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Abstract

The Margrabe formula is used extensively by theorists and practitioners not only on exchange
options, but also on executive compensation schemes, real options, weather and commodity deriva-
tives, etc. However, the crucial assumption of a bivariate normal distribution is not fully satisfied
in almost all applications. The impact of nonnormality on exchange options is studied by using
a bivariate Gram-Charlier approximation. For near-the-money exchange options, skewness and
coskewness induce price corrections which are linear in moneyness, while kurtosis and cokurtosis
induce quadratic price corrections. The nonnormality helps to explain the implied correlation
smile observed in practice.
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I. Introduction

A standard assumption often made in theoretical and empirical financial research is that the

quantity under study has a normal distribution, or if several quantities are considered, then they

have a jointly normal distribution. For example, the celebrated Black-Scholes (1973) formula for

option pricing is derived under the assumption that the continuously compounded stock return

is normally distributed. Many interest rate models, such as the Vasicek model (1977) and the

Ho-Lee model (1986), are Gaussian. Cortazar and Naranjo (2006) study an N -factor jointly

Gaussian model for futures prices. However, the assumption of normality is rarely fully satisfied

in applications. Evidences include Fama (1976), Richardson and Smith (1993), Lo and MacKinlay

(1988), Affleck-Graves and McDonald (1989), and Zhou (1993). Given the overwhelming evidence

of violations of normality, there have been a plethora of theoretical and empirical studies focusing

on the impact of nonnormality of security prices on various issues such as value-at-risk calculations,

option pricing, cross-sectional variation of stock returns, hedging decisions, etc. See, for example,

Kraus and Litzenberger (1976), Hull and White (1998), Harvey and Siddique (1999, 2000), Bakshi,

Kapadia and Madan (2003), Carr and Wu (2007), and Gilbert, Jones and Morris (2006).

This paper studies the effect of nonnormality on exchange options. The most commonly used

formula for the price of an exchange option is the Margrabe formula, which was independently

discovered by Fischer (1978) and Margrabe (1978). Margrabe (1978) considers the price of an

option to exchange one asset for another while Fischer (1978) considers the price of a call option

when the exercise price is uncertain. The Margrabe formula can be regarded as an extension

of the well-known Black-Scholes (1973) formula because it reduces to the latter when the other

asset has fixed value in the Margrabe framework or the exercise price is constant in the Fischer

framework. A crucial assumption in applying the Margrabe formula is that the returns of the two

assets are jointly normal. Thus, if the asset returns deviate from the jointly normal distribution,

the results obtained from the Margrabe formula should be used with care because they can give

incorrect prices and price sensitivities.

Although the jointly normal assumption is often violated, during the last three decades,

the Margrabe formula has been used extensively by theorists to model various financial and

real options, probably because of its simplicity and the availability of a closed-form expression.

Stulz (1982), Johnson (1987), Margrabe (1993), Gerber and Shiu (1996) consider extensions of

the Margrabe formula. McDonald and Siegel (1985) use the Margrabe formula to study the in-

vestment and valuation of firms when there is an option to shut down. Carr (1988) extends the

Margrabe formula to consider the valuation of sequential exchange opportunities. It also points

out some new applications such as the pricing of variable-rate corporate debt. Hemler (1990)
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models the quality delivery option in treasury bond futures contracts as an exchange option.

Shevlin (1991) investigates the valuation of R&D firms with R&D limited partnerships. Albizzati

and Geman (1994) value the surrender option in life insurance polices by extending the Margrabe

formula to a HJM stochastic interest rate framework. Grinblatt and Titman (1989), and Johnson

and Tian (2000) use the Margrabe formula to study the design and effectiveness of performance-

based contracts and executive stock options. Deng, Johnson and Sogomonian (2001) design a

technique to value electricity generation and transmission assets based on the Margrabe formula.

Davis (2001) prices weather derivatives in the spirit of the Margrabe formula.

On the practitioners’ side, various types of exchange options and their extensions (such as

spread options) are traded both on exchanges and over the counter. In the fixed income markets,

various instruments are traded exchanging securities with different maturities (such as Treasury

Notes and Bonds), with different quality levels (such as the Treasury Bill and Eurodollars), and

with different issuers (such as French and German bonds, or Municipal bonds and Treasury

Bonds). In the agricultural futures markets, the CBOT trades the so-called crush spread which

exchanges raw soybeans with a combination of soybean oil and soybean meal. In the energy

markets, crack spread options on exchanging crude oil and unleaded gasoline, and on exchanging

crude oil and heating oil are both traded on NYMEX. Electricity spark spread options are also

actively traded over the counter to exchange a specific fuel and electricity.

There are many possible approaches to introducing nonnormality to exchange option modeling.

One approach is to use a nonnormal multivariate distribution for the returns of the two underlying

assets. Kotz, Balakrishnan and Johnson (2000) and Hutchinson and Lai (1990) are two wonderful

sources for this approach and contain references of many researches using this approach. Another

possible approach is to use non-Gaussian processes to model asset returns. For example, one could

introduce nonnormality by adding stochastic volatilities or jumps to the asset prices. In addition

to these two broad approaches, Cherubini, Luciano and Vecchiato (2004) model nonnormality by

using nonnormal copulas, and Adkins and Paxson (2006) consider quasi-closed-form solutions for

homogeneity not equal to degree one in a real-option setup where there are multiple sources of un-

certainty. The approach taken in this paper differs from the above. A multivariate Gram-Charlier

approximation is used to model the joint stock distribution which explicitly takes into account the

higher-order moments such as the skewness, coskewness, kurtosis, and cokurtosis. Because Her-

mite polynomails form a complete orthogonal function series, the Gram-Charlier approximation

can be thought of as a lower-order approximation of an arbitrary density where the deviation from

normality is small. The advantage of this approach is that it avoids fixing a particular multivari-

ate distribution and allows one to look at the effects of skewness and kurtosis in an explicit way.
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While researchers in natural science have been using the Gram-Charlier approximation for a long

time, its application to finance was introduced by Jarrow and Rudd (1982). Since then, the uni-

variate Gram-Charlier approximation has been applied and studied by Madan and Milne (1994),

Ané (1999), Longstaff (1995), Corrado and Su (1995, 1996, 1997), Backus, Foresi and Wu (2004),

Ki, Choi and Lee (2005), and many others. However, the approach here differs from the above

research in that a bivariate Gram-Charlier approximation is used. This generalizes the known

Gram-Charlier correction for the Black-Scholes formula to an exchange option framework. The

bivariate Gram-Charlier approximation is very easy to deal with because of the availability of

explicit expressions for the marginal densities, the moment generating functions of the marginal

densities, and the cross-moments. It is useful to many other areas of financial modeling in which

the joint distribution of multiple assets needs to be considered. Possible examples include basket

options, spread options, value-at-risk calculations of portfolios, etc.

Since a closed-form formula for the option price is available, a closer look at the impact of

return nonnormality on the price and the implied correlation of the exchange option is taken. The

use of bivariate Gram-Charlier approximation allows us to isolate the effects of skewness, coskew-

ness, kurtosis, and cokurtosis. For near-the-money exchange options, skewness and coskewness

induce price corrections which are roughly linear functions of moneyness, while kurtosis and cokur-

tosis induce price corrections which are roughly quadratic functions of moneyness. Translated to

the language of the greeks, for near-the-money exchange options, skewness and coskewness in-

duce changes in the deltas but do not change the gammas much, while kurtosis and cokurtosis

induce changes in the gammas but do not change the deltas much. The nonnormality in the

joint distribution also helps to explain the implied correlation smile observed in practice. For

near-the-money exchange options, skewness and coskewness tend to produce implied correlation

skew while kurtosis and cokurtosis tend to produce implied correlation smile.

The organization of the paper is as follows. In Section II, two common methods to derive the

Margrabe formula are mentioned and then a new method based on direct computation using the

bivariate normal density is introduced. This method allows us to compute the price corrections

in Section IV when the joint density deviates from bivariate normal. Section III introduces the

bivariate Gram-Charlier approximation used in this paper. Section IV studies the impact of

nonnormality on exchange option prices and derives closed-form correction terms due to higher-

order moments. It also studies the impact of nonnormality on the implied correlation. Section V

briefly concludes.
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II. A new derivation of the Margrabe formula

Under the Margrabe formula setup, the dynamics of the two stock prices S1(t) and S2(t) under

the risk-neutral measure Q are given by

dS1(t) = rS1(t)dt + σ1S1(t)dW1(t), (1)

dS2(t) = rS2(t)dt + σ2S2(t)dW2(t), (2)

where the two Brownian motions W1(t) and W2(t) are correlated with constant coefficient ρ. The

Margrabe formula gives the time-0 price C of a European option to exchange stock 2 for stock 1

at time T as follows:

C = S1(0)N(d1) − S2(0)N(d2), (3)

where

d1 =
log(S1(0)/S2(0)) + σ2T/2

σ
√

T
, d2 = d1 − σ

√
T , (4)

and σ ≡
√

σ2
1 + σ2

2 − 2ρσ1σ2.

Two approaches are usually used to prove the Margrabe formula. The first one is the partial

differential equation approach. In this approach, one applies Ito’s lemma to C(t, S1, S2) and

derives the following PDE satisfied by C:

∂C

∂t
+

1

2
σ2

1S
2
1

∂2C

∂S2
1

+
1

2
σ2

2S
2
2

∂2C

∂S2
2

+ ρσ1σ2S1S2
∂2C

∂S1∂S2
+ rS1

∂C

∂S1
+ rS2

∂C

∂S2
= rC. (5)

The terminal boundary condition is given by C(T, S1, S2) = (S1−S2)
+. The fact that C(t, S1, S2)

is homogeneous of degree 1 in S1 and S2 allows one to define u(t, y) ≡ C(t, S1, S2)/S2, where

y = S1/S2. With the help of Euler’s theorem for homogeneous functions, the PDE can be

simplified into

∂u

∂t
+

1

2
y2σ2 ∂2u

∂y2
= 0, (6)

with boundary condition u(T, y) = (y − 1)+, and σ as defined above. The Margrabe formula in

equation (3) now follows from either a simple application of the Feynman-Kac formula (see, for

example, Karatzas and Shreve 1991) or a direct mimicking of the Black-Scholes case.

The second approach to proving the Margrabe formula is through a change of numeraire.

A detailed explanation of this technique applied to derivative pricing is in Geman, Karoui and

Rochet (1995). Specifically, define a new measure Q̃ by the following Radon-Nikodym derivative

dQ̃

dQ

∣∣∣∣
T

= ΛT ≡ e−rT S2(T )

S2(0)
. (7)
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Under the new measure Q̃, traded assets deflated using asset price S2(t) are martingales. Specif-

ically, if we let R(t) ≡ S1(t)/S2(t), then dR = R(σ1dW̃1 − σ2dW̃2), where W̃1(t) = W1(t) − ρσ2t

and W̃2(t) = W2(t) − σ2t are two Brownian motions under Q̃ by Girsanov’s theorem. Thus we

have

C = EQ[e−rT (S1(T ) − S2(T ))+] = S2(0) · EQ[ΛT · (R(T ) − 1)+] (8)

= S2(0) · EQ̃[(R(T ) − 1)+]. (9)

The Margrabe formula now follows immediately from the Black-Scholes formula by noticing that

under Q̃, R(T ) is lognormally distributed.

Unfortunately, these two methods no longer work when one steps out of the diffusion frame-

work and specifies the joint return distribution using a bivariate Gram-Charlier approximation.

A new method to derive the Margrabe formula is introduced below, which is useful in the non-

normal joint distribution case. First, the “tail” joint moment generating function for a bivariate

normal distribution is derived. The Margrabe formula follows from this equation immediately.

Specifically, let X and Y be jointly normal with means µX and µY , variances σ2
X and σ2

Y , and

correlation coefficient ρ. The quantity we are interested in is E[etX+sY · 1X≥Y ]. There are many

ways to compute this. The easiest way probably is to rotate X and Y and to find a value of p such

that U ≡ X − Y and V ≡ X + pY are independent. However, a different and somewhat longer

route will be taken. The benefit is that some useful results will be obtained along the way. Let

n(y;µ, ν2) denote the density function of a normal random variable with mean µ and variance ν2

and let N(y) denote the cumulative normal distribution function. Let n(y) denote n(y; 0, 1), the

standard normal density function.

First, two lemmas will be established. These two lemmas are crucial to prove Proposition 1

below which in turn is used to prove the Margrabe formula. They are also important later on

to derive corrections terms to the Margrabe formula due to nonnormality. The proofs are in

Appendix.

Lemma 1. Let X and Y be jointly normal with means µX and µY , variances σ2
X and σ2

Y , and

correlation coefficient ρ. Then

E[etX1X≥Y |Y ] = et(µ̃X+λY )+t2σ̃2

X
/2 · N

(
µ̃X + tσ̃2

X + (λ − 1)Y

σ̃X

)
, (10)

where λ = ρσX/σY , µ̃X = µX − λµY , and σ̃X =
√

1 − ρ2σX .

Lemma 2. Let a and b be real numbers. Then we have
∫ ∞

−∞

N(a + by)n(y;µ, ν2)dy = N

(
a + bµ√
1 + b2ν2

)
, (11)
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and furthermore, for any real number s,

∫ ∞

−∞

N(a + by)esyn(y;µ, ν2)dy = eµs+ν2s2/2N

(
a + bµ + bsν2

√
1 + b2ν2

)
. (12)

Because the Black-Scholes formula involves two cumulative normal distributions functions,

equation (12) can be useful when it is needed to integrate the Black-Scholes formula. For example,

Fischer (1978) considers a situation in which one needs to integrate the Black-Scholes formula

because the strike price of the option is also stochastic. Another situation where (12) is useful

is a generalized Black-Scholes framework in which the interest rate r and dividend rate δ are

stochastic but independent of the stock price shocks and r − δ is normally distributed.

Below is the main proposition which will be used to prove the Margrabe formula. The proof

makes use of Lemma 1 and 2 and is in Appendix.

Proposition 1. Let X and Y be jointly normal with means µX and µY , variances σ2
X and σ2

Y ,

and correlation coefficient ρ. For any real numbers t and s, we have

E[etX+sY 1X≥Y ] = E[etX+sY ] · N


µX − µY + t(σ2

X − ρσXσY ) − s(σ2
Y − ρσXσY )√

σ2
X + σ2

Y − 2ρσXσY


 , (13)

where the joint moment generating function is given by

E[etX+sY ] = exp

(
tµX + sµY +

1

2
t2σ2

X +
1

2
s2σ2

Y + ρstσXσY

)
. (14)

Furthermore, let θ ≥ 0 and m be two real numbers, then

E[etX+sY 1X≥θY +m] = E[etX+sY ] · N


µX − θµY − m + t(σ2

X − ρθσXσY ) − s(θσ2
Y − ρσXσY )√

σ2
X + θ2σ2

Y − 2ρθσXσY


 .

(15)

The Margrabe formula follows from Proposition 1 directly. Specifically, let X ≡ log S1(T ) and

Y ≡ log S2(T ). Since

log S1(T ) = log S1(0) + (r − σ2
1/2)T + σ1W1(T ), (16)

log S2(T ) = log S2(0) + (r − σ2
2/2)T + σ2W2(T ), (17)

X and Y are jointly normally distributed with correlation coefficient ρ and

µX = log S1(0) + (r − σ2
1/2)T, σ2

X = σ1T, (18)

µY = log S2(0) + (r − σ2
2/2)T, σ2

Y = σ2T. (19)
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Using Proposition 1 and the fact that EQeX = S1(0)erT and EQeY = S2(0)erT , the Margrabe

formula follows from the following calculation:

c = EQ[e−rT (S1(T ) − S2(T ))+] = e−rT EQ[(eX − eY )1X≥Y ] (20)

= S1(0)N


µX − µY + (σ2

X − ρσXσY )√
σ2

X + σ2
Y − 2ρσXσY


 − S2(0)N


µX − µY − (σ2

Y − ρσXσY )√
σ2

X + σ2
Y − 2ρσXσY


 . (21)

The analysis above applies whenever log S1(T ) and log S2(T ) are jointly normally distributed.

Thus it can be applied to price extensions of exchange options, such as calendar exchange options.

It can also be applied to price more exotic exchange options, for example, options with final payoff

[AS1(T )α − BS2(T )β]+, where A > 0, B > 0, and α, β are real numbers. Another significant

application of our method is when S1(t) and S2(t) follow Gaussian processes. One example of this

is when the prices follow log-OU processes, which are often used to model commodity prices with

mean-reverting properties. Recently, Deng, Li and Zhou (2006) use this technique to approximate

spread option prices.

Proposition 1 is useful for other things. For example, it also allows us to calculate the risk-

neutral probability that the option will be exercised at maturity:

PQ[S1(T ) ≥ S2(T )] = EQ[1X≥Y ] = N


 µX − µY√

σ2
X + σ2

Y − 2ρσXσY


 = N(d), (22)

where

d =
log(S1(0)/S2(0)) + (σ2

2 − σ2
1)T/2

σ
√

T
. (23)

III. The bivariate Gram-Charlier approximation

Assume that there are two stocks whose returns are approximately bivariate normal. The current

calendar time is 0. The returns of the stocks have deterministic means and variances:

µ1 = EQ log S1(T ), µ2 = EQ log S2(T ), (24)

and

ν1 =

√
VarQ log S1(T ), ν2 =

√
VarQ log S2(T ). (25)

Assume that the returns are correlated with constant correlation coefficient ̺. Notice that this

framework is more general than the geometric Brownian motions (GBMs) case and can incorporate

all Gaussian cases, such as the popular log-OU case.
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Specifically, let W1(t) and W2(t) be two Brownian motions with correlation ̺. In the GBMs

case, we have

dSi = (r − qi)Sidt + σiSidWi, (26)

where r is the risk-free interest rate, σi’s are the volatilities, and qi’s are the dividend rates. A

simple application of Ito’s lemma yields

µi = log Si(0) + (r − qi − σ2
i /2)T, νi = σi

√
T , ρ = ̺, (27)

The GBMs case can be easily generalized to incorporate seasonality in parameters by allowing

σi’s, qi’s and ρ to be deterministic functions of the calendar time t. This is useful since for some

spread options, their underlying assets exhibit strong seasonality in price volatilities and in their

return correlations. The general framework above incorporates this generalized GBMs case too.

In the log-OU case, we have

dSi = −λi(log Si − ηi)Sidt + σiSidWi, (28)

where λi’s are the mean-reverting strengths and ηi’s are parameters controlling the long-run

means. The Brownian motions are still correlated with instantaneous correlation ̺. The applica-

tion of Ito’s lemma now gives

µi = ηi −
σ2

i

2λi
+ e−λiT

(
log Si(0) − ηi +

σ2
i

2λi

)
, νi = σi

√
T

√
1 − e−2λiT

2λi
, (29)

ρ = 2̺

√
λ1λ2

λ1 + λ2

1 − e−(λ1+λ2)T

√
1 − e−2λ1T

√
1 − e−2λ2T

. (30)

The density approximation when the joint distribution deviate from bivariate normal is in-

troduced next. Let Z be a random vector. A multivariate Gram-Charlier approximation for the

density of Z has the following general form (see, for example, McCullagh 1987):

fGC
Z (z) = f0

Z(z)

(
1 +

∑

i

ηih
i(z) +

1

2!

∑

ij

ηijh
ij(z) +

1

3!

∑

ijk

ηijkh
ijk(z) +

1

4!

∑

ijkℓ

ηijkℓh
ijkℓ(z) + · · ·

)
,

(31)

where i, j, k and l all run from 1 to dimZ, f0
Z

is some benchmark density, η’s are coefficients

symmetric among their indices, and the h’s are multivariate Hermite polynomials. In applications,

it is often convenient to first whiten the individual components of Z to eliminate the first-order

coefficients ηi’s.
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The above Gram-Charlier approximation looks quite formidable in its general form but it will

be much nicer after being specialized to our application. Let the random vector Z be

Z = (Z1, Z2)
T , (32)

with

Z1 =
log S1(T ) − µ1

ν1
, Z2 =

log S2(T ) − µ2

ν2
. (33)

The benchmark density will be selected next. A popular choice among researchers is the multivari-

ate normal density with identity correlation matrix. However, this choice is inappropriate in most

applications because it implicitly assumes that the correlation coefficients are small. Instead,

the benchmark density is chosen to be multivariate normal with nontrivial correlation matrix.

The shortcoming of this choice of benchmark density is that it makes the correction terms in

equation (31) complicated because the components zi’s are not separated. To overcome this, a

modified version of the Gram-Charlier approximation is used. Let n(z; ρ) be the bivariate normal

distribution with correlation ρ. The final density approximation for Z is:

fGC
Z (z) =n(z; ρ) + n(z1)n(z2)

(
γ3,0

6
h3(z1) +

γ0,3

6
h3(z2) +

γ2,1

2
h2(z1)h1(z2) +

γ1,2

2
h1(z2)h2(z1)

+
κ4,0

24
h4(z1) +

κ0,4

24
h4(z2) +

κ3,1

6
h3(z1)h1(z2) +

κ1,3

6
h1(z1)h3(z2) +

κ2,2

4
h2(z1)h2(z2)

)
.

(34)

where γi,j ’s and κi,j ’s are coefficients which are not functions of z. The univariate (modified)

Hermite polynomials hk(x) are defined by

dkn(x)

dxk
= (−1)khk(x)n(x). (35)

Some of the properties of fGC
Z

(z) are listed below. The proof is in Appendix.

Proposition 2. For the bivariate Gram-Charlier approximation in equation (34), we have

1. It integrates to 1:
∫

R2

fGC
Z (z)dz = 1; (36)

2. The marginal density of Z1 and Z2 are given by

fGC
Z1

(z1) = n(z1)
(
1 +

γ3,0

3!
h3(z1) +

κ4,0

4!
h4(z1)

)
, (37)

fGC
Z2

(z2) = n(z2)
(
1 +

γ0,3

3!
h3(z2) +

κ0,4

4!
h4(z2)

)
, (38)
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respectively. Both marginal densities integrate to 1. Furthermore, let t be a real number.

Then the “moment generating function” for univariate Gram-Charlier approximation is

given by

EGCetZ1 = et2/2

(
1 +

1

3!
t3γ3,0 +

1

4!
t4κ4,0

)
, (39)

and similarly for Z2.

3. Let EGC denote the “expectation” under the Gram-Charlier approximation. Then

EGCz1 = EGCz2 = 0, (40)

EGCz2
1 = EGCz2

2 = 1, EGCz1z2 = ρ, (41)

EGCz3
1 = γ3,0, EGCz3

2 = γ0,3, (42)

EGCz1z
2
2 = γ1,2, EGCz2

1z2 = γ2,1, (43)

EGCz4
1 = 3 + κ4,0, EGCz4

2 = 3 + κ0,4, (44)

EGCz1z
3
2 = 3ρ + κ1,3, EGCz2

1z
2
2 = (1 + 2ρ2) + κ2,2, EGCz3

1z2 = 3ρ + κ3,1. (45)

Statement 1 shows that the density approximation integrates to 1, although it is well-known

that it is possible for the Gram-Charlier approximate density to violate positivity. Statement

2 shows that the marginal densities of the bivariate Gram-Charlier approximation reduce to

the usual one-dimensional Gram-Charlier approximation. Statement 3 gives meanings to the

parameters γ’s and κ’s. It shows that γi,j ’s are skewness and coskewness parameters while κi,j ’s

are excess kurtosis and cokurtosis parameters. This can be seen from the fact that if one sets all

γi,j ’s and κi,j ’s to 0 in the Gram-Charlier approximation, then equations (40) to (45) give the

cross-moments of the bivariate normal distribution.

While univariate Gram-Charlier approximation has been extensively used by researchers in

finance, multivariate Gram-Charlier approximation has not been fully studied. The proposed mul-

tivariate Gram-Charlier approximation above can potentially be used to study portfolio returns,

basket options, index options, or real options where multiple underlyings need to be considered.

IV. The impact of nonnormality on exchange option prices, greeks,

and implied correlation

Let s1 = S1(0) and s2 = S2(0). The martingale requirement is that discounted future stock

prices under the Gram-Charlier approximation are just s1 and s2. That is, it is required that

EGCSi(T ) = sie
rT for i = 1, 2. In this case, the parameters µ1, ν1, γ3,0, κ4,0 are not independent.

Indeed, we have

10



Lemma 3. The no-arbitrage conditions EGCSi(T ) = sie
rT for i = 1, 2 give the following param-

eter restrictions:

µ1 = µ0
1 − log

(
1 +

1

3!
ν3
1γ3,0 +

1

4!
ν4
1κ4,0

)
, (46)

µ2 = µ0
2 − log

(
1 +

1

3!
ν3
2γ0,3 +

1

4!
ν4
2κ0,4

)
, (47)

where

µ0
1 ≡ log s1 + (rT − ν2

1/2), µ0
2 ≡ log s2 + (rT − ν2

2/2). (48)

This martingale restriction lowers the dimension of the parameters space, as was also noticed

in Corrado (2007), where he considers general one-dimensional Gram-Charlier approximation of

arbitrary order. The exchange option price is now given by CGC = e−rT EGC[S1(T ) − S2(T )]+.

It can be seen that nonzero γi,j ’s and κi,j ’s will now contribute to corrections to the exchange

option price. The following proposition gives the correction terms in closed-form. The proof is in

Appendix.

Proposition 3. Suppose log S1(T ) and log S2(T ) after standardization follow the bivariate Gram-

Charlier approximation. Then to first order in γi,j’s and κi,j’s, the spread option price is given

approximately by

CGC ≈ CMargrabe +
∑

i+j=3

γi,jΦi,j +
∑

i+j=4

κi,jΨi,j , (49)

where the first term is just the usual Margrabe price

CMargrabe = s1N

(
log(s1/s2)

νM
+

νM

2

)
− s2N

(
log(s1/s2)

νM
− νM

2

)
, (50)

with

νM =
√

ν2
1 − 2ρν1ν2 + ν2

2 , (51)
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and the corrections Φi,j’s and Ψi,j’s are given by

Φ3,0 =
ν3
1ω

6ν3

(
3

2
ν2 − log

s1

s2

)
+

s1ν
3
1

6
N

(
log s1/s2

ν
+

ν

2

)
, (52)

Φ0,3 =
ν3
2ω

6ν3

(
3

2
ν2 + log

s1

s2

)
− s2ν

3
2

6
N

(
log s1/s2

ν
− ν

2

)
, (53)

Φ2,1 = −ν2
1ν2ω

2ν3

(
ν2

2
− log

s1

s2

)
, (54)

Φ1,2 = −ν1ν
2
2ω

2ν3

(
ν2

2
+ log

s1

s2

)
, (55)

Ψ4,0 =
ν4
1ω

24ν5

(
−ν2 +

7

4
ν4 − 2ν2 log

s1

s2
+

(
log

s1

s2

)2
)

+
s1ν

4
1

24
N

(
log s1/s2

ν
+

ν

2

)
, (56)

Ψ0,4 =
ν4
2ω

24ν5

(
−ν2 +

7

4
ν4 + 2ν2 log

s1

s2
+

(
log

s1

s2

)2
)
− s2ν

4
2

24
N

(
log s1/s2

ν
− ν

2

)
, (57)

Ψ3,1 = −ν3
1ν2ω

6ν5

(
−ν2 +

ν4

4
− ν2 log

s1

s2
+

(
log

s1

s2

)2
)

, (58)

Ψ1,3 = −ν1ν
3
2ω

6ν5

(
−ν2 +

ν4

4
+ ν2 log

s1

s2
+

(
log

s1

s2

)2
)

, (59)

Ψ2,2 =
ν2
1ν2

2ω

4ν5

(
−ν2 − ν4

4
+

(
log

s1

s2

)2
)

, (60)

with

ν =
√

ν2
1 + ν2

2 , ω =
1√
2π

√
s1s2 exp

(
−ν2

8
− (log s1/s2)

2

2ν2

)
. (61)

Proposition 3 generalizes the results in Corrado and Su (1996, 1997) and Backus, Foresi and

Wu (2004), where the Black-Scholes formula is adjusted for skewness and kurtosis using a one-

dimensional Gram-Charlier approximation. Indeed, if one sets s2 = K, ν2 = 0, and all Φi,j , Ψi,j

to zero except Φ3,0 and Ψ4,0, one will get the one-dimensional result. However, the exposition

here has been more careful than previous studies. That is, the second terms in equations (52),

(53), (56), and (57) have all been kept, which were often omitted by previous studies on the

ground that ν is small. A careful numerical analysis show that these second terms in many cases

are of comparable magnitude as the first terms in those equations. The reason is that in ω,

the exponential factor can become very small, especially for away-from-the-money options. Also

notice that Proposition 3 applies if the asset returns follow approximately geometric Brownian

motions or approximately log-OU processes.

Figure 1 plots the price corrections CGC − CMargrabe due to nonzero γi,j ’s and κi,j ’s with

respect to moneyness, measured as log(s1/s2). To separate the effects of each of the higher-order

excess moments, all γ’s and κ’s are set to 0 except for one of them in each of the nine subplots in

the figure. For example, subplot 1 looks at the price correction due only to the nonzero skewness
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γ3,0 in the distribution of log S1(T ), that is, the term Φ3,0 in equation (52). In all these subplots,

the only nonzero skewness and coskewness coefficients are set to be 0.25, while the only nonzero

kurtosis and cokurtosis coefficients are set to be 1. We only look at positive values of γi,j ’s and

κi,j ’s because the effects of negative values are simply the mirror images of those of positive

values. We specialize Proposition 3 to the GBMs case. The parameters used are: s2 = 80,

σ1 = 0.2, σ2 = 0.25, T = 0.5, and ρ = 0.6. We allow s1 to vary so that log(s1/s2) has the range

of [−0.25, 0.25].

Subplots 1 and 2 of Figure 1 show the effect of nonzero skewness γ3,0 and γ0,3 in the joint

distribution of log S1(T ) and log S2(T ). As one can see, in addition to an everywhere positive

correction (the correction present even when the option is at-the-money), a positive skewness in

log S1(T ) increases the prices of out-of-the-money exchange options while decreases the prices of

in-the-money options. On the other hand, a positive skewness in log S2(T ) decreases the prices

of out-of-the-money exchange options while increases the prices of in-the-money options. Also,

because in our parameter choices σ2 > σ1, the effect of γ0,3 is larger than that of γ3,0.

Subplots 3 and 4 of Figure 1 show the effects of nonzero coskewnesses (γ2,1 and γ1,2) in the

distributions of log S1(T ) and log S2(T ), respectively. As one can see in Subplot 3, a positive

coskewness γ2,1 induces price correction somewhat similar to that of γ0,3. That is, in addition

to an everywhere negative background correction, a positive coskewness γ2,1 increases the price

of in-the-money options while decreases the price of out-of-the-money options. Subplot 4 shows

that a positive γ1,2 also induces an everywhere negative background correction. However, contrary

to γ2,1, it decreases the price of out-of-the-money options while increases the price of in-the-money

options. Again, the effect of γ1,2 is slightly larger than that of γ2,1 because σ2 > σ1. Another

thing worth noticing is that if all γi,j ’s are roughly equal to each other, then the effects of the

coskewnesses are usually larger than the effects of the skewnesses. Our numerical analysis (not

reported here) shows that this is particularly the case if the volatilities of the two assets are high

or the time-to-maturity is large.

Subplots 5 and 6 of Figure 1 show the effect of nonzero kurtosis κ4,0 and κ0,4 in the distributions

of log S1(T ) and log S2(T ), respectively. As one can see, their effects are similar to each other.

Both of them usually will decrease the prices of near-the-money options while increase the prices

of away-from-the-money options. The fact that σ2 > σ1 introduces two differences. The first

difference is that the effect of κ0,4 is larger than that of κ4,0. Another difference is that relative

to κ0,4, κ4,0 increases the price for an out-of-the-money option slighter more than for an in-the-

money option if the two options have the same absolute values of log(s1/s2).

Subplots 7, 8 and 9 of Figure 1 show the effect of nonzero cokurtosis κ3,1, κ1,3 and κ2,2. There
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are a few things to notice. First, the effects of the cokurtosis κ3,1 and κ1,3 are similar to each

other but opposite to those of the kurtosis κ4,0 and κ0,4. That is, positive cokurtosis κ3,1 and κ1,3

will in general increase the prices of near-the-money options while decrease the prices of away-

from-the-money options. Second, the fact that σ2 > σ1 again introduces two differences. The first

difference is that the effect of κ1,3 is slightly larger than that of κ3,1. Another difference is that

relative to κ1,3, κ3,1 increases the price for an out-of-the-money option slighter more than for an

in-the-money option if the two options have the same absolute values of log(s1/s2). Finally, the

effect of κ2,2 is opposite to those of the other two cokurtosis. It increases the prices of away-from-

the-money options while decreases the prices of near-the-money options. In addition, the effect

of κ2,2 are usually stronger than those of the other two cokurtosis. This is especially true if the

volatilities of the two underlying assets are high.

Table I presents the price effect of nonnormality in another format. The parameters used are

still the same as those used in Figure 1. The asset 1 price s1 is chosen to take one of the five

values among 65, 75, 85, 95 and 105. Panel A reports the moneyness log(s1/s2) and the Margrabe

formula prices without taking into account the nonnormality. As one can see, the Margrabe prices

increase with asset 1 prices. Panel B reports the isolated effect of one of the γi,j ’s and κi,j ’s. As

before, the nonzero γi,j ’s are taken to be 0.25 and the nonzero κi,j ’s are taken to be 1. Table I

again shows that the price corrections due to nonnormality can be quite significant. Another

feature worth pointing out is that while the general magnitudes of price corrections for in-the-

money and out-of-the-money options are about the same, the percentage price corrections are

usually much larger for out-of-the-money options than for in-the-money options.

Translated to the language of the greeks, for near-the-money exchange options, skewness and

coskewness induce changes in the deltas but do not change the gammas much, while kurtosis and

cokurtosis induce changes in the gammas but do not change the deltas much.

If the underlying assets of the exchange option are distributed with nonzero γi,j ’s and κi,j ’s, the

implied correlation ρimp computed using the Margrabe formula and the observed exchange option

price can display various patterns observed in the actual data, such as skew, smile or frown. The

implied correlation can be easily computed from a Newton-Raphson algorithm because it is a one-

dimensional search. Figure 2 plots the implied correlation with respect to moneyness log(s1/s2)

when one of the γ’s or κ’s is nonzero and positive. The effects of negative γ’s or κ’s are just the

mirror images of the positive value cases. The parameters used in this figure are exactly the same

as those in Figure 1. In particular, ρ = 0.6. As one can see from the first four subplots, positive

γ3,0 and γ1,2 will produce an upward-sloping implied volatility skew, while positive γ0,3 and γ2,1

will produce a downward-sloping implied volatility skew.
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While the γ’s are mostly responsible for the slope of the implied correlation curve, the nonzero

κ’s are mostly responsible for the curvature of the implied correlation curve. Positive kurtosis κ4,0,

κ0,4 or positive cokurtosis κ2,2 will produce negative curvature and thus lead to the observation of

implied correlation frown. On the contrary, positive κ3,1 and κ1,3 will generate positive curvature

and implied correlation smile. Another thing worth noticing is that while the the percentage price

corrections are usually much larger for out-of-the-money options than for in-the-money options,

the price corrections have similar effect on implied correlations for out-of-the-money and in-the-

money options.

We have studied the effect of nonnormality on exchange options using bivariate Gram-Charlier

approximation. This method can also be used to study other derivatives, such as spread options,

basket options and index options. The analysis also has implications beyond option pricing. For

example, our result implies that if given the choice between different indexed executive stock

options, company managers might choose the indexing security with the most negative skewness.

V. Conclusion

This paper studies the effect of nonnormality on exchange options. The most commonly used

formula for the price of an exchange option is the Margrabe formula. A crucial assumption in

applying the Margrabe formula is that the returns of the two assets are jointly normal. Thus, the

results obtained from the Margrabe formula which ignores the issue of nonnormality should be

used with care because they can give incorrect prices and price sensitivities.

To explicitly account for the deviation from normality, a multivariate Gram-Charlier approxi-

mation is used to model joint stock distributions. This approximation allows one to explicitly take

into account the higher-order moments such as the skewness, coskewness, kurtosis, and cokurtosis.

We then use a bivariate Gram-Charlier approximation to compute the corrections to the Margrabe

formula due to higher-order moments in closed-form. We generalize the known Gram-Charlier

correction for the Black-Scholes formula to an exchange option framework.

By utilizing the closed-form formula for the prices, a closer look at the impact of return

nonnormality on the price and the implied correlation of the exchange option is taken. The use

of bivariate Gram-Charlier approximation allows us to isolate the effects of skewness, coskewness,

kurtosis, and cokurtosis. For near-the-money exchange options, skewness and coskewness induce

price corrections which are roughly linear functions of moneyness, while kurtosis and cokurtosis

induce price corrections which are roughly quadratic functions of moneyness. Translated to the

language of the greeks, for near-the-money exchange options, skewness and coskewness induce

changes in the deltas but do not change the gammas much, while kurtosis and cokurtosis induce
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changes in the gammas but do not change the deltas much. The nonnormality in the joint

distribution can also help to explain the implied correlation smile observed in practice. We find

that for near-the-money exchange options, skewness and coskewness tend to produce implied

correlation skew while kurtosis and cokurtosis tend to produce implied correlation smile.

The bivariate Gram-Charlier approximation is very easy to deal with because of the availability

of explicit expressions for the marginal densities, the moment generating functions for the marginal

densities, and the cross-moments. The form of bivariate Gram-Charlier approximation should be

useful to many other areas of financial modeling whenever the joint distribution of multiple assets

needs to be considered. Possible examples include basket options, spread options, value-at-risk

calculations of portfolios, etc.

Finally, it is well-known that the Gram-Charlier approximation only works well when the

deviations from normality are mild. In situations where the deviations from normality is dramatic,

the results in this section should be used with some caution. Another possible shortcoming is

that sometimes the Gram-Charlier approximation can give densities that violate positivity. This

in turn can give rise to non-positive option prices, especially when the option is well out of the

money.
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Appendix

Proof of Lemma 1: The conditional density for X given Y is n(x;µX +λ(Y −µY ), σ2
X(1−ρ2)).

We also have the identity

∫ ∞

x0

etxn(x; µ, ν2)dx = eµt+ν2t2/2N

(
µ − x0

ν
+ νt

)
. (62)

Lemma 1 now follows from direct computation.

Proof of Lemma 2: Define F (·) and G(·) by

F (a) ≡
∫ ∞

−∞

N(a + y)n(y)dy; and G(b) ≡
∫ ∞

−∞

N(a + by)n(y)dy. (63)

Notice that

F (0) =

∫ ∞

−∞

N(y)n(y)dy =

∫ ∞

−∞

N(y)dN(y) =
1

2
, (64)

and

F ′(a) =

∫ ∞

−∞

n(a + y)n(y)dy =
1

2
√

π
exp

(
−a2

4

)
=

1√
2

n

(
a√
2

)
. (65)

Thus,

F (a) = F (0) +

∫ a

0
F ′(a)da = N

(
a√
2

)
. (66)

We can compute

G(1) = F (a) = N

(
a√
2

)
, and G′(b) = − ab

(1 + b2)3/2
n

(
a√

1 + b2

)
. (67)

Thus

∫ ∞

−∞

N(a + by)n(y)dy = G(b) = G(1) +

∫ b

1
G′(b)db = N

(
a√

1 + b2

)
. (68)

The first integral in the lemma now follows immediately:

∫ ∞

−∞

N(a + by)n(y;µ, ν2)dy =

∫ ∞

−∞

N(a + bµ + bνz)n(z)dz = N

(
a + bµ√
1 + b2ν2

)
. (69)

Using the identity

esyn(y;µ, ν2) = eµs+s2σ2/2n(y;µ + sν2, ν2), (70)

the second integral in the lemma now follows from the first integral.
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Proof of Proposition 1: By the tower property of expectation, we have

E[etX+sY 1X≥Y ] = E
[
E[etX+sY 1X≥Y |Y ]

]
(71)

= E

[
et(µ̃X+λY )+t2σ̃2

X
/2+sY · N

(
µ̃X + tσ̃2

X + (λ − 1)Y

σ̃X

)]
(by Lemma 1) (72)

=

∫ ∞

−∞

et(µ̃X+λy)+t2σ̃2

X
/2+sy · N

(
µ̃X + tσ̃2

X + (λ − 1)y

σ̃X

)
n(y;µY , σ2

Y )dy. (73)

The first equation in the proposition now follows from a direct computation of the above integral

using Lemma 2. A useful identity in simplifying the result is σ2
X = σ̃2

X + λ2σ2
Y .

To compute E[etX+sY 1X≥θY +m], consider the pair X and Z ≡ θY + m and use the first

equation in the proposition.

Proof of Proposition 2: The hi(x)’s are orthogonal to each other:
∫ ∞

−∞

hi(x)hj(x)n(x)dx = δij · i!. (74)

A very useful shorthand for equation (34) is that

fGC
Z (z) =n(z; ρ) + n(z1)n(z2)

∑

i+j=3,4

1

i! j!
θi,jhi(z1)hj(z2), (75)

where θi,j = γi,j if i + j = 3 and θi,j = κi,j if i + j = 4. All the statements in the proposition can

be shown using repeated integration by parts and the orthogonality of the Hermite polynomials.

For statement 1, notice that
∫

R2

fGC
Z (z)dz = 1 +

∑

i+j=3,4

1

i! j!
θi,jδi,0δj,0 = 1. (76)

For the “moment generating function”, repeated integration by parts gives
∫ ∞

−∞

etzn(z)h3(z)dz = −
∫ ∞

−∞

etzdn′′(z) =

∫ ∞

−∞

tetzn′′(z)dz = · · · = t3et2/2. (77)

Finally, notice that polynomials in x can be expressed in terms of the Hermite polynomials as

follows:

x = h1(x), (78)

x2 = h2(x) + h0(x), (79)

x3 = h3(x) + 3h1(x), (80)

x4 = h4(x) + 6h2(x) + 3. (81)

Statement 3 can be easily proven using the above identities.
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Proof of Lemma 3: Proof essentially follows from equation (39):

sie
rT = EGCSi(T ) = EGCeµ1+ν1Z1 = eµ1+ν2

1
/2

(
1 +

1

3!
ν3
1γ3,0 +

1

4!
ν4
1κ4,0

)
. (82)

Now take the logarithm and rearrange and we get Lemma 3.

Proof of Proposition 3: Let E0 denote the expectation under the benchmark density n(z; ρ).

Then by Proposition 1,

e−rT E0[S1(T ) − S2(T )]+ = s1N

(
µ1 − µ2 + (ν2

1 − ρν1ν2)√
ν2
1 + ν2

2 − 2ρν1ν2

)
− s2N

(
µ1 − µ2 − (ν2

2 − ρν1ν2)√
ν2
1 + ν2

2 − 2ρν1ν2

)
.

(83)

Because of the symmetry

s1n

(
µ1 − µ2 + (ν2

1 − ρν1ν2)√
ν2
1 + ν2

2 − 2ρν1ν2

)
= s2n

(
µ1 − µ2 − (ν2

2 − ρν1ν2)√
ν2
1 + ν2

2 − 2ρν1ν2

)
, (84)

a Taylor series expansion gives us

e−rT E0[S1(T ) − S2(T )]+

= s1N

(
µ0

1 − µ0
2 + (ν2

1 − ρν1ν2)√
ν2
1 + ν2

2 − 2ρν1ν2

)
− s2N

(
µ0

1 − µ0
2 − (ν2

2 − ρν1ν2)√
ν2
1 + ν2

2 − 2ρν1ν2

)
+ O(γ2, κ2)

= CMargrabe + O(γ2, κ2), (85)

where O(γ2, κ2) denote a term that is at least second order in γi,j ’s or κi,j ’s.

Next let us consider the Φi,j ’s and Ψi,j ’s. Their calculations are very similar to each other and

make repeated uses of Lemma 2, equation (35) and integration by parts. Below we only show the

calculation for Φ3,0. Let

θ = ν2/ν1, m = (µ2 − µ1)/ν1. (86)

From the Gram-Charlier approximation and equation (35), we have

Φ3,0 = −e−rT

6

∫ ∞

−∞

n(z2)dz2

∫ ∞

θz2+m
n′′′(z1)

[
eν1z1+µ1 − eν2z2+µ2

]
dz1. (87)

By repeated use of integration by parts, we have

Φ3,0 = −e−rT

6
(J1 + J2 + J3), (88)

19



where

J1 =

∫ ∞

−∞

n(z2)n(θz2 + m)eν2z2+µ2ν2z2dz2, (89)

J2 =

∫ ∞

−∞

n(z2)n(θz2 + m)eν2z2+µ2

(
µ2 − µ1 + ν2

1

)
dz2, (90)

J3 =

∫ ∞

−∞

n(z2)e
µ1+ν2

1
/2ν3

1 N
(
ν1 − m − θz2

)
dz2. (91)

The integrals for J1 and J2 are simple integration involving the normal densities. They can be

computed by completing the squares. By Lemma 2,

J3 = eµ1+ν2

1
/2ν3

1N

(
ν1 − m√
1 + θ2

)
. (92)

Finally, using Lemma 3, we Taylor expand Φ3,0 around γi,j = 0 and κi,j = 0 and keep only the

lowest order (constant) term.
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Table I

The effect of nonnormality on the price of an exchange option

Panel A of this table reports the Margrabe formula prices of the exchange options for various
moneyness values. Panel B reports the price corrections due to the nonzero skewness, coskewness,
kurtosis and cokurtosis. Each row reports the isolated effect of one of the γi,j ’s or κi,j ’s. In each
row, the single nonzero γi,j and the single nonzero κi,j are taken to be 0.25 and 1, respectively.
For each of the nine cases, the price corrections in absolute dollar terms are reported. The
price corrections in terms of percentages of the approximate actual prices CGC are reported in
parenthesis. In both panels, the parameters used are: s2 = 80, σ1 = 0.2, σ2 = 0.25, T = 0.5,
ρ = 0.6.

Panel A: Margrabe formula prices

s1

65 75 85 95 105

log(s1/s2) −0.2076 −0.0645 0.0606 0.1719 0.2719

CMargrabe 0.3645 2.4363 7.7014 15.7431 25.1612

Panel B: Price correction due to nonnormality

s1

65 75 85 95 105

γ3,0 = 0.25 0.0559 0.0462 0.0117 −0.0159 −0.0238
(13.29%) (1.86%) (0.15%) (−0.10%) (−0.09%)

γ0,3 = 0.25 −0.0515 0.0009 0.0757 0.1142 0.1063
(−16.45%) (0.04%) (0.97%) (0.72%) (0.42%)

γ2,1 = 0.25 −0.1668 −0.1013 0.0420 0.1443 0.1657
(−84.34%) (−4.34%) (0.54%) (0.91%) (0.65%)

γ1,2 = 0.25 0.1627 0.0546 −0.1295 −0.2436 −0.2502
(30.86%) (2.19%) (−1.71%) (−1.57%) (−1.00%)

κ4,0 = 1 0.0096 −0.0291 −0.0426 −0.0239 0.0013
(2.56%) (−1.21%) (−0.56%) (−0.15%) (0.01%)

κ0,4 = 1 −0.0324 −0.1002 −0.0812 −0.0015 0.0639
(−9.75%) (−4.29%) (−1.07%) (−0.01%) (0.25%)

κ3,1 = 1 −0.0769 0.1447 0.2547 0.1868 0.0612
(−26.73%) (5.61%) (3.20%) (1.17%) (0.24%)

κ1,3 = 1 0.0745 0.3211 0.3025 0.0695 −0.1442
(16.97%) (11.64%) (3.78%) (0.44%) (−0.58%)

κ2,2 = 1 −0.0434 −0.3699 −0.3997 −0.1523 0.1023
(−13.50%) (−17.90%) (−5.47%) (−0.98%) (0.40%)
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Figure 1. The effect of nonzero skewness, coskewness, kurtosis and cokurtosis on the

price of an exchange option. In each of the nine subplots, the price correction in absolute dollar
terms due to a nonzero γi,j or κi,j is plotted against the moneyness log(s1/s2). The parameters
used are: s2 = 80, σ1 = 0.2, σ2 = 0.25, T = 0.5, ρ = 0.6. We allow s1 to vary so that log(s1/s2)
has the range of [−0.25, 0.25].
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Figure 2. The effect of nonzero skewness, coskewness, kurtosis and cokurtosis on

the implied correlation of an exchange option. In each of the nine subplots, the implied
correlation with a nonzero γi,j or κi,j is plotted against the moneyness log(s1/s2). The parameters
used are: s2 = 80, σ1 = 0.2, σ2 = 0.25, T = 0.5, ρ = 0.6. We allow s1 to vary so that log(s1/s2)
has the range of [−0.25, 0.25].
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