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Abstract

I consider a common agency model under adverse selection with
a risk averse agent. Contracting takes place ex ante when all players
have symmetric, although incomplete, information. The coordination
problem between principals leads to more distortion in the optimal
policy from the first best compared to the case of risk neutrality. In
contrast with the risk neutral case the principals are unable to screen
completely the agent’s preferences if she/he is sufficiently risk averse.
However, if the agent is almost risk neutral the output is separating,
but the transfer schedules keep track of asymmetric contractual exter-
nality. When risk aversion goes to zero the transfers become truthful
as in the complete information case.

1 Introduction

In this paper I make an attempt to explore the ex ante contracting in com-
mon agency when the agent is risk-averse. The theory of common agency
under complete information started from a seminal paper of Bernheim and
Whinston (1986). This gave an impulse to a burgeoning literature based on
this model,1 which studied mostly complete information truthful equilibria.
Truthful contributions were introduced by Bernheim and Whinston (1986)
and they at margin everywhere coincide with marginal valuations of the prin-
cipals. These contributions implement the first-best and essentially are the
only coalition-proof equilibria of complete information common agency game.
Recently, the theory of the common agency under asymmetric information

1See Grossman and Helpman (2001) for thorough exposition.
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has been developed. The fairly optimistic result of the common agency un-
der perfect information; the efficiency of the outcome, cannot be held in
this framework. As Dixit (1996) points out there are transaction costs in
the models of political influence which preclude the efficient outcome. The
common agency theory under uncertainty is therefore in some sense is more
realistic. Modelling political influence with conflicting principals and asym-
metric information, Martimort and Semenov (2005) show that in order to
support an efficient outcome for ex ante contracting with risk-neutral agent,
the contributions may be negative for some realizations of uncertainty pa-
rameter.
To capture different attitudes towards risk, I consider the common agency

model, where two risk-neutral principals contract with a risk-averse agent,
who has CARA utility with parameter of absolute risk aversion σ. For most of
the paper I consider small values of σ, focusing on the difference between risk-
neutral and risk-averse agent. The distortion from the first best is aggravated
due to coordination problem and asymmetry of information in the common
agency case. The output schedule for sufficiently big value of risk aversion
is no longer strictly monotonic; bunching occurs for less efficient types. An
interesting lesson from the model is that the contributions keep track of
truthfulness, and in the limiting case of zero risk aversion they are truthful.
This is in sharp contrast with Martimort and Stole (2005). They show that
when uncertainty washes out the equilibrium payoffs correspondence is not
in general lower hemi-continuous.
In principal-agent literature risk aversion of the agent did not receive

much attention. In the theory of the firms, the firm normally has interim
knowledge of information, therefore contracting is interim. However, even
in this theory there are reasons to consider ax ante contracting. Harris and
Raviv (1979), consider the firm as a contract which allocates resources at
the ex ante stage. They show that under strong enforceability of the con-
tracts, the first best is implementable. Salanié (1990) points out that it may
well be that the conditions of deliverance of the good between producer and
distributors are established before both parties know the demand.
Martimort and Semenov (2005) consider common agency model under

asymmetric information with ex post and ex ante contracting. The structure
of the contract differs greatly. As in Laussel and Le Breton (1998), ex ante
contracting results in efficient outcome implemented by truthful contribu-
tions. However, the contributions may be negative for some realizations of
the uncertainty parameter.2 Laussel and Le Breton (1998) extend truthful

2This is an important feature of the common agency game with conflicting principals.
If the principals are aligned (as in Laussel and Le Breton (1998), Martimort and Stole
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implementation to the common agency model under asymmetric information
with ex ante contracting.
Conversely, ex post contracting is far from efficient. The structure of

contributions implementing the outcome is now determined by the out of
equilibrium prolongation of contributions. Martimort and Stole (2005) show
that contributions may be truthful (in the case of simple equilibria) or not
(for example in the case of natural equilibria).3 The bunching result in this
paper resembles Salanié’s (1990) work for the one-principal case. Laffont and
Rochet (1998) consider risk-averse agent with ex post contracting in context
of public regulation with one principal. Baron and Besanko (1987) show that
randomness in cost or noisy monitoring of supplier’s deterministic cost are
no longer equivalent as one considers a risk-averse supplier, contrary to the
case of a risk-neutral agent.

2 The Model

Several principals Pi, i = 1, ..., n, contract with a common agentA to produce
a certain amount of public good q. The principals non-cooperatively offer
contingent contributions ht1 (q) , t2 (q) , ..., tn (q)i . I assume that the princi-

pals are risk-neutral and the surplus of the principal Pi is viq − q2

2n
. The

principal Pi’s objective function is therefore

Vi (q) = viq −
q2

2n
− ti.

The valuations vi, i = 1, 2, ..., n, of the good by the principals are common
knowledge. The agent’s utility function takes into account aversion towards
risk by the agent. First, the ex post material payoff of the agent

W (q, θ) =
nX

i=1

ti (q)− θq.

The parameter θ is an efficiency parameter which is uniformly distributed
on the interval

£
θ, θ
¤
. The agent is risk-averse with CARA utility function;

if he/she receives s, his/her utility is

Uσ (s) = 1− e−σs.

The parameter σ ≥ 0 characterizes a different attitude towards risk by
the agent; if σ = 0, the agent is risk-neutral, if σ =∞, the agent is infinitely

(2005) then the non-negativity of equilibrium transfers is ensured.
3See the General Introduction and Chapter 4.

3



risk-averse. In the latter case, ex ante contracting is equivalent to contracting
with ex post participation constraints.
The agent has an outside opportunity normalized to zero. Contracting

takes place ex ante, when both principals and the agent have symmetric
information about the efficiency parameter θ.4 In the General Introduction
the contracting space and the method based on Taxation and Revelation
Principles are described.
The timing of the common agency game with ex ante contracting is fol-

lowing;
� The principals simultaneously offer to the agent menu of output con-

tingent contributions

ht1 (q) , t2 (q) , ..., tn (q)iq∈R+ ,

� The agent accepts some subset of offers, or rejects all,
� The parameter θ is realized by the agent,
� Production q takes place, and contributions ti (q) are paid.
The equilibrium of the game consists in (n+ 1)− tuple of functions

ht1 (q) , t2 (q) , ..., tn (q) , q (θ)i ,

such that the output chosen by the agent

q (θ) ∈ argmax
q

(
nX

i=1

ti (q)− θq

)
, for all θ ∈

£
θ, θ
¤
, (1)

and given a profile of contribution t−i (q) = ht1 (q) , ..., ti−1 (q) , ti+1 (q) , ..., tn (q)i
offered by principals Pk 6=i, the strategy ti (q) of the principal Pi is a best re-
sponse given maximizing behavior of the agent (1).
Focusing on non-negative contributions in ex post contracting greatly

simplifies the exposition. For the agent it is weakly dominant strategy to
accept all offers in ex ante and ex post contracting. Solving the game back-
ward, the condition (1) under concavity of agent’s objective function leads
to5

nX

i=1

t0i (q (θ)) = θq. (2)

4I assume that
v = v1 + v2 > θ,

to insure provision for any value of efficiency parameter.
5Here and henceforth, I denote by prime derivative with respect to q, and by dote

derivative w.r.t. θ.
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The principals design contributions such that it is not beneficial for them
to deviate from their own schedule, given the contribution schedule of the
other principal.

B First best: The first best arises under complete information when all
parties form a grand coalition. The outcome of this game may also be rep-
resented in the complete information framework when both principals merge
as one. The first best level of output for the state θ is

qFB (θ) = v − θ,

where v =
Pn

i=1 vi is a joint valuation of the good by all principals. The
contributions from the principals which support this outcome are ti (θ) =
θqFB (θ) .

3 Benchmark A: Risk-Neutrality and Infinite

Risk Aversion

In this paper I describe equilibria for the cases of zero and infinite risk-
aversion.

B Risk Neutrality, σ = 0: I consider first the common agency under ex
ante contracting with a risk-neutral agent, i.e., when σ = 0. It introduces
the ex ante constraint on the material payoff;

EθW (q (θ) , θ) ≥ 0.

The efficient outcome is implemented via the following truthful contribu-
tions6

ti (q) = viq −
q2

2n
− Ci, i = 1, ..., n.

Importantly, in this subsection I do not impose the assumption of the
non-negativity of contributions. Conceptually, the situation with risk-neutral
agent and ex ante contracting is very close to the case of complete informa-
tion. The technique, which is used to describe truthful equilibria is also sim-
ilar to complete information framework (see Laussel and Le Breton (1998)
and Martimort and Semenov (2005)). Laussel and Le Breton (2001) show
that in order to study equilibrium payoffs, it is useful to connect the com-
mon agency game under ex ante contracting to the cooperative game with
characteristic function

WS = EθWS (θ) ,

6See for example Martimort and Semenov (2005).

5



where WS (θ) is the joint surplus of the principals from the set S ∈ 2N , and
the agent who has efficiency parameter θ.
Here and afterwards, to avoid cumbersome calculations without getting

new insights, I will focus on the case n = 2. The next Proposition character-
izes the set of truthful equilibria.

Proposition 1 Any truthful equilibrium of common agency game under risk
neutrality implements an efficient outcome; qFB (θ) = v − θ.
i) Non-coordinated Principals: If the valuations of principals satisfy

v <
1

θ + θ

³
(v1 − v2)

2 + θ2 + θ
2
+ θθ

´
,

then the game is subadditive and the agent gets a positive rent in the unique
truthful equilibrium;

Z θ

θ

W (θ)
dθ

∆θ
=

2X

i=1

Wi −W12 > 0

The equilibrium contributions are

ti (q) = viq −
q2

2n
− Ci, i = 1, 2, (3)

with constants Ci =
R θ
θ

³
− (v−θ)2

2
+ (v−i − θ)2

´
dθ
∆θ
. The payoff of the prin-

cipal Pi is Ci.

ii) Coordinated Principals: If v ≥ 1
θ+θ

³
(v1 − v2)

2 + θ2 + θ
2
+ θθ

´
,

then the game is superadditive, the truthful equilibrium is not unique and
the agent gets no rent in any of them. The equilibrium contributions are
determined by (3).
iii) Equilibrium contributions are non negative in expected value.

Proposition brings interesting insights. When principals are not very
interested in output, or they are very different in objectives the agent has a
positive rent. In this case the objectives of principals conflict sufficiently.
The more the principals value the agent’s production, and the less their

interests are dispersed, the more successful they are in extracting all agent’s
surplus. The coordination problem is not very hard in this case. It sounds
somewhat unexpected, but the bigger the valuation and the less divergence,
the more congruent the principals are. In fact, they act as a one merged
principal who extracts all rent as in the one-principal model with ex ante
contracting, and then, both principals just re-distribute the joint surplus. To
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support efficient outcome negative contributions close to inefficient parameter
are possible. Weaker condition is imposed on this problem; contributions in
expected terms are non negative.
Remarkably, this Proposition resembles the case of ex-ante contracting

in Martimort and Semenov (2005). The equilibrium contributions are non-
negative if the parameter β, which characterizes the strength of ideological
bias of the agent or informally reverse of his/her marginal utility for money,
is small enough.

B Infinite Risk Aversion, σ = ∞: The case with infinite risk - aversion
is conceptually different. Now, the truthful equilibria play less of a role as
in the risk-neutral case. Since the agent is infinitely averse towards the risk,
he/she does not accept any negative payoff. The contract includes ex post
participation constraint

W
¡
qCA∞ (θ) , θ

¢
≥ 0, for all θ. (4)

To receive the optimal output, I use the technique described in the intro-
duction of this dissertation. The output is determined by the equation

nX

i=1

S0i
¡
qCA∞ (θ)

¢
=

∂C
¡
qCA∞ (θ) , θ

¢

∂q
+ n

F (θ)

f (θ)

∂2C
¡
qCA∞ (θ) , θ

¢

∂θ∂q
,

which in the current framework gives7

qCA∞ (θ) = v − θ − 2 (θ − θ) . (5)

The output qCA∞ (θ) is no longer efficient, but still fully revealing. Equi-
librium contributions which support (5) may have very different structure.8

Since I consider only the natural equilibria, they can be obtained from Gen-
eral Introduction:

ti (q) = max

½
Si (q)−

Z
F (θ (q))

f (θ (q))

∂2C (q, θ (q))

∂θ∂q
dq, 0

¾
=

max

½
2v1 − v2 + θ

3
q − q2

12
− Ci, 0

¾
.

For simplicity, I focus on symmetric case: v1 = v2 =
v
2
.

7This is a special case of Martimort and Stole (2005).
8Truthful equilibria may or may not arise endogenously in the limit when ∆θ → 0.

It depends on how contributions are determined for the out of equilibrium policies (see
Martimort and Stole (2005) and Martimort and Semenov (2005)).
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Proposition 2 In the common agency game with ex post contracting and
risk-neutral agent;
i) The equilibrium output is linear;

qCA∞ (θ) = v − 3θ + θ,

ii) The equilibrium contributions are

ti (q) = max

½
v/2 + θ

3
q − q2

12
− Ci, 0

¾
,

with constants (C1, C2) determined by

W
¡
θ
¢
= 0, and ti

¡
θ
¢
= 0.

The assumption that the principals have the same marginal valuation
pins down the “coordinated equilibria” in which the principals are aligned.
In this case the ex post constraint (4) is binding, it reflects the “merging
nature” of this common agency game.9

The optimal policies for polar cases of risk neutrality qFB (θ) and infinite
risk aversion qCA∞ (θ) determine the range where all equilibrium policies for
intermediate values of risk aversion are situated. The feature of these polar
policies is that they are separating for all θ ∈

£
θ, θ
¤
; more explicitly, they are

strictly decreasing over the whole range of θ. Distortion from the first best is
bigger in common agency game than in the case with one principal qM∞ (θ):

qM∞ (θ) > qCA∞ (θ) , for all θ ∈ (θ, θ].

4 Benchmark B: One-Principal Case

In this Section I consider two principals who perfectly coordinate their con-
tribution strategies. It is equivalent to the situation where one principal
PM who aggregates preferences of both principals contracts ex ante with
risk-averse agent.10 The principal compensates the agent with monetary
contribution t. The case of risk neutrality of the agent is a standard problem
in incentive literature. The utility of the principal is

V (q) = vq − q2

2
− t (q) ,

9If valuations are sufficiently different, then the non-coordinated equilibria arise. In
these equilibria the ex post participation constraint is not binding. The binding constraints
are full participation constraints.
10This model is similar to Salanié (1990).
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and he/she offers the contract ht (q)iq∈R+ to the agent who has to decide
about acceptance of this contract ex ante.
The program of the principal (PM);11

Max
q(θ),t(θ)

Z θ

θ

·
vq (θ)− q2 (θ)

2
− t (θ)

¸
dθ

∆θ
,

subject to
·

W (θ) = −q (θ) , (6)
·
q (θ) ≤ 0, and (7)

EθU
σ (W (θ)) =

Z θ

θ

¡
1− e−σW (θ)

¢ dθ

∆θ
≥ 0. (8)

Constraints (6) and (7) guarantee implementability of the output q (θ).
To solve the problem (PM) I apply the optimal control techniques (see for
example Seierstad and Sydsaeter (1987)). The state variables of the problem

are: q (θ) , W (θ) and z (θ) =
R θ
θ

¡
1− e−σW (θ)

¢
dθ
∆θ
with co-states ν (θ) , λ (θ) ,

and µ (θ) = µ correspondingly. The control variable is c (θ) =
·
q (θ) . The

problem is now transformed to

Max
q(θ),W (θ),z(θ),c(θ)

Z θ

θ

·
vq (θ)− q2 (θ)

2
− θq (θ)−W (θ)

¸
dθ

∆θ
,

subject to (6), and c (θ) ≤ 0.
z (θ) = 0, z

¡
θ
¢
≥ 0, z

¡
θ
¢
µ
¡
θ
¢
= 0. (9)

The Hamiltonian of the problem is

H =

·
vq − q2

2
− θq −W

¸
1

∆θ
− λq − µ

e−σW

∆θ
+ νc.

The maximization of the Hamiltonian with respect to control c leads to

νc = 0, ν ≥ 0, c ≤ 0. (10)

Other necessary conditions are

·

λ (θ) = − ∂H

∂W
=

1

∆θ
− µσ

∆θ
e−σW (θ), (11)

11In what follows the transfers are written with the same notation: t (q) and t (θ) . To
avoid confusion the derivative of transfers with respect to q is denoted as t0 (q), whereas

the derivative with respect to θ is denoted as
·

t (θ) .
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·
ν (θ) = −∂H

∂q
= − (v − q (θ)− θ)

1

∆θ
+ λ (θ) , (12)

λ (θ) = λ
¡
θ
¢
= 0, (13)

z (θ) = 0, z
¡
θ
¢
≥ 0, z

¡
θ
¢
µ = 0, and ν (θ) = ν

¡
θ
¢
= 0.

Co-state variables λ (θ) and ν (θ) are continuous and piecewise differen-

tiable. From (11), µ = ∆θ
σ

³R θ
θ
e−σW (t)dt

´−1
> 0. Therefore from transversal-

ity conditions (13), z
¡
θ
¢
= 0, and thus µ = 1

σ
. If c (θ) < 0 on the interval,

then on this interval ν (θ) ≡ 0, and from (12)

·
q (θ) + 1

∆θ
+

·

λ (θ) ≡ 0.

This using (11) leads to

e−σW (θ) =
·
q (θ) + 2, (14)

which yields
·
q (θ) > −2, and

··
q (θ) = −σ

·

W (θ) e−σW (θ) = (15)

= σq (θ)
³
·
q (θ) + 2

´
.

Thus the equilibrium output is a convex function of θ. The equation (15)
is a necessary for output q (θ) to be a part of the optimal contract in the
intervals of separating. It turned out that separation prevails for the most
efficient values of the cost parameter. For less efficient values the principal
exhibits some bunching. The exact form of the optimal contract is established
in the following

Proposition 3 There exist bσM ≥ 0 such that the equilibrium in one-principal
case has the form:
i) If σ ≤ bσM , then the equilibrium output q (θ) is the unique solution of

the differential equation

··
q (θ) = σq (θ)

³
·
q (θ) + 2

´
,

q (θ) = qFB (θ) , q
¡
θ
¢
= qFB

¡
θ
¢
, and

0 > q (θ) > −2.
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Output q (θ) is implemented via contributions

t (θ) = θq (θ)− 1
σ
Log

³
·
q (θ) + 2

´
.

ii) If σ > bσM , then in the equilibrium there is bunching; there are eθM (σ)
and eqM (σ) such that
· for θ ∈

h
eθM (σ) , θ

i
the output q (θ) = eqM (σ) ,

· for θ ∈
h
θ,eθM (σ)

i
the output q (θ) is the unique solution of

··
q (θ) = σq (θ)

³
·
q (θ) + 2

´
,

q (θ) = qFB (θ) , q
³
eθM (σ)

´
= eqM (σ) , and

0 > q (θ) > −2.

Bunching exists for sufficiently large values of the absolute risk aversion.
However, for infinite risk-averse agent separating again occurs for all θ. The
equation (15) in the limit when σ → 0 converges to the first best output
qFB (θ). The equilibrium contributions are negative for some values of θ.
This resembles the ex ante contracting with risk-neutral agent.

5 Common Agency

In this Section I consider common agency with a risk-averse agent. The agent
chooses q (θ) as the solution of the maximization problem

q (θ) ∈ argmax
q

(
2X

i=1

ti (q)− θq

)
,

where ti (q) are equilibrium contributions. The material payoff of the agent
is then

W (θ) =
2X

i=1

ti (q (θ))− θq (θ) . (16)

The best response program (Pi) of the principal Pi to offer {t−i (q)} can
be written as

Max
q(θ),ti(θ)

Z θ

θ

·
viq (θ)−

q2 (θ)

4
− ti (θ)

¸
dθ

∆θ
,

subject to (6), (7), (8), and
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EθU
σ (W (θ)) ≥ EθU

σ (W−i (θ)) (17)

Using the expression (16) for information rent W (θ) , the program (Pi)
is transformed into the following optimal control problem:

Max
q(θ),W (θ),z(θ),c(θ)

Z θ

θ

·
viq (θ)−

q2 (θ)

4
− θq (θ)−W (θ) + t−i (θ)

¸
dθ

∆θ
,

The constraint (17) is a new feature of the model, it will be taken with
co-state pi. The Hamiltonian of the Pi’s program,

Hi =

·
viq −

q2

4
− θq −W + t−i (q)

¸
1

∆θ
− λiq − µi

e−σW

∆θ
− pi

e−σW

∆θ
+ νic,

The necessary conditions are;

·

W (θ) = −q (θ) , with co-state variable λi (θ) , (18)

·
z (θ) =

1− e−σW (θ)

∆θ
- co-state µi, (19)

·
q (θ) = c (θ) - co-state νi (θ) , (20)

νi (θ) c (θ) = 0, c (θ) ≤ 0, νi (θ) ≥ 0, (21)

·

λi (θ) = −
∂Li

∂W
=

1

∆θ
− µiσ

∆θ
e−σW (θ) − piσ

∆θ
e−σW , (22)

·
νi (θ) = −

∂Hi

∂q
= −

µ
vi −

q (θ)

2
− θ + t0i (q (θ))

¶
1

∆θ
+ λi (θ) , (23)

λi (θ) = λi
¡
θ
¢
= 0, z (θ) = 0, z

¡
θ
¢
≥ 0, (24)

νi (θ) = νi
¡
θ
¢
= 0, µi ≥ 0, µiz

¡
θ
¢
= 0,

pi (EθU
σW (θ)−EθU

σW−i (θ)) = 0, (25)

pi ≥ 0, EθU
σW (θ) ≥ EθU

σW−i (θ) ,

with the continuous co-state variables as in the one-principal program.12

Again assume that on the non-degenerate interval c (θ) < 0, then maximiza-
tion of Hamiltonians Hi, i = 1, 2, yields

·
νi (θ) = −

∂Hi

∂q
= −

³
vi −

q

2
− θ + t0−i (q)

´ 1

∆θ
+ λi ≡ 0,

12In Martimort and Semenov (2005) the discontinuity of the co-state variable is allowed.
They consider ex post participation constraint and ex post full participation constraint.
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on the interval where q (θ) is strictly decreasing. Adding up these conditions
and using the first order condition

t01 (q (θ)) + t02 (q (θ)) = θ,

lead to
q (θ) = v − θ −∆θ (λ1 (θ) + λ2 (θ)) . (26)

Since λi (θ) > 0 on
¡
θ, θ
¢
,13 the common agency’s output is always sub-

optimal inside the support. Differentiating expression (26) and using (22)
yield

σ (µ1 + p1 + µ2 + p2) e
−σW (θ) =

1

2

³
·
q (θ) + 3

´
.

The optimal outcome in the intervals of separating is, therefore, the so-
lution of the differential equation

··
q (θ) = σq (θ)

³
·
q (θ) + 3

´
. (27)

The structure of the optimal contract is described in

Proposition 4 There is bσCA ≥ 0 such that in the equilibrium of the common
agency game;
i) If σ ≤ bσCA, then the equilibrium output q (θ) is the unique solution of

the differential equation

··
q (θ) = σq (θ)

³
·
q (θ) + 3

´
,

q (θ) = qFB (θ) , q
¡
θ
¢
= qFB

¡
θ
¢
, and

0 > q (θ) > −3.
The aggregated contribution schedule

t1 (θ) + t2 (θ) = θq (θ)− 1
σ
Log

1

2

³
·
q (θ) + 3

´

and the contributions of the principal Pi,

ti (θ) = viq (θ)−
q2 (θ)

4
−∆θ

Z θ

θ

λi (θ)
·
q (θ) dθ − Ci.

13λi (θ) are strictly concave on
¡
θ, θ
¢
, and using transversality conditions; λi (θ) =

λi
¡
θ
¢
= 0, lead to λi (θ) > 0 on

¡
θ, θ
¢
.
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The constants (C1, C2) are determined by

−C1 − C2 = −
1

σ
Log

1

2

³
·
q (θ) + 3

´
− q2 (θ)

2
.

ii) If σ > bσCA, then in the equilibrium there is bunching; there are eθCA (σ)
and eqCA (σ) such that
· for θ ∈

h
eθCA (σ) , θ

i
the output q (θ) = eqCA (σ) ,

· for θ ∈
h
θ,eθCA (σ)

i
the output q (θ) is the unique solution of

··
q (θ) = σq (θ)

³
·
q (θ) + 3

´
,

q (θ) = qFB (θ) , q
³
eθCA (σ)

´
= eqCA (σ) , and

0 > q (θ) > −3.

The equilibrium for common agency game for small σ resembles one for
one-principal case. The coordination problem distorts output downward.
The contributions for principal Pi keep track of truthful contributions;

ti (θ, σ) = viq (θ, σ)−
q2 (θ, σ)

4
−∆θ

Z θ

θ

λi (θ, σ)
·
q (θ, σ) dθ − Ci. (28)

If the coefficient of risk-aversion goes to zero: σ → 0, the contributions

ti (θ, σ)→ viq (θ, 0)−
q2 (θ, 0)

4
− Ci,

i.e., the contributions in the limit are truthful. However, even a small risk
aversion distorts truthfulness of contributions. This is an important conse-
quence of the model.

Corollary 5 The set of equilibrium payoffs achieved as limit σ → 0 of nat-
ural equilibria is a whole subset of equilibrium payoffs achieved with truthful
equilibria under complete information.

By contrast, Martimort and Stole (2005) show in the case of diminishing
support of distribution of θ, the equilibrium schedules of natural equilibria
always keep track of contractual externality and do not converge to truth-
ful contributions. The set of payoffs achieved with natural equilibria in the
limit is a strict subset of the equilibrium payoffs achieved with truthful equi-
libria under complete information. In the present case, it is not true and
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contributions are truthful in the limit. However, in the limit truthful equi-
libria considered in the case of ex-ante contracting with risk neutrality, not
complete information.
The solution of the equation (27) with boundary conditions q (θ) = v−θ,

and q
¡
θ
¢
= v− θ gives the equilibrium output of the common agency game.

Comparing this solution with the output for one-principal case yields

Proposition 6 The output produced by the common agent is always lower
than the output produced for the merged principal:

qCA (θ) < qM (θ) , ∀θ ∈ (θ, θ].

The Propositions 4 and 6 describe solution of the common agency prob-
lem for small levels of risk-aversion. Another interesting issue which can be
proceeded is to explore the extent of bunching in the common agency game
relative to one-principal case. In principle, the necessary and sufficient con-
ditions are sufficient to answer this question. However, the conditions are
quite complicated and perhaps computer simulations will be needed.

Proofs

� Proof of Proposition 1:
Let S ∈ 2N . The joint surplus WS (θ) of the coalition S and the agent at

state θ,

WS (θ) = max
q

(Ã
X

i∈S
vi

!
q − s

q2

2n
− θq

)
=

n

2s

ÃÃ
X

i∈S
vi

!
− θ

!2
, and

where s is the cardinality of S. Particularly, for n = 2;

Wi (θ) = (vi − θ)2 , and W12 (θ) =
(v − θ)2

2
.

Expected surpluses are

Wi =

Z θ

θ

Wi (θ)
dθ

∆θ
, and W12 =

Z θ

θ

W12 (θ)
dθ

∆θ
.

Taking the difference

W1 +W2 −W12 =

Z θ

θ

(
(v1 − θ)2 + (vi − θ)2 − (v − θ)2

2

)
dθ

∆θ
> 0, if

15



Z θ

θ

©
(v1 − v2)

2 + 3θ2 − 2vθ
ª
dθ > 0.

The Proposition 1 then follows.

� Proof of Proposition 3: First I prove that the optimal output may not
have interval of bunching and then separation. At the same time the proof
shows that there should not be distortion at the top.
� Suppose to the contrary that there exist θ1, θ2, θ3 such that q (θ) is

constant on [θ1, θ2] and strictly decreasing on [θ2, θ3] . Consider

·
ν (θ) = − (v − q (θ)− θ)

1

∆θ
+ λ (θ) .

·
ν (θ) is continuous and piecewise differentiable function. Since c (θ) < 0

on [θ2, θ3] ,
·
ν (θ) = 0 on this interval. Therefore

··
ν (θ) =

³
·
q (θ) + 2

´ 1

∆θ
− 1

∆θ
e−σW (θ) = 0, ∀θ ∈ (θ2, θ3) .

By continuity of W (θ) this leads to

··
ν
¡
θ+2
¢
= 0 <

2

∆θ
− 1

∆θ
e−σW (θ2) =

··
ν
¡
θ−2
¢
.

Since
···
ν (θ) = σ

∆θ

·

W (θ) e−σW (θ) < 0 on [θ1, θ2] then
··
ν
¡
θ+1
¢
> 0. Continuity

of
·
ν (θ) implies that q (θ) cannot be strictly decreasing on the interval to

the left of θ1. This yields that q (θ) is constant on the interval [θ, θ2] and
··
ν (θ) > 0 on (θ, θ2) . This means that

·
ν (θ) < 0 on (θ, θ2).

14 But ν (θ) is

convex on [θ, θ2] and if ν (θ) = ν
¡
θ+2
¢
= 0 that leads that

·
ν (θ) must be

positive on some interval belonging to [θ, θ2] . Contradiction. This gives a
structure of the optimal contract in Proposition 1.

� Since c > 0 on
h
θ,eθ
i
for some eθ and ·

ν (θ) = 0 then q (θ) = v − θ.

Lemma 7
∂q(θ,σ)
∂σ
≤ 0.

Proof. Since q (θ, σ) = v − θ and q
¡
θ, σ
¢
= v − θ, ∂q(θ,σ)

∂σ
=

∂q(θ,σ)
∂σ

= 0.

Suppose to the contrary that there is a pair
³
bθ, bσ

´
such that

∂q(bθ,bσ)
∂σ

> 0.

14Since
·

ν (θ) = 0 on [θ2, θ3] .
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Then for the function ψ (θ) = ∂q(θ,bσ)
∂σ

there exists a local interior maximum
θmax such that

ψ (θmax) > 0,

ψ0 (θmax) = 0, and

ψ00 (θmax) ≤ 0

Differentiating equation ∂2q(θ,bσ)
∂θ2

= σq (θ, bσ)
h
∂q(θ,bσ)
∂σ

+ α
i
with respect to σ

and evaluating the result at (θmax, bσ) one gets

0 ≥ ∂3q (θmax, bσ)
∂θ2∂σ

= q (θmax, bσ)
·
∂q (θmax, bσ)

∂σ
+ α

¸
+

+σ
∂q (θmax, bσ)

∂σ

·
∂q (θmax, bσ)

∂θ
+ α

¸
+ σq (θmax, bσ)

∂2q (θmax, bσ)
∂θ∂σ

The third term on the R.H.S. is zero, the first and the second ones are
positive. Therefore contradiction.

B Consider now the class of equations which determine the solution in the
separating intervals;

··
q (θ, α) = σq (θ, α)

³
·
q (θ, α) + α

´

q (θ, α) = v − θ, q
¡
θ, α

¢
= v − θ.

−α <
∂q (θ, α)

∂θ
< 0

It can be shown that the solution of the equation is unique and it is
strictly decreasing if and only if σ < bσM for some bσM > 0.

� Proof of Proposition 4:
The proof is the same as for Proposition 3 with ν1 (θ) + ν2 (θ) taken

instead of ν (θ) . Then using first order condition one gets

d (ν1 (θ) + ν2 (θ))

dθ
= − (v − q (θ)− θ)

1

∆θ
+ λ1 (θ) + λ2 (θ) .

From maximization of Hamiltonians Hi one receives that if c (θ) < 0 then
ν1 (θ) + ν2 (θ) ≡ 0.

B Co-state equations and pi (θ) = 0 lead to

d (λ1 (θ) + λ2 (θ))

dθ
=

2

∆θ
− 2

∆θ
e−σW (θ),
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Then the proof is proceeded as in Proposition 3.
B Conditions (23) imply

·

t−i (θ) = −vi ·q (θ) +
q (θ)

·
q (θ)

2
+ θ

·
q (θ) + λi (θ)

·
q (θ)∆θ.

Taking into account maximization by the agent

·

t1 (θ) +
·

t2 (θ) = θ
·
q (θ) ,

one gets

ti (θ) = viq (θ)−
q2 (θ)

4
−∆θ

Z θ

θ

λi (θ)
·
q (θ) dθ − Ci.

B Multiplying (23) by
·
q (θ) yields

·

ti (θ) =
·
q (θ)

·
vi −

q (θ)

2
− λi (θ)∆θ

¸
.

The output q (θ) is decreasing. The derivative of q(θ)
2
+ λi (θ)∆θ is equal

to
2e−σW (θ) − 3

2
+ 1− e−σW (θ) = −1

2
< 0.

Hence if vi − q(θ)
2
− λi (θ)∆θ ≥ 0, the contributions ti (θ) are always

decreasing. This is true if
|v1 − v2| ≤ θ.

� Proof of Corollary 5:
Consider the function

Z θ

θ

λi (θ, σ)
·
q (θ, σ) dθ.

Co-state λi (θ, σ) =
1
∆θ

R θ
θ

¡
1− e−σW (θ,σ)

¢
dθ →

σ→0
0 by continuity ofW (θ, σ) .

On the other hand |
·
q (θ, σ) | is bounded15

m <|
·
q (θ, σ) |< M.

15In the case of two principals m = 0, M = 3.
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This implies

lim
σ→0

Z θ

θ

λi (θ, σ)
·
q (θ, σ) dθ = 0.

This and Proposition 4 leads to conclusion.

� Proof of Proposition 6:
Fix σ and consider the equation

∂2q (θ, α)

∂θ2
= σq (θ, α)

·
∂q (θ, α)

∂θ
+ α

¸
(29)

From the border conditions one gets: ∂q(θ,α)
∂α

=
∂q(θ,α)

∂α
= 0. Suppose that

there exists
³
bθ, bα

´
such that

∂q(bθ,bα)
∂α

> 0. There has to exists a local maxima

of ∂q(θ,bα)
∂α

at point (θmax, bα) with ∂2q(θmax,bα)
∂θ∂α

= 0 and ∂q(θmax,bα)
∂α

> 0. Then
equation (29) yields

0 ≥ ∂3q (θmax, bα)
∂θ2∂α

= σ
∂q (θmax, bα)

∂α

·
∂q (θmax, bσ)

∂θ
+ α

¸
+

+σq (θmax, bα) > 0.
Contradiction. Therefore ∂q(θ,α)

∂α
≤ 0 and from this; qCA (θ) < qM (θ) , ∀θ ∈

(θ, θ].
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