render existing ones out-of-date. Their economy consists of infinitely lived
households and three sectors, which are the R&D, intermediate, and final sectors.

The households – They are endowed with preferences that are linear in consump-
tion. They are also endowed with one unit of labor that they supply inelastically
with no disutility. Moreover, they are heterogeneous in their abilities. They are
either skilled or unskilled. The Ls skilled households are hired by the R&D and
intermediate firms whereas the Lu unskilled households work in the final sector. Be-
cause preferences are linear in consumption, (2.2) implies that, at any time t ≥ 0,
the interest rate equates the time preference rate.

The R&D sector –R&D firms compete to come up with the design of the next
generation of durable, which will be the i+1st innovation. In addition to indexing
innovations, i = 0, 1 . . . also denotes the time interval [ti, ti+1[ over which the i-
th innovation is the most up-to-date. Over the interval i, Ls

Ai skilled households
are assigned each the design of a new durable. Each of these equally qualified
households engaged in R&D has the same and constant probability 0 < λ < 1 to
innovate. The expected number of innovations per unit of time is therefore λLs

Ai.
This number is also referred to as the aggregate arrival rate of innovations. As
for the actual number of innovations that occurs per unit of time, it follows a
Poisson process with arrival rate λLs

Ai.
23 The number of innovations being a

Poisson random variable, it follows that the length of the interval i is also random
and exponentially distributed with parameter λLs

Ai. The successful innovator is
granted a patent, which he sold at the competitive price PAi+1 to an intermediate
monopolist who will produce the durable. R&D firms therefore choose Ls

Ai so as to
maximize their expected profits defined as

max
Ls

Ai

λLs
AiE (PAi+1)− wiL

s
Ai

with as FOC

E (PAi+1) =
wi

λ
, (3.17)

where E denotes the expectation operator and comes from the fact the length of
the interval i is uncertain.

The intermediate sector – The intermediate firm manufactures the durable and
rent it to the final good firms at the monopoly price pi. The production of one unit
of durable requires the labor of one skilled household. The quantity xi of the latest
durable supplied results from the intermediate firm’s profit maximization problem

πi = max
xi

pixi − wixi, (3.18)

23The Poisson distribution is a discrete probability distribution used to model the number of events
occurring in a fixed time interval or in specified intervals such as distance, area, or volume. For more
details, see among others, Casella and Berger (2001, pp 92-4).
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where πi denotes the profit made. The FOC of the above problem is

∂pi
∂xi

xi + pi = wi. (3.19)

The price E (PAi) the intermediate monopolist bids for the patent is the expected
present value of the profits he will make over the random time interval i.

PAi =

ti+1
∫

ti

πi exp [(τ − ti)r] dτ

=
πi
r
[1− exp (−r∆ti)]

where ∆ti = ti+1 − ti ∼ exponential(λLs
Ai) because ti+1, the time his monopoly

position will be destroyed by the next innovation, is unknown and

E(PAi) = λLs
Ai

π

r

∞
∫

0

[1− exp(−r∆ti)] exp(−λL
s
Ai∆ti)d∆ti

=
πi

r + λLs
Ai

.

(3.20)

It emerges from (3.20) that more on-going R&D, i.e., a higher Ls
Ai, shortens the

duration of the current intermediate firm’s monopoly position and as a result the
present value of its expected flow of profits. This is what is called the effect of
creative destruction.

The final sector – The final good firms production technology is Hicks neutral

yi = AiF (xi), F
′ > 0, F ′′ < 0 (3.21)

where yi and Ai respectively denote the final output and the productivity parame-
ter. The function F exhibits constant returns to scale. The adoption of the latest
innovation raises the productivity by the factor µ > 1,

Ai = µiA0. (3.22)

The parameter µ is also referred to as the size of innovation. Since Lu the quantity
of unskilled labor is fixed, one can ignore the wage bill in the final good firms’ profit
maximization problem

max
xi

AiF (xi)− pixi

xi : AiF
′(xi) = pi.

(3.23)

Now evaluating both (3.18) and (3.19), the intermediate firm’s profit and FOC,
using the above result, one gets

ωi =
wi

Ai

= F ′(xi) + F ′′(xi)xi

πi = −x2iAiF
′′(xi) = Aiπ̃(ωi).

(3.24)

Equating (3.17) to the first lead of (3.20), substituting for (3.24), then normalizing
both sides with Ai and rearranging, yields the arbitrage equation

wi = λµ
π̃(ωi+1)

r + λLs
Ai+1

. (3.25)
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Skilled labor market clears whenever

Ls = Ls
Ai + x̃(ωi), (3.26)

where xi = x̃(ωi), with x̃
′(ωi) < 0. The above two equations determine the equilib-

rium level of wage and labor used in R&D. The balanced growth equilibrium level
of labor used in research Ls

A appears to increase with a decrease in the interest
rate r, or an increase in the other parameters, which are the arrival rate λ, the size
of innovations µ, and the available quantity of skilled labor Ls .

Besides, along the BGP, the production function can be expressed as

yi = AiF (L
s − Ls

Ai),

implying

yi+1 = µyi

ln y(ti+1)− ln y(ti) = lnµ.

If one sets ti+1 = ti + 1, the growth rate can be written as

gi = ln y(ti + 1)− ln y(ti) = lnµ× # of innovations,

Knowing that # of innovations ∼ Poisson(λLs
A),

E(gi) = lnµE(# of innovations) = λLs
A lnµ

Var(gi) = (lnµ)2Var(# of innovations) = λLs
A(lnµ)

2.
(3.27)

It thus appears that both the average growth rate, E(gi), and its variance , Var(gi),
positively depend on Ls

A the balanced growth level of labor used in R&D. The signs
of the ceteris paribus effects of r, λ, µ and Ls

A on E(gi) and Var(gi) are therefore
the same as the signs of their effects on Ls

A.

3.4 Empirical Investigations

The Aghion and Howitt and the Romer models predict a positive relation between
growth rate and skilled labor. In this subsection, I investigate empirically this pre-
diction. Beforehand, I have distinguished between three types of labor: unskilled,
semi-skilled, and skilled labor. By unskilled labor, I refer to the households with
primary and secondary education. Semi-skilled households are those with some
post-secondary diploma and skilled households are those with a university degree.
I have presented the evolution of their respective proportions in the labor force and
shares of labor income in GDP. The data used in the first two sets of investigations
relate to Canada’s business sector, are from Statistics Canada and taken over the
sample period 1961-2006 (46 years). The last investigations in this subsection study
the relationship between GDP and R&D in Canada.

3.4.1 The Importance of Distinguishing Labor by Type of Skill

Figure 3.1 plots four labor shares: the total labor share and those of unskilled,
semi-skilled, and skilled labor. The total labor share is stable over the whole sample
period with an average of .6. The share of the unskilled households’ labor income in
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Figure 3.1: Labor Share Composition in Canada, 1961-2006 .

Table 3.1: Labor Share Composition, Canada, 1961-2006

Components Mean Standard Deviation

All .6 .02
Unskilled .34 .11
Semi-skilled .19 .07
Skilled .08 .04

the aggregate output is negatively trended whereas those of both semi-skilled and
skilled households are trended upwards. At the beginning of the sample period,
89.1% of the labor income were remunerating unskilled households. It is only 31.1%
of that income that goes to them at the end of the sample period. In 1961, semi-
skilled and skilled labor accounted respectively for 3.7% and 7.2% of the overall
labor income. In 2006, it is rather semi-skilled labor and no longer unskilled labor
which became the most important component of labor income. As a matter of fact,
in 2006, semi-skilled and skilled households’ labor incomes accounted respectively
for 43.1% and 25.8% of the total labor income. Table 3.1 displays the mean and
standard deviation of the labor shares. The standard deviations indeed point to a
high variability in the labor shares of unskilled and semi-skilled households. Below,
I have reported the OLS estimates of the linear relationship between the three
components of labor share.

β̂s
t = .38− .597βu

t − 537βss
t

(10.7) (−10.9) (−5.8)

R̄2 = .89 t2.5%(43) = 2.02,

(3.28)

where βs
t , β

u
t , and β

ss
t respectively denote the skilled, unskilled,semi-skilled house-

holds’ labor shares at time t. The estimated parameters are all statistically signifi-
cant. The negative sign of the slope parameters indicates that the labor shares of
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Figure 3.2: The Share of Unskilled, Semi-Skilled, and Skilled Households in Employment
in Canada, Labor Force Survey Statistics, Statistics Canada, 1990-2006 .

both unskilled and semi-skilled households decrease over time while that of skilled
households is increasing. The factor influencing this dynamics is the improvement
in households’ level of education in Canada. As one could see from Figure 3.2, the
share of households with a university degree (the skilled households) in employment
keeps rising over time while the proportion of unskilled households is decreasing.

These studies show that the three types of labor do not follow the same dynam-
ics, hence the importance of distinguishing between them in modeling the aggre-
gate production function as Romer (1990), Aghion and Howitt (1992), and Mankiw,
Romer, and Weil (1992) did. A growth model should be able to account for changes
in the level and the shares of the different types of labor.

3.4.2 Economic Growth and Skilled Labor

Human capital or skilled labor appears in the endogenous growth literature as the
main source of growth. The purpose of the current investigation is to check this
empirically. The econometric model to be estimated is

gt = b0 + b1L
s
t + εt (3.29)

where gt, L
s
t and εt respectively denote the real GDP growth rate, skilled labor,

and the error term. The data used for Ls
t is the chained Fisher aggregation of the

hours worked by households with a university degree. Ls
t turns out to be a trended

variable whereas gt is stationary. I therefore replace the explanatory variable by
∆ lnLs

t , the first-difference of its logarithm. The OLS estimates are

ĝt = .015 + .415∆ lnLs
t

(1.83) (3.05)

R̄2 = .16 t2.5%(43) = 2.02.

(3.30)
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This show a positive relationship between skilled labor and economic growth as some
theories predicted. The slope parameter is statistically significant. The intercept
term is not significantly different from zero. The explanatory power of the model
is not that high since the adjusted determination coefficient R̄2 is only .16.

To improve the explanatory power of the model, I have included the two other
types of labor, i.e., semi-skilled and unskilled labor. Here are the estimates

ĝt = .023 + .55∆ lnLu
t + .107∆ lnLss

t + .105∆ lnLs
t

(3.08) (3.9) (3.91) (.86)

R̄2 = .56 t2.5%(43) = 2.02.

(3.31)

All the coefficients in (3.31) are correctly signed. The R̄2 is much higher but this
time skilled labor no longer contributes significantly to economic growth. Dropping
this variable yields

ĝt = .029 + .621∆ lnLu
t + .105∆ lnLss

t

(8.75) (5.39) (3.86)

R̄2 = .56 t2.5%(43) = 2.02.

(3.32)

The fact that the skilled labor coefficient in (3.31) is not significant arises from the
collinearity between this variable and unskilled labor. The correlation coefficient
between ∆ lnLs

t and ∆ lnLu
t is .57. This brings to mind a theoretical finding one

can derive from the model of Romer (1990). When human capital is the only factor
accounting for the difference between the skilled and unskilled households’ labor
income, the quantity of unskilled labor and that of the skilled labor used in the
final sector are directly proportional.

3.4.3 Output and R&D

In this subsection, I empirically investigate the relationship between output and
the expenditure on R&D using an log-linear econometric model

lnYt = b0 + b1 ln IRD,t + εt, (3.33)

where the explanatory variable IRD,t denotes the annual real expenditure on R&D
and the slope parameter b1 > 0 can be interpreted as the elasticity of output with
respect to the knowledge R&D expenditure. This latter parameter indicates the per-
centage change in output induced by a one-percent increase in the real expenditure
on R&D. I carried out the investigations with data of Canada using three tech-
niques: (1) the cross-section estimation, i.e., I estimated model (3.33) separately
for each of the ten provinces of Canada, (2) the pooled estimation, i.e., I piled up
one after another the data of the ten provinces to run a single regression instead
of ten as in the previous case, and (3) the group estimation, i.e. I simply used the
data of Canada, which are the sum of data of the ten provinces plus the the three
other territories of Canada. The data used to measure ∆At and Yt are Statistics
Canada’s 1981-2006 annual series on (1) the real gross domestic expenditure on
R&D funded and performed by all sectors in the fields of Natural Science and En-
gineering and (2) real GDP. The scatter plot of the two time series are displayed
in Figure 3.3 for each of the ten provinces. On the figure, it clearly appears that
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Figure 3.3: Scatter Plot of Log Gross Domestic Expenditure on R&D and Log GDP
across the Ten Provinces of Canada, Statistics Canada, 1981-2006 .

the relationship between the two variables is linear and that the two variables are
positively related. The provinces experiencing the highest R&D activities (Ontario,
Quebec, British Columbia, and Alberta) have the highest GDPs and those such as
The Prince Edward Island accumulating less knowledge through R&D have the
lowest GDPs.

The results of the regressions are displayed in Table 3.2. Comparing the t-
ratios, which are in parentheses, to the corresponding critical values, which are on
the bottom of the table, it appears that all the coefficients are highly statistically
significant. They are all correctly signed, i.e. positive. The adjusted determination
coefficients, R̄2 are also quite high.

4 Some Directions for Future Research

On March 17, 2011, Quebec’s former Liberal Finance Minister, Mr Raymond Bac-
hand, announced in his 2011-2012 budget speech an increase in university tuition.
From Fall 2012 till 2017, tuition would increase each year by $ 325 to reach $ 3 793
in 2017. To protest against this decision, students started on February 13, 2012
what became the longest student strike in Quebec’s history. At the beginning of
March, the number of students on strike was estimated at 120 000. 24 On Septem-
ber 5, the unpopular Liberal government was defeated at the general elections. The
Parti Québécois who won the elections abolished the decision to increase tuition
and recommended its indexation to the rate of growth of households’ disposable
income, which roughly was 3%.

24For some details on this, see the article Grève étudiante québécoise de 2012 (in English, 2012 Quebec

student strike) on Wikipedia.
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Table 3.2: Regressing Real GDP on Real Gross Domestic Expenditure on R&D, Canada,
1981-2006

Intercept Slope R̄2

Albertta 6.113 .789 .869
(14.32) (12.89)

British Columbia 8.266 .482 .958
(59.37) (23.95)

Manitoba 6.655 .639 .623
(11.804) (6.502)

New Brunswick 7.415 .478 .628
(20.94) (6.57)

Newfoundland & Labrador 6.239 .681 .749
(16.97) (8.69)

Nova Scotia 5.851 .739 .854
(17.17) (12.15)

Ontario 7.964 .548 .966
(44.22) (26.82)

Pince Edward Island 6.836 .379 .645
(39.87) (6.81)

Quebec 9.156 .37 .955
(69.92) (23.06)

Saskatchewan 6.473 .687 .837
(19.31) (11.38)

Pooled data 5.628 .823 .975
(109.15) (99.86)

Canada 8.18 .58 .986
(62.2) (42.03)

t5%(24)=1.71, t5%(258)=1.65
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Students who protested against Liberals’ decision claimed that a rise in tuition
would make higher education less affordable and reduce university attainment. Are
they right? What are actually the impacts of a rise in tuition on university attain-
ment, human capital accumulation, R&D, and economic growth? Several articles
in the literature including Glomm and Ravikumar (1992), Tran-Nam, Truong, and
Van Tu (1995), and Shimomura and Tran-Nam (1997) dealt with education financ-
ing. But few studies delved into the specific issue of the impacts of a rise in the
tuition rate on the time allocated to education and consequently human capital
accumulation and growth.

Besides, further contributions can be made to some existing growth theories
such as the model of Romer and that of Aghion and Howitt. In these models,
growth is explained by the amount of human capital used in R&D. But this latter
variable is kept constant for convenience reason. Instead of merely having tech-
nological progress, the exogenous determinant of growth in neoclassical models,
replaced by a human capital that is held constant, one can endogenize this latter
variable assuming households accumulate it through education. Furthermore, the
definition of physical capital in the model of Romer is limited to the stock of pro-
ducer durables. Augmenting this model with the stock of structures as Greenwood,
Hercowitz, and Krusell (1997) did to study the impacts of investment-specific tech-
nological change could also be interesting. These are issues I am tackling nn my
PhD thesis (Accolley, 2015a,b).
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Appendices

A The Fundamental Equation of the Neoclassical

Growth Theory

The law of motion of (physical) capital, K, is

K̇ = I − δK,

where I is firms’ gross investment. At equilibrium, gross investment equals house-
holds’ saving. And saving is a constant fraction of households’ income, which itself
equals aggregate output. One can therefore rewrite the above relation as follows

K̇ = sF (K,L)− δK.

Divide both sides of the above relation by the population, L, to express the aggre-
gate output in intensive form

K̇

L
= sf(k)− δk, (A.1)

where k ≡ K/L and f(k) ≡ F (K,L)/L. Differentiating the ratio k with respect to
the time variable t, one has

k̇ =
K̇

L
− nk, where n =

L̇

L

Substituting the expression of K̇/L from the above relation into (A.1) gives

k̇ = sf(k)− (n+ δ)k

B Solving a Dynamic Optimization Problem in

Continuous Time

Consider some identical and infinitely lived households seeking to maximize their
lifetime utility given their budget constraint. Their optimization problem in per
capita terms is

max
a(t), c(t)

∫

∞

0

u [c(t)] exp [(n− ρ)t] dt

subject to: ȧ(t) = w(t) + [r(t) − n] a(t)− c(t).

The function u is the instantaneous utility function. The endogenous variables a(t)
and c(t) are the per capita financial assets and consumption. Households take as
given real interest rate r(t) and real wage w(t). The parameters n and ρ respectively
denote the population growth and the time preference rates. Households begin and
end their lives without any financial asset.

Their optimization problem can equivalently be written as

max
a(t), c(t)

∫

∞

0

u [c(t)] exp [(n− ρ)t] dt

+

∫

∞

0

µ(t) {w(t) + [r(t) − n]a(t)− c(t)− ȧ(t)} dt,
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where the variable µ(t) is refereed to as Lagrange multiplier or the shadow price of
capital. Let’s define now the function H called present-value Hamiltonian function.

H [c(t), a(t), µ(t), t] = u [c(t)] exp [(n− ρ)t]

+ µ(t) {w(t) + [r(t) − n]a(t)− c(t)} ,
(B.1)

which enables us to rewrite the optimization problem as

max
a(t), c(t)

∫

∞

0

H [c(t), a(t), µ(t), t] dt−

∫

∞

0

µ(t)ȧ(t)dt.

Integrating by parts the last element of the above problem results in

max
a(t), c(t)

∫

∞

0

H [c(t), a(t), µ(t), t] dt+

∫

∞

0

µ̇(t)a(t)dt (B.2)

with as first-order conditions (FOCs)

c(t) :
du [c(t)]

dc(t)
exp [(n− ρ)t] = µ(t) (B.3a)

a(t) : µ(t)[r(t) − n] = −µ̇(t). (B.3b)

Solving the above system of two equations gives

−

d2u[c(t)]
dc(t)2

du[c(t)]
dc(t)

c(t)
ċ(t)

c(t)
= r(t) − ρ, (B.4)

C The Optimization Problem in the Uzawa-Lucas

Model

Infinitely lived and identical households seek to

max

∫

∞

0

L(t)
c(t)1−θ − 1

1− θ
exp(−ρt)dt

subject to

(a) K̇(t) = AK(t)α [(1− e(t))h(t)L(t)]
1−α

h(t)β − L(t)c(t)

(b) ḣ(t) = ψe(t)h(t)

This problem is equivalent to

max

∫

∞

0

H(c, e, h,K, µ1, µ2, t)dt+

∫

∞

0

µ̇1(t)K(t)dt+

∫

∞

0

µ̇2(t)h(t)

− [µ1(t)K(t)]
∞

0 − [µ2(t)h(t)]
∞

0

where

H(c, e, h,K, µ1, µ2, t) = L(t)
c(t)1−θ − 1

1− θ
exp(−ρt)

+µ1(t)
{

AK(t)α [(1− e(t))h(t)L(t)]
1−α

h(t)β − L(t)c(t)
}

+µ2(t)ψe(t)h(t)
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The FOCs

c(t) : c(t)−θ exp(−ρt) = µ1(t) (C.1a)

e(t) : µ1(t)(1 − α)
Y (t)

1− e(t)
= µ2(t)ψh(t) (C.1b)

h(t) : µ1(t)(1 − α+ β)
Y (t)

h(t)
+ µ2(t)ψe(t) = −µ̇2(t) (C.1c)

K(t) : µ1(t)α
Y (t)

K(t)
= −µ̇1(t) (C.1d)

with Y (t) = AK(t)α [(1− e(t))h(t)L(t)]
1−α

h(t)β ,
The Euler equations are

θ
ċ(t)

c(t)
= α

Y (t)

K(t)
− ρ (C.2a)

µ̇2(t)

µ2(t)
= −

1− α+ β

1− α
ψ +

β

1− α
ψe(t). (C.2b)

One gets the Euler equation (C.2a) after solving (C.1a) and (C.1d) getting rid
of µ1(t). To have (C.2b), one first expresses µ1(t) as a function of µ2(t) using (C.1b)
and then plugs it into (C.1c).

Along the BGP, ċ
c
= κ and ḣ

h
= ν, it follows from (C.2a) that

Y

K
=
θκ+ ρ

α

= AKα−1 [(1− e)hL]1−α hβ. (C.3)

Dividing the aggregate resource constraint by K, one has

Lc

K
++

K̇

K
=
Y

K
. (C.4)

The second element on the left-hand side of (C.4), K̇/K, is constant. Now, differ-
entiating (C.4) with respect to time recalling from (C.3) that its right-hand side
element equals the constant (θκ+ ρ)/α, gives the balanced growth rate of capital

K̇

K
=
L̇

L
+
ċ

c
= n+ κ.

(C.5)

Differencing the logarithm of the second line of (C.3) with respect to time and
rearranging helps establish a relation between the balanced growth rates of per
capita consumption and human capital

κ =
1− α+ β

1− α
ν. (C.6)

Let’s go back to the FOCs, From (C.1b), it turns out that the rate of growth of
shadow price µ2(t) is

µ̇2(t)

µ2(t)
=
µ̇1(t)

µ1(t)
+
Ẏ (t)

Y (t)
+

ė(t)

1− e(t)
−
ḣ(t)

h(t)
,
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which gives after substituting for (C.1d)

µ̇2(t)

µ2(t)
= −α

Y (t)

K(t)
+
Ẏ (t)

Y (t)
+

ė(t)

1− e(t)
−
ḣ(t)

h(t)
. (C.7)

We end up with two expressions of the rate of growth of µ2, relations (C.2b)
and (C.7). Equating the two relations and evaluating them along the BGP, gives

(α− θ)κ+ (1− α+ β)ν + n− ρ = −
1− α+ β

1− α
ψ +

β

1− α
ν.

Let’s substitute for (C.6) into the above relation and solve for ν to get

ν∗ =
ψ

θ
−

1− α

1− α+ β

ρ− n

θ
, (C.8)

which is the optimal balanced growth rate of human capital.

D The Growth Rate in the Model of Romer

According to relation (3.5), the exclusive right to manufacture and supply a durable
is sold to intermediate firms at the price

PA(t) =

∫

∞

t

π(τ) exp

{

−

∫ τ

t

r(s)ds

}

dτ.

Deriving the above expression with respect to t, applying Leibniz rule gives

ṖA(t) = r(t)PA(t)− π(t). (D.1)

Since PA(t) is stationary, along the BGP, the above relation becomes,

PA =
π

r
. (D.2)

It emerged from (3.9b) that the intermediate firm’s profit along the BGP is:

π = (1 − α)px

According to (3.10), along the BGP, x equals K̂/η with K̂ ≡ K/A. Plugging this
into the above relation gives,

π =
1− α

η
pK̂. (D.3)

Plugging (D.3) into (D.2) gives

PA =
1− α

η

p

r
K̂. (D.4)

From (3.4), the R&D firms profit maximization problem, one has

ŵ = PAB

= B
1− α

η

p

r
K̂,
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with ŵ ≡ w/A. Equating the above expression to (3.8b) yields

β
Ŷ

HY

=
1− α

η

p

r
K̂, with Ŷ ≡

Y

A
,⇒

HY =
η

B

β

1− α
r
Ŷ

pK̂
.

Plugging (3.10) into (3.7) and (3.8a), one finds out that the term Ŷ /pK̂ in the
above expression equals 1/(αη). HY therefore becomes

HY =
Λ

B
r, where Λ =

β

(1 − α)α
. (D.5)

Relation (3.11) states the growth rate along the BGP is,

g = BHA = B (H −HY ) (D.6a)

=
r − ρ

θ
⇒ r = θg + ρ. (D.6b)

Plugging (D.5) into (D.6a) gives

g = BH − Λr = BH − Λ(θg + ρ)

=
BH − Λρ

1 + Λθ
.

(D.7)

E The Growth Rate in the Model of Alvarez-Pelaez

and Groth

The final output production function in the model of Romer is replaced with

Y (t) = X(t)α
[

A(t)
υ

1−αHY (t)
]β [

A(t)
υ

1−αL(t)
]1−α−β

,

with X(t) = A(t)

[

1

A(t)

∫ A(t)

0

x(t, i)ǫdi

]
1
ǫ

, 0 < ǫ < 1.

The above function exhibits human capital and labor augmenting technological
progress. This implies that along the BGP, final output and physical capital grows
at the constant rate

g =
υ

1− α
gA,

where gA designates the growth rate of technological knowledge. Since K(t) =
ηA(t)x(t), it follows that, along the BGP, x(t), the quantity supplied of a durable,
will grow at the rate [υ/(1− α) − 1] gA. So will π(t), the profit made by an inter-
mediate firm, and PA(t), the price a design is sold.

In the final sector, the FOC with respect to x(i, t), which also represents the
demand for durable x(i, t), is

x(t, i) : αX(t)α
[

A(t)
υ

1−αHY (t)
]β [

A(t)
υ

1−αL(t)
]1−α−β

×
[

1

A(t)

∫ A(t)

0

x(t, i)ǫdi

]
1
ǫ
−1

x(t, i)ǫ−1 = p(t, i)
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Given the demand function for durables, evaluating along the BGP (3.6), the in-
termediate firm’s optimization problem, using the above FOC, one has

p =
η

ǫ
r (E.1a)

π̃ =
1− ǫ

η
pK̂, (E.1b)

with π̃ ≡ π/A
υ

1−α
−1 and K̂ ≡ K/A

υ

1−α

Let us now evaluate (D.1), the law of motion of the price of a design, along the
BGP. We get

P̃A =
π̃

r −
(

υ
1−α

− 1
)

BHA

,

P̃A ≡ PA/A
υ

1−α
−1. Plugging this latter result into (E.1b) yields

P̃A =
1− ǫ

η
[

r −
(

υ
1−α

− 1
)

BHA

]pK̂.

Given ŵ = BP̃A in the R&D sector, we have

ŵ = B
1− ǫ

η
[

r −
(

υ
1−α

− 1
)

BHA

]pK̂.

In the final sector, since wage equals the marginal product of human capital, it
follows that

HY = βŶ /ŵ

=
β

B(1 − ǫ)

[

r −

(

υ

1− α
− 1

)

BHA

]

η
Ŷ

pK̂

Recall from the previous appendix that the term ηŶ /pK̂ in the above relation
equals 1/α, the inverse of the capital share. Plugging this into the above relation
yields

HY =
Λ′

B

[

r −

(

υ

1− α
− 1

)

BHA

]

,

where Λ′ =
β

(1− ǫ)α
.

From (2.4), we know that the rate of growth of consumption is related to interest
rate as follows r = θĊ/C+ρ. Along the the BGP, Ċ/C = [υ/(1−α)]BHA. Plugging
this information into the above relation and replacing HY with the expression H −
HA yields ater rearrangement

g = υ
BH − Λ′ρ

1− α+ Λ′ [(θ − 1)υ + 1− α]
(E.2)


