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Complex dynamics in an OLG model of growth with inherited
tastes

Luciano Fanti?, Luca Gori®* Cristiana Mammana®, Elisabetta Michetti

Abstract

The aim of this article is to study the local and global dynamics of a general equi-
librium closed economy with overlapping generations and inherited tastes (aspirations).
It shows that the interaction between the intensity of aspirations and the elasticity of
substitution of effective consumption, affects the qualitative and quantitative long-term
dynamics of the model. In addition, periodic cycles and complex features emerge. It
remarkably extends the literature on endogenous fluctuations showing that: 1) in an
OLG model with aspirations there exists a super-critical Neimark-Sacker bifurcation,
2) endogenous fluctuations occur even when the elasticity of substitution of effective
consumption is smaller than one, thus reconciling the existence of economic cycles with
empirical estimates, and 3) the interaction between aspirations and inter-temporal pref-
erences affects the steady-state equilibrium and dynamic outcomes.
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1 Introduction

Starting from the seminal articles of Becker and Murphy (1988), Abel (1990) and Becker
(1992), endogenous preferences have become a topic of increasing importance in macroe-
conomics, from both theoretical and empirical perspectives. One of the most important
objective for macroeconomists is to understand the reasons why output and other macroe-
conomic variables (e.g., employment, investments) fluctuate over time both in the short
term (equity premium puzzle) and long term (economic growth).

When the utility of individuals depends on both own consumption and a reference
level where comparing it, the possibility of the existence of consumption externalities is
in place. The macroeconomic effects of phenomena known as catching-up-with-the-Joneses
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(the consumption reference of an individual is represented by past average consumption in
the economy) or keeping-up-with-the-Joneses (the consumption reference of an individual
is represented by current average consumption in the economy) have been widely studied
(for instance, Gali, 1994; Alonso-Carrera et al., 2005). There are several articles that
include consumption externalities and analyse their implications at the macroeconomic
level (Alonso-Carrera et al., 2004, 2005, 2007, 2008), dealing also with phenomena related
to habits and aspirations. The difference between these two concepts can be summarised
as follows.

e Habits refer to the case in which preferences of an individual depend on both his own
consumption and a benchmark level that weights the consumer’s own past consump-
tion experience. In an overlapping generations (OLG) framework with a representative
agent, the existence of internal habits implies that individual preferences over his own
consumption when old are evaluated in comparison with his own consumption when
young (Alonso-Carrera et al., 2007).

e Aspirations refer to the case in which preferences of an individual depend on his own
consumption as well as on a benchmark level that weights the consumption experience
of others. In an OLG framework with a representative agent, the existence of external
habits implies that preferences over consumption bundles by the current generation
are affected by the standard of living based on the consumption experience of the
past generation (parent), which represents a reference to contrast the level of current
consumption (de la Croix, 1996; de la Croix and Michel, 1999).

By focusing on aspirations, de la Croix (1996) analysed the local properties of an OLG
economy with capital accumulation and Cobb-Douglas utility and production functions,
and found that a Neimark-Sacker bifurcation can occur if the importance of aspirations
in utility is large enough. The economic mechanism through which instability is observed
is the following. Aspirations tend to increase consumption of the current generation and
reduce savings and capital accumulation. However, when aspirations become sufficiently
low this process can be reverted and capital accumulation can increase. With this regard,
de la Croix (1996) showed that the steady-state equilibrium can undergo a Neimark-Sacker
bifurcation but did not show whether such a bifurcation is super-critical or sub-critical.
Knowing whether a Neimark-Sacker bifurcation is super-critical (giving rise to the exis-
tence of attracting cycles) or sub-critical (giving rise to the existence of repelling cycles) is
of importance in a macro-dynamic setting. In fact, only when a steady-state equilibrium un-
dergoes a super-critical Neimark-Sacker bifurcation an economy is able to show observable
and persistent oscillations in income. Later, de la Croix and Michel (1999) generalised de
la Croix (1996) by considering general specification of utility and production functions. In
that article, they gave sufficient conditions for the existence and uniqueness of a long-term
equilibrium of an economy with aspirations, showing also the conditions with respect to
which the steady-state equilibrium is a saddle point. Then, they concentrated on optimal
growth and found whether and how a centralised economy with aspirations can be decen-
tralised in the market through an adequate use of taxes and subsidies. However, they did
not consider the nature of the Neimark-Sacker bifurcation they found and do not account
for a global analysis of the model. Therefore, for the general class of utility and production



functions used by de la Croix and Michel (1999), nothing can be said with regard to the
existence of observable and persistent oscillations.

This present article aims to fill this gap. Specifically it presents a thoughtful study
of local and global dynamics in a general equilibrium OLG closed economy with inherited
tastes (aspirations) a la de la Croix (1996) and de la Croix and Michel (1999) by assuming
a utility function with a Constant Inter-temporal Elasticity of Substitution (CIES) with
respect to effective consumption. We find that the steady-state equilibrium can undergo a
super-critical Neimark-Sacker bifurcation and thus the model is able to generate observable
persistent oscillations (economic cycles). More in detail, (1) we show the condition under
which a feasible region for an OLG with aspirations does actually exist. This is of importance
for the global analysis presented later in this article, (2) we give necessary and sufficient
conditions for the existence of the fixed points, while de la Croix and Michel (1999) only
state sufficient conditions for a general class of utility and production functions; (3) with
regard to local stability, we show for some limiting cases that the fixed point can be locally
asymptotically stable or locally unstable, while de la Croix (1996) and de la Croix and Michel
(1999) stated only conditions to have a saddle point.

Our model exhibits some other additional results due to the assumption of CIES prefer-
ences. Specifically, (a) endogenous fluctuations occur even when the elasticity of substitu-
tion of effective consumption is smaller than one. This reconciles the existence of economic
cycles with empirical estimates. (b) There exists evidence of a different route to chaos (pe-
riod doubling), while in the works of de la Croix (1996) and de la Croix and Michel (1999)
the steady-state equilibrium can lose stability only through a Neimark-Sacker bifurcation.
(c) Aspirations can play a stabilising role. This dramatically contrasts both de la Croix
(1996) and de la Croix and Michel (1999), which showed that aspirations are always a desta-
bilising device. Indeed, as also stressed by de la Croix and Michel (1999), the existence of
a consumption externality that causes a spillover effect from two subsequent generations
implies: the existence of decreasing returns in the process that transfers resource between
generations, as the stock of capital currently used in production (and then wages of cur-
rent workers) are financed by saving of the previous generation; the existence of constant
returns in the process that generates standard-of-living aspirations from the old generation
to the young generation. Then, due to the former effect since the increasing wage rate of
the young workers may be not be adequately high to offset the need of higher consumption
due to aspirations, which is a mechanism that shows constant returns. Therefore, saving
reduces from this channel causing in turn a reduction in capital accumulation and produc-
tion per workers. If this reduction is sufficiently strong, the degree of aspirations reduces
either. With a low degree of aspirations, saving start increasing inverting then the pro-
cess. This cyclical behaviour, of course, may generate convergence towards the steady-state
equilibrium or destabilization through a Neimark-Sacker bifurcation. However, with CIES
preferences the destabilizing role of aspirations can be reverted. This depends on the rel-
ative size of the elasticity of substitution, and then on how aspirations affects the interest
rate and savings. Indeed, aspirations play an opposite role with respect to de la Croix
(1996) and de la Croix and Michel (1999), i.e. they can work as a stabilising device, when
the elasticity of substitution of effective consumption is sufficiently high.

The rest of this article is organised as follows. Section 2 builds on the model. Sections
3—4—5—6 focus on the study of local and global dynamics of the model and underline the
main economic results. More in detail, these sections describe the feasible region and show
the existence of a positive fixed point. In addition, some findings about the local stability
of the interior fixed point and the bifurcations it undergoes when some parameters change



are presented. Numerical simulations are used to support the analysis. Section 7 outlines
the conclusions.

2 The economy

We consider a general equilibrium OLG closed economy populated by a continuum of iden-
tical two-period lived individuals of measure one per generation. Each generation overlaps
for one period with the previous generation and then overlaps for one period with the next
generation. Time is discrete and indexed by ¢t = 0, 1, 2, .... Life of the typical agent is divided
into youth and old age. An individual works when he is young and then retires when he
is old. The young member of generation t is endowed with one unit of labour inelastically
supplied to firms, and receives competitive wage w; > 0 per unit of labour supplied. The
budget constraint of a young individual belonging to generation ¢ is the following:

C1t + St = wy, (1)

implying that working income (w;) is divided between material consumption when young
(c1,t) and savings (s;). When old, an individual retires and lives with the amount of resources
saved when young plus the expected interest accrued from time ¢ to time ¢ + 1 at rate rf,
(which will become the realised interest rate at time ¢ + 1). We also assume the existence
of a (perfect) market for annuities, so that the budget constraint at time ¢ + 1 of a young
individual of generation t can be expressed as follows:
(&
Rt+l st (2)

Cot+1 =

where cg¢11 is consumption when old, Rf,; := 1+ r¢, is the expected interest factor and
0 < p < 1 is the constant inter-temporal subjective discount factor.

The typical individual of generation ¢ draws utility from consumption when young and
consumption when old. In addition, we assume that the member of generation ¢ evaluates
his own consumption when young in comparison with the level of aspirations inherited by his
parent (h;) (de la Croix, 1996; de la Croix and Michel, 1999). These are bequeathed tastes
for the individual born at time ¢ that represent a reference to compare current consumption.
The lifetime utility function of generation ¢, therefore, is the following,

_ 1—0o l-o
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where 0 < v < 1 captures the intensity of aspirations in utility. From (3), the elasticity of
inter-temporal substitution of effective consumption is % In what follows, we will divide
the cases 0 <o <1 and o > 1.

By taking the wage rate, the expected interest rate and the level of aspiration h; as
given, the individual representative of generation ¢ chooses ci; and c2;41 to maximise
lifetime utility function (3) subject to (1), (2) and ¢1+ > yhs. Then, we get:

(cre —7vhe)™7 = A, (4)
and
s A
Cot+1 = Tt’ (5)
t+1



where \; is the Lagrange multiplier. From (4) and (5), the first order conditions for an
interior solution are the following:

C2t+1 = (R§+1)§(Cl,t —vht, ), (6)

l1—0o

R¢ o

St = p( t+i) 1o [U}t — ’yht] (7)
1+p(RE,)

Finally, by combining (6) with (1) and (2) we get:

l1—0o
wy +p(RE ) o v
1—o
L+ p(Ri) @

Cit =

)

: (8)

e 1
Cor1 = (Riy)7 [we Z?t]- )
L+p(Ri) =

Firms are identical and act competitively on the market. The production function of the
representative firm is the standard neoclassical Cobb-Douglas technology with constant
returns to scale, that is Q; = AK,?L%_O‘, where ¢, K; and L; = N; are output, capital
and labour input at time ¢ respectively, A > 0 is a scale parameter and 0 < o < 1 is the
output elasticity of capital. Defining k; := K;/N; and ¢; := Q./N; as capital and output
per worker, respectively, the intensive form production function is ¢; = Akf*. By assuming
that output is sold at the unit price and capital fully depreciates at the end of every period,
profits maximisation implies that the interest factor and wage rate are equal to the marginal
productivity of capital and marginal productivity of labour, respectively, that is:

Ry = aAkP ™, (10)

wy = (1 — ) Ak (11)

Following de la Croix (1996), we assume that aspirations depend on the standard of living
of individuals of the previous generation when young. This implies that

ht =Ci1t—1- (12)

The market-clearing condition in the capital market is given by kiy1 = s;. Then, the
two-dimensional system that characterises the dynamics of the economy is the following:

l1—0o
Re. Vo
ko1 = %[wt k]
T : HPR) T (13)
h _ wetp(RE ) 0 vhe '
t+1 — 1—0o

1+p(Rf+1 ) o

where w; = (1—a) Ak and Rf,; = aAk{ ! if individuals have static expectations or R, | =
aAk:t“!ll if individuals have rational expectations. Obviously, in the case of logarithmic
preferences (0 = 1) it is not important to specify whether an individual has static or
rational expectations about future factor prices. With regard to CIES preferences (o # 1),
we study the local and global dynamics of the model under static expectations (that allows
us to define an explicit expression for the accumulation of both the stock of capital and
stock of aspirations), while leaving the case of rational expectations to future research.
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NOW, define z’ = kt+1, T = kt7 y/ = ht+17 Yy = ht’ /6 = and

A(z) = miz®®, B(z) =2, C(z) = mez®,

where m; := p(aA)? and my := (1 — @)A. Then, the two-dimensional dynamic system
described in (13) can be rewritten by resorting to the following continuous and differentiable
map in (0, +00) x [0, 4+00):

o = fz,y) = AEZC)[C(I) vy
T : Alz)+B(a) , if 2> 0. (14)
{ Y =g(z,y) = il )(z i}f(‘i)) .

It is important to clarify the meaning of parameter 5 with respect to o. If o € (0,1) then
B > 0, in particular if ¢ — 1~ (resp. 07) then 8 — 0T (resp. +o00). This replicates the case
of Cobb-Douglas (resp. Leontief) preferences. If o > 1 then § € (—1,0) and, in particular,
if o — 17 (resp. 0 — +o0) then B3 — 0~ (resp. B — —17). In what follows, we will
distinguish between the cases 8 > 0 (i.e., o € (0,1)) and 8 € (—1,0) (i.e.,, o > 1).

Observe that the condition z > 0 should hold for system T; to be well-defined. Anyway,
when 8 > 0 it is possible to verify that map 77 can be extended to be well defined in points
(0,y) by posing z’ := —yy and ¢y := yy.

Let 8 > 0. Then the final two-dimensional, continuous and differentiable system (T, Ri)
is given by T := T1 U T, where T} is given by (14) while T3 is defined as follows:

/
Tzz{x,zw , if 2 =0. (15)
¥y =Y

The dynamics of system 1" are quite difficult to be handled in a neat analytical form. There-
fore, in Appendix A we transform system 7' in a simpler form by taking into account that
map 77 can be rewritten (by applying an opportune transformation) in a one-dimensional,
second order difference equation. As a consequence, its dynamics can be carried out by
investigating a two-dimensional dynamic system of first order difference equations, which is
simpler than the initial one. Therefore, we obtain system S := 57 U Sa, where

= F(x ) {C(w)-ww 7C(2)}
St * A(z)+B(z) , ifx > 0. (16)
=G(z) =
and ) »
2 =—C(2 e
SQ'{z’:() , ifx=0, (17)

describing the time evolution of the capital per worker x, while the dynamics of aspirations
y are obtained as y = C(z) — z. In the rest of the article we will deal with the study of
the dynamics generated by system S for any ¢ > 0, that is § > —1 holds. Knowing that
my1 = p(aA)?, my = (1 — a)A, we note that map S; can be written as follows:

r_ plaA)P[(1-a) Az +yz—(1-a) Az°]
sl @ =r (@,2) = plad)fra(1-2)7 ,if >0, (18)
Z=Gx)==x
In addition, we observe that if x = 0 and 8 > 0 then S5 = S5 is given by (17), while if
B € (—1,0] then, for any fixed value of z, lim,_,q+ F(z,2) = 0 and lim,_,q+ G(z) = 0, thus
obtaining;:

I __
S;:{f,zg . ifx=0. (19)



By taking into account the previous considerations, we will focus on the study of system
S* := 57U S5, where

o . Sy if >0
27 Sy if Be(—1,0]

3 The feasible region

Before starting with the discussion of the dynamics generated by system S*, it is important
to show that any attractor at finite distance of system S* (if it exists) cannot be globally
attracting in ]REL.

To prove this result, we first observe that, when considering the evolution of the two
state variables = and z, system S* may produce trajectories that exit from set ]Ri. We now
recall the following definition.

Definition 1. Let S*'(x(0),2(0)) denote the t — th iterate of system S* for a given initial
condition (i.c.) (2(0),z(0)) € R%. Then the sequence vy = {(z(t), (1))} is called trajec-
tory. A trajectory iy is feasible for system S* if (z(t), 2(t)) € RZ for allt € N, otherwise it
is unfeasible.

About the existence of unfeasible trajectories the following proposition holds (see Ap-
pendix B for the proof).

Proposition 2. System S* always admits unfeasible trajectories.

From Proposition 2, it follows that if S* admits feasible trajectories then set D containing
all initial conditions (2(0),2(0)) that generate feasible trajectories is a subset of R2. We
call set D the feasible region. Furthermore, observe that S*(0,0) = (0,0) for all parameter
values so that D is non-empty. In order to better characterise the structure of set D, a
preliminary consideration is the following. From the proof of Proposition 2, we observe that
the function .

o 1

s — ) = (W) 7 (20)

yma
defines a curve in the (x,z) plane which is strictly increasing and convex and such that
lim, o+ iz(af) = 0 and lim; 4 ?z(x) = +o00. As is previously shown, Vz > 0 trajectories
starting above this curve are not feasible. On the other hand, the dynamics embedded into
the z—axis are governed by system S5, and it can immediately be seen that if 3 > 0 all
initial conditions (0, z(0)), z(0) > 0, generate unfeasible trajectories, while if 8 € (—1,0]
then all initial conditions (0, z(0)) generate trajectories converging to the origin.

In Figures 1 (a) and (b) we fix the key parameters of the model and depict the feasible
region in white for a positive value of 8 (Figure 1 (a)) and a negative values of § (Figure 1
(b)). We also represent curve h(z) in yellow. Observe that the set of initial conditions that
generates unfeasible trajectories is also given by the grey points lying below curve ﬁ(ac),
representing initial conditions that generate trajectories that exit from the set ]R?F after the
first iterate.

The following proposition concerning the structure of the feasible region holds (see
Appendix B for the proof).

Proposition 3. Let 5 > 1 hold and system S* given by (17) and (18). Then 31(0,r) such
that all initial conditions (x(0), 2(0)) € {R% — I(0,7)} generate unfeasible trajectories.
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Figure 1: The feasible set is depicted in white, the grey and black regions represent the
set of initial conditions generating unfeasible trajectories; the curve h(x) defined in (20) is
depicted in yellow. (a) Parameter values: o = 0.33, A =10, 8 =2, p = 0.4 and 7 = 0.4.
(b) The feasible region is depicted for = —0.4.

From the previous Proposition it follows that if 5 > 1 then system S* may be able to
produce feasible trajectories only if the initial condition is taken into an opportune subset
of 1(0,7). By taking into account the relationship y = C(z) — z, this means that at the
initial state, given a positive initial value of the capital per worker z(0), the initial value of
aspirations y(0) should not be too high.

By using numerical techniques, it is possible to verify that the result proved in Propo-
sition 3 for 5 > 1 still holds for 8 € (0,1]. Furthermore, it can be observed that the size of
the feasible region increases as  decreases (that is o increases) and that if 5 € (—1,0] set
D is unbounded (Figure 1 (b)), i.e. with Cobb-Douglas preferences (8 = 0) or if 5 € (—1,0)
(that is o > 1).

This arguments and Propositions 2 and 3 trivially prove the following result.

Proposition 4. System S* always admits an attractor at finite distance which is not globally
attracting in Ri.

The results herewith obtained show that while the unique equilibrium in the Diamond’s
model is globally stable and thus all trajectories converge to such an equilibrium, the model
extended with aspirations is able to produce feasible trajectories only whether the initial
conditions belong to an appropriate set. In particular, for any initial value of capital per
worker, the initial value of aspirations, must be sufficiently low. Furthermore, numerical
evidences have shown that the size of the feasible region increases when o increases. With
Cobb-Douglas preferences, set D becomes unbounded and it remains unbounded also for
o > 1. More in detail the following two cases occur.

(7) If 0 € (0,1) (high elasticity of substitution of effective consumption), irrespective of
the stock of aspirations, an economy may be located in a region that generates unfeasible
trajectories even if it starts with high values of the capital stock per worker (developed
countries). The standard OLG model extended with aspirations is able to produce feasible
trajectories for intermediate values of the capital stock per worker and stock of aspirations.
The economic reason for this result is twofold: (1) when the economy starts, the generation



living at the initial state of the world must not have consumed too much when young to
adequately save to allow the future generation to avoid to inherits a level of aspirations that
generates unfeasible trajectories (negative savings); (2) however, saving should not be at
too high a level to avoid unfeasible trajectories as well. The second point is relevant espe-
cially with regard to the effects of positive shocks on physical capital (i.e., capital transfers
from foreign countries, capital donations from external donors), which may therefore be
detrimental in an economy with aspirations because they may be a source of unfeasible
trajectories.

(73) If o > 1 (low elasticity of substitution with respect to effective consumption), an
initial capital stock per worker great enough always guarantees that an economy lies in a
region that generates feasible trajectories, even if the initial value of the stock of aspirations
is small. With this kind of preferences, only economies that starts with a small stock of
capital per worker (developing or underdeveloped countries) may be entrapped in a region
that generates unfeasible trajectories. Whether an economy lies in a region that generates
feasible or unfeasible trajectories is an empirical matter with o.

4 Existence and number of fixed points

We now consider the question of the existence and number of fixed points (or steady states)
of system S*. The steady states of system S* are all solutions of the system S*(z, z) = (z, 2).
The following Proposition proved in Appendix B, holds.

Proposition 5. System S* admits two fized points for all parameter values: the origin
Ey = (0,0), and the interior fixred point E* = (z*,z*).

The position of the unique interior fixed point E* on the plane depends on the parameters
of the model; in particular, it depends on the two key parameters «v and [, that measure
the intensity of aspirations and the inter-temporal elasticity of substitution with respect
to effective consumption, respectively. By taking into account the proof of Proposition 5
presented in Appendix B, we note that g(w) is a strictly decreasing function and it does
not depend on v, while f(w) is a strictly increasing function and it depends on . More
precisely, for any given value of w > 0 and 5 > —1 we have that

B+1 B+1
@ o , VO< vy <7 <.
2

<
I-m 1-7

As a consequence, x* is decreasing with respect to . On the one hand, this implies that the
steady-state capital stock per worker is lower in the economy with bequeathed tastes than
in the standard Diamond economy, as in de la Croix (1996). On the other hand, the role of
B on E* can be ambiguous as it depends also on the value of z*. The following proposition
proved in Appendix B holds.

Proposition 6. Let E* = (x*,x*) be the interior ﬁxed point of system S*. Then: (i) if
p(1—7) (F2%) < 1, G5 > 0; (id) if p(1—7) (F22) > 1, G5 < 0; (éii) if p(1—7) (F22) =1,
oz*

=0.
op

According to the previous result the effect of a change in 8 on the position of the interior

fixed point is ambiguous. Observe also that the condition p(1 — 7) (1 2‘“) < 1 corresponds

*\1—a 1
to wi = (xOBA < 1 and consequently to z* < (a«A)T-o = x. Hence, from Proposition




6, it follows that if p(1 — ) (£=22) < 1 (resp. p(1 —7) (1222) > 1) then 2* < @oo(resp.
x* > xoo), and if B increases, then z* increases (resp. decreases) up to the limit value z,
to which x* converges when  — 400, i.e. z* is upper (resp. lower) bounded.

Now, let

1
l—-v)(1—-a)—al| T«
oty = [ar == e =] %
p(1—7)
Then, according to Proposition 6 it can be observed that if z* is increasing (resp. decreasing)
with respect to 3, then x* converges to its minimum (resp. maximum) value as § — —17,
that is given by O (resp. x* ). Finally, in the Cobb-Douglas case (8 = 0) one gets

* *

(L—)p(1 — a)A} e
1+ —9)p '

The previous results can be summarised in the following remark.

Remark 7. Let E* = (z*,2*) be the interior fized point of system S*.
(i) If B — 00 (i.e. 0 — 0F) then 2% — 100 = (@A)V/1=Y and VB > —1 if p(1—7) (=20) <
>)1 then z* < (>)Too;

)

(

N : . . —p(1—a)a]l/ (1=a)
(1) if B=0 (i.e. 0 =1) then x* = a2 = [%}

(i

i) if B — =17 and p(1 —v) (:222) > (<)1 then z* — z*,(— 0).

Figure 2 (b) shows - for two different values of « (the output elasticity of capital) -
that the effect of a change in S on the position of the interior fixed point is ambiguous.
If « is sufficiently high (resp. low) then condition (i) (resp. (ii)) of Proposition 6 holds
and when 8 — —17 the steady-state stock of capital is the smallest (resp. largest) one
with respect to other values of the individual degree of substitution of consumption over
time. Observe that a sufficient condition for z* to be increasing in 5 is a > 1/3, or
v (resp. p) is sufficiently high (resp. low). This result sheds new light on the role of
preference parameters (the aspiration intensity and the inter-temporal discount factor in
this context) on steady-state income (neoclassical economic growth). For any given value
of 5, the economy may converge towards a long-term high or low income level depending
on technology and preference parameters. In particular, the lower the capital share in
production and aspiration intensity, and the higher the inter-temporal subjective discount
factor, the more likely an economy converges towards a steady state with low income (as is
shown in Figure 2 panels (¢) and (d)).

5 Local stability of fixed points

In order to study the local stability of the two fixed points of system S*, consider the
Jacobian matrix associated to S}, representing the linearization of the dynamic system S7,

given by:
JST(CC,Z): < Fm(maz) FZ(‘T7Z) ) . (21)
1 0
About the local stability of Ey it can be observed that, since

ymimaa
(ml + xﬁ(l_a))z(l_a)

det(J S} (z, z)) =

10
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(a) A feasible trajectory starting from (0.001,0.001) and converging to E* is

depicted for A =10, p =0.4, v =0.4 and = 0, « = 0.33. (b) Long term capital per capita
equilibrium value as (3 increases for different values of a: in red a = 0.33 (and the sequence
is increasing) while in blue @ = 0.1 (and the sequence is decreasing). (c¢) Long term capital
per capita equilibrium value as (8 increases for different values of : in red v = 0.4 (and
the sequence is increasing) while in blue v = 0.2 (and the sequence is decreasing). (d)
Long term capital per capita equilibrium value as § increases for different values of p: in
red p = 0.4 (and the sequence is increasing) while in blue p = 0.9 (and the sequence is

decreasing).
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then if > 0 and x — 0T, 2 — 0" we have that det(JS;(z,z)) = +oo; if 8 € (—1,0] and
x — 0%, 2 — 07 then det(J S5 (z, 2)) does not admit the limit (observe, for instance, that if
z =kx and k > 0 lim,_,o+ det(JS}(z,kx)) = +00). In both cases a condition for the local
stability is violated (see Medio and Lines 2001). These considerations prove the following
Proposition.

Proposition 8. The origin is a locally unstable fixed point of system S*.

The previous Proposition holds for all parameter values, i.e. Ej is locally unstable also
with Cobb-Douglas utility. In Figure 2 (a) we depict a feasible trajectory starting from an
initial condition close to the origin and converging to £* when 5 = 0.

In order to consider the Jacobian matrix evaluated at the interior fixed point E*, observe
that * = z* > 0 and that the following relation holds (see the proof of Proposition 5 in
Appendix B):

(292079 = (1 — 7) (@)L = mi (1 - ). (22)

As a consequence, the Jacobian matrix evaluated at E* can be written as follows:

ssier, ) = (B B )

1 0
where
gy — Tl (L )(@8 = B0 b mamaly (1~ 6+ 0f) + a7 4 5tm )
o (myma(1 = y)z*@= 4+ 4)? ’
(23)
and . J—
F,(x*,2%) = (24)

ma(1 =) + (@)

Since we cannot explicitly obtain the coordinates of fixed point E*, the local stability
analysis cannot be carried out for all parameter values. However, we can find some results
concerning the stability of the interior fixed point in some limit cases related to the pa-

rameters of interest v and 3. The following Proposition holds (the proof is in Appendix
B).

Proposition 9. Consider system S*. (i) If v — 0% and B — 0 then E* is locally stable;
(1) if v = 07 and 8 — +oo then E* is locally unstable; (iii) if v — 1~ then E* is locally
unstable.

We now want to consider the local stability of E* for negative values of parameter [,
that is the other limit case 3 — —17 and v — 0". A preliminary consideration is that,
according to the proof of Proposition 6 in Appendix B, if 8 = —1 then f(w;) = 1 and
consequently the interior fixed point still exists if and only if W > 1. This last
inequality holds for v = 0 iff p > $%;. Then, the following Proposition holds (see Appendix
B for the proof).

Proposition 10. Let p > t%=. Then if v — 07 and § — —17 E* is locally stable.

[0}

The results concerning the local stability of the unique interior fixed point in the limit
cases studied above are confirmed by looking at the cycle cartogram depicted in Figure 3
(a). It shows a two-parameter bifurcation diagram, each color describes a long-run dynamic
behaviour for a given combination of v and 8 and for an initial condition close to E*. A
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Figure 3: (a) Two dimensional bifurcation diagrams of system S* in the plane (v, 8) for the
following parameter values: A = 10, pg = 0.5; a = 0.27 and the initial condition is close to
E*. (b) Closed attracting invariant curve of system S* for the following parameter values:
A=10,a =027 p=0.5,5=—-0.7 and v = 73 = 0.7908. (c) Closed attracting invariant
curve of system S* for the following parameter values: A =10, a = 0.27, p=0.8, 5 =0.9
and v = g = 0.8962. (d) The last 200-values of x resulting for the case depicted in (c) are
plotted over time.
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large diversity of cycles of different order is exhibited. The red region indicates parameter
values such that an unfeasible trajectory is produced.

By taking into account the results of Propositions 9 and 10, and looking at Figure 3
(a), we note that if § is not too large, i.e. B € I(0,¢), € > 0, then a threshold value
vs € (0,1) exists such that, if v crosses 73, the fixed point E* undergoes a bifurcation. In
the following Proposition, we prove that a super-critical Neimark-Sacker bifurcation occurs,
thus extending the result of de la Croix (1996). The proof is in Appendix B.

Proposition 11. Let E* be the interior fized point of system S*. Then a € > 0 does exist
such that V3 € 1(0,¢€) there exists ay = v3 € (0,1) at which a super-critical Neimark-Sacker
bifurcation occurs.

The previous Proposition shows that if 5 belongs to an opportune neighbourhood of the
origin (hence moving away from the Cobb-Douglas case), it is possible to find a threshold
value v = 7 such that E* becomes an unstable focus and an attracting closed invariant
curve is created. Observe that the magnitude of the neighbourhood of 8 for which the
Neimark-Sacker bifurcation occurs depends on the parameter values of the model. Through
numerical simulations, it is possible to find the value of 4 for different choices of 8 € I(0,¢)
while fixing the other parameter values. To this purpose, we perform an algorithm and
numerically find out that: (i) vg is increasing in 3, i.e. if 8 increases the value of v4 at
which the Neimark-Sacker bifurcation occurs increases as well, (i7) € is increasing in p i.e.
the amplitude of the S-interval such that the Neimark-Sacker bifurcation occurs increases
if p increases, and (iii) after the Neimark-Sacker bifurcation unfeasible trajectories are
produced. In Figure 3 (b) and (¢) two closed attracting invariant curves created via the
Neimark-Sacker bifurcation are depicted for negative and positive values of 8. In panel
(d) the diagram versus time of the cycle depicted in panel (c¢) is shown. Proposition 11,
therefore, shows that endogenous fluctuations can actually be observed under Cobb-Douglas
preferences (de la Croix, 1996).

It is important to observe that while de la Croix (1996) has verified the existence of a
Neimark-Sacker bifurcation in an OLG economy with Cobb-Douglas preferences and aspi-
rations, but has not clarified whether it is either a super-critical bifurcation or sub-critical
bifurcation, we have shown that increasing aspirations in an economy with CIES preferences
may cause the existence of a super-critical Neimark-Sacker bifurcation and the appearance
of endogenous business cycle. Therefore, endogenous fluctuations (alternatively, business
cycles) emerge also when the elasticity of substitution of effective consumption is less than
1. This fact reconciles the existence of business cycles with the empirical evidence that
argues that the elasticity of substitution ranges amongst relatively small values (Hall, 1988;
Blundell-Wignall et al., 1995; Lund and Engsted, 1996). As is known, the preceding es-
tablished literature with overlapping generations a la Diamond (1965) (i.e., Michel and de
la Croix, 2000; de la Croix and Michel, 2002; Chen et al., 2008; Fanti and Spataro, 2008;
Fanti and Gori, 2013) has shown that the emergence of endogenous fluctuations necessarily
requires a value of the elasticity of substitution of effective consumption larger than 1. For
instance, de la Croix and Michel (2002) show in an OLG model a la Diamond (1965) without
aspirations that the dynamics is always globally stable when the elasticity of substitution
of effective consumption is smaller than 1/(1 — «), where « is the output elasticity of cap-
ital in the Cobb-Douglas production function (also used in the present article). Thus, the
emergence of endogenous fluctuations (business cycle) necessarily requires an elasticity of
substitution of effective consumption noticeably larger than 1. In order to show the quan-
titative relevance of the occurrence of business cycles in our model, in Figure 3 we depict
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o @ (b)

Figure 4: (a) One dimensional bifurcation diagram w.r.t. v if « = 0.27 and g =6, A = 10
and p = 0.5. (b) One dimensional bifurcation diagram w.r.t. 8 if « = 0.27 and v = 0.1;
A =10 and p =0.5.

the closed invariant curves and the shapes of the corresponding economic fluctuations for
two different values of the elasticity of substitution of effective consumption that covers a
wide range of the (controversial) empirical estimates: § = —0.7 and § = 0.9 (corresponding
to an elasticity of substitution of effective consumption of 0.3 and 1.9, respectively). In the
next section we perform some numerical experiments by considering the mutual relationship
between the intensity of aspirations and the inter-temporal preferences of individuals.

6 Numerical evidences

We now perform some numerical simulations that are useful to inquire about the qualitative
dynamics occurring when v and § vary. First of all, we consider the role of aspirations, i.e.
how the qualitative dynamics of the model changes with ~. In this analysis, we have to
distinguish between different fixed values of .

If 8 is sufficiently close to zero, then, as proved in Proposition 11, E* loses stability
through a Neimark-Sacker bifurcation occurring at g, at which an attracting closed invari-
ant curve is created (see Figure 3 (b) and (¢)). This evidence extends the result found in de
la Croix (1996) proved only for 8 = 0. After this bifurcation, almost all trajectories become
unfeasible, as shown in Figure 3 (a).

If B is sufficiently high, then depending on the initial condition the final dynamics
becomes simpler when ~ increases up to a given value of 4, after which the produced
trajectory becomes unfeasible. In Figure 4 (a) 8 = 6 and the initial condition is close
to E*: a period doubling and halving bifurcation cascade can be observed providing that
the economic cycle may be produced in an additional way with respect to the Neimark-
Sacker bifurcation discussed in de la Croix (1996). In sharp contrast with his work, several
numerical computations have shown evidence that aspirations play a stabilising role at
intermediate values (i.e. v < %) as the unique interior fixed point E* is locally stable if
aspirations are not too low.

From an economic point of view, aspirations play an opposite role with respect to de la
Croix (1996) when $ is sufficiently high (low values of ¢). From a mathematical point of
view, we have shown that changing the value of v may produce a local destabilization of
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E* not only through a Neimark-Sacker bifurcation (as is shown in the previous section) but
also via a period-doubling bifurcation.

About the role of individual preferences on the asymptotic dynamics of the model,
it can be observed that when ~ is fixed at a sufficiently low value, then a sequence of
period-doubling bifurcations occur as 8 increases. This fact can be better understood by
considering that - when [ increases - the trace of the Jacobian matrix evaluated at the fixed
point passes from « to —oo thus crossing —1, and a 2-period cycle is created. The sequence
of period doubling bifurcations can be observed in figure 4 (b), where it is also shown that
the long-term evolution of the capital per worker in an economy with aspirations increases
in complexity as ( increases (i.e. o decreases). This result represents a new evidence of
a different route to chaos with respect to de la Croix (1996) due to the presence of CIES
preferences.

Finally, we observe that if 8 and  increase together up to some limit values, the local
stability of E* can be preserved, that is bifurcations that lead to cycles of higher order are
prevented (see Figure 3 (a)).

7 Conclusions

This article has concerned with the study of a general equilibrium model with overlapping
generations and inherited tastes (aspirations), as in de la Croix (1996) and de la Croix
and Michel (1999). It has extended them by considering individual preferences with a
constant inter-temporal elasticity of substitution with respect to effective consumption. The
interaction between the intensity of aspirations and the elasticity of substitution in utility
affects the qualitative and quantitative long-term dynamics of the model. First, in order to
avoid unfeasible trajectories the stock of aspirations should not be fixed at too high a level
and the size of the stock of capital plays a different role depending on whether the elasticity
of substitution is low or high. While in the former case by fixing a not too low stock of
capital as an initial condition always allows feasible trajectories, in the latter case low and
high stock of capital may produce unfeasible trajectories. This constitutes a warning on
the perils that may be generated by a high economic growth when aspirations exist and
the elasticity of substitution of effective consumption is sufficiently high. Moreover, it is
shown that periodic cycles and complex features may emerge in that case. Our findings
contribute the OLG literature on endogenous fluctuations by showing that: 1) the Neimark-
Sacker bifurcation found by de la Croix (1996) and de la Croix and Michel (1999) is super-
critical; 2) endogenous fluctuations occur even when the elasticity of substitution of effective
consumption is smaller than one (in contrast with the preceding literature), thus reconciling
the existence of business cycles with the widespread empirical estimates on the topic; 3)
the interaction between aspirations and inter-temporal preferences affects both long-term
outcomes and dynamic outcomes. In particular, with non-Cobb-Douglas utility aspirations
play a stabilising role.

Our future research agenda includes the study a model with inherited tastes (aspirations)
and endogenous longevity as in Chakraborty (2014) and Fanti and Gori (2014). Indeed,
the relationship between these two elements may have important consequences on economic
growth and development.
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Appendix A

Topological transformation of system 7T into system S.
Let system 77 be given by (14). Then

' +y' = fla,y) +g(z,y) =Clx) =y =Clx) - 2. (25)

From the first equation of T} we have 2"/ = f(2/,1') at time ¢ + 2, that is by taking into
account equation (25),
2" = f(o,C(z) —2') = F(a, x). (26)
Equation (26) is a one-dimensional, second order difference equation. Then, given an initial
condition (z(0),z(1)) (i.e., given the values of the capital per capita = at time ¢ = 0 and
t = 1) the trajectory obtained by applying function F' is given by the following sequence
x(0),z(1),2(2),....,x(n), such that z(i) = F(z(i — 1),z(i — 2)), Vi = 2,3,...,n. It is im-
portant to underline that the sequence of the other state variable of 17, i.e. the evolution
of aspirations y(1),y(2),....,y(n), is given by y(i) = C(x(i — 1)) — z(i), Vi = 1,2,3, ..., n.
Finally, let
7 =G(x) ==, (27)
then (26) can be written as follows
2 =F(,2) =2 = F(x,2), (28)

and consequently the following system of two first order difference equations is obtained

{ 7 = F(z,2) = A@){C(z)+yz—yC(2)}
S

A(2)+ B() . ifz > 0. (29)

Similarly, system Sy, that describes the dynamics of state variables x and z when x = 0
and 8 > 0, is given by:

Z=0 ’

Sy : { v==9CE) (30)

Appendix B

Proof of Proposition 2
1

Let 2(0) > 0 and z(0) > (w) *_ Then the first iteration of S* gives a negative

ym2
value of 2/, that is 2(1) < 0. This means that (z(1),2(1)) exits from the set R?, hence the
obtained trajectory is unfeasible.

Proof of Proposition 3
Let x(0) = 0 then all initial conditions (0, z(0)), 2(0) > 0, generate unfeasible trajecto-
ries. Let 2(0) > 0 and define

Dy = {(x(0),2(0)) € (0, 4+00) x [0, +00) : ma2x(0)* — y(maz(0)* — z(0)) < 0}.

Then, by taking into account the proof of Proposition 2, S$*(D;) exits the set R? (black
points above the yellow curve represented in Figure 1 (a)). Consider now all the preimages
of first rank of set Dy, i.e. the set

Dy = {(x(—1),2(—1)) € (0,+00) x [0,400) : S*(x(—1),2(—1)) € D1 }.
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From the first equation of system S} we have that x(0) = F(xz(—1), 2(—1)) while, from the
second equation, we have that z(0) = x(—1). The inequality mox(0)* —~v(moz(0)* —x(0)) <
0 may then be rewritten in terms of z(—1) and z(—1) thus obtaining, after some algebra,

the following:
(DY D

Observe that (31) defines the set of points generating trajectories which exit (0, 4o00) X
F(r(—l),Z(—l))>O‘ —
z(-1) -

0 and, if 8 > 1, also limg(_ 1) 400, 2(—1) 400 (W) = 0 then (31) holds and conse-

quently S*?(Dy) exits from R2 (D, is given by the gray points in Figure 1 (a)).

[0, +00) at the second iteration, i.e. the set Da. Since limy(—1) 400 2(~1)—+o0 <

Proof of Proposition 5

Trivially, the origin is a fixed point since S5 (0,0) = S, (0,0) = (0,0) and no other fixed
points exist on the z-axis. Now, let > 0. Then a fixed point of (18) must solve equation
x* = F(z*,x*). After some algebra one gets

—(@)07 £ mima(1 =) (@) * 7 —ma(1—7) =0

so that, it must be

Blan
= mimg — Mmiw
L=y
where we posed w = (2*)!7®. Taking into account the geometrical properties of functions

flw) = “iﬁ_:l and g(w) = mymg —myw it can easily be shown that they intersect each other

only once, i.e. there exists a unique w* < mgy such that f(w*) = g(w*), and consequently

1
system S} always admits a unique fixed point given by E* = (z*, z*), where z* = (w*)T-e.

Proof of Proposition 6
From the proof of Proposition 5, we have that, at the steady state, the following equality
holds

w?+1 _ p(1— ’7(1(1 - Oé) —p(1 = 7)w

where wy = z;—:: and wy is strictly increasing with respect to x. Notice that f(wq) = w’f +l

depends on § while g(w;) = W — p(1 — y)wy does not depend on 5. Let wj > 0
such that f(w]) = g(w}), then it can be easily observed that if w} < 1 then w] is strictly
increasing w.r.t. 8 and limg_, wi = 17, while if w] > 1 then wy is strictly decreasing
w.r.t. 8 and limg, oo wi = 17, Finally if wj = 1 then it does not change as 3 changes.
Observe that condition wj < 1 (resp. wj > 1) corresponds to condition g(1) < 1 (resp.

g(1) > 1) that is given by
1 -2«

p(1—7) ( ) < (resp. >)1.

Proof of Proposition 9

(i) Ify — 0" and 8 — 0 then z* — (?T;) = and consequently det(JST(E*)) — 0 while

tr(JST(E*)) — a hence all conditions for the local stability hold.
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(1) If B — +oo then z* — (aA)ﬁ. It can be also verified that if v — 0T then
det(JST(E*)) — 0 while tr(JST(E*)) — —oo hence conditions for the local stabil-
ity cannot hold.

(i17) If v — 1~ then z* — 01, and consequently det(JS}(E*)) — +oo hence conditions for
the local stability cannot hold.

Proof of Proposition 10
Observe that if v — 0T then det(JS}(z*,2*)) — 0. Assume also that § — —17,

then we have to distinguish between two cases: (i) if %, < p < =% then z* — 0 and
tr(JST(z*, %)) — e < b (i) if p > %5 then 2* — 2% and tr(JS}(z*,2%)) —

al;%p < 1. Hence E* is locally stable.

Proof of Proposition 11
Let 8 =0, then at the steady state,

= (ML)

1+p(l—7)

and

ciox oy va(l+p(l—7))
det(JST (x5, xp)) = TR

In this case, if v = 79, where vy = (a+1)(p+1)_\/(a;;()j(p+1)2_4pa(l+p) € (0,1), then (7)
det(J S5 (x5, z3)) = 1, (i1) Fy(zf,x§) is positive and less then 2 (i.e. the trace of the
Jacobian matrix belongs to the interval (—2,2)), (¢i¢) the two non-real eigenvalues cross the
unit circle at a non-zero speed when v changes and (iv) none of them may be one of the
first four roots of unity (excluding cases of weak resonance). These conditions identify a
Neimark-Sacker bifurcation occurring at v = 79 when 8 = 0.

Consider now z* = z*(3,7v), 8 > —1, v € (0,1). Since

det(JS7(z"(B,7),2"(8,7))) and Fy(z"(8,7),2"(8,7))

are both continuous w.r.t. 5 and v then

det(JST(z*(B8,7),z*(B,7))) = 1 if 5 —0 and v — 7.
Hence, Ve; > 0 31(0,70, €1) such that if (8,v) € I(0,70, €1) then
1 — e <det(JST(2"(B,7),2"(B,7))) <1+ea
and in particular, inside this neighborhood, there exists a v3 < 1 such that
det(JST(z*(8,v8), 2" (8,7p))) = 1.

Furthermore, there exists 1(0, 7o, €2) such that if (3,v) € I(0, 7o, €2) then

Fo(z*(B,7),2"(8,7)) < 2.

Similar arguments can be used to prove that also conditions (¢i¢) and (iv) hold thus showing
that the Neimark-Sacker bifurcation occurs at v = 73 if 3 is close to zero. Finally, since at

19



the Neimark-Sacker bifurcation E* loses its local stability, then a closed attracting invariant
curve is created, i.e. the bifurcation is super-critical.
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