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1 Introduction

We describe here how an insurance company decides on the price schedule for
insurance contracts against certain accidents (or medical needs) which it offers
on the basis of the choices made by the customers themselves regarding the
contracts that they purchase. The return from an insurance contract is a random
variable which depends on the accident probability of the individual customer.
While an individual may generally be assumed to be well-informed about his
accident probability, the insurance firm has only imperfect information about
this probability and, consequently, can only observe the relation between the
type of insurance bought by different customers and their accident frequencies.
This paper is concerned with the effect of such self-selecting information devices
on the policy chosen by a profit maximizing firm.!

We consider an insurance firm that establishes a price schedule for insurance
contracts and allows customers indiscriminantly to determine the size of the
contract. Accident-prone individuals are expected to purchase relatively large
insurance policies, and may typically be willing to pay a higher price for them.
It has thus been argued that this "adverse selection" aspect will induce firms
to charge proportionately higher prices for large contracts. This argument dis-
regards, however, the effect of the distribution of customers (by accident prob-
abilities) on the optimum policy. If a sufficiently large number of customers is
concentrated in the high-probabilities range, it may be profitable, depending on
demand characteristics, not to charge too high a price for large contracts. We
first consider a simple case in which the firm chooses a profit-maximizing linear
policy, setting a quantity constraint on the size of permitted policies. The policy
chosen by the monopoly is then compared with a policy of the same type that
maximizes social welfare, defined as the sum of individuals’ expected utilities.
It is shown that the monopoly chooses to provide a lower return on contracts, or
sets a lower quantity constraint, or both, compared with the social optimum. A
second example provides an explicit solution for the profit-maximizing nonlinear
schedule chosen by the firm. This example suggests that the schedule need not
be convex throughout, due to the interaction of demands and the distribution
of customers. The performance of markets when buyers or sellers have imper-
fect information concerning some relevant attributes has been of much recent
interest. The implications for general equilibrium of contingent insurance con-
tracts are discussed by Rothschild and Stiglitz (1976). Other cases involving
labor markets are discussed by Spence (1974), Arrow (1973), and Salop and
Salop (1976). This paper extends these works by allowing for nonlinear price
schedules (including quantity constraints). The results, however, pertain only
to special cases and can therefore be regarded only as illustrative. In solving
the nonlinear problem, we make use of the methods developed to solve a simi-
lar problem in the theory of optimum income taxation [see Mirrlees (1971) and

'nsurance firms also look, of course, for objective characteristics (health, age, etc.) which
are correlated with accident probabilities, but these (costly) screening devices generally still
leave a great deal of variability within each group. For simplicity, we disregard the problem
of optimum investment in such examinations of customers’ status.



Sheshinski (1976)].

2 The general problem

Consider a group of individuals, all of whom have some risk of suffering an
accident, which, if it occurs, does the same damage to each person. In the
absence of insurance, all individuals are assumed to have the same income in
each state: yo (yo > 0) if no accident occurs and y; (y; > 0) if an accident
occurs. An insurance firm offers insurance contracts specifying that if a premium
x (x > 0) is paid, the insured receives nothing if no accident occurs and receives
z+s(z) (s(x) > 0) if an accident occurs. Thus, s(x) is the compensation, above
the premium, paid in case of an accident.

Individuals choose their optimum insurance contracts by maximizing ex-
pected utility U. We assume that all individuals have the same strictly concave
von Neumann-Morgenstern utility function u (), but differ with respect to the
probability with which they suffer accidents. We call an individual with an ac-
cident probability of p (1 > p > 0), a p-individual. Individuals are assumed to
know their accident probabilities accurately. Thus, the p-individual maximizes
his expected utility

U(p,z) = (1 =p)ulyo —x) +pu(ys + s (x)) (1)

with respect to x.

We assume that the utility function w (-) is twice differentiable and u’ > 0,
u” < 0 for all x > 0. Further, in order to ensure that individuals choose to have
a positive consumption in both states, we assume that u’ (0) = oo. Suppose,
finally, that the insurance policy s (+) is also twice differentiable, with s’ > 0 for
all z > 0.

The first-order condition for a maximum of (1) is then

—(1—p)u (yo—2z)+pu' (y1 + s (x))s" (z) <0
[1(1—p)u (yo —z) +pu' (11 + s (x)) s (x)] =0

The second-order condition for a unique global maximum is assumed to hold

(2)

(1=p)u" (yo — ) +pu” (1 + 5 (2)) 8" (@) + pu’ (Y1 + 5 (2)) 8" () <O (3)

forall 1> p >0 and yo > « > 0. From (2) and (3) it is seen that the optimum
r is increasing with p. Hence, given our assumptions, there exists a number p,
1> p >0, defined by the condition

—(1=p)u (o) +pu' (1)s (0) =0 (4)
such that the optimum of the p-individual z (p) is given by
0 p<p
z(p) =1 . = (5)
{fﬂ () p=p



where Z (p) is determined by the condition
—(L=p)u'(yo — &) +pu’ (y1 + 5 (2)) ' (2) (6)

By (3), (4) and (6),  (p) = 0 and d&/ap > 0 for p > p; that is, the size of the
optimum policy continuously increases with the probability of accident.

The basic assumption concerning the imperfect information available to the
insurance firm is that it cannot distiguish among individuals according to their
accident probabilities, except by their market behavior. Any policy offered is
therefore open to all individuals in the market without discrimination.

For a given policy s(-), expected profits of the form from a p-individual
R[p,s(-)], are

Rlp,s()]=(1—-p)z(p)—ps(z(p) (7)
where x (p) is given by (5).

Let there be f (p) (f > 0) p-individuals in the market. Normalizing the size
of the potential customer population to unity, we may regard f (p) as a density
function. Total expected profits of the form, R [s (-)], are then given by

1

R[s ()] = / Rip,s ()] f (p) dp (®)

The insurance firm is assumed to have information on individuals’ behavior
x (p) and on the density function f (p), and its objective is to find the policy
s (+) that maximizes (7).

Methods of the calculus of variations can be applied to solve this problem.
The standard theory, however, has to be extended in order to take into account
the constraint imposed by (2). The structure of this problem is similar to the
problem of the choice of an optimum income tax function [see Mirrlees (1971)
and Sheshinski (1976)]. As in that problem, the first-order conditions for the
appropriate maximization do not provide much insight into the method or the
properties of the optimum function. We shall therefore proceed to consider
special cases for which an explicit solution can be found. The first case restricts
the policy chosen by the firm to be linear with a ceiling on size. The other cases
allow nonlinear policies but restrict the form of the utility function.

3 The optimum linear policy with a ceiling

Suppose that the insurance firm offers a policy which is in fixed proportion £
(8 > 0) to the premium paid, provided the size of the premium does not exceed
a certain level, say, Z.2 Thus,

s<x>{5‘”7 reT (9)

6T, *>T

2This violates our assumption that s(x) is differentiable at x, but the required modification
is incorporated in equation (4).



If the quantity constaint 7 is effective, then there exist numbers p and p,
1>p>p >0, defined by

—(1=p)u (yo —Z) +pu' (y1 + T) =0 (10)

—(1=p) v (yo) +p' (1) B =10 (11)

The optimum of the p-individual is now given by

where Z (p) is determined by (6).
—(1=p)y (yo— &) +pu' (y1 + BE) B =0 (13)
By (10) and (13), & (p) = 7. Total expected profits R (3, T) are given by
p 1
R(6.) = [ (1= ) -85 0)) )dp+ [ (1= )7~ pBmbs] ] () dp
P P
(14)
Using (10), (11) and (13), the first-order conditions for an interior maxi-
mum of (14) w.r.t 8 and T are, respectively,

a];—/(l—p—pﬂ)g;f(p)dp—/pf:(p)f(p)dp—x/pf(p)dp—0 (15)
?j/(lp)f(p)dpﬂ/pf@)dp (16)

Differentiating (13), we have
0% —p[u (y1 +BE) +u” (y1 + BT) B
o8 (L—p)u”(yo — &)+ pu” (u1 + BT)
Substituting (17) into (15), using (13), we obtain

OR / [u (o — &) — " (yo — &) & — (' (41 + B&) +u” (y1 + Bi) B&)
(1 —=p)u” (yo — ) + pu” (y1 + B) 32

xp(l—=p)f(p)dp—= | pf(p)dp=0

'ﬁ\\“_l

(18)



Equations (10), (11), (16), and (18) determine the profit-maximizing values
of p, p, Z, and /. Notice that for small 3, the second term in (18) is small, and
the sign of (18) is then the same as the sign of v/ (y1) —u’ (o), which is positive,
assuming that yg > 1.

Obviously, depending on yg, y1 and the function f(p), conditions on wu(-)
may have to be imposed to ensure the existence of an interior optimum and the
second-order conditions. We shall explore these conditions for a special case of
the above model.

Let u (z) = logz. For this case, by (13), & = pyo — [(1-P)v1/g]. By (10) and
(11), we have

p= yl/(5y0+y1)7 p= (y1+ﬁf)/(/gy0+y1) (19)

and the first order condition (18) becomes

27]; = Klﬁp) Y1 —pzyo] f(p)dp—i/pf (p)dp=0 (20)

Equations (16), (19), and (20) determine the optimum values of p, p, Z, and
B. From (20), the optimum § satisfies

i [T (1=p)* f (p)dp
8= — - (21)
vo [y p°f (p)dp + 7 [ pf (p) dp

In order to have 8 > 0, it is necessary (as assumed) that y; > 0. It can be
shown that there are values of yy and y; which yield an interior solution and
that satisfy the second-order conditions.

1/2

4 Comparison with the socially optimal policy

We want to compare the insurance policy chosen by the monopoly with a policy
which is socially optimal under the same informational structure. Thus, the
social planner, as the firm, cannot identify individuals by their accident prob-
ability, but knows the aggregate distribution f (p) and the relation & (p). We
adopt the utilitarian objective, where social welfare W is given by the sum of
individuals’ expected utilities:

1

WZ/U(p)f(p)dp=/[(1—p)u(yo)+pu(y1)]f(p)dp

(=)

+ [ (A =p)ulyo — 2) +pu(y + B2)] f (p) dp (22)

+ [ [ =p)ulyo —T) +pu(y + 57)] f (p) dp

S Y~



Consider the problem of maximizing (22) w.r.t § and Z, subject to a budget
constraint

/[(1—p) (p) —pBi (p / p)T—pBZ]f(p)dp—R=0 (23)

for a given R > 0. To make the socially optimal policy comparable with the
monopoly’s policy, R should be equal to the maximum value of (14).

Using (10)-(13), the first-order conditions for an interior maximum can be
written

ow _ MJr/u’(yl+ﬂj¢)j:pf(p)dp+u'(y1+6E)T/Pf(p)dp:0
p

a8 M ap
P
(24)
1
%V a”’ +/ Vo (yo — ) + p (g1 + BT) B] f (p) dp = 0
P

(25)
where p > 0 is a constant (Lagrange multiplier).

In order to compare the socially optimum values of 5 and T determined
by the system (10), (11), (13), (24), and (25) with the values chosen by the
monopoly, we need to determine the sign of 9°R/agoz. By (16),

!
0’R op
=Bp+p—1 26
9507 (Bp+D )f()aﬁ pf (p)dp (26)

p

Since 9°R/oz* = (Bp+Dp — 1) f (D) 95/oz < 0 and, by (10), 9p/az > 0, it follows
that 6p +P — 1 < 0. Now, differentiating (10), we obtain

9p _ P (yr + BT) +u” (y1 + fTPT)]
op w (yo—T)+ o (y1 + BT) B

Hence, the sign of (26) is negative provided 97/sg > 0. The latter holds, by
(27), when u”(z)z/u(z) <1.

Assume, therefore, that 9°F/agaz < 0. Since the last two terms in (24) and
the last term in (25) are positive, the position of the curves 9W/ss = 0 and
OW/sz = 0 relative to the curves 9R/sg = 0 and 9R/az = 0, is as indicated in
Figure 1. (The way in which these curves intersect is determined by second-
order conditions.) The monopoly optimum is indicated by M and the social
optimum by P.

It is seen that the social optimum provides a higher marginal return (5, or
a higher ceiling T, or both, compared with the policy chosen by the monopoly.
Clearly, the social optimum cannot have a lower marginal return and a lower
ceiling than the monopoly’s policy.

(27)



Figure 1:

5 A nonlinear example

We shall now consider a case in which, for a particular class of utility and density
functions, an explicit nonlinear optimum policy can be derived.
Let u (y) = ¥'/? and define Y and S to be

Y =(o—2)"% S=(n+s)" (28)
Expected utility is then
U=(1-p)Y +pS (29)

in the Y'S plane indifference curves are straight lines with slope 7 = (1—p)/p.
Since Y and S are strictly monotone functions of =, one can write S uniquely
in terms of Y, S = S(Y). For the individual to have a unique optimum, the
function S(Y') has to be strictly concave. We shall have to check later whether
the optimum solution satisfies this condition.

The p-individual’s maximization condition is

S (Y)=-m (30)
which, together with the constraint S = S(y), solves for the optimum pair

(S (m),Y (m)). From (30),
dS/dnx = —mdY /dx (31)



By (7), (8) and (28), expected profits are given by
RIs()) = [ [om +30 = ¥? (5) 7w = 5° (m)] g ) dr (52)
0

where g (7)dr = —pf (p) dp. Since yom + y1 is not controlled by the firm, its
objective can be restated as

o0

min O/ (V2 (m) 7+ 82 (m)] g () dr (33)

subject to (11). Forming the Lagrangean function, the Euler equations with
respect to S (7) and Y () are

L\ () g ()] = 25 () g () (34)
% [\ () g ()] = 2V () mg () (35)

where A (7) is the "shadow-price" function. Combining (34) and (35), we may
write these as

(Yar) [(Y () = S (7)) mg ()] = S (7) g () (36)

Equations (36) and (31) form two first-order differential equations which
may be solved for YV (7) and S (), ince mg(w) is specified.

As an example, consider the density function g (7) = 1/=. By definition, this
implies that f(p) = 1/(1—p)p? , which is a U-shaped density with concentration
of individuals at the two extremes. Condition (36) become

(4Y/ar) — (45/dm) = S/x (37)
Substituting (31) in (37), we have
1/Sds/d7r = —1/(1+7r) (38)
with solution
S (m) = 9/(1+m) (39)
for some constant a > 0. From (19) and (11),

dY/dw = a/Tr(1+7r)2 (40)

with solution

a s
Y = e 1 e 41
(r) =0+ i+ ator (1) (a)

for some b > 0. When 7 — oo (p — 0), Y (7) — b. Since p — 0 implies z — 0

and hence Y () — yy'?, it follows that b = y5/* .



To make sure that Y > 0 (yo > z), we assume that there is a positive lower
bound on 7, denoted 7o, which satisfies Y (mg) > 0.

The final step is to minimize (33) with respect to a, but we shall delete this
condition.

Notice also that the concavity of S(Y), required for the uniqueness of the
individual maximization solution (30), is satisfied. By (39) and (40), ¢*S/ay?> =
_a‘/ﬂ'(l—ﬂ')z < 0.

Equations (39), (31), and (28) determine implicitly the optimum policy s(z).
Differentiating, using (28), (38), and (40), we obtain

ds  ds/ar S(m)dS/in S (m)m

Az War . V() ar Y () 0 (42)

Also, using (39)-(42), we have

d(ds\_ S [, e ]_ S N
dm <d$) Y2(m)(1+m) _Y( ) 1_;_74 Y2(7) (1 +7) [Y () = S (m)]
S (7)

T g (= - Gt s @)

s e () »

Since dz/dp < 0, we have from (43) that 4”s/dz2 has the opposite sign of Y — S =

(Yo — o (y1 +s (x))1/2. Assume that yo > y; (income in case of accident
lower than with no accident). If individuals choose to have in case of accident
an income inclusive of insurance premium that does not exceed income net of
insurance payment in case of no accident, then Y — 5 > 0. It would then follow
that d*s/dz*> < 0. However, one can find parameter values in the above example
that will induce individuals with high accident probability (small 7) to choose
to insure themselves for a higher income in case of an accident than their income
in the absence of one. In such a case, 4°s/ds? is positive at large = (and negative
at smaller z).
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