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Abstract

Our contribution in this work is to set the directions for specialized econometric
computations in a free computer algebra system, Xcas. We focus on the programming
of a routine dedicated to correlation criteria for multiple regression models. We
program several operations for detecting and evaluating collinearity by applying the
diagnostic techniques of linear regression analysis. Xcas could constitute a
supplemental tool in a collinear data study. Its use is proposed complementary to
established econometric software or as substitute software.
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1. Introduction

Algebraic calculations are widely and strongly involved in econometric
analysis. The close connection of econometric analysis and matrix algebra is a
scientific fact (see indicatively Frawley, 1985; Schipp & Kriamer, 2009). Hence the
programming environment of a computer algebra system (CAS) is more than
appropriate to estimate metrics, perform methodologies or strategies, test conditions
and criteria, identify rules. A number of computer algebra system (CAS) approaches
in econometrics has already been proposed (Merckens, 1991; Merckens & Bekker,
1993; Bekker et al., 1994; Hutton & Hutton, 1995; Amman et al., 1996; Belsley,
1999; Kendrick & Amman, 1999; Stroeker & Kaashoek, 1999; Li & Racine, 2008;
Bollen & Bauldry, 2010; Halkos & Tsilika, 2015). Novel computational trends in
econometrics even propose Python, a general purpose language. Python — with the
right set of add-ons — is comparable to domain-specific languages such as R and
MATLAB (Sheppard, 2014).

In this paper we set the computational framework for a complete study in
correlation analysis with CAS software. It is worthwhile to note that Belsley (1999)
was one of the first who proposed a CAS environment for doing econometrics, having
proposed a dominant and highly sophisticated survey in collinearity diagnostics
(Belsley et.al. 1980; Belsley 1991a; Belsley 1991b). Here, we choose to use the
program editor of free CAS software, Xcas', to propose computational codes for a
number of indicators and formulations related to classic and alternative correlation
criteria.

All our programmed functions work in a black box mode, with the user only

having to insert simple input (i.e. the sample data) and getting the desired result

'The selected software, Xcas, is a computer algebra system accessible to all users interested, free of any
charges, available at http://www-fourier.ujf-grenoble.fr/~parisse/giac.html. Xcas is compatible with
Mac OSX, Windows (except possibly for Vista) and Linux/Ubuntu.




immediately, in just one entry. Our routine is simple to use, estimates correlation
metrics that are not included in the standard output of one (of the widely used)
software package and runs in an environment appropriate for more tabular displays
and algebraic manipulations associated with the collinearity diagnostics.

Finally, all our computational codes constitute the basis for an automatic
testing for collinearity, with a (simple) procedural programming approach. The Xcas
collinearity test interprets the eigenanalysis of the correlation matrix and the variance
decomposition proportions following the already mentioned above Belsley’s

diagnostic methodology.

2. Existing Computational Approaches for Correlation Criteria
A number of procedures are used to indicate the presence of collinearity using
traditional statistical and econometric packages (SPSS, MINITAB, SAS, STATA, S-

Plus):

- A very high R? in a multiple regression equation with few significant 7 statistics
may be an indicator of multicollinearity.
- Construction of a correlation matrix among the explanatory variables.
Relatively high simple correlations between one or more pairs of explanatory
variables may indicate multicollinearity. Correlation values (off-diagonal
elements) of at least .7 are sometimes interpreted as indicating a
multicollinearity problem. Every package calculates the correlation for every
possible pair, and displays the correlation matrix. It also displays p-values for
the hypothesis test of the correlation coefficient being zero.

- Estimation of partial correlation coefficients.



- Auxiliary regressions: one way of finding out which X variable is related to other

X variables is to regress each X; on the remaining X variables and compute the

corresponding R? (Gujarati, 2003, chapter 10).

- Estimation of eigenvalues, condition number and variance decomposition
proportions (first presented in Belsley et al., 1980; Belsley, 1991a; Belsley,
1991b).

- Estimation of tolerance (TOL) and variance inflation factor (VIF).

Menu choices in SPSS and MINITAB, the REG procedure in SAS, option
Collin in STATA, generate diagnostic results for collinearity evaluating the above
metrics. There are also dedicated packages in other software. The download
https://github.com/brian-lau/colldiag programmed by Brian Lau (19 Oct 2014,
updated 17 Aug 2015) provides a Matlab code for determining the degree and nature
of collinearity in a regression matrix (variance decomposition proportions, condition
index, VIF, tableplot). The package “perturb” of the statistical software R (Hendrickx,
2010) evaluates collinearity by adding random noise to selected variables. In this R
package, collinearity tests are performed by calculation of condition numbers and
variance decomposition proportions. Friendly & Kwan (2009) proposed a visual
approach for collinearity diagnostics (specifically for condition indices and variance

proportions) in SAS and R, by creating table plots and biplots.

3. The Necessary Theoretical Basis
In mathematical modeling, in a n-parameter multiple linear regression
y=b,+bx +..+bx, (1)
it is essential to ensure first that the variables (y,x,,...,x,) are linearly dependent and

it is also necessary that the variables x,,..,x, do not already constitute a linearly



dependent set. Algebraically, a group of n variables is a linearly independent set if
there exist n constants a,,...,a, different from zero, such that ax, +...+a,x,, =0 for
all i=1,...,N, where N is the number of observations of each variable.

A criterion for rank: The necessary and sufficient condition for a linear
relationship between (n+1) variables to be determined by a given data set is that the
group of observations corresponding to the statistical data has a rank of n.

Let m, be the moments

m; = Zt (xi(t) - X, )(xﬁ‘t) - )_Cj) (2
with 7 yielding all N observations and x, being the mean of x,. The determinant of

moments
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plays a key role in the detection of linear dependency, since the rank of the
determinant of moments M equals to the rank of the variables.

Let R be the correlation determinant
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The correlation determinant R is always between zero and one. 7, are the

correlation coefficients of the variables defined as
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A distinction between different correlation coefficients (Spearman’s rank
correlations and Pearson’s correlations) is made in Shirokikh et al. (2013). More
measures of dependence of a pair of random variables are examined in Bautin et al.

(2013), as the probability measure of similarity and the sign correlation.

Correlation criterion 1: The determinant R equals to one stemming from the
necessary and sufficient condition for non-correlation. In these lines, for the

X;,X;,...X, variables to be linearly dependent, the determinant R has to be equal to

zero. Thus, the value of R quantifies the degree of scattering in a swarm of
observations: if R approaches zero, the organization is great and if R approaches one
there is no organization (Bjerkoholt & Dupont-Kieffer, 2009, lecture 6). Connecting R
with the multicollinearity phenomenon, Field (2009) claims that when the value of R

is greater than 0.0001 there is no severe multicollinearity.

Correlation criterion 2: Bjerkoholt & Dupont-Kieffer (2009) in lecture 6 introduce
another indicator for the degree of scattering (dispersion) of the data variables. They
call it scatter coefficient:
r=+R (6)

where R is the correlation determinant (4). If the scatter coefficient (6) for a group of
(n+1) variables x,,...x,,» is close to one this implies that y is absolutely unrelated to
the rest of the system. But if the scatter coefficient is near zero we may expect a linear
relation of the form (1). If the scatter coefficient for the set of the n explanatory

variables x,,...x, is close to one, then it seems reasonable to assume non-correlation

and consider a relationship of the form ay +a x, +a,x, +...+a,x, =0 (Bjerkoholt &

Dupont-Kieffer, 2009, lecture 6). Consequently, scatter coefficient is a measure for



testing the correlation among x,,.x, and the correlation between series
b, +b,x, +...+ b x, and the dependent variable y.

The scatter coefficient (6) performs a quantitative analysis of the degree of the
dispersion of the data more sensitive than the determinant R. Evaluating the square
root of a number in the interval [0,1], we get a higher range of values within the

interval [0,1], as it is obvious from figure 1.
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Figure 1: The range of functions R and+/R

Correlation criterion 3: A different approach uses the eigenanalysis of the correlation
matrix and leaves it to the user to decide whether eigenvalues are extreme, indicating
that the dimension of the problem could be (or should be) reduced. There are three
measures, namely eigenvalues, condition index and condition number. Condition
index is an alternative to Variance Inflation Factor (VIF). In case of no collinearity,
all eigenvalues would be 1. Eigenvalues smaller or larger than 1 would indicate
departures from the ideal situation. “Too” small or large eigenvalues would indicate
multicollinearity problems. Eigenvalues are important in multiple regression models.
The division of each eigenvalue by the number of discriminator variables used in the

analysis calculates the absolute percent which shows the magnitude of between-group



variability explained by each function in relation to the between-group variation
(Brown & Wicker 2000).

While the condition index” is the ratio between a specific eigenvalue and the
maximum of all eigenvalues, the condition number is the root of largest eigenvalue

divided by the smallest. That is:

Maximum eigenvalue

Condition Number = \/ (7

Minimum eigenvalue

A condition index between 100 and 1000 or condition numbers between 10 and 30
would indicate weak to serious collinearity problems. For a complete discussion for
the values of condition numbers and indices that indicate dependencies refer to

Belsley et al. (1980).

Correlation criterion 4: In case the correlation matrix has a rank of » < n, with »
being the number of variables, then there will be n -  eigenvalues equal to zero. This

may lead us to suspect the existence of multicollinearity.

Correlation criterion 5: The larger the value of VIF; the more collinear the variable
X ;. If the VIF of a variable exceeds 10, the variable is said to be highly nonlinear

(Guyjarati, 2003, chapter 10; Halkos, 2006, 2011, Chapter 6)
2

ry:
VIF, = ;;t—”‘ (8)

K

Correlation criterion 6: Variance-decomposition proportions (Fox, 1984, par. 3.1.3)

©)

* SAS, STATA, SPSS and S-plus define the condition index as the square root of this ratio.



This ratio informs us on how much percentage of the parameter coefficient’s variance
is associated with each eigenvalue. A usual decisive factor for collinearity relying on
high variance decomposition proportions puts the threshold of a wvariance
decomposition proportion greater than 0.50 for two or more variables associated with
a high condition index. If a condition index is high (within the interval (100, 1000) or
higher) and two or more explanatory variables illustrate high proportions of variation
concerning this index, we may infer that these explanatory variables are significantly

linear dependent (Belsley, 1991a, b).

4. Programming in Xcas

The codes in Xcas given below create dedicated functions to estimate i) the
moments m;; as defined in (2) and ii) the determinant of moments as defined in
(3).The user just has to introduce the independent variables (argument vars). This is
the only input required.

m(xn,xk) :=sum(((xn[l]-mean(xn))* (xk[1l]-mean(xk))),1,0,length(xk)-1)

moments (vars) :=makemat ((j, k) ->m(vars[]j] ,vars[k]) ,nrows (vars) ,nrows (vars))

The codes in Xcas below generate i) the correlation matrix of data variables
(argument vars) ii) the scatter coefficient as defined in (6) iii) the variance inflation
factors i1v) the condition indices as defined in section 3 and the condition number as
defined in (7) and v) the proportions of variance for all independent variables as
defined in (9) (lying in the rows of a tabular display). The user just has to introduce

the independent variables (argument vars). This is the only input required.

correlation matrix(vars) :=makemat((j,k)->m(vars[j],vars[k])
/sqrt(m(vars[j],vars[j]) *m(vars[k],vars[k])) ,h nrows (vars) ,nrows (vars))

scatter_coefficient (vars) :=sqrt(det(correlation_matrix(vars))))



phi(k,j,vars):=eigenvectors(correlation_matrix(vars))[k,j]‘2/(eigenva1ues(co
rrelation matrix(vars)) []])

vif (vars) :=seq(sum(phi(1,k,vars)  k,0,eigenvalues (correlation_matrix(vars))-
1),1,0,length(eigenvalues (correlation_matrix(gg)))-1)

condition_indices(vars):=seq(max(eigenva1ues(correlation_matrix(vars)))/(eig
envalues (correlation matrix(vars)) [j]),]j,0,length(eigenvalues(correlation_ma
trix(vars)))-1)

condition_pumber(vars):=sqrt(max(eigenva1ues(correlation_matrix(vars)))/min(
eigenvalues (correlation _matrix(vars))))

vdp(k,j,vars):=eigenvectors(correlation_matrix(vars))[j,k]‘2/((eigenva1ues(c
orrelation _matrix(vars)) [k]) *vif (vars) []])

variance_proportions (vars) :=seq(seq(vdp(j,k,vars),j,0,nrows(vars) -
1) ,k,0,nrows (vars) -1)

With the following function, we get a direct answer for the collinearity
problem (classifying the cases of weak - moderate to strong - severe collinearity)
based on condition numbers. The cutoff values which point that multicollinearity
affects estimates are taken from Callaghan & Chen (2008) but can easily be adjusted

to the user’s preferences.

cn_condition(vars) :=if (condition_number (vars)<10) "weak collinearity"; else
(if (condition_number (vars)>10 and condition_number (vars)<30) '"moderate to
strong collinearity"; else "severe collinearity";);

In Xcas programming environment we create a loop that checks the number of
variance decomposition proportions and the associated condition indices for all the
components (or dimensions according to SPSS). If the number of variance
decomposition proportions exceeding 0.50 is greater than two for a component
associated with high condition index (say more than 100), the indication “collinearity”
is printed (according to correlation criterion 6 of section 3). The indication
“collinearity” is printed as many times as the number of components which satisfy the

criterion.

for k from 0 to nrows(vars)-1 do

(if ((count_sup(0.5,variance_proportions (vars),hcol) [k]>1) and
condition_indices(vars) [k]>100) print("collinearity") ; )
end for;

The associated function in Xcas is

10



vdp_test(vars) :=for k from 0 to nrows(vars)-1 do

(if ((count_sup(0.5,variance_proportions (vars),hcol) [k]>1) and
condition_indices(vars) [k]>100) print("collinearity") ; )
end for;

Prog Edit Add |13 it Func Test Loop oK Save |E:\co\linearity_diagnost\cs.cm

m(xn, xk) :=sun( ( (xn[1] -mean (xn) ) * (xk[1]-mean(xk) ) ), 1, 0, length (xk)-1);
moments (vars) :=makemat ( (j, k) -»m(vars[]], vars[k]),nrows (vars),nrows (vars));
correlation matrix(vars):=makemat((j k)->m(vars[j], vars[k])/sqrt(n(vars[]],vars[j]) *n(vars[k],vars([k])) nrows(vars) nrows (vars));
scatter coefficient(vars):=sqrt(det(correlation matrix(vars)));
condition indices (vars):=seq(max(eigenvalues (correlation matrix(vars)))/(eigenvalues(correlation matrix(vars))[j]),3,0,length(eigenvalues (correlation_mat
condition number(vars):=sqrt (max(eigenvalues(correlation matrix(vars))) /uin (eigenvalues (correlation matrixz(vars))));
phi (k. j,vars) :=eigenvectors (correlation matrix(vars))[k,j]*2/ (eigenvalues(correlation matrix(vars))[j]);
vif {vars) :=seq(sum(phi (1, k, vars)  k, 0, eigenvalues (correlation matrix(vars))-1),1,0,length(eigenvalues{correlation matrix(gg)))-1);
vdp(k, j,vars) i=eigenvectors (correlation matrix(vars))[],k]"2/((eigenvalues (correlation matrix(vars))[k])*vif(vars)[i]);
variance proportions(vars):=seq(seq(vdp(3j, k,vars),3,0,nrows(vars)-1},k, 0, nrows(vars)-1);
vdp_test(vars):=for k from 0 to nrows(vars) do
(1f ((count_sup(0.5,variance proportions(vars),col)[k]>1) and condition indices(vars)[k]>100) print("collinearity") ; )
end for;

4 L
Figure 2: “collinearity diagnostics” program file in Xcas

File Edit Cfg Help Toolbox Expression Cmds Prg Graphic Geo Spreadsheet Phys Highschool Turtle
Unnamed  fcyqdrive/e/moments criterion desktopxws Unnamed

?|save | Config - approx real DEG 12 xcas Kod |
[iPigal Edt Add I nxt Func Test Loop OK save |

Loaa

Insert »

Save

Save as

File extension

Export »

Translate »

Export/Print »

Figure 3: Loading a program file in Xcas

Working in any session in Xcas, by loading collinearity diagnostics.cxx
program file’ or by writing in a commandline
read("collinearity diagnostics.cxx") W€ Can use moments, correlation_matrix,
vif, scatter coefficient, condition number, condition indices, variance proportions,

cn_condition, vdp_test functions.

5. An illustrative example
We consider the data used by a telephone cable manufacturer to predict sales
to a major customer for the period 1968-1983 as presented in Table 1 (the example is

taken from Gujarati, 2003, p.290).

3 All files are available on request.
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Here we demonstrate the results from Xcas programmed (and built-in) functions.
Similar results are generated in different outputs in SPSS, MINITAB and STATA
(but not all together in the same software). Moreover, we generate the scatter
coefficient (posed by correlation criterion 2) and the rank of the moments and data
matrices. A direct answer for collinearity and its degree is given by cn_condition

function and vdp_test function.

Table 1: Data of the illustrative example

X Y, total
X; X, . .

> . X5 prime rate  customer plastic

Year housing unemployment .
GNP starts o, lag, 6 mos line purchases

gains, % (MPF)
1968 1051.8 1503.6 3.6 5.8 5.9 5873
1969 1078.8 1486.7 3.5 6.7 4.5 7852
1970 1075.3 1434.8 5.0 8.4 4.2 8189
1971 1107.5 2035.6 6.0 6.2 4.2 7497
1972 1171.1  2360.8 5.6 5.4 4.9 8534
1973 1235.0 2043.9 4.9 5.9 5.0 8688
1974 1217.8 13319 5.6 9.4 4.1 7270
1975 1202.3 1160.0 8.5 9.4 34 5020
1976 1271.0 1535.0 7.7 7.2 4.2 6035
1977 1332.7 1961.8 7.0 6.6 4.5 7425
1978 1399.2  2009.3 6.0 7.6 3.9 9400
1979 1431.6 1721.9 6.0 10.6 4.4 9350
1980 1480.7 1298.0 7.2 14.9 3.9 6540
1981 1510.3 1100.0 7.6 16.6 3.1 7675
1982 1492.2 1039.0 9.2 17.5 0.6 7419
1983 15354  1200.0 8.8 16.0 1.5 7923

Variables X,, X3, X, X5, X5 in Xcas are introduced in matrix notation, having
their values lying in rows.

First we define the matrix of the explanatory variables

gg:=[[1051.8,1078.8,1075.3,1107.5,1171.1,1235.0,1217.8,1202.3,1271.0,1332.7,
1399.2,1431.6,1480.7,1510.3,1492.2,1535.41,[1503.6,1486.7,1434.8,2035.6,2360
.8,2043.9,1331.9,1160.0,1535.0,1961.8,2009.3,1721.9,1298.0,1100.0,1039.0,120
0.01,[(3.6,3.5,5.0,6.0,5.6,4.9,5.6,8.5,7.7,7.0,6.0,6.0,7.2,7.6,9.2,8.8]1,[5.8,
6.7,8.4,6.2,5.4,5.9,9.4,9.4,7.2,6.6,7.6,10.6,14.9,16.6,17.5,16.0],[5.9,4.5,4
.2,4.2,4.9,5.0,4.1,3.4,4.2,4.5,3.9,4.4,3.9,3.1,0.6,1.5]]

From now on in Xcas we may recall the set of X5, X3, X, X5, X5 variables of our
example by “gg”.

We compute the rank of the variables using built-in Xcas function rank:

12



rank (gqg)
5

Based on this primitive result we can assume that the rank of the observations is
equal to five or that the systematic variation of the variables under study has five
degrees of freedom.

In order to load the routine for collinearity diagnostics in Xcas, we write:
read("collinearity diagnostics.cxx")
Next, we generate the momentsmatrix by the programmed function moments:

moments (gg)
430837 500375, -355877 635625, 317627875, 860386375, -2214 305625

-359877. 639625, 2405028.96938, -4785.50125. -18988.91625, 4703.279375
37627875, -4785.50125, 44 3575, T6.3475, -26.93125
6693.86375, -18988.51625,  76.3475, 267.4575, -67.97625
2214 305625,  4703.279375, -26.95125,  -67.97625, 25029375

We compute the rank of the moments matrix using built-in Xcas function rank:

rank (moments (gg) )
5

We generate the correlation matrix of the five variables, its determinant and its

eigenvalues:

correlation matrix(gg))

1.0, -0.349609915876, 0.726571368304. 0.809894856, -0.674304040551
-0.349609915876, 1.0, -0.463322880186, -0.748692502708, 0.606199561778
0726571368304, -0.463322880186, 1.0, 0700944931338, -0.808854450482
0.809894856. -0.748692502708, 0.700944931338. 1.0, -0.830815919353

-0.674304040551, 0606199561778, -0.808854450482, -0.830815919353, 1.0

det (correlation matrix(gg)))
0.00663839557296

(this value indicates high degree of organization for the data variables. We cannot

detect multicollinearity since the value is greater than the cutoff value of 0.00001)

eigenvalues (correlation matrix(gg))
(0.0396034793407,0.179588118415,0.353410545961,0.710556578822,3.71684127746)

(the fact that one eigenvalue is near zero (though >0.01) indicates one near collinear

relation)

We compute the variance inflation factors for the five variables:

vif (g9)
[6.90516019365,4.3449454702,3.96791652719,14.6830463272,5.42349875894]

13



(the forth value 14.683046>10 indicates collinearity for explanatory variable X)

We compute the condition number as defined in (7) and the condition indices:

condition number (gg)
9.68769230702 (a value <10 indicates that multicollinearity is not strong)

condition indices (gg)
[93.8513822355,20.6964765278,10.5170638509,5.23088714993,1.0]

The sequence of condition indices is presented in accordance with the sequence of the
eigenvalues above.

If a value of a condition index exceeds a cutoff value of, say, 100 to 1000, two or
more columns of the data matrix have moderate to strong relations (Belsley et al.,
1980; Callaghan & Chen, 2008).

Interpreting the value of the condition number as a collinearity diagnostic using the

programmed function cn_condition we get:

cn_condition (gg)
"weak collinearity"

variance proportions (gg)
0.789747368793, 0.0164981306652, 0137507682737, 0.0489233567007, 0.00732346110473

0.645096335214, 0.13780700556,  0.00146544443674, 0.206942801592, 0.00868841319737
0.266141043443, 0.442220144046, 0.241456463891,  0.0365199110244, 0.013662437595

0.951491907106. 0.0135453632052, 0.0287934216339, 0.00170158736506, 0.00446772068974
0362725447838, 0535084686354, 0.0008705385282, 8.T78062052653e-05, 0.0112315210738

The first row contains the variance decomposition proportions (vdps) of the first
independent variable X5, the fifth row contains the vdps of the fifth independent
variable X, e.t.c. The sequence of vdps in each row is in accordance with the
sequence of the eigenvalues and the sequence of condition indices given above. A
detailed report for diagnosing collinearity based on variance proportions is made in
Belsley et al. (1980) and Callaghan & Chen (2008).

The count_sup built-in function below counts the number of the variance proportions

strictly greater than 0.5 per column.

count sup(0.5,variance proportions(gg),col)
[3,1,0,0,0]

14



The fact that three variance proportions in the first column, associated with variables
Xo, X, Xs, are greater than 0.5 is not a red flag since they are related with a condition

index smaller than 100.

vdp test (gg)
0

(the absence of printed output means absence of collinearity in our data)
If we change the cutoff value for the condition indices from 100 to 90 (violating
the correlation criterion) in the codes of vdp fest function in order to illustrate its

performance in this example, we get:

[vdp_test(gg)
collinearity

Evaluation time: 649.963

0 M

(three variance proportions in the first column of the variance proportion matrix are

bigger than 0.5 and the first column is associated with a condition index>90. This fact
reflects the “collinearity” indication once).

In order to check the degree of organization of the given data, we generate the
scatter coefficient of the explanatory variables X5, X3, X, X5, X5 by the programmed

function scatter coefficient:

scatter coefficient (gg)
0.0814763497768 (a value close to zero lets us suspect linear dependency for the set

of explanatory variables. The scatter coefficient is the first indicator in this example to
raise a red flag)
If we consider the set of X5, X3, X, instead, we calculate the corresponding scatter

coefficient to see that its value is considerably higher and closer to one:

scatter coefficient (gg without x5 x6)
0.608754651635 (a value close to one indicates that X5, X3 X, do not constitute a

linearly dependent set. The corresponding condition number of this set of variables is

2.79940489207)

15



6. Conclusions

Correlation matrices and moments matrices provide the key links between sample
data and best linear unbiased estimation. In this paper we exploited Xcas’ built-in
matrix functions and Xcas’ programming capabilities to examine special topics on
correlation analysis. Using simple functional programming techniques with simple
input — direct output, we accomplished to evaluate a number of metrics like the
correlation matrix of data variables, the scatter coefficient, the variance inflation
factors, the condition indices, the condition number and the variance decomposition
proportions that help a user check a number of criteria concerning the degree of
scattering organization of given data.

Furthermore, with a routine in the Xcas program editor we provided the result of
the collinearity study instantly, in a black box mode, avoiding the complex
interpretation of a series of indicators. In this way we extract the indications of the
degree of multicollinearity.

Xcas seems to be an efficient environment for doing econometrics. Researchers
could be inspired of the capabilities of this versatile computing environment and find

ways to make further use in econometric methodologies.
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Appendix
Relevant output in commercial statistical software
Computing the relevant procedure for the illustrative example in Section 5 in Stata
(collin option) we result in the same condition number, the same eigenvalues and the same

determinant of correlation matrix:
collin x2 x3 x4 x5 x6, corr

(obs=106)
Collinearity Diagnostics
SQRT R-
Variable VIF VIF Tolerance Squared
x2 6.91 2.63 0.1448 0.8552
%3 4.34 2.08 0.2302 0.7698
x4 3.97 1.99 0.2520 0.7480
x5 14.68 3.83 0.0681 0.9319
%6 5.42 2.33 0.1844 0.8156
Mean VIF 7.06
Cond
Eigenval Index
1 3.7168 1.0000
2 0.7106 2.2871
3 0.3534 3.2430
4 0.1796 4.5493
5 0.0396 9.6877
Condition Number 9.6877

Eigenvalues & Cond Index computed from deviation sscp (no intercept)
Det (correlation matrix) 0.0066

Computing the Linear Regression and Factor Analysis procedures in MINITAB and SPSS,
the relevant printout for our illustrative example (in Section 5) certifies once again the
validity of our results in Xcas:

Data Display

Matrix COREL

1.00000 —-0.34961 0.72657
—0.34961 1.00000 —-0.486332
0.72657 -0.46332 1.00000
0.809389 —-0.74862 0.70094
—-0.67430 0.60820 -0.80885

Figure 4: The correlation matrix in MINITAB

Coefficients™

Standardized
Unstandardized Coefficients Coefficients Correlations Collinearity Statistics
Model B Std. Error Beta t Sig. Zero-order Partial Part Tolerance WIF
1 (Constant) 7543125 156,900 48,076 ,000
Zscore(x2) B27 669 425818 680 1,944 081 210 524 259 145 6,905
Zscore(x3) 946,573 337,777 78 2,802 019 497 JE63 373 ,230 4,345
Zscore(x4) -1408,608 322,789 -1,157 -4, 364 001 -.263 -.810 -.581 252 3,868
Zscore(x5) 50,716 620,934 042 082 937 -,.050 026 011 068 14,683
Zscore(xg) -10889,789 377,379 -804 -2,914 015 ,011 - 678 -,388 184 5,423

a. Dependentvariable: ¥

Figure 5: Collinearity Statistics in SPSS (computed considering centered data®)

Collinearity Diagnostics™

“ariance Proportions

Model  Dimension | Eigenvalue Cciﬂﬂﬁ'fn (Constant) | Zscore(x2) | Zscore(x3) | Zscore(x4) | Zscore(xs) | ZScore(xe)
1 1 3,717 1,000 .00 .01 .01 .01 .00 .01
2 1,000 1,928 1,00 .00 .00 .00 .00 .00
3 711 2,287 .00 .05 21 .04 .00 .00
4 353 3,243 .00 14 .00 24 .03 .09
5 180 4,549 .00 .02 14 44 .01 54
3 .040 5,688 .00 .79 .65 27 .95 .36

a. Dependentvariable: Y

Figure 6: Collinearity Diagnostics in SPSS (computed considering centered data)

Correlation Matrix™

x2 X3 x4 x5 x6
Correlation x2 1,000 -,350 727 810 -,674
x3 -,350 1,000 - 463 - 749 606
x4 727 -,463 1,000 701 -.809
X5 810 _,749 701 1,000 -.831
x6 - 674 608 -,B09 -,831 1,000

a. Determinant= 007

Figure 7: The correlation matrix in SPSS

4 . . .
Running a linear regression on the z-scores
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