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Abstract

Orthodox game theory is often criticized for its inability to single out
intuitively compelling Nash equilibria in non-cooperative games. The the-
ory of virtual bargaining, developed by Misyak and Chater (2014) sug-
gests that players resolve non-cooperative games by making their strategy
choices on the basis of what they would agree to play if they could openly
bargain. The proposed formal model of bargaining, however, has limited
applicability in non-cooperative games due to its reliance on the existence
of a unique non-agreement point â a condition which is not satisfied by
games with multiple Nash equilibria. In this paper, I propose a model
of ordinal hypothetical bargaining, called the Benefit-Equilibration Rea-
soning, which does not rely on the existence of a unique reference point,
and offers a solution to the equilibrium selection problem in a broad class
of non-cooperative games. I provide a formal characterization of the so-
lution, and discuss the theoretical predictions of the suggested model in
several experimentally relevant games.

1 Introduction

A central solution concept of the classical game theory is Nash equilibrium – a
strategy profile which is such that no rational player is motivated to unilaterally
deviate from it by playing another available strategy. However, at least intu-
itively, not all Nash equilibria are equally convincing as outcomes of a rational
gameplay: even the simplest games have Nash equilibria that involve strategies
which seem unlikely to be chosen by players who understand the structure of
the game.

One of the canonical examples of such a "puzzle" game is the Hi-Lo game
(figure 1)1

∗This is a work-in-progress paper. Do not cite without permission.
†London School of Economics, Department of Philosophy, Logic and Scientific Method

(e-mail: m.radzvilas@lse.ac.uk).
1Unless it is stated otherwise, the payoff numbers in the matrices are Von Neumann and

Morgenstern utilities. The payoffs are assumed to represent all the relevant motivations of
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Hi Lo

Hi 2, 2 0, 0

Lo 0, 0 1, 1

Figure 1: The Hi-Lo game

At least intuitively, the outcome (Hi,Hi) stands out as the obvious solution
because Hi-Lo is a common interest game: each player who knows the payoff
structure of the game should also know that strategy profile (Hi,Hi) is the best
outcome for both players, and that there is no conflict of players’ interests in
this game. The perfect alignment of player’s interests in this game is the reason
why we have a ’high-quality intuition’ that strategy Hi is a much more likely
choice than strategy Lo (Bacharach 2005: 35-68). Experimental results reveal
that over 90% of the time people opt for Hi in this game2.

From the perspective of classical game theory, however, this game has three
rational solutions – pure strategy Nash equilibria (Hi,Hi) and (Lo, Lo), and
a mixed strategy Nash equilibrium

(

1
3 ,

2
3 ;

1
3 ,

2
3

)

. The theory does not single
out Nash equilibrium (Hi,Hi) as a more likely or compelling solution than
other Nash equilibria of this game. The reason of why standard game theoretic
analysis leads to such conclusion becomes clear when we look into the model of
reasoning which underpins it. In standard game theoretic analysis of complete
information games, players’ rationality and the payoff structure of the game
is assumed to be common knowledge. A rational player is assumed to be a
best-response reasoner – a player who always chooses a strategy that, given
player’s beliefs about the opponents’ strategy choices, maximizes his or her
expected payoff. Common knowledge of rationality implies that every player
knows that none of the opponents’ will choose their strictly dominated strategies
– strategies which never are best-responses to any possible probabilistic beliefs
that a rational player might hold about his or her opponents’ strategy choices.
If the payoff structure of the game is also common known, each player can
iteratively eliminate the strictly dominated strategies of the game, thus leaving
them with a set of strategies which are rationalizable3.

In non-cooperative games with multiple Nash equilibria at least one of the

players, including pro-social preferences, such as inequity aversion, altruism, sensitivity to
social norms, and so on.

2See Bardsley et al. (2010) who, among a number of other games, report experimental
results from two versions of the Hi-Lo game where the outcome (Hi, Hi) yields a payoff of 10
while the outcome (Lo, Lo) yields a payoff of 9 or 1 to both players.

3A rationalizable strategy is a strategy which is a best-response to some possible conjecture
a player may have about his or her opponents. Bernheim (1984) and Pearce (1984) have shown
that a set of rationalizable strategies of the game can be obtained via iterative elimination
of strictly dominated strategies. For a detailed discussion and proofs, see Bernheim 1984:
1007-1028, and Pearce 1984: 1029-1050.
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players have multiple rationalizable strategies. In case of the Hi-Lo game, it is
easy to check that both pure strategies are rationalizable: if the player believes
that the probability that the opponent is going to play strategy Hi is less than
1
3 , then his or her expected utility maximizing action is to play Lo, and if the
probability of opponent playing Hi is more than 1

3 , then player’s best-response
strategy is Hi. The problem is that in non-cooperative games where players
have multiple rationalizable strategies, best-response reasoners face a situation
of strategic uncertainty, as common knowledge of rationality and of the payoff
structure of the game gives them no further indication on what rationalizable
strategies their opponents are going to choose. The classical game theory does
not offer an explanation of how rational players are supposed to respond to
such situations of strategic uncertainty, and therefore cannot answer certain
important questions, such as how players coordinate their actions on a Nash
equilibrium, or which Nash equilibrium, if any 4, is a likely outcome of the
game (Olcina and Urbano 1994: 183-206).

Another game where the classical game theory solution seems to contradict
our intuitions is the following "Impure Coordination game" (figure 2):

l c r

u 6, 3 0, 0 0, 0

m 0, 0 3, 6 0, 0

d 0, 0 0, 0 5, 5

Figure 2: Impure Coordination game

In this game, players also face a situation of strategic uncertainty: there are
three pure-strategy Nash equilibria (u, l), (m, c) and (d, r), and four Nash equi-
libria in mixed strategies –

(

2
3 ,

1
3 , 0;

1
3 ,

2
3 , 0
)

,
(

10
21 ,

5
21 ,

2
7 ;

5
21 ,

10
21 ,

2
7

)

,
(

5
8 , 0,

3
8 ;

5
11 , 0,

6
11

)

,
(

0, 5
11 ,

6
11 ; 0,

5
8 ,

3
8

)

. Unlike in the Hi-Lo game, players face a conflict of interests

4Aumann and Brandenburger (1995) have established the epistemic conditions of Nash
equilibrium for two player and n-player games. In a two player game, if rationality of the
players and each player’s conjecture (that is, a belief about what the other player is going
to do) are mutually known (common knowledge of rationality is not one of the required
conditions for the Nash equilibrium to obtain), then players will end up playing one of the
Nash equilibria of the game. In a game with more than two players, the epistemic conditions
of Nash equilibrium are more complicated: players must have a common prior about the
state of the world, and their conjectures must be common knowledge. In standard game
theory models, players’ conjectures are not assumed to be commonly or mutually known, nor
these private conjectures are assumed to be correlated. If players’ conjectures are private
and uncorrelated, they may choose best-response strategies to their private beliefs, and the
combination of their best-response strategies may not be a Nash equilibrium of the game. For
a detailed discussion and proofs, see Aumann and Brandenburger 1995: 1161-1180 and Perea
2012: 1-67
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in this game: the best personal payoff for the row player is associated with Nash
equilibrium (u, l), while the best personal payoff for the column player is associ-
ated with Nash equilibrium (m, c). However, unshophisticated selfish behaviour
is risky: if both players were to pursue their most preferred options, they would
end up playing strategy profile (u, c) which, in this game, is associated with the
worst possible personal outcome for both players. Each of the mixed strategy
Nash equilibria is also a possible resolution of this coordination problem, yet it
would be compelling only if both players believed that his or her opponent will
respond to strategic uncertainty by playing a randomized strategy constituting
a particular mixed Nash equilibrium of the game. A belief that an opponent will
respond to strategic uncertainty by playing his or her end of a particular mixed
Nash equilibrium does not follow from the common knowledge of rationality.

At least intuitively, Nash equilibrium (d, r) seems to be the most compelling
solution of this game: it seems reasonable that players would respond to strate-
gic uncertainty “cooperatively”– by choosing strategies that would ensure both
players the second-best personal payoff, rather than by guessing the opponent’s
actions and facing the risk of getting the worst possible payoff. In this particu-
lar version of the Impure Coordination game, this intuition is further supported
by the fact that the payoff associated with Nash equilibrium (d, r) is, for both
players, higher than payoffs associated with each mixed Nash equilibrium of
this game. However, standard game theory analysis does not single out Nash
equilibrium (d, r) as the unique solution of this game.

One of the more recent theories which offers some support to the aforemen-
tioned intuitions about real-world strategic reasoning is the theory of Virtual
Bargaining, developed by Jennifer Misyak and Nick Chater (2014). Arguably
the main conceptual innovation of this theory is the idea that real-world player’s
are not best-response reasoners, but virtual bargainers. When the player rea-
sons as virtual bargainer, s/he focuses on the question "what would we agree to
do in this game if we could openly bargain? The virtual bargainer then searches
for the best feasible agreement, and, if such an agreement exists, plays his or
her part in realizing it.

The theory of virtual bargaining shares some conceptual similarities with
hypothetical bargaining, which has received considerable attention in economics,
political philosophy and legal theory. Roughly, it is the idea that solutions to
interdependent decision problems can be found by considering a counterfactual
situation where rational and self-interested agents openly negotiate a solution
to the problem. An agreement that could be reached in such hypothetical
negotiations is taken to be a rational (sometimes fair) solution of the problem.

The theory of virtual bargaining, however, differs from the aforementioned
approach, since it is proposed as a psychological theory of reasoning. In other
words, the model of virtual bargaining is offered as an approximation to the
actual process of reasoning by which people arrive at their choices, rather than
as a merely useful conceptual tool for finding reasonable solutions to various
decision problems5 to non-cooperative games.

5The BER model suggested in this paper aims to represent the behaviour of rational
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The idea that people aim to resolve non-cooperative games by identifying
the mutually beneficial outcomes is intuitively compelling, and is fairly well
supported by experimental observations6. In addition, there are at least two
reasons of why the theory of virtual bargaining is conceptually appealing.

First, the axiomatic bargaining theory is, essentially, a correlated equilib-
rium selection theory. In bargaining games where agreements are not externally
enforceable, the set of feasible basic agreements is the set of correlated equilib-
ria. Each axiomatic bargaining solution of such game is a correlated equilibrium
(or a set of correlated equilibria) which satisfies a certain set of intuitively de-
sirable properties. These bargaining solutions can be interpreted as reasonable
predictions of the result of the open negotiations7. It stands to reason to assume
that the desirable properties of bargaining agreements may also be relevant for
finding reasonable solutions to equilibrium selection problems in other types of
games, such as matching problems and non-cooperative games.

Second, bargaining theory is a branch of non-cooperative games, and bar-
gaining solutions are based on the concept that underly all the areas of non-
cooperative game theory, including non-cooperative one-shot games (Myerson
1991: 370). This means that bargaining solutions are consistent with the con-
cept of player’s rationality employed in the analysis of non-cooperative one-shot
games.

However, the theory of virtual bargaining is relatively new, and still has sub-
stantial conceptual limitations. At its current state8, the theory of virtual bar-
gaining is, essentially, the Nash bargaining solution applied to non-cooperative
games: the set of mutually optimal bargains of the non-cooperative game is
taken to be the set of outcomes that maximize the product of players’ payoff
gains.

I will argue that such a direct application of the Nash bargaining solution
to non-cooperative games is problematic for two reasons. First, all standard
bargaining solutions, including the Nash bargaining solution, rely on the exis-
tence of a unique non-agreement point – an outcome which obtains in case the
negotiators fail to reach an agreement. In games with multiple Nash equilibria,
however, there is no such unique reference point, meaning that virtual bargain-
ers would face a problem of identifying the common non-agreement point. I also
show that, in some games, players who selected different non-agreement points
would identify different Nash-optimal agrements, and their actions would not

individuals, rather than the actual process of reasoning by which players arrive at their choices.
That is, it suggests that players’ resolve the non-cooperative games as if they have adopted
hypothetical bargaining approach to determine the solution of the problem.

6See, for example, Coleman and Stirk (1998) who report experimental results from several
different mixed motive games, including the Chicken game, the Stag Hunt Game, the Battle
of the Sexes and the Leader game, as well as participants’ justifications of their choices.
A substantial proportion of participants have justified their choices in one-shot games by
appealing to some notion of mutual benefit (“most points for both”, “mutual benefit”, etc.).

7For an extensive discussion, see Myerson 1991: 370-416.
8Misyak and Chater explicitly state that Nash bargaining theory is merely a “useful starting

point for the analysis of virtual bargaining”. They never claim that the Nash bargaining theory
is the best possible approximation to the process of reasoning by which players identify the
optimal and feasible agreements. See Misyak and Chater 2014: 1-9.
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lead to mutually beneficial outcomes. Second, in non-cooperative games, there
may be multiple Nash optimal agreements, and each Nash-optimal agreement
may be associated with a different allocation of players’ personal payoff gains. I
will argue that Nash bargaining theory does not offer an explanation of how self-
interested players would resolve such benefit allocation problems, and therefore
a search for a different approach to virtual bargaining is a warranted endeavour.

In this paper, I propose an alternative model of reasoning, called the Benefit
Equilibration Reasoning (later abbreviated as BER) which offers an explanation
of how the players may use the commonly known information about the payoff
structure of the game in identifying the mutually agreeable outcomes in non-
cooperative one-shot games. It is a model of ordinal bargaining, which does not
require a non-agreement point, and does not rely on players’ ability to make
interpersonal comparisons of payoffs9.

The rest of the paper is structured as follows. In section 2 I discuss the
virtual bargaining theory, and offer some reasons of why the standard bargaining
solutions, such as Nash bargaining solution, cannot be used to represent the
outcomes of hypothetical negotiations in non-cooperative games. In section 3 I
present an alternative benefit-equilibratin (BE) ordinal bargaining solution and
its axiomatic characterization. In section 4 I illustrate the theoretical predictions
of the BER model using a number of experimentally relevant examples. In
section 5 I discuss the empirical relevance of the BER model. With section 6 I
conclude and discuss some limitations of the model.

2 Virtual Bargaining

The theory virtual bargaining suggests that people resolve the non-cooperative
games by identifying those strategy profiles that they would agree on playing if
they were engaged in open bargaining – real negotiations in which each player
communicates his or her offers to other players, and receive their counter-offers.

To see the intuition behind this model of reasoning, consider the Hi-Lo game.
This game has multiple Nash equilibria, so the players who cannot communicate
with each other face a coordination problem. Yet if the players were to negotiate
a joint action plan, they would immediately agree on playing (Hi,Hi), as it is
the best outcome for both players. The joint action plan to realize strategy
profile (Hi,Hi) is an enforceable agreement: each player knows that, if he or
she plays strategy Hi, the co-player will not have an incentive to defect by
playing Lo (Misyak and Chater 2014: 1-9).

The Virtual Bargaining procedure is as follows. Each virtual bargainer de-
termines the set of agreements – a set of combinations of actions of the players,
which includes all the combinations of players’ randomized actions10. The pref-
erence relation of each virtual bargainer must be defined on the set of lotteries

9BER model is an ordinal solution concept, which relies on players’ ability to make inter-
personal comparisons of their ordinal preferences over outcomes.

10In cases where players’ agreements are enforced by an external party, the feasibility set
includes all the possible combinations of players’ actions. If the external enforcer is not
available, the set of feasible agreements is composed only of correlated equilibria – the self-
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over agreements11. A virtual bargainer then searches for the best agreement –
a combination of (possibly randomized) players’ actions which maximizes the
product of players’ personal payoff gains, relative to their non-agreement pay-
offs. If such an agreement exists, then each virtual bargainer plays his or her
part in realizing it. (Misyak and Chater 2014: 1-9).

The idea that players search for mutually beneficial solutions to games seems
to have intuitive appeal, and is fairly well supported by empirical evidence12.
An idea that players find the mutually advantageous solutions of games by look-
ing for combinations of actions that openly negotiating players would agree on
carrying out iseems to be a psychologically plausible explanation of how people
reason about mutual advantage in interdependent decision problems. However,
the formal model of virtual bargaining, which is offered as an approximation
to the actual process of reasoning by which people arrive at their choices, has
substantial conceptual and empirical limitations.

The reliance of virtual bargaining on the Nash bargaining solution seems to
be problematic for several reasons. First, standard bargaining solutions, such as
Nash bargaining solution, had been developed for a particular class of interde-
pendent decision problems, known as bargaining games. These solutions rely on
the existence of a unique non-agreement point – an outcome that obtains when
individuals fail to reach an agreement following a bargaining process. For ex-
ample, in the Nash bargaining game this is assumed to be the outcome in which
both players gain nothing. The existence of a unique non-agreement point in a
bargaining game is important for two reasons. First, it is used to determine each
player’s personal utility gains from each feasible agreement, and thus it plays a
fundamental role in formal characterizations of bargaining solutions 13. Second,
the non-agreement point serves as a threat point in strategic (alternating offers)
bargaining models, where threats are interpreted as players’ actions: at each
step of the bargaining process, each player has the ability to reject the oppo-
nent’s offer, and force him or her to consider a counter-offer by threatening the
opponent to play his or her non-agreement strategy, thus harming the opponent
by bringing him down to his or her personal disagreement payoff as well14.

enforcing agreements of the game. Misyak and Chater seem to suggest that virtual bargaining
mimics the procedure of bargaining where external enforcer is not available. For an extensive
discussion of the Nash bargaining problem, see Myerson 1991: 370-416.

11The idea is that players’ preferences must be defined over the set of lotteries, where each
lottery "prize" is a particular combination of players’ actions, since players’ preferences over
agreements must capture their attitude to risk. For an extensive discussion of the role of
players’ atittude to risk in bargaining problems, see Myerson 1991: 370-416

12See, for example, Coleman and Stirk (1998), Crawford et al 2008: 1443-1458, Bardsley et
al. 2010: 40-79, Misyak and Chater 2014: 1-9, Faillo et al. 2016: 1-61

13That is, the reference point is used in axiomatic bargaining theory to identify the feasible
agreements which satisfy certain desirable properties, such as Pareto efficiency, symmetry,
independence of irrelevant alternatives, proportionality, etc. See, for example, Luce and Raiffa
1957: 114-154, Kalai and Smorodinsky 1975: 513-518, Kalai 1977: 1623-1630, Myerson 1977:
1631-1637, Roth 1979: 775-778.

14In a strategic bargaining model with exogenous risk of breakdown, there is an additional
assumption that bargaining will terminate without agreement, with players getting their dis-
agreement payoffs. For an extensive discussion of strategic bargaining models, see Binmore
1980: 80-109, Rubinstein 1982: 97-109 and Binmore et al. 1986: 176-188.
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The problem with virtual bargaining is that the structural properties of
most non-cooperative games differ signifficantly from the properties of bargain-
ing games. Some non-cooperative games have unique inefficient solutions that
can, in principle, serve as non-agreement points. For example, Misyak and
Chater suggest that a unique Pareto inefficient Nash equilibrium of the Pris-
oner’s Dilemma game can be interpreted as the disagreement point (even though
no mutually beneficial agreements are feasible in this game15). In games with
multiple Nash equilibria, however, there is no such unique non-agreement point:
every Nash equilibrium of the game is a potential non-agreement point, meaning
that virtual bargainers face a non-agreement point selection problem, which is
the equilibrium selection problem of the original game. The fact that each Nash
equilibrium of the game is a potential non-agreement point makes the theory
of virtual bargaining useless in offering a solution to the equilibrium selection
problem, which is present in most games that are used to represent real-world
social interactions.

To understand the limitations of the theory, consider the following version
of an asymmetric Battle of the Sexes game (figure 3):

e f

a 6, 11 0, 0

b 4, 4 8, 7

Figure 3: The Asymmetric Battle of the Sexes game

This game has two pure strategy Nash equilibria – (a, e) and (b, f), and a
mixed Nash equilibrium

(

3
14 ,

11
14 ;

4
5 ,

1
5

)

. Each one of the Nash equilibria satisfies
the feasibility criterion – none of the players can, by changing his or her strategy,
gain advantage to the disadvantage of the other. Also, every Nash equilibrium
is an enforceable non-agreement point: if one of the players reverts to playing
his or her non-agreement strategy, the other player cannot do better than to
revert to his or her non-agreement strategy as well.

The problem with using Nash equilibria as non-agreement point is that there
is no obvious reason as to why one of the multiple equilibria should be selected as
a non-agreement point – in terms of the formal properties that a non-agreement
point has to satisfy, all Nash equilibria are equivalent 16.

15Misyak and Chater discuss a version of the Prisoner’s Dilemma game where the cooper-
ative outcome uniquely maximizes the product of players’ payoff gains. However, according
to their theory, this outcome is not a feasible agreement: each player can gain a personal
advantage by defecting from the agreement, to the disadvantage of the player who sticks to
the agreement. For details, see Misyak and Chater 2014: 1-9.

16In this particular game, as well as in many other games with multiple Nash equilibria,
there is no feasible agreement which, relative to any pure Nash equilibrium point, would be
mutually beneficial for the players. For the feasible agreement to be mutually beneficial, the
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Even in cases where there seems to be a clearly mutually beneficial agreement
available to the players, such as the Pareto-efficient Nash equilibrium (Hi,Hi)
of the Hi-Lo game (figure 1), the virtual bargainers would only identify the
outcome (Hi,Hi) as the optimal bargain if they were to choose Nash equilibrium
(Lo, Lo) as disagreement point. The theory does not provide any explanation of
why players would choose an ineficient equilibrium as the non-agreement point.

Note that, in case of the Hi-Lo game, the players who chose different equi-
libria as non-agreement points would still end up playing Nash equilibrium
(Hi,Hi): the player who chose the Nash equilibrium (Hi,Hi) as a reference
point would reach the conclusion that no mutually beneficial agreements are
available, and would stick to playing his or her non-agreement strategy (Hi).
The player who chose Nash equilibrium (Lo, Lo) would identify Nash equilib-
rium (Hi,Hi) as Nash optimal agreement, and would therefore play strategy
Hi as well. In other games, however, players’ failure to choose the same non-
agreement point may lead them to making choices that would leave the players
with suboptimal outcomes. For example, consider this extended Battle of the
Sexes game (figure 4):

x y z

a 4, 10 1, 1 0, 1

b 4, 4 5, 6 0, 1

c 1, 0 1, 0 4, 7

Figure 4: The Extended Battle of the Sexes game

This game has three pure strategy Nash equilibria – (a, x), (b, y) and (c, z),
and four mixed Nash equilibria 17, and each of these can serve as virtual bar-
gainers’ non-agreement point.

The selection of the non-agreement point actually determines what combina-
tions of actions the players would identify as optimal agreements. For example,
consider the possibility that players would select one of the pure Nash equilib-
ria as a non-agreement point. The Nash equilibrium (c, z) is a maximin non-
agreement point – an outcome which would obtain if, in case of disagreement,
the players were to revert to playing their maximin strategies18. If this Nash

product of players’ payoff gains must be strictly positive. In the aforementioned Battle of the
Sexes-Chicken hybrid game, if one of the Nash equilibria is chosen as non-agreement point,
then no strategy profile has a positive product of players’ payoff gains.

17The four mixed Nash equilibria of this game are:
(

2
11

, 9
11

, 0; 1, 0, 0
)

,
(

7
61

, 63
122

, 45
122

; 4
7
, 0, 3

7

)

,
(

7
16

, 0, 9
16

; 4
7
, 0, 3

7

)

, and
(

0, 7
12

, 5
12

; 0, 1
2
, 1
2

)

.
18A maximin strategy is a strategy which maximizes player’s minimum payoff. A maximin

payoff (also known as security payoff) is the maximum payoff that a player can guarantee to
himself or herself irrespective of the opponents’ actions. For an extensive discussion, see Luce
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equilibrium was selected as a non-agreement point, then no feasible agreement
would be Nash optimal. If the outcome (b, y) was selected as a non-agreement
point, then the Nash equilibrium (a, x) would be an optiomal agreement. Fi-
nally, if players’ were to choose profile (a, y) as a non-agreement point, then,
again, they would find no optimal agreements in this game.

This observation points to another problem associated with the presence of
multiple non-agreement points: the virtual bargainers who selected different
Nash equilibria as non-agreement points (since virtual bargainers do not com-
municate, this scenario is entirely possible), might identify different solutions
of the game. In such cases, each player’s individual actions could lead to sub-
optimal outcomes for both players. For example, if the column player were to
select the Nash equilibrium (c, z) as a non-agreement point, then s/he would
conclude that the game has no feasible bargains, and would play z. If the row
player chose the Nash equilibrium (a, y), s/he would identify outcome (a, x) as
Nash optimal agreement, and would play strategy a. The players would thus
end up playing strategy profile (a, z), which is, for both players, associated with
low personal payoffs.

Another problem besides the reference point selection problem is that non-
cooperative games may have multiple Nash optimal agreements with different
allocations of players’ personal payoff gains, even relative to the same reference
point. The Nash bargaining solution has been developed to resolve a specific
type of game, known as the Nash bargaining game. In the standard formulation
of the Nash bargaining problem, two players have to decide on how to split
a perfectly divisible good. Each player’s utility function represents his or her
preferences over lotteries involving a set of feasible allocations of the good, and
the Nash bargaining solution of the game is a unique distribution of the good,
which satisfies a set of desirable properties: symmetry, invariance with respect to
affine utility transformations, Pareto optimality, and independence of irrelevant
alternatives19. In non-cooperative games, however, players’ utility functions can
represent any kind of personal motivations, and the game may have multiple
feasible agreements which maximize the Nash product, yet each agreement may
be associated with different allocations of players’ personal payoff gains. This
result seems to be problematic: since players are assumed to be self-interested
individuals, it stands to reason to assume that they would not be indifferent
between agreements associated with different personal payoff gains, and so the
question of which of the agreements would be reached in open negotiations
becomes a crucial one.

For example, consider this two player four strategy coordination game (figure
5):

This game has four Nash equilibria in pure strategies – (a, h) ,(b, i), (c, j) and
(d, k), and eleven Nash equilibria in mixed strategies. For the sake of simplicity,
let us assume that the disagreement point is strategy profile (d, k) – a Nash
equilibrium, which would obtain if, in case of disagreement, the players were

and Raiffa 1957: 278-326.
19For an extensive discussion of Nash bargaining theory, see Luce and Raiffa 1957: 114-154,

and Myerson 1991: 370-416.
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h i j k

a 17, 2 0, 0 0, 0 0, 1

b 0, 0 2, 17 0, 0 0, 1

c 0, 0 0, 0 5, 5 0, 1

d 1, 0 1, 0 1, 0 1, 1

Figure 5: Coordination game with an asymmetric allocation of payoff gains

to revert to playing their maximin strategies. Relative to non-agreement point
(d, k), all three pure strategy Nash equilibria are Nash optimal agreements: each
outcome maximizes the product of players’ payoff gains, relative to the maximin
non-agreement point20

Despite the fact that all three pure strategy Nash equilibria are Nash opti-
mal agreements, they are associated with different allocations of players personal
payoff gains. Since players are assumed to be self-interested, it seems unreason-
able to assume that they would be indifferent between these outcomes. More
specifically, it seems more likely that players would agree on jointly realizing
outcome (c, j) rather than outcomes (a, h) and (b, i) . Given the fact that Nash
equilibrium (c, j) is a feasible alternative agreement, at least intuitively it seems
very likely that the disadvantage party would reject the offers (a, h) (b, i) as
unfair, since these agreements lead to intuitively unequal advancement of play-
ers’ personal interests21. Also, note that the disadvantaged player can always
threaten the other player to play his or her mazimin strategy, thus bringing the
other player down to his or her disagreement payoff. Since each player prefers
the personal payoff associated with agreement (c, j) over his or her personal pay-
off associated with non-agreement point, it seems likely that both players would

20It is easy to check that the product of players’ payoff gains, relative to disagreement
outcome (g, p), is 16 for each pure strategy Nash equilibrium:

Equilibrium (a, h): [(17− 1)× (2− 1)] = 16
Equilibrium (b, i): [(2− 1)× (17− 1)] = 16
Equilibrium (c, j): [(5− 1)× (5− 1)] = 16
21Misyak and Chater discuss a version of the Battle of the Sexes game, where one Nash

equilibrium is associated with what they refer to as “asymmetric payoffs” (1, 11), while an-
other Nash equilibrium is associated with “mutually good” payoffs (10, 9). Misyak and Chater
suggest that a Nash equilibrium with “mutually good” payoffs is a more likely outcome of
the bargaining process than the Nash equilibrium with “asymmetric payoffs”, as the disadvan-
taged players is likely to reject the latter offer. However, Misyak and Chater do not consider
a situation where both outcomes maximize the Nash product (in their example, the “mutually
good” outcome is the unique Nash-optimal outcome of the game), nor do they offer a the-
oretical explanation of how the two Nash equilibria can be compared without interpersonal
comparisons of players’ payoffs. For details, see Misyak and Chater 2014: 1-9.
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agree on playing (c, j) rather than ending their negotiations with no agreement
at all.

Despite the fact that Nash equilibrium (c, j) seems to be an intuitivelly
appealing solution of this game, it is not a unique Nash bargaining solution of
this game. The Nash bargaining theory does not offer an answer to the question
of how negotiators would resolve the conflicts over alternative allocations of
personal payoff gains, and this question seems to play a major role in real-
world negotiations22. If the theory of virtual bargaining is supposed to be an
approximation to the actual process of reasoning by which players arrive at
their choices, it seems that equity considerations should be incorporated into
the model.

There are several game theoretic models which purport to explain player’s
choices in experimental games by incorporating players’ fairness considerations
and other types of pro-social preferences into players’ payoff functions, such as
the well known inequity aversion theory suggested by Fehr and Schmidt (1999).
These theories, however, have two conceptual limitations. First, although these
theories are useful in explaining players’ choices in games with material payoffs,
they cannot be applied to games where players’ payoffs are their Von Neumann
Morgenstern utilities, which represent all their relevant motivations, including,
among other things, players’ pro-social preferences, such as inequity aversion,
altruism, sensitivity to social norms, and so on. Second, the aforementioned
models rely on the assumption that interpersonal comparisons of players’ payoffs
are meaningful, which goes beyond the principles of the orthodox expected
utility theory.

In the following section, I will suggest an alternative bargaining-based ex-
planation of how players resolve the benefit-allocation problems, which does not
rely on players’ ability to make interpersonal comparisons of payoffs, and does
not require the existence of a unique non-agreement point. More specifically, I
will argue that foregone opportunities play an important role in players’ judg-
ments of whether a solution of the game is mutually beneficial. I will suggest
a formal Benefit-Equilibration Reasoning model, which offers an explanation of
how such comparisons of foregone opportunities may determine players’ choices
in non-cooperative games.

3 The Benefit-Equilibrating Solution

3.1 The Intuition Behind the Benefit-Equilibrating Solu-

tion

To understand the intuition behind the Benefit-Equilibrating solution (later
abbreviated as BE solution), consider the Impure coordination game (figure 6):

This game has three pure strategy Nash equilibria (u, l) and (m, c) and (d, r),

22for an extensive discussion of the role of equity considerations in bargaining, see Myerson
1991: 370-416.
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l c r

u 6, 3 0, 0 0, 0

m 0, 0 3, 6 0, 0

d 0, 0 0, 0 5, 5

Figure 6: Impure Coordination game

and four mixed strategy equilibria23.
Each player’s payoff function represents his or her preferences over the strat-

egy profiles (i.e. outcomes) of the game. Each outcome of the game can be
interpreted as a possible state of the world that players can bring about via
joint actions. Although players’ payoffs are not interpersonally comparable, the
common knowledge of payoffs implies that players know each other’s preferen-
tial ordering of the outcomes of the game. In other words, each player who
knows the payoff structure of the game can rank, for each player of the game,
the outcomes of the game from that player’s most preferred to his or her least
preferred outcome. The row and the column players’ preferential rankings of
the pure strategy profiles of the three strategy coordination game (figure 6) are
shown below:

Row player:









(u, l)
(d, r)
(m, c)

(u, c), (u, r), (m, l), (m, r), (d, l), (d, c)









Column player:









(m, c)
(d, r)
(u, l)

(u, c), (u, r), (m, l), (m, r), (d, l), (d, c)









Imagine that player’s preferential ranking of pure strategy profiles is a set
of written "contracts", or possible agreements, that s/he can offer to the other
player. The row player’s most preferred contract is (u, l), meaning that his or
her personal interests would be maximally advanced if this contract was carried
out. The column player’s interests would be maximally advanced if players car-
ried out contract (m, c). Note that both player’s personal interests cannot be
maximally advanced with any of the available contracts. If players carried out
contract (u, l), the players would forego the opportunity to maximally advance

23In this particular example, I consider only pure strategy profiles as possible agreements in
order to make the intuition behind the suggested solution as clear as possible. The omission
of mixed strategy profiles will not make a difference in this case, since the BER solution of
the game is a pure strategy profile. It must be noted, however, that a formal BER solution
will be defined over the set of mixed strategy profiles, and, in many games, the BER solution
of the game is a mixed Nash equilibrium.
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column player’s personal interests by carrying out contract (m, c). If, on the
other hand, players carried out contract (m, c), they would forego the opportu-
nity to maximally advance the personal interests of the row player by carying
out contract(u, l).

Since players’ have partially conflicting preferences over possible agreements,
they could only reach an agreement if at least one of the player’s were to give
up his or her preferred contract and accept the opponent’s offer24. However,
notice that each agreement that could potentially be reached in open bargaining
would be associated with a specific distribution of players’ foregone preferred

alternatives. For example, if contract (u, l) was carried out, the column player
would forego two opportunities25 to advance his or her personal interests with
contracts (m, c) and (d, r), while the row player would forego no opportunities
to advance his or her personal interests at all. If, on the other hand, contract
(m, c) was carried out, the column player would forego no opportunities to
advance his or her personal interests at all, while the row player would forego
two opportunities to advance his or her personal interests with contracts (u, l)
and (d, r). In other words, the implementation of either of the two contracts
would mean that one of the players would forego more opportunities to advance
his or her personal interests than the other player. An agreement which leads to
an unequal distribution of players’ foregone preferred alternatives would not be
a symmetric, or benefit-equilibrating, resolution of the conflict. An asymmetric
resolution of players’ conflict seems to be problematic in the context of non-
cooperative games where players’ roles are symmetric26.

Assuming that bargaining did not involve external enforcements (which
seems to be a reasonable assumption since players in non-cooperative games
make independent choices), the players would only consider the feasible agree-
ments of the game, meaning that they would constrain their negotiations to a
set of self-enforcing contracts of the game. In our example, such players would
constrain their negotiations to a subset of contracts containing only the pure
strategy Nash equilibria (u, l), (d, r) and (m, c)27. However, this would not re-
solve the problem, since contracts (u, l) and (m, c) are self-enforcing, and thus

24We can imagine this open bargaining as a process similar to the non-cooperative iterative
vetoing procedure suggested by Anbarci (1993), where the contract is reached by players’
iteratively vetoing their least preferred contract. For details, see Anbarci 1993: 245-258.

25Note that, in some games, a player may be indifferent between several contracts (as in the
Impure coordination game. These contracts will have the same rank value assigned to them
in player’s preferential ranking of contracts. The contracts with the same rank value will be
counted as one opportunity to advance players’ personal interests

26For a discussion of the role of symmetry in bargaining problems, see Luce and Raiffa 1957:
114-154, and Myerson 1991: 370-416.

27A self-enforcing contract is a possible agreement such that a player who believes that his
or her opponent will carry out his or her part of the contract cannot gain personal advantage
by deviating from it. In bargaining problems without external enforcement, the set of feasible
agreements is the set of correlated equilibria of the game. This feasibility coinstrains reflects
each player’s belief that his or her opponent will always deviate from the agreement if such
a deviation is personally beneficial. If both players express a common belief in rationality,
they should expect each other to consider only the set of feasible agreements of the game. For
details, see Myerson 1991: 370-416.
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they would both remain in the set of feasible agreements of the game. The
players could not settle on any of the two contracts, since, in the absence of an
external enforcer, each player would respond to the opponent’s contract offer
by replacing it with his or her preferred contract, and this cycle would continue
indefinitely.

A benefit-equilibrating agreement could, however, be reached if the play-
ers, in order to reach an agreement, would constrain their negotiations to a
set of contracts that did not contain strategy profiles (u, l) and (m, c)28. In
this constrained set of options, strategy profile (d, r) would be the best avail-
able contract for both players. If one of the players were to offer it, the other
player would have no incentive to swap the offer with his or her most preferred
contract in the constrained set. If one of the player’s preferred contract from
the constrained set were implemented, the other player could not object that
the implementation of the opponent’s offer prioritized the advancement of the
opponent’s personal interests over the advancement of his or her own personal
interests29.

Note that for both players to constrain the set of contracts in the afore-
mentioned way, each of them would have to give up his or her most preferred
contract. This means that each player would forego one opportunity to advance
his or her personal interests. But it also means that no player could object
that the constrained set of contracts prioritizes the advancement of his or her
opponent’s personal interests, since each player would forego one opportunity
to advance his or her personal interests. In this sense, contract (d, r) would be
an ordinally egalitarian solution of the Impure Coordination game30.

3.2 A Formal Characterization of the BE Solution

The BE solution of the ordinally symmetric games31, such as Impure coordi-
nation game (figure 6), can be easily identified using a common numerical rep-
resentation of players’ ordinal preferences over the feasible agreements32. For

28The reasons of why the players would be motivated to constrain their set of contracts will
be discussed in subsection 3.3.

29In a sense that an implementation of one player’s preferred offer meant a foregone op-
portunity to advance the interests of the other player. For an extensive discussion of the
relationship between equity and the structures of opportunity sets, see Kolm 2007: 69-162.

30The principle of equal ordinal sacrifice of preferred allocations was introduced by Conley
and Wilkie (2012) as a solution to the Pareto-optimal point selection problem for bargaining
games with finite sets of Pareto-optimal alternatives. An agreement is ordinally egalitarian if
both players give up equal numbers of preferred alternatives in order to reach it. This solution
principle does rely on comparisons of players’ ordinal preferences, but it does not require in-
terpersonal comparisons of players’ cardinal payoffs. The benefit-equilibrating solution differs
from the aforementioned approach, since it applies to games with multiple ordinally egalitar-
ian agreements, and offers a criterion of how players resolve the ordinally-egalitarian solution
selection problem. For an extensive discussion of ordinally egalitarian solution, see Conley
and Wilkie 2012: 23-42.

31Ordinally symmetric games are symmetric with respect to the ordinal structure of the
payoffs. For the discussion of some of the problems with BE solutions of ordinally asymmetric
games, see subsection 3.3.

32To simplify the analysis of this example, mixed strategy profiles have been omitted.
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example, each player’s preferences over the feasible agreements of the Impure
coordination game (figure 6) can be numerically represented by assigning a rank
value of 1 to the most preferred feasible agreements, the second most preferred
feasible agreement can be assigned a rank value of 2, and so on. The row and the
column players’ personal rankings of the feasible agreements are shown below:

Row player:





(u, l) : 1
(d, r) : 2
(m, c) : 3



 Column player:





(m, c) : 1
(d, r) : 2
(u, l) : 3





There are 3 preferentially differentiable contracts33 to advance players’ per-
sonal interests. If the players were to implement one of these possible agree-
ments, they would loose the opportunity to implement the remaining ones. The
rank values associated with each contract, or possible agreement, represent each
player’s ordinal preferences over them. A contract with an assigned preferential
rank value of 1 is one of the players’ most preferred possible agreement available
in the game. If this contract was carried out, the player who prefers it over all
the remaining contracts would not forego any opportunities to advance his or
her personal interests. However, for any agreement with a rank value lower than
1, each player has at least one opportunity to advance his or her personal in-
terests. For example, in the aforementioned coordination game (figure 6), each
players has one opportunity that advances his or her personal interests more
than the contract with a rank value of 2, two opportunities that advance his or
her preferences more than the contract with a rank value of 2, and so on. If any
of the contracts with a rank value lower than 1 was implemented, the player
would forego at least one opportunity to advance his or her personal interests.
For example, if contract (m, c) with a rank value of 3 was carried out, the row
player would forego two opportunities to carry out contracts that s/he person-
ally prefers over the one that was carried out – contract (u, l) with a rank value
of 1, and contract (d, r) one with a rank value of 2.

Each contract with different rank values in players’ personal preferential
rankings is the contract over which players have conflicting preferences. For
example, contract (u, l) is the best available contract for the row player, yet the
second-worst contract for the column player. The difference in the rank-value
that a contract has in each player’s preferential ranking of outcomes can be used
to compare the foregone opportunities of the players to advance their personal
interests. For example, if contract (u, l) was carried out, the row player would
not forego any opportunities to advance his or her personal interests, while
column player would forego two opportunities to carry out contracts which s/he
personally prefers over contract (u, l). This means that, if contract (u, l) was
carried out, the column player could object that this resolution of the conflict
of interests is asymmetric, since it is associated with an unequal distribution of
players’ foregone preferred alternative agreements. The contracts which have
the same rank in players’ preferential rankings are the ones that, if carried out,

33The contracts are said to be preferentially differentiable if the player is not indifferent
between them. The preferentially non-differentiable contracts will count as one opportunity
to advance players’ personal interests.
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would leave the players with equal numbers of foregone opportunities to advance
their personal interests. If contract (d, r) was carried out, both players would
forego one opportunity each to advance their personal interests, and it is the best
feasible contract which has this property34. We will call the Nash equilibrium
(d, r) a benefit-equilibrating solution of the Impure Coordination game35.

Notice that if the same numerical representation were used to represent both
players’ ordinal preferences over the agreements, then a benefit-equilibrating so-
lution of the game will be the agreement with the lowest common rank. However,
the type of the ranking function used to represent players’ preferences does not
matter, as long as the same ranking function is used to represent every player’s
ordinal preferences.

A rank-based representation of the BE solution can be formally characterized
in the following way.

Let Γ
(

I, (Si, ui)i∈I

)

be a finite normal form game where I = (1, ...,m) is a set
of players, Si is a set of pure strategies of player i ∈ I, and ui : (×i∈ISi) → R is
the utility function of player i ∈ I. Let ∆(Si) be a probability distribution over
the set of pure strategies of player i ∈ I, generating a set Σi of mixed strategies
of player i ∈ I. A mixed strategy of player i ∈ I will be denoted as σi ∈ Σi.
A mixed strategy profile is a vector θ = (σ1, ..., σn), where each component
σi ∈ Σi is a mixed strategy of player i ∈ I. Hence, a set Θ = (×i∈IΣi) of mixed
strategy profiles of the game Γ is a Cartesian product of the sets of players’
mixed strategies.

In the standard bargaining problems, players’ utility functions are defined
over L (Θ), the set of lotteries over Θ. Player i’s preference relation over L (Θ)
will be represented by utility function µi : L (Θ) → R. However, the BE
solution of the game will be defined over the set of feasible agreements of the
game – strategy profiles that players can actually implement via joint actions36.
In addition, the BE bargaining solution can be identified using purely ordinal
information about players’ preferences over the feasible basic agreements (that
is, preferences over the Nash equilibria of the game), and thus it can be applied
to games where players’ cardinal utility functions containing information about
their attitudes to risk are not available.

Let F be a set of possible agreements that players believe to be feasible,
with α ∈ F being the typical element of F . In standard bargaining games, the
set of self-enforcing agreements is taken to be the set of correlated equilibria of

34To simplify the discussion, the mixed strategy Nash equilibria have been omitted. In this
game, however, each mixed strategy Nash equilibrium gives both players lower personal payoffs
than pure strategy Nash equilibrium (d, r), meaning that BE solution is the aforementioned
pure strategy equilibrium.

35Conley and Wilkie (2012) refer to this solution as the ordinal egalitarian bargaining solu-
tion. For details, see Conley and Wilkie 2012: 23-42

36Sakovics (2004) has argued that a realistic bargaining problem should assume that players
only rank the set of possible agreements that they can actually implement, and not the set of
all the possible utility allocations, some of which the players may find impossible to obtain.
For example, in non-cooperative game, the players cannot resolve the game with an actual
lottery over the combinations of their actions. Sakovics have shown that such a restriction on
the set of agreements leads to consistent ordinal bargaining solutions, which are not affected
by Shapley’s impossibility result. For details, see Sakovics 2004:1-7.
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the game:
F =

{

(µ1 (θg) , ..., µm (θg)) | θg ∈ ΘCE
}

, where ΘCE ∈ P (Θ) is the set of
correlated equilibria of Γ.

If the players were able to communicate, they could indeed implement any
correlated equilibrium of the game. In the context of non-cooperative games,
however, the players would not be able to agree to coordinate their actions by
observing some correlation device, such as a toss of a fair coin, and therefore
they would not be able to implement the correlated equilibria of the game.
Therefore, it seems natural to assume that the set of feasible agreements of a
non-cooperative game is the set of its Nash equilibria:

F =
{

(µ1 (θk) , ..., µm (θk)) | θk ∈ ΘNE
}

, where ΘNE ∈ P (Θ) is the set of
Nash equilibria of Γ.

Let F =(α1, ..., αn) be a finite set of feasible agreements of the game Γ. Each
player i ∈ I has a complete and transitive ordinal preference ranking �i over
the set F of feasible basic alternatives. For each feasible agreement αx ∈ F ,
we can define the cardinality of the preferred set of alternatives for each player
i ∈ I:

Ci (αx,F) ≡ {| T |, where αh ∈ T if and only if αh ∈ F , and αh ≻i αx}
In other words, the cardinality of the preferred set of alternatives is the

number of feasible agreements that player i ∈ I prefers over the agreement
αx ∈ F .

Let ℘i :→ {h ∈ Z+ | h ≤ n}, where n is the number of agreements in F , be
a ranking function of player i ∈ I. The rank of each feasible agreement αx ∈ F
is defined in the following way:

℘i (αx,F) = [Ci (αx,F) + 1]
Notice that each players’ most preferred agreement will have a rank of 1, his

or her second most preferred agreement will have a rank of 2, and so on.
The cardinality of the preferred set of alternatives Ci (αxF) represents the

number of opportunities to advance personal interests that player i ∈ I would
give up if the agreement αx ∈ F was carried out. For any two feasible con-
tracts αx ∈ F and αy ∈ F , player i ∈ I always prefers contract αx ∈ F over
contract αy ∈ F if and only if Ci (αx,F) < Ci (αy,F). Since it is the case
that {Ci (αx,F) = [℘i (αx,F)− 1]}, the aforementioned condition is equivalent
to the following condition: αx ≻i αy if and only if ℘i (αx,F) < ℘i (αy,F).

A contract αx ∈ F is ordinally equitable (that is, achieves the equality of
ordinal sacrifices of opportunities) if and only if it is the case that Ci (αx,F) =

Cj
j 6=i

(αx,F) for every pair

(

i, j
j 6=i

)

∈ I. Given that {Ci (αx,F) = [℘i (αx,F)− 1]},

it follows that every ordinally egalitarian contract αE ∈ F is such that, for every

pair of players

(

i, j
j 6=i

)

∈ I, it is the case that ℘i

(

αE ,F
)

= ℘j

j 6=i

(

αE ,F
)

.

Let E (F) ∈ P (F) be a set of ordinally egalitarian agreements of Γ, where
each agreement αE ∈ E (F) is such that ℘i

(

αE ,F
)

= ℘j

j 6=i

(

αE ,F
)

, for all
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(

i, j
j 6=i

)

∈ I.

The benefit-equilibrating solution function fBE : P (F) → P (F)
selects a subset FBE ∈ P (F) of the set F of feasible contracts of the game Γ,
where each contract αBE ∈ FBE satisfies two conditions:

1. Ordinal equity condition: αBE ∈ E (F)

2. Maximal personal advantage condition: αBE ∈ argmin
α∈E(F)

[℘i (α,F)] :=

{αBE | ∀αE ∈ E (F):℘i

(

αBE ,F
)

<℘i

(

αE ,F
)

,∀i∈I}

3.3 The Role of Threat Strategies

In standard strategic models of bargaining, bargaining is modelled as a process
of negotiations where players communicate their offers to the other players, and
receive their counteroffers. An important component of this process is each
player’s ability to reject the opponents’ offers, and force them to consider their
counteroffers37. For the player to be able to reject the proposed contract and
force the opponent to consider his or her counteroffer, s/he must have a threat
strategy – a strategy which, if played, would bring the opponents’ down to
their disagreement payoff38. Players’ ability to threaten his or her opponents
is also important in BER models. Note that in the aforementioned Impure
Coordination game (figure 6), both the row and the column player can force
the opponent to consider a counteroffer because each player in this game have a
threat strategy. The column player can reject the row player’s preferred contract
(u, l) by threatening him or her to play strategy d. If the column player chose
strategy d, the row player could not get the payoff associated with contract
(u, l), no matter what s/he did. The row player could do no better than to play
strategy r in order to minimize the payoff loss.

The row player could reject the column player’s preferred contract (m, c) by
threatening him or her to play strategy d. If the row player played this strategy,
the column player could not get the payoff associated with contract (m, c), no
matter what s/he did. The column player could do no better than to choose
strategy r to minimize the loss.

If both players were to end the negotiations and carry out their threats, they
would end up with outcome (d, r), which is the BE agreement of this game39.

In games where players do not have credible threat strategies, BE solution
does not look particularly convincing, since at least one of the players has no

37For an extensive discussion of strategic bargaining models, see Binmore 1980: 80-109,
Rubinstein 1982: 97-109 and Binmore et al. 1986: 176-188.

38For an extensive discussion of the role of threat strategies, see Myerson 1991: 370-416.
39In this particular game, players’ threat strategies would leave them with the same personal

payoff as the BE solution of the game. In many other games, however, the players who carried
out their threats would end up with worse payoff than the one associated with BE agreements.
For example, the players who carried out their threats in the Chicken game (figure 10) would
both end up with the worst possible outcome of the game.
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motivation to resolve the game in a mutually beneficial way. For example,
consider the ordinally asymmetric two-player "Indifference game" (figure 7):

d e

a 7, 5 7, 6

b 7, 3 7, 1

Figure 7: The Indifference game

This game has two pure strategy Nash equilibria (a, e) and (b, d), and two
mixed strategy Nash equilibria

(

3
4 ,

1
4 ; 1, 0

)

and
(

3
4 ,

1
4 ; 0, 1

)

. Players’ rankings of
the feasible agreements are shown below:

Row:
[

(a, e), (b, d), ( 3
4
, 1
4
; 1, 0), ( 3

4
, 1
4
; 0, 1) : 1

]

Col.:









(a, e) : 1
( 3
4
, 1
4
; 1, 0), ( 3

4
, 1
4
; 0, 1) : 2

(b, d) : 3
(u, l) : 3









Although this game is ordinally asymmetric, this game has a BE solution,
which is the Nash equilibrium (a, e). However, unlike the column player who
prefers Nash equilibrium (a, e) over all other feasible agreements, the row player
is indifferent between all the Nash equilibria of this game. The column player
does not have a threat strategy against the row player: no matter what strategy
the column player chose to play, the row player would always get the same payoff.
It means that, in open negotiations, the column player could not use a threat
strategy to reject row player’s offer (b, d), and force the row player to consider
counteroffer (b, d). Therefore, in an asymmetric bargaining game where at least
one of the players has no threat strategy, the BE solution does not seem to be
particularly convincing.

3.4 BE Solution and Mutual Advantage

For the players to be motivated to resolve the game by implementing a feasible
agreement, it must be mutually beneficial. In other words, every player of the
game must see the feasible agreement as personally beneficial. In the standard
bargaining problem, each agreement which gives, to every player, a payoff higher
than his or her disagreement payoff is considered to be mutually beneficial.
However, in non-cooperative game, the question of how the concept of mutual
advantage ought to be defined becomes significantly more complicated, since, in
many games, it is difficult to identify each player’s disagreement payoff40.

Some economics and philosophers have suggested that players’ maximin pay-
offs should be considered as reference points for determining whether a strategy

40For an extensive discussion, see section 2.
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profile or, in this case, self-enforcing agreements are mutually beneficial41. This
suggestion seems compelling, since the maximin payoff is the maximum payoff
that a player can guarantee to himself or herself, no matter what the other
players are going to do42. It stands to reason to assume that a player would
not be motivated to participate in any joint actions which would not guarantee
him or her an expected payoff which is at least as good as the personal maximin
payoff.

Another possibility, is that, in case of disagreement, players would try to
maximize the opponent’s payoff loss, even at the expense of their own personal
payoff. For example, in the aforementioned Impure Coordination game (fig-
ure 6), both players could deliberately play their threat strategies, thus ending
up with the worst possible personal payoffs for both. This option is less ap-
pealing from the perspective of rational strategic reasoning, since, in case of
disagreement, rational players should aim to maximize their minimum disagree-
ment payoff, and then the worst possible disagreement outcome should be a
strategy profile associated with player’s maximin payoffs. However, it is not
a completely unreasonable assumption about the real-world bargaining, with
less-than-perfectly rational players43.

The BE solution suggested in this paper will always be one of the Nash or,
in case communication is possible, correlated equilibria of the game. Therefore,
in all games, a BE solution is an agreement which, for every player of the game,
is at least as good as his or her maximin payoff. Therefore, a BE solution of
every game will invariably be mutually beneficial44.

3.5 The Axiomatic Characterization of the BE Solution

A BE solution satisfies the following axioms:

• ordinal symmetry: A BE solution to every ordinally symmetric choice
set is ordinally symmetric. A choice set O is said to be ordinally symmetric
if and only if, for all x, y ∈ O such that ℘i (x,O) = ℘j

j 6=i

(y,O), it holds that

Ci (x,O) = Cj (y,O). A solution concept f (O) satisfies the axiom of sym-
metry if and only if, for any ordinally symmetric set Os, it is the case that

41For example, this idea has been suggested by Myerson 1991: 370-416, Gauthier 2013:
601-624, and Sugden 2015: 143-166

42For an extensive discussion of the maximin concept, see Luce and Raiffa 1957.
43For an extensive discussion on disagreement points and threat strategies, see Myerson

1991: 370-416.
44Hargreaves-Heap and Varoufakis (1995) discuss games where player’s payoff associated

with a unique pure strategy Nash equilibrium of the game is equal to his or her maximin
payoff, yet playing a Nash equilibrium strategy is extremely risky. Hargreaves-Heap and
Varoufakis argue that it is unreasonable to expect that such a player would play his or her
equilibrium strategy, and therefore Nash equiliubrium is not a compelling solution of the game.
Since these games have a unique Nash equilibrium, it is unreasonable to expect the players to
apply BER reasoning to resolve the game. For details, see Hargreaves-Heap and Varoufakis
1995: 61-68.
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Ci (f (O
s) , Os) = Cj (f (O

s) , Os), for every pair

(

i, j
j 6=i

)

∈ I. A BE solu-

tion is always, by definition, ordinally egalitarian, meaning that, for any
O, it must be the case that Ci

(

fBE (O) , O
)

= Cj
(

fBE (O) , O
)

, for every

pair

(

i, j
j 6=i

)

∈ I. It follows that, for every ordinally symmetric set Os, a

BE solution must be such that Ci
(

fBE (Os) , Os
)

= Cj
(

fBE (Os) , Os
)

for

every pair

(

i, j
j 6=i

)

∈ I. Therefore, a BE solution satisfies the axiom of

ordinal symmetry.

• invariance under order-preserving scalar transformations of

payoffs. Pure Nash equilibria are invariant under positive affine transfor-
mations of players’ payoffs. However, this does not apply to mixed Nash
equilibria. Since BE solutions can be mixed Nash equilibria, it follows
that BE solutions are not invariant under positive affine transformations
of payoffs. However, every BE solution remains stable if one or multiple
players’ payoffs are multiplied by positive real numbers. In other words,
BE solutions are invariant under order-preserving scalar payoff transfor-
mations of the form u′i = λi (ui), where λi > 0 for every i ∈ I (for proofs,
see subsection 3.6).

• independence of irrelevant alternatives: If any game which has
a BE solution is extended with any set of strictly dominated strategies, a
BE solution of the extended game remains the same as the solution of the
original game. This follows from the fact that adding strictly dominated
strategies to any game does not change the set of its Nash equilibria.
Since a BE solution of every game is, invariably, an equilibrium, it is
always invariant under any additions of strictly dominated strategies.

3.6 Existence

In this part I provide a partial characterization of the existence of BE solutions
in finite, normal form games.

a be solution exists in every cardinally symmetric, finite, non-

cooperative game. To see this, notice that a BE solution of the finite non-
cooperative game can only be a Nash equilibrium θNE ∈ ΘNE which is such
that Ci

(

θNE ,F
)

= Cj
j 6=i

(

θNE ,F
)

, for all i ∈ I. A normal form finite game

Γ is cardinally symmetric if and only if it is the case that the players have
identical pure strategy spaces (S1 = S2 = ...SI = S), and it is the case that
ui (si, s−i) = uj (sj , s−j), for si = sj and s−i = s−j for all (i, j) ∈ I, where s−i

is the combination of all the strategies in profile s ∈ S except for si ∈ Si.
Let ΘNEs be a set of Nash equilibria of the symmetric game Γ. Every set

ΘNEs of the cardinally symmetric game is ordinally symmetric: for any two Nash

22



equilibria θNE
x ∈ ΘNEs and θNE

y ∈ ΘNEs which are such that ℘i

(

θNE
x ,ΘNEs

)

=

℘j

j 6=i

(

θNE
y ,ΘNEs

)

, it holds that Ci
(

θNE
x ,ΘNEs

)

= Cj
(

θNE
y ,ΘNEs

)

, for all

(

i, j
j 6=i

)

∈

I.
As a special case of Nash’s (1951) theorem, every finite symmetric game has

a symmetric Nash equilibrium45. A (mixed) Nash equilibrium θNE = (σ∗
1 , .., σ

∗
m)

is symmetric if and only if

(

σ∗
i = σ∗

j

j 6=j

)

, for all i ∈ I. From the definition of

a cardinally symmetric game it follows that ui
(

σ∗
i , σ

∗
−i

)

= uj
(

σ∗
j , σ

∗
−j

)

, for all
(

i, j
j 6=i

)

∈ I. Since the set ΘNEs is ordinally symmetric, it follows that, for

every Nash equilibrium θNE
x ∈ ΘNEs which is such that ui

(

θNE
x

)

= uj
(

θNE
x

)

for all

(

i, j
j 6=i

)

∈ I, it must be the case that Ci
(

θNE
x

)

= Cj
(

θNE
x

)

, and so a BE

solution of the game always exists.
a be solution exists in every ordinally symmetric, finite, normal

form game which can be transformed into a cardinally symmet-

ric game via any possible combination of order-preserving scalar

transformations of players’ payoffs. A game is said to be ordinally
symmetric if the ordinal ranking of one player’s payoffs is equivalent to the or-
dinal ranking of the transpose of the other player’s payoffs. Every cardinally
symmetric game is also ordinally symmetric, and so an infinite number of or-
dinally symmetric games can be derived from each cardinally symmetric game
via transformations of one or multiple players’ personal payoffs. Therefore, it is
important to identify the type of transformations under which the BE solutions
of the cardinally symmetric games are invariant. The set of pure strategy Nash
equilibria is invariant under positive affine transformations of payoffs, but this
is not the case for mixed Nash equilibria. However, it turns out that both pure
and mixed Nash equilibria are invariant under order-preserving scalar multipli-
cations of one or multiple players’ personal payoffs.

First, we need to show that a set of mixed Nash equilibria is invariant under
order-preserving positive scalar transformations of players’ payoff functions. Let
Γ
(

I, (Si, ui)i∈I

)

and Γ′
(

I, (Si, u
′
i)i∈I

)

be any two finite, normal form, ordinally
symmetric games that differ only by some combination of positive scalar trans-
formations of players’ payoff functions. That is, in game Γ′ the payoff function
of each player i ∈ I is multiplied by some positive real number λi > 0 such that
u′i (s) = λiui (s), for all strategy profiles s ∈ S. It is relatively easy to check that
the set of mixed Nash equilibria of Γ is the same as the set of Nash equilibria
of Γ′.

Let βΓ
i : Θ → Σi be the mixed-strategy best-reply correspondence of player

i ∈ I in Γ, which maps each mixed strategy profile to the non-empty finite set
βΓ
i (σ−i) = {σ∗

i ∈ Σi : ui (σ
∗
i , σ−i) ≥ ui (σi, σ−i) ∀σi ∈ Σi}.

45For an extensive analysis and proofs, see Nash (1951), and Cheng et al. 2004: 71-78

23



Let Γ′
(

I (Si, u
′
i)i∈I

)

be a game which is such that u′i (s) = λiui (s), for all

s ∈ S. We need to show that βΓ′

i (σ−i) = βΓ
i (σ−i). Notice that this will be the

case if βΓ′

i (σ−i) is such that

βΓ′

i (σ−i) = {σ∗
i ∈ Σi : λiui (σ

∗
i , σ−i) ≥ λiui (σi, σ−i) ∀σi ∈ Σi}

Let Γ
(

I (Si, ui)i∈I

)

be a symmetric, finite, normal form game. Let σi ∈ Σi

be a mixed strategy of player i ∈ I, which assigns some probability distribution
p (Si) on the set Si of pure strategies of i ∈ I. Let B = (s1, ..., sk), where
2 ≤ k ≤ n, be any k-tuple of pure strategies with strictly positive probabilities
assigned by a mixed strategy σi ∈ Σi of player i ∈ I. Let us assume that σi ∈ Σi

is an equilibrium strategy of i ∈ I, which means that σi ∈ βi (s−i, ui). A mixed
strategy σi ∈ Σi is a best-response strategy against the k-tuple B if player
j

j 6=i

∈ I is indifferent between the pure strategies in the k-tuple B ∈ P (Si). It

means that, for every pair of pure strategies sb, sc ∈ B, it must be the case that
uj (sb, σi) = uj (sc, σi) for j

j 6=i

∈ I.

Let Γ′
(

I, (Si, u
′
i)i∈I

)

be a finite, ordinally symmetric, normal form game
where u′j

j 6=i

= λjuj (s) for all s ∈ S. Assume that σ′
i ∈ Σ′

i is a Nash equilibrium

strategy of player i ∈ I, which means that σ′
i ∈ β′

i (s−i, u
′
i). It follows that

σ′
i ∈ Σ′

i is such that, for every pair of pure strategies sb, sc ∈ B, it must be the
case that λjuj (sb, σ

′
i) = λjuj (sc, σ

′
i) for j

j 6=i

∈ I. Since λj > 0 is a constant for

a particular player (order preserving scalar multiplier), it follows that σ′
i = σi,

for every σ′
i ∈ β′ (s−i, u

′
i), and so ΘNE(Γ) = ΘNE(Γ′).

Suppose that Γ
(

I, (Si, ui)i∈I

)

is a finite, cardinally symmetric, normal form
n-player game. From Nash’s theorem (1951) it follows that every such game
has a symmetric Nash equilibrium. Let Γ′

(

I, (Si, u
′
i)i
)

be a finite, normal form
ordinally symmetric game derived from the cardinally symmetric game Γ, where
u′i = λiui, and λi > 0. Each finite, symmetric, normal form game has a symmet-
ric Nash equilibrium, which is invariant under order-preserving positive scalar
transformations of players’ payoffs. Therefore, a symmetric Nash equilibrium
will exist in every ordinally symmetric game derived from the cardinally symmet-
ric game via order-preserving positive scalar transformations of players’ payoffs.
Since every symmetric game has a BE solution, a BE solution will exist in every
ordinally symmetric game derived via order-preserving positive scalar transfor-
mations of players’ personal payoffs. It also follows that a BE solution will
always exist in an ordinally symmetric game which can be transformed into a
cardinally symmetric game via order-preserving positive scalar transformations
of players’ payoffs.

if any normal form two player game can be extended with any

possible correlating device, a be solution always exists in the ex-

tended game. In a cooperative setting, the set of feasible agreements is the
set of the correlated equilibria of the game. An important property of the cor-
related equilibrium is that it is always specific to a particular correlating device
and a given set of players’ information partitions. Assuming that players have
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access to any possible correlating device, it is always possible to construct a
“lottery” over the Nash equilibria of the game, which will be a BE solution of
the game.

To see why this is the case, we need to look into the concept of correlated
equilibrium. Let

(

Ω, {Hi}i∈I , p
)

be a correlating device where Ω is a (finite)
space of states corresponding to the outcomes of the device with a typical ele-
ment ω ∈ Ω, p is a probability measure on Ω, and {Hi} is a partition of Ω of
player i ∈ I. An information partition Hi assigns an hi (ω) to each ω ∈ Ω in
such a way that ω ∈ hi (ω), for all ω ∈ Ω.

A correlated strategy of player i ∈ I is a function fi : Ω → Si, which is
measurable relative to information partition Hi: if it is the case that hi (ω) =
hi (ω

′), then fi (ω) = fi (ω
′). It follows that a set of possible payoff allocations

attainable under the I-tuple
(

f1, .., f I
)

of correlated strategies is a convex hull
of the payoff vectors given in the payoff matrix of the game.

A strategy profile
(

f1, ..., f I
)

is a correlated equilibrium relative to a corre-

lating device
(

Ω, {Hi}i∈I , p
)

if and only if, for every i ∈ I and every correlated

strategy f̃i, it is the case that
∑

ω∈Ω

ui (fi (ω) , f−i (ω)) p (ω) ≥
∑

ω∈Ω

ui

(

f̃i (ω) , f−i (ω)
)

p (ω)

It follows that any randomization over the pure or mixed strategy Nash
equilibria of the game is a correlated equilibrium, and the set ∆CE of correlated
equilibria of Γ contains the convex hull △NE ⊆ ∆CE of the set of (mixed) Nash
equilibria of Γ. It means that the set of correlated equilibrium payoff profiles
of any game Γ is at least as large as the convex hull ∆NE ⊆ ∆CE of the set
of Nash equilibrium payoff profiles of Γ46. Notice that any convex combination
of correlated equilibrium payoff profiles of Γ is a correlated equilibrium payoff
profile of Γ. Assuming that players are not constrained in their choice of the
correlating device, they can implement any possible randomization over the
Nash equilibria of Γ47.

Let Γ (S1, S2, u1, u2) be any two-player game with a set ΘNE of Nash equi-
libria. Each Nash equilibrium θNE

x ∈ ∆NE can be interpreted as a payoff profile
U12

(

θNE
x

)

=
[(

u1
(

θNE
x

)

, u2
(

θNE
x

))]

, which is a point of the convex hull of the
set of Nash equilibrium payoff profiles. In games where players’ preferences over
the Nash equilibria coincide, a BE solution of the game will be players’ preferred
Nash equilibrium. The relevant case is where players have conflicting preferences
over the pure Nash equilibria of the game, meaning that C1

(

θNE
x

)

6= C2
(

θNE
x

)

,
for all θNE

x ∈ ΘNE .
Let θNE

∗ ∈ ∆NE and θNE
∗∗ ∈ ∆NE be two pure strategy Nash equilibria of the

game Γ. Suppose that each player 1 and player 2 prefer different pure strategy
Nash equilibria of Γ, and so C1

(

θNE
∗ ,ΘNE

)

= C2
(

θNE
∗∗ ,ΘNE

)

= 0. Given the

ranking function defined in subsection 3.2, it follows that ℘1

(

θNE
∗ ,ΘNE

)

=

46for an extensive analysis and proofs, see Aumann 1987: 1-18, and Lehrer et al. 2011: 1-6.
47Each correlated equilibrium of Γ can be implemented with a universal mechanism– a

correlating device ΩU where the set of states is the set Θ = (×i∈IΣi) of (mixed) strategy
profiles of Γ.
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℘2

(

θNE
∗∗ ,ΘNE

)

= 1. Given that players have conflicting preferences over θNE
∗ ∈

ΘNE and θNE
∗∗ ∈ ΘNE , the following set of inequalities must hold for (i = 1, 2):

ui
(

θNE
∗

)

> ui
(

θNE
∗∗

)

uj
(

θNE
∗

)

< uj
(

θNE
∗∗

)

Note that the maximum payoff attainable by each player from playing a pure
strategy Nash equilibrium must occur at one of the vertices of the convex hull
∆NE ⊆ ∆CE of the set of Nash equilibria of Γ, which means that θNE

∗ , θNE
∗∗ ∈

bd(∆NE). The other vertices of ∆NE ⊆ ∆CE are the mixed strategy Nash
equilibria associated with players’ lowest personal payoffs. It follows that payoff
profiles U12

(

θNE
∗

)

and U12

(

θNE
∗∗

)

associated with pure strategy Nash equilibria
θNE
∗ ∈ ∆NE and θNE

∗∗ ∈ ∆NE are the vertices of the convex hull of the set of
Nash equilibrium payoff profiles of Γ.

Each correlated equilibrium of Γ is a Nash equilibrium of the extended
game Γ+, which is the original game Γ augmented with some correlating de-
vice (Ω, {Hi}i p). Assuming that players are unconstrained in their choice of
the correlating device48, the players can implement any correlated equilibrium
ψ∗ ∈ ∆CE of Γ.

Suppose that players implement a correlated equilibrium ψ∗ ∈ int(∆NE)
which is in the interior of the convex hull of the set of Nash equilibria ∆NE ⊆
∆CE . It follows that any correlated equilibrium ψ∗ ∈ int

(

∆NE
)

is such that
the payoff profile U12 (ψ

∗) is in the interior of the convex hull of the set of Nash
equilibrium payoff profiles. Since it is the case that θNE

∗ , θNE
∗∗ ∈bd(∆NE), it

follows that the following set of inequalities must hold:
u1 (ψ

∗) < u1
(

θNE
∗

)

and u1 (ψ
∗) < u1

(

θNE
∗∗

)

u2 (ψ
∗) < u2

(

θNE
∗

)

and u2 (ψ
∗) < u2

(

θNE
∗∗

)

It follows that, in the extended game Γ+ augmented with a correlating de-
vice which implements any correlated equilibrium ψ∗ ∈ int

(

∆NE
)

, the corre-

lated equilibrium ψ∗ ∈ ΘNE+ is a Nash equilibrium such that C1
(

ψ∗,ΘNE+
)

=

C2
(

ψ∗,ΘNE+
)

= 1, and so it is a BE solution of Γ+.
if any normal form game can be extended with any possible cor-

relating device, a be solution always exists in the extended game.

In any n-player game, the set of correlated equilibria is at least as large as the
convex hull of the set of Nash equilibria of the game. Given that players can
implement any correlated equilibrium, they can implement a correlated equi-
librium which is in the interior of the convex hull of the set of Nash equilibria.
Therefore, each n-player game which can be extended with any correlating de-
vice will always have a BE solution.

48This condition can be interpreted as an assumption that players can use a universal
mechanism ΩU with any chosen probability distribution over the set Θ = (×i∈IΣi).
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4 BER and the Equilibrium Selection: Examples

4.1 Equilibrium selection in 2x2 Normal Form Games

In ordinally symmetric 2x2 games where one pure strategy Nash equilibrium
Pareto-dominates all other Nash equilibria of the game, such as the Hi-Lo and
the Stag Hunt games, the BE solution of the game will always be the Pareto-
dominant pure strategy Nash equilibrium. To see why this will always be the
case, consider the following Stag Hunt game (figure 8): This game has two pure

s r

s 4, 4 1, 3

r 3, 1 2, 2

Figure 8: The Stag Hunt game

strategy Nash equilibria (s, s) and (r, r), and a mixed strategy Nash equilibrium
(

1
2 ,

1
2 ;

1
2 ,

1
2

)

. Players’ preferential rankings of the three feasible agreements are
shown below49:

Row :





(s, s) : 1
(

1
2
, 1
2
; 1
2
, 1
2

)

: 2
(r, r) : 3



 Column :





(s, s) : 1
(

1
2
, 1
2
; 1
2
, 1
2

)

: 2
(r, r) : 3





Notice that Nash equilibrium (s, s), which Pareto-dominates all the remain-
ing feasible agreements has the highest rank in both players’ preferential rank-
ings of feasible agreements, meaning that it is maximally personally advanta-
geous agreement for both players. Also, since this agreement is the best feasible
agreement for both players, none of the players foregoes any opportunities to ad-
vance his or her personal interests with alternative feasible agreements. There-
fore, it satisfies the ordinal equity condition, meaning that Nash equilibrium
(s, s) is a BE solution of the Stag Hunt game.

In ordinally symmetric 2x2 games where players’ have conflicting prefer-
ences over the pure strategy Nash equilibria of the game, the pure strategy
Nash equilibria, by definition, will not satisfy the ordinal equity condition: each
pure strategy equiliubrium will have a different rank in players’ preferential
rankings of feasible agreements, meaning that, for each player, the numbers of
foregone opportunities associated with each pure startegy equilibrium are not
equal. Therefore, a BE solution of this type of games can only be a mixed
strategy Nash equilibrium. In payoff symmetric games, a BE solution of the

49In BER model, pure strategies are treated as "extreme" mixed strategies where one of
the pure strategies is played with probability 1, while other pure strategies are played with
probability 0. These extreme probability distributions will be omitted in the tables represent-
ing players’ preferential rankings of outcomes in order to make the argumentation easier to
follow.
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game will be a symmetric Nash equilibrium. In ordinally symmetric games with
asymmetric payoffs, a BE solution will be an asymmetric mixed Nash equilib-
rium.

For an example of a payoff symmetric game, consider the following Battle of
the Sexes game (figure 9):

o b

o 6, 3 0, 0

b 0, 0 3, 6

Figure 9: The Battle of the Sexes game

This game has two pure strategy Nash equilibria (o, o) and (b, b), and a mixed
strategy Nash equilibrium

(

2
3 ,

1
3 ;

1
3 ,

2
3

)

. A mixed strategy Nash equilibrium is,
for both players, associated with the expected payoff of 2. The row and the
column players’ preferential rankings of feasible agreements are shown below:

Row :





(o, o) : 1
(b, b) : 2

(

2

3
, 1

3
; 1

3
, 2

3

)

: 3



 Column :





(b, b) : 1
(o, o) : 2

(

2

3
, 1

3
; 1

3
, 2

3

)

: 3





Notice that if one of the pure strategy Nash equilibria were implemented, one
of the players would forego no opportunities to advance his or her personal in-
terests with an alternative agreement, while the other player would forego one
opportunity to advance his or her personal interests. It means that pure strat-
egy Nash equilibria (o, o) and (b, b) do not satisfy the ordinal equity condition,
and therefore cannot be BE solutions of this game. A mixed strategy Nash
equilibrium

(

2
3 ,

1
3 ;

1
3 ,

2
3

)

is the unique feasible agreement which satisfies the or-
dinal equity condition: if this outcome were implemented, each player would
forego two opportunities to advance his or her personal interests with alterna-
tive contracts. Therefore, a mixed strategy equilibrium is the BE solution of
the Chicken game. Notice that this example shows that BE solution may not
be Pareto optimal. The expected payoff associated with mixed strategy Nash
equilibrium

(

2
3 ,

1
3 ;

1
3 ,

2
3

)

is 2 for both players of this game. This means that both
players would be better off if their were playing one of the pure strategy Nash
equilibria of the game. However, the payoff associated with the mixed strategy
Nash equilibrium is better for both players than the payoff that they would
get from carrying out their threats. Notice that, in a situation of open strategic
bargaining, the row player could reject the column player’s offer (b, b) by threat-
ening him or her to play strategy o. The column player could reject the row
player’s offer (o, o) by threatening him or her to play strategy b. If both play-
ers were to carry out their threats, they would end up playing strategy profile
(o, b), which gives a payoff of 0 for both players. Therefore, the players would
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be motivated to continue their negotiations in order to reach an agreement50.
In most games where BE solution is a mixed strategy Nash equilibrium, the

solution will not be efficient, since, in most games, the mixed strategy Nash
equilibrium is inefficient. However, at least intuitively, the mixed strategy so-
lution of this game is a fair resolution of the conflict, since, by independently
randomizing their strategies, both players effectively participate in a lottery,
and no player can be said to have a strategic advantage over the other player.
In this sense, BE solution is symmetric51

For an example of a payoff asymmetric game, consider the following Chicken
game (figure 10):

l r

u 6, 3 0, 0

d 5, 5 3, 8

Figure 10: The Chicken game

This game has two pure strategy Nash equilibria (u, l) and (d, r), and an
asymmetric mixed strategy asymmetric Nash equilibrium

(

1
2 ,

1
2 ;

3
4 ,

1
4

)

52. The
row and the column players’ preferential rankings of the feasible agreements are
shown below:

Row :





(u, l) : 1
(

1

2
, 1

2
; 3

4
, 1

4

)

: 2
(d, r) : 3



 Column :





(d, r) : 1
(

1

2
, 1

2
; 3

4
, 1

4

)

: 2
(u, l) : 3





A BE solution of this game is a mixed strategy asymmetric Nash equilibrium
(

1
2 ,

1
2 ;

3
4 ,

1
4

)

, which is not an efficient Nash equilibrium of this game. For each
player of the game, the personal payoff associated with a mixed strategy Nash
equilibrium is larger than his or her personal maximin payoff. This solution of
the game is also weakly Pareto optimal53. Notice that although mixed Nash

50Notice that each player’s maximin payoff of this game is 0, since it is the maximum payoff
that each player could guarante to himself or herself irrespective of the other player’s choices.
For an extensive discussion, see Luce and Raiffa 1957.

51In addition, the mixed strategy Nash equilibrium of the Battle of the Sexes game is a
unique evolutionary stable equilibrium of this game. It mans that a population where all
players’ reasolved the Battle of the Sexes game by playing a mixed strategy Nash equilibrium
could not, in evolutionary time, be invaded by mutants playing a different mixed or pure
strategy. This offers, although in a very limited capacity, support to the idea that solution
concepts, such as BE solution, which prescribe randomized strategies can be interpreted as
evolved responses to strategic conflicts of individuals’ personal interests. For an extensive
discussion of evolutionary stability of mixed strategy profiles, see Hofbauer and Sigmund
1998.

52The row player’s expected payoff associated with mixed strategy Nash equilibrium is 4.5.
The column player’s expected payoff from plying mixed strategy Nash equilibrium is 4

53An allocation of payoffs is said to be weakly Pareto optimal if there are no alternative
allocations which would make each player strictly better off.
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equilibrium has the same rank in players’ preferential rankings of feasible agree-
ments, rank-egalitarian solution does not imply that players’ personal payoff
gains from the agreement, relative to their maximin payoffs, will be equal. The
row player’s personal payoff gain, relative to his or her maximin payoff of 3, is
1.5. The column player’s payoff gain, relative to his or her maximin payoff of 3,
is 1.

4.2 Benefit-Equilibration and the Envy-Free Allocations

of Resource

In bargaining games where players have to split a perfectly or imperfectly divis-
ible resource, a BE solution function will always select an envy-free allocation
of resource. An allocation of resource is said to be envy free if no player would
swap the received amount of resource for that received by the other player (Fo-
ley 1967: 45-98). To understand this result, let us first consider the discrete
Divide-the-Cake game with an even number of slices of cake, which is a par-
ticularly simple version of the well known Nash Bargaining game (figure 11):

0 1 2 3 4

0 0, 0 0, 1 0, 2 0, 3 0, 4

1 1, 0 1, 1 1, 2 1, 3 0, 0

2 2, 0 2, 1 2, 2 0, 0 0, 0

3 3, 0 3, 1 0, 0 0, 0 0, 0

4 4, 0 0, 0 0, 0 0, 0 0, 0

Figure 11: The Divide-the-Cake game (even number of pieces)

In this game, two players are presented with a cake that is cut into four
equal-sized pieces and simultaneously place a demand for the number of pieces
for themselves (from 0 to 4). If the sum of their demanded pieces does not exceed
4, they both get what they asked for. If, on the other hand, the sum exceeds 4,
they both get nothing. The game has six pure strategy Nash equilibria: (4, 0),
(3, 1), (2, 2), (1, 3), (0, 4) and an inefficient (4, 4). The row and the column
players’ preferential rankings of outcomes are shown below54:

54To make the discussion easier to follow, the mixed strategy Nash equilibria will be omitted.
This will not effect the result, since BE solution in this particular game is a pure Nash
equilibrium
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Row player:













(4 , 0 ) : 1
(3 , 1 ) : 2
(2∗, 2∗) : 3
(1 , 3 ) : 4

(0 , 4 ), (4 , 4 ) : 5













Column player:













(0 , 4 ) : 1
(1 , 3 ) : 2
(2∗, 2∗) : 3
(3 , 1 ) : 4

(4 , 0 ), (4 , 4 ) : 5













Strategy profile (2, 2) is the unique BE solution of this game. This result
usually appeals to most decision-makers, and is supported by experimental re-
sults55.

Notice that the BE solution of this particular Divide-the-Cake Game is in
line with the Nash bargaining solution, as well as with the Kalai-Smorodinsky
(1975) solution of this game. Assuming that the disagreement point in this game
is (0, 0), the strategy profile which uniquely maximizes the product of players’
personal payoff gains is (2, 2), and so it is a Nash bargaining solution of this
particular game56. Strategy profile (2, 2) is. also, a Kalai-Smorodinsky solution
of the game: assuming that the disagreement point is (0, 0), it is a unique Pareto
optimal profile which maintains the ratios of players’ maximal, or ideal, payoff
gains57.

Let us now consider a case where players have to split a larger cake which
is cut into five equal-sized pieces. Each of them has to place a demand from 0
to 5 pieces. This discrete Divide-the-Cake game with an odd number of pieces
is shown in figure 12:

A BE solution of this game is a mixed strategy Nash equilibrium where
each player demands 2 pieces of cake with a probability 2

3 , and 3 pieces of
cake with probability 1

3 . Each player’s expected number of pieces from playing
this mixed strategy Nash equilibrium is 2. Unlike in the Divide-the-Cake game
with an even number of slices of cake BE solution is not in line with the Nash
bargaining solution, since it does not maximize the product of players’ payoff
gains.

The Nash bargaining solution of this game are strictly Pareto optimal pure
strategy Nash equilibria (2, 3) and (3, 2). Notice that neither of these equilibria
is envy-free, since the player who received 2 pieces of cake would prefer to swap
his or her share for that received by the other player. A BE solution of this
game is an envy-free allocation of cake, since none of the players would prefer
to sap his or her expected share of cake for that expected by the other player58.

BE solution is, in line with Kalai-Smorodinsky bargaining solution, in a sense
that it maintains the ratio of players’ ideal payoff gains59. However, BE solution

55See Nydegger and Owen (1974) for an experiment in which two players are asked to divide
$1 among themselves and virtually everybody agrees on a 50%-50% split.

56For a detailed discussion of the Nash bargaining solution, see Luce and Raiffa 1957, 124-
134

57. For a discussion of Kalai-Smorodinsky solution, see Kalai and Smorodinsky 1975: 513-
518.

58It is important to note that this solution only ensures an ex ante envy-free allocation of
cake. The ex post allocation of cake may, in fact, not be envy-free.

59Each player of this game can, in the idea case (say, when the other player deliberately
chooses a strategy that maximizes his or her opponent’s payoff) get a maximum payoff of 5.
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0 1 2 3 4 5

0 0, 0 0, 1 0, 2 0, 3 0, 4 0, 5

1 1, 0 1, 1 1, 2 1, 3 1, 4 0, 0

2 2, 0 2, 1 2, 2 2, 3 0, 0 0, 0

3 3, 0 3, 1 3, 2 0, 0 0, 0 0, 0

4 4, 0 0, 0 0, 0 0, 0 0, 0 0, 0

5 5, 0 0, 0 0, 0 0, 0 0, 0 0, 0

Figure 12: The Divide-the-Cake game (odd number of pieces)

is only weakly Pareto efficient60.
Pareto efficiency is often taken to be one of the key desirable properties of

the bargaining solution61. However, it is not clear whether Pareto optimality
is as important factor in real-world allocation problems as it is in theoretical
bargaining, especially in cases where the resource is not perfectly divisible62.
Experimental evidence suggests that real-world decision makers tend to focus
on fairness rather than efficiency considerations when dealing with resource
allocation problems63, which suggests that a weakly Pareto efficient allocation
of an imperfectly divisible cake should not strike as an unreasonable solution of
the problem.

Therefore, assuming that disagreement point is (0, 0) the ratio of players’ maximum payoff

gains in this game is
(5−0)
(5−0)

= 1. The Kalai-Smorodinsky solution of this game is a strategy

profile (u1, u2) which is such that u1/u2 = 1, and so the BE solution satisfies this requirement.
For details, see Kalai and Smorodinsky 1975: 513-518.

60A resource allocation is said to be Pareto efficient in a weak sense if there are no feasible
resource allocations which would strictly increase each player’s personal payoff.

61See, for example, Luce and Raiffa 1957: 114-154, Kalai and Smorodinsky 1975: 513-518,
Myerson 1977: 1631-1637, Kalai 1977: 1623-1630, Roth 1979: 775-778.

62According to Weller’s theorem, it is always possible to divide a perfectly divisible cake
among n players with additive value functions in a way that is both Pareto efficient and
envy-free. See Weller 1985: 5-17.

63An experimental study conducted by Herreiner and Puppe suggests that people are willing
to sacrifice Pareto efficiency in order to reach envy-free allocations of resource in fair division
problems. See Herreiner and Puppe 2009: 65-100.
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5 BER and Social Coordination

5.1 Social Interactions and the Set of Feasible Agreements

The formal BER model rests on the assumption that, in non-cooperative set-
ting, the set of feasible agreements is the set of the Nash equilibria of the game.
Theoretically, this assumption seems reasonable, since Nash equilibria are stable
solutions of the game: if the players who expressed a common belief in rational-
ity64 were to agree on playing a Nash equilibrium, each player would have an
assurance that his or her opponents will carry out their part of the agreement.

In real-world social interactions, however, the players may be using a differ-
ent criterion of assurance in identifying the feasible agreements of the game. For
example, the players may only be concerned about the personal payoff losses
associated with opponents’ deviations from the agreement, and therefore deem
feasible all the agreements where opponents’ deviations cannot lead to a loss of
their personal payoff. If social agents used such a feasibility criterion, some of
the non-equilibrium strategy profiles of the game would actually be identified
as feasible agreements.

Misyak and Chater (2014) have suggested this possibility, and, to test this
hypothesis, conducted an experiment with the Boobytrap game (figure 13).

cooperate defect boobytrap

cooperate 30, 30 10, 40 30, 29

defect 40, 10 20, 20 −100, 9

boobytrap 29, 30 9,−100 29, 29

Figure 13: The Boobytrap Game

Like the Prisoner’s Dilemma game, the Boobytrap game has a unique pure
strategy Nash equilibrium (defect, defect). However, each player has an addi-
tional option of playing a boobytrap strategy. If one of the players chooses this
strategy, the other player’s best-response strategy is cooperate, while the choice
of the strategy defect is associated with player’s worst personal payoff in this
game. If both players choose strategy boobytrap, each of them gets a payoff
higher than the one associated with the Nash equilibrium (defect, defect).

64A player expresses a common belief in rationality if s/he believes that every player is
rational, believes that every player believes that every player is rational, believes that every
player believes that every player believes that every player is rational, and so on ad infinitum.
A common belief in rationality implies that neither of the players believes that his or her
opponents will choose a strategy that is not a best response to his or her beliefs about the
opponents’ strategy choices. It also implies that neither of the players believes that his or
her opponents will ever play a strictly dominated strategy. For a formal discussion of this
concept, see Perea 2012: 68-124.
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Strategy profile (defect, defect) is not a Nash equilibrium, since both players
have an incentive to deviate from this profile by choosing the strategy cooperate.
However, any individually advantageous unilateral deviation from this strategy
profile does not harm any of the players of this game: if one of the players chose
to deviate from the agreement (boobytrap, boobytrap), the player who plays the
strategy boobytrap gets the same payoff of 29, while the deviating player gets a
slightly better payoff of 30.

The experimental results seem to suggest that players identify the strategy
profile (boobytrap, boobytrap) as a feasible agreement of the game: the major-
ity of participants ended up playing strategy profiles (boobytrap, cooperate),
(cooperate, boobytrap) and (cooperate, cooperate), and such behaviour is only
consistent in the light of a belief that the opponent will choose a boobytrap

strategy65.
Misyak and Chater’s suggestion has two important implications. First, if

social agents really use a less restrictive criterion of feasibility then, in some
games, the set of feasible agreements becomes broader, and the BE solution of
the game may be a non-equilibrium strategy profile of the game. For example,
consider the game suggested by Hargreaves-Heap and Varoufakis (figure 14):

C1 C2 C3

R1 1, 1 100, 0 −100, 1

R2 0, 100 1, 1 100, 1

R3 1,−100 1, 100 1, 1

Figure 14: A Game with a Risky Nash Equilibrium

This game has a unique pure strategy Nash equilibrium (R1, C1). Note,
however, that the row player can secure, with absolute certainty, the same payoff
by playing his or her maximin strategy R3, and the column player can secure
the same payoff by playing maximin strategy C3. Playing a Nash equilibrium

65The experimental results reveal that more than 48% of participants ended up playing
strategy profile (cooperate, cooperate), 30% of participants ended up playing strategy profiles
(boobytrap, cooperate) and (cooperate, boobytrap) and 4% ended up playing strategy profile
(boobytrap, boobytrap). There were no players who ended up playing the Nash equilibrium
(defect, defect). Choosing a strategy cooperate is a best-response to a belief that the opponent
will play strategy boobytrap, but this choice is not rational in the light of a belief that the
opponent will play an equilibrium strategy (defect). Some of the players’ decision to stick to
the strategy boobytrap can be explained by a bit more sophisticated considerations of strategic
risk: if the opponent predicts that the player will deviate from the profile (boobytap, boobytrap),
s/he can best respond by playing strategy (defect) (this happened in 13% of the observed
cases). A player who expects the opponent to expect his or her deviation is better off by
playing the strategy boobytrap. For a detailed discussion of the experimental results, see
Misyak and Chater 2014: 1-9
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strategy is risky: if the opponent plays his or her maximin strategy, the player
who plays a Nash equilibrium strategy will end up with the worst possible
personal payoff. Therefore, it seems that Nash equilibrium (R1, C1) is not a
particularly compelling solution of this game, and it seems reasonable to expect
that rational players will end up playing their maximin strategies66.

Notice that maximin strategy profile (R3, C3) satisfies the feasibility crite-
rion suggested by Misyak and Chater. If one of the players chose his or her
maximin strategy, the other player would have an incentive to defect. However,
any personally advantageous deviation from the maximin strategy profile would
not affect the payoff of the player playing the maximin strategy. If both players
were to deviate from the agreement, they would end up playing strategy profile
(R2, C2), which, for each player, is associated with the same payoff as the one
associated with the maximin strategy profile (R3, C3).

If the players looking for a BE solution of the game were to adopt the afore-
mentioned feasibility criterion67, they would identify both the Nash equilibrium
(R1, C1) and the maximin strategy profile (R3, C3) as BE solutions of this game,
and would therefore face a second-order coordination problem. In a situation
of such strategic uncertainty, the players should assign a positive probability to
the event where the players fail to coordinate their strategy choices (that is, the
events where players end up playing either strategy profile (R1, C3) or profile
(R3, C1)), and so they should play the maximin strategy profile (R3, C3), rather
than Nash equilibrium (R1, C1).

Second, the BE solution may be relevant in explaining social agents’ out-of
equilibrium choices in games with inefficient Nash equilibria. The Boobytrap
game is an example of a game with a unique inefficient Nash equilibrium. If
players looking for a BE solution of the game were to adopt the feasibility
criterion suggested by Misyak and Chater, they would identify a more efficient
feasible solution of the game – strategy profile (boobytrap, boobytrap).

5.2 The Role of BER in Cooperative and Repeated Social

Interactions

So far, the discussion of the BE solution was based on the assumption that
players operate in non-cooperative context were communication is not possible.
In such non-cooperative contexts, the set of feasible agreements is limited to the
set of Nash equilibria of the original game. In most games where players have
conflicting preferences over the pure strategy Nash equilibria, the only feasible

66for an extensive discussion of this problem, see Hargreaves-Heap and Varoufakis 1995:
61-68.

67A thorough analysis of the reasons of why social agents would adopt the BER approach
in games with unique Nash equilibria fall outside of the scope of this paper. However, exper-
imental evidence suggests that people seem to be able to compare the Nash equilibria of the
game in terms of their efficiency, or in terms of risk associated with playing a Nash equilibrium
strategy (see, for example, Colman and Stirk 1998: 279-293). It seems reasonable to assume
that players could identify the inefficiency of a unique Nash equilibrium by comparing it with
other strategy profiles of the game, and then search for a more efficient or less risky feasible
solutions.
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BE agreement is a mixed strategy Nash equilibrium. In general, mixed strategy
Nash equilibria tend to be inefficient, and so the benefit-equilibrating solution
of such games is, in general, inefficient.

There are few real world interactions where individuals face one-shot non-
cooperative games in game theoretic sense. In most social interactions, players
have some means of communicating with each other, and/or they interact on
a more or less regular basis. Even a relatively limited level of communication
enables the players to implement the correlated equilibria of the game, thus
making coordination much more efficient.

For example, consider the aforementioned Battle of the Sexes game (figure
9). In non-cooperative environment, the only feasible BE solution of the game
is a mixed Nash equilibrium. This solution is clearly Pareto inefficient: for both
players, the expected payoff from playing a mixed Nash equilibrium is 2 – lower
than the expected payoff that they could get from playing either of the pure
strategy equilibria.

In cooperative setting, however, players could implement a more efficient BE
solution by agreeing to play each pure strategy Nash equilibrium with proba-
bility 1

2 . The expected payoff of each player from implementing this agreement
would be 4.5, and this BE solution would be weakly Pareto optimal. For ex-
ample, two individuals could agree on a convention that, whenever they face a
Battle of the sexes game, they will toss a fair coin, and follow a pre-agreed co-
ordination plan. The players could also roughly approximate the BE correlated
equilibrium by agreeing to coordinate their actions by date (with even days
representing one pure strategy Nash equilibrium, and odd days representing an-
other) or even by clock (with even hours representing one pure strategy Nash
equilibrium, and odd numbers representing another). Given the context where
players can communicate and establish a coordination plan, the list of correlat-
ing devices that players could use for implementing a correlated equilibrium is
virtually endless.

Given this possibility, it is natural to ask whether benefit-equilibration plays
any role in real-world social interactions, where players can communicate and/or
engage in repeated interactions with each other.

A conclusive answer to this question cannot be given without an extensive
empirical study, yet very basic empirical observations of social agents’ behaviour
suggest that benefit-equilibration does play a role in social interactions. People
often face situations where their personal preferences over the feasible combi-
nations of joint actions do not perfectly coincide. For example, friends and
couples repeatedly face situations which are structurally similar to the Battle
of the Sexes game (figure 9): each individual wants to engage in joint activities
with the other individual, yet at the same time individuals have conflicting pref-
erences over the types of activities which are available to them. If individuals
were only concerned with coordination, they could easily establish a rule that,
in every Battle of the Sexes type of interaction, one of the individuals is a "dic-
tator", whose preferences always take priority over the preferences of others.
In other words, social agents could establish a convention that, in every Battle
of the Sexes game, a pure strategy Nash equilibrium of the game preferred by

36



a particular individual or a particular type of individual (say, a person with a
special social status) will always be played. Such convention would ensure a
successful and strictly Pareto efficient coordination of players’ actions.

There is no denying that such conventions do exist, especially when it comes
to individuals who stand in a relationship that they deem asymmetric. For
example, in many cultures, it is not uncommon that an individual considered
to be the head of the family makes the final choice in situations where family
members have conflicting preferences over alternative courses of joint actions.

On the other hand, in social interactions where players perceive their roles
as symmetric, such conventions are far less prevalent. Friends or couples rarely
follow a convention that one individuals’ preferences always have a decisive role
in determining the course of joint actions. In a considerable number of cases,
individuals resolve such conflicts of interests either by using an improvised "lot-
tery", such as the Rock-Paper-Scissors game, or, in cases where such conflicts
are expected to be recurring, by taking turns at playing the role of a "dictator"
whose preferences over the alternative courses of action determine the joint ac-
tions of the group. For example, friends and couples often take turns in deciding,
what kind of activities they will engage in together on their leisure time. Such
randomized correlated equilibria are not strictly Pareto optimal (although they
may be weakly Pareto optimal). The social agents who deem their relationship
symmetric may be motivated to find a resolution of the conflict which would
ensure a symmetric allocation of the benefits associated with the feasible joint
actions. This may be the reason of why players choose to randomize between the
pure strategy Nash equilibria, rather than play one of the pure strategy Nash
equilibria of the game. In games where players cannot meaningfully compare
their personal payoff gains, an ordinally egalitarian solution seems to be one of
the simplest and intuitive symmetric solutions of players’ conflicts of personal
interests.

6 Conclusion

Misyak and Chater’s Virtual Bargaining theory, which relies on Nash bargain-
ing solution, is the first attempt to apply the hypothetical bargaining theory to
a general class of non-cooperative games. In this paper I have proposed some
arguments against the use of the standard Nash bargaining solution for mod-
elling players’ hypothetical reasoning in non-cooperative games. My arguments
focused on the standard bargaining models’ reliance on the existence of a unique
reference point – a condition which is not satisfied by games with multiple Nash
equilibria – as well as the failure of the Nash bargaining theory to differenti-
ate potential agreement points in terms of players’ personal benefit allocations
associated with them. I attempted to fill this gap by proposing a model of
Benefit-Equilibration Reasoning, which does not depend on the existence of a
unique non-agreement point, and offers an explanation of how players can resolve
the conflict of their personal interests in games where interpersonal comparisons
of payoffs are not meaningful. I have shown that BE solution can be applied
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to non-cooperative games where payoffs are assumed not to be interpersonally
comparable.

While the proposed model seems to offer an intuitivelly compelling story
of how social agents resolve non-cooperative games, further empirical tests will
need to be constructed to test its empirical validity. In principle this task is
possible, since BER model provides testable predictions in many experimentally
relevant games.

The second area requiring further research concerns cases where the proposed
model does not yield a unique solution. As an example, consider the Extended
Hi-Lo game (figure 11):

Hi1 Hi2 Lo

Hi1 10, 10 0, 0 0, 0

Hi2 0, 0 10, 10 0, 0

Lo 0, 0 0, 0 9, 9

Figure 15: The Extended Hi-Lo game 1

There are two BE solutions of this game – pure strategy Nash equilibria
(Hi1, Hi1) and (Hi2, Hi2), and so the ordinal bargainers would face a second-
order coordinations problem. The model proposed in this paper does not offer
an answer of how players would coordinate their actions in such games.

It must be stressed that the suggested bargaining model should not be viewed
as a coordination theory, but rather as a theory of how players may use the com-
monly known information about the payoff structure of the game in identifying
the feasible and mutually beneficial equilibria in non-cooperative games. In
games with a unique BE solution, the ordinal bargainers can coordinate their
actions merely by identifying the BE solution of the game. In game with mul-
tiple BE solutions, however, the bargainers would have to use some additional
decision rules to coordinate their actions. For example, they could choose their
BE strategies randomly (that is, they could play their BE strategies with equal
probabilities), or they could considering those ordinally egalitarian equilibria
which are not maximally individually advantageous. For example, in the afore-
mentioned extended Hi-Lo game, BE deliberators could choose the egalitarian
Nash equilibrium (Lo, Lo) which, although less personally advantageous for both
players than Nash equilibria (Hi1, Hi1) and (Hi2, Hi2), is a unique second-best
option for both players. By playing their part in realizing a Nash equilibrium
(Lo, Lo), both players could achieve a sure payoff of 9, which is higher than the
expected payoff of 5 from choosing strategies Hi1 and Hi2 randomly.

The BER model suggested in this paper could, in principle, be modified to
include uniqueness into the formal characterization of the BE solution. In that

38



case, the outcome (Lo, Lo) would be the unique BE solution of this game.
However, such ad hoc modifications would be conceptually problematic.

First, the solution could not be taken to represent the outcome of the actual
bargaining process, since, in open negotiations, players would definitely agree
on playing either the Nash equilibrium (Hi1, Hi1), or the Nash equilibrium
(Hi2, Hi2).

Second, such a modification of the suggested model would not resolve the
problem in every possible scenario. For example, consider the following version
of the Extended Hi-Lo game:

Hi1 Hi2 Lo

Hi1 10, 10 0, 0 0, 0

Hi2 0, 0 10, 10 0, 0

Lo 0, 0 0, 0 5, 5

Figure 16: The Extended Hi-Lo game 2

In this game, the players would get the same expected payoff from random-
izing between strategies (Hi1) and (Hi2) as they would get from playing Nash
equilibrium (Lo, Lo).The question of what the players would choose to do in
such situations of strategic uncertainty cannot be answered with the tools of
the theory suggested in this paper, and further research into the psychologi-
cal factors that influence players’ belief formation process may be necessary to
explain coordination in such games.
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