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Abstract

This paper investigates volatility switching in the Shanghai Stock Exchange

(SSE hereafter,) using several recently developed techniques. They can be catego-

rized into CUSUM type tests and Markov-Switching ARCH models. By detecting

and dating switches with these models, we are able to show the volatility dynamics

in SSE. Investigating the events in SSE around the switching date suggests that reg-

ulation improvements significantly reduce the volatility of the underlying market.

Furthermore, the empirical results show that outliers can have significant impact

on the conclusion and thus should properly be removed.
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1 Introduction

Modelling stock market volatility has been one of the most actively discussed topics

in empirical finance. Some asset pricing models, such as the CAPM (Capital Asset

Pricing Model), and the Black-Scholes Option Pricing Model use the volatility of asset

returns as a key input factor. Despite the huge success of such models, the standard

modelling techniques with regard to volatility, such as the ARCH and GARCH models,

have some fundamental flaws. It is often assumed that the parameters of such models are

constant over time, but, applied to data with a long time series, this assumption may be

violated. Among others, Lamoureux and Lastrpes (1990) argue that there may be a high

persistency of shocks in the GARCH model because of occasional shifts in the parameters:

thus, a more appropriate model should be chosen which would allow parameters to shift

in the estimation.

According to the current literature, there are basically two types of technique used

in analyzing the shifts in volatility models. One of them is the CUSUM type of tests.

Some earlier work such as Inclan and Tiao (1994) uses a centered cumulative sum of

squares to detect changes in volatility. Their methods have been applied to the volatility

of the series rather than to any underlying models. Kokoszka and Leipus (1998) and

Kokoszka and Leipus (2000) also use the idea of CUSUM but apply it to shifts in an

ARCH process. Lee et al. (2003) further extend the basic idea to the GARCH(1,1)

model. All of these techniques are to be used for detecting and dating a single break.

An additional important contribution by Inclan and Tiao (1994) is to develop an ICSS

(iterated cumulative sum of squares) algorithm to deal with multiple breaks, which can

be extended to other techniques mentioned above. Due to their simplicity, CUSUM

techniques have been widely used. However, according to Andreou and Ghysels (2002),

these tests often have low power in small samples. Therefore it is necessary to make sure

of a sufficiently large sample size, say, over 500 observations. Furthermore, Franses and

van Dijk (1999) suggest that the existence of outliers is also important and can affect the
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results significantly. Thus correcting for outliers before the test is necessary.

Another method of modelling occasional shifts in volatility models is to incorporate the

features of Markov-switching into ARCH models. Cai (1994) developed such an approach

by taking into account occasional shifts in the asymptotic variance of the Markov-ARCH

process. Hamilton and Susmel (1994) proposed another Markov-switching ARCH model

(MSARCH hereafter), and claim that the model offers a better fit to data and hence

provides better forecasts. It is possible to generalize this idea to the GARCH model and

also extend it to the MSGARCH model. However, the path dependent problem, which

requires the entire history of the state variables for the MSGARCH conditional variance,

makes this estimation unfeasible. Several studies have proposed other ways of solving

the problem, for example Dueker (1997), Chaudhuri and Klaassen (2001) and Bauwens

et al. (2007). They use either an approximation of some of the most recent states (such

as in Dueker, 1997), or the Bayesian method (as in Bauwens et al., 2007). Although these

models claim to improve the forecasting of volatility, the probability of shifting or regimes

has not been affected to any great extent. The simple MSARCH can provide as good

a regime estimation as the more complicated MSGARCH models. Thus, the MSARCH

model is used to identify regime switching properties in the present paper.

The properties of volatility of the stock returns in SSE will be investigated using the

two approaches mentioned above. As an emerging market with less than 20 years of

history , SSE is still developing. It experienced high volatility in its opening stages, like

other stock markets, but the volatility reduced significantly thereafter. This reduction

of volatility is necessary to build up and maintain the smooth operation of the capital

market. If we can detect volatility switching and date the transition accurately, then we

can identify what factors or policy changes may influence the level of volatility, which

can provide useful information to the policy makers and provide further implications for

the other new developing stock markets.

This paper has three main objectives: the first is to detect and date volatility switching

in SSE; the second is to show whether the existence of outliers can affect the estimation
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significantly and find a result which is outlier robust; and the third objective is to inves-

tigate the reason that volatility changes over time. The organization of this paper is as

follows: Section 2 briefly reviews the methods used in this study. Section 3 discusses the

data and presents the empirical results. We then discuss improving the regulations in

SSE so as to identify possible reasons for volatility switching. The last section provides

some concluding comments.

2 Methods to detect volatility switching

2.1 CUSUM type tests

2.1.1 Inclan and Tiao (1994) CUSUM test and the ICSS Algorithm

Inclan and Tiao (1994)’s method (IT test hereafter) is one of the earliest attempts to deal

with changes in volatility. They start with an investigation of changes in the variance of

a sequence of independent observations. Their test statistic is the centered cumulative

sums of squares. Consider a sequence of independent random variables of {νt}, t = 0, ..., T

with zero mean and time varying variance σ2
t . The statistics (called the DK statistics)

are written as:

Dk =
Ck

CT
− k

T
, k = 1, ..., T (1)

Where Ck =
∑k

t=1 ν
2
t is the cumulative sums of squares. For a series with homogeneous

variance, Inclan and Tiao prove that the adjusted DK statistics:
√

T/2 · DK are dis-

tributed asymptotically as a Brownian bridge. To investigate whether there is a shift

in variance, we need to look at the significance of the maximum of the adjusted DK

statistics where the position of the maximum value of the statistics identifies the timing

of the shift in volatility.

In case of a single shift in variance, the DK statistics provide a very simple solution.

However, if there is more than one shift, especially when the shifts are in different di-

rections, the result is affected by the “masking effects” and is not reliable. In order to
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deal with this problem, Inclan and Tiao proposed an iterative procedure called the ICSS

(iterated cumulative sums of squares) algorithm. This is a three step procedure. The

principle of this algorithm is very simple: the maximum of DK statistics are successively

applied to sub-samples identified by break points previously identified. By isolating those

breaking points, we can reduce the “masking effects” and detect the true timing of shifts.

2.1.2 Testing for breaks in the ARCH(∞) process

Inclan and Tiao (1994) consider only variance change in a sequence of independent obser-

vations. It may be necessary to look at more general cases. Kokoszka and Leipus (1998)

and Kokoszka and Leipus (2000) modified the simple CUSUM test to detect volatility

switching in the return process which follows the ARCH(∞)(KL test hereafter). Suppose

a series of return {rt} follows the ARCH(∞) process, let Sk =
∑k

t=1 r
2
t as the cumulative

sums of squares similar to the Ck in Equation 1, the statistic (we call it AK) is written

as:

Ak =

(

Sk√
T

− k · ST

T ·
√
T

)

, k = 1, ..., T (2)

Kokoszka and Leipus (1998) show that the adjusted AK statistic AK/σ, where σ is the

standard error, converges asymptotically to a Brownian bridge, which has a similar prop-

erty to the Inclan and Tiao (1994) adjusted DK statistics. For the estimation of standard

error σ, Andreou and Ghysels (2002) suggest using the den Haan and Levin (1997) Het-

eroscedasticity and Autocorrelation Consistent (HAC) estimator. They also claim that

the Kokoszka and Leipus (1998) AK test can be used for more general processes. In case

of multiple breaks, the ICSS algorithm can be applied.

2.1.3 Testing for breaks in the GARCH(1,1) model

Although AK statistics can be used to deal with more general series than DK statistics,

they share the same approach, that both of them test the series rather than any underlying

model. A test of shifts of parameters in a model such as GARCH may be more revealing.
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Lee et al. (2003) investigate the problem of testing parameter shifts in a GARCH(1,1)

model using the principle of CUSUM tests (the LTM test hereafter). Their test statistics

are mainly modifications of Inclan and Tiao’s DK statistics and are based on Kim et al.

(2000). The difference is that the test is applied to the standardized residuals {ǫt} of

a GARCH(1,1) model. Let τ represent the standard deviation of squared residuals,

Sk =
∑k

t=1 ǫ
2
t again the cumulative sums of squares, then the test statistic (called the

TK statistic) is given by a similar form to the AK statistic discussed previously. The

adjusted statistic: TK/τ then converges to a Brownian bridge. However, as Lee et al.

(2003) point out, the statistic is not reliable in small samples.

To extend the same principle, we apply the Inclan and Tiao (1994) technique to the

standardized residuals for a GARCH(1,1) model. Under the null hypothesis, if the param-

eter of a GARCH model is constant, then the distribution of standardized residuals is a

white noise process, thus complying with the assumption of Inclan and Tiao. Simulation

results1 show that the extended DK test statistic applied to the standardized residuals

for a GARCH(1,1) model perform better than the LTM statistics although still affected

by the small sample problem.

2.1.4 Outlier detection procedure

An additional concern of the CUSUM tests is that it is necessary to distinguish true

parameter shifts from outliers. The existence of outliers can cause significant “masking

effects” which influence the test results. Therefore, it is important to test and remove

outliers from the series before performing tests. In the present paper, we focus on looking

for shifts in GARCH models, and pay particular attention to detect outliers in such

models. Some recent work by Franses and van Dijk (1999) and Doornik and Ooms (2005)

consider how to perform such a procedure. In this paper, we use a method proposed by

Franses and van Dijk (1999), and first briefly explain the procedure used to detect and

remove additive outliers in the GARCH model. This is mainly based on earlier work

1The results are available upon request from the author.
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by Chen and Liu (1993). The method is simply to consider all observations as possible

outliers, and to test them iteratively.

Consider a simple GARCH(1,1) model with an outlier:

yt = µ+ ǫt + γIt[t = τ ], ǫt = zt ·
√

ht (3)

ht = ωt + αǫ2t + β · ht−1 (4)

Here I[·] as an indicator function means that if t = τ , then I[·] = 1 and zero otherwise.

zt is an i.i.d. process with zero mean and unit variance.

According to Bollerslev (1986), write ηt = ǫ2t−ht, and the conditional variance function

(Equation 4) can be written in the form of an ARMA(1,1) model:

ǫ2t = ω + (α + β)ǫ2t−1 + ηt − βηt−1 (5)

Define a lag polynomial π(L) = 1− π1L− π2L
2 − ... with πj = αβj−1 for j = 1, 2, ...,

this allows equation (5) to be written as:

ηt = π(L)ǫ2t −
α

1− β
(6)

The conditional variance ht is not observed but can be estimated as:

het = ω + αy2t + βhet−1 (7)

Equation (7) can be written as:

het = ht for t ≤ τ (8)

heτ+j = hτ+j + πj(γ
2 + 2γǫτ ) for j = 1, 2, ... (9)
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Let νt = y2t − het , then we have a regression model:

νt = ξxt + ηt (10)

with:

xt = 0 for t < τ

xt = 1 for t = τ

xτ+k = −πk for k = 1, 2, ...

The parameter ξ ≡ f(γ) = −γ2+2γyτ is a function of the magnitude of the outlier, which

can be estimated by the least square in Equation (10). This can then can be converted

to the estimator of the coefficient on outliers γ̂(τ).

Following Chen and Liu (1993), Franses and van Dijk (1999) construct a t-statistic

to test the existence of outliers, which is given by Equation (11) with ση as the standard

deviation of η.

t(γ̂) =
2yτ ˆγ(τ)

ση (Σn
t=τx

2
t )

−1/2
(11)

Since the location of the outlier is unknown, Franses and van Dijk (1999) suggest

using the maximum of the t-statistics of all possible outliers, that is:

tmax(γ̂) = max
1<τ<n

|t ˆγ(τ)| (12)

The statistic is non-standard, but we can use the critical value provided by Franses

and van Dijk (1999, Table1). Once an outlier is found to be significant, it can be removed

from the original series, and then we return to a new search of the dataset without the

outlier. The process is finished when no more significant test statistics are found.
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2.2 Markov-switching ARCH model

Combining Markov-switching with ARCH models is an excellent way of modelling volatil-

ity switching. Although it provides no exact timing of when the shifts occur, MSARCH

models are able to find the probabilities of staying in each regime and also to estimate

the model for each regime simultaneously.

Among all the MSARCH models mentioned in Section 1, Hamilton and Susmel (1994)

develop a model which allows the parameters of an ARCH process to be different in

several different regimes. The transitions in these regimes will follow a first order Markov

process, which suggests that the probability in the current state will depend only on the

most recent state.

prob(st) = j|st−1 = i, st−2 = k, ...) = prob(st = j|st−1 = i) = pij (13)

For the case with n states, the transition probabilities can be expressed in a matrix,

or transition matrix:

P =

























p11 p21 . . . pn1

p12 p22 pn2
...

. . .
...

p1n p2n . . . pnn

























(14)

The summation of any column equals unity, for example p11 + p12 + ...+ p1n = 1.

Hamilton and Susmel estimate the model as follows:

yt = α0 + α1yt−1+, ...,+αpyt−p + ut (15)

ut =
√
gst · ũt (16)

ũt = ht · εt, εt ∼ Gaussian or t− distribution (17)

h2t = β0 + β1ũ
2
t−1+, ...,+βqũ

2
t−q + ξ · I(ũt−1 ≤ 0) · ũ2t−1 (18)
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where I(·) is the indicator function which equals 1 if the statement is true and zero

otherwise. The last term here represents the leverage effects which have been generally

considered in most of the ARCH models. The difference between each state in this model

is captured by the scale factor gst. To analyze the stock return, we mainly use a two

states model with one low volatility and low persistency state and the alternative a high

volatility and high persistency state.

3 Data description and empirical results

3.1 Data description

In this empirical investigation, we use the returns of the composite index of SSEcollected

from DATASTREAM. The full sample is in weekly frequency covers from Sep. 12, 1994

to Sep. 06, 2004 (plotted in Figure 1). This gives us 522 observations in total. According

to the simulation results of Andreou and Ghysels (2002), the CUSUM type tests have

relatively good power with this sample size. Using weekly data can avoid some other

problems, for example, day of the week effect, missing observations etc.

Figure 1 shows high volatility in the earlier stage of our sample and some significant

reduction towards the end of the sample. Viewing the graph of this time series sug-

gests that outliers may exist. Like most of the financial series, we can observe volatility

clustering. Table 1 gives some basic descriptive statistics for the return (the series are

in percentage points). The Kurtosis is 16.9 for the full sample, which is normally con-

sidered to indicate ARCH effects. Additionally, the Engle LM test for ARCH effects

(LM(1)=40.5) is highly significant. The standard deviation of the full sample is 4.956.

However, if we split our sample in half, the statistic turns out to be 6.274 for the first

half and 3.135 for the second half, evidence of a significant reduction in volatility.

A rolling windows estimation is also applied to obtain a better view of the time path

of volatility. The windows size is chosen to be one third of the total observation (n=174).

The rolling standard deviation is plotted in Figure 2 and shows a clear downward trend,
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which suggests that volatility has been reduced in SSE. Another interesting finding from

Figure 2 is that volatility does not fall smoothly, but contains at least one clear structural

shift. For example, there is a significant drop from the window started at May 22, 1995

to the window started at May 29, 1995. Such a significant drop in volatility suggests that

in our observation there may be some outliers or indeed structural breaks. Furthermore,

the rolling standard deviation measures from early 1997 onwards are smaller than those

before this date.

3.2 Empirical results

3.2.1 Results of the CUSUM type tests

In this section, we show the results of the CUSUM type tests mentioned above, including

IT, KL, LTM and IT on GARCH residuals. The Franses and van Dijk (1999) outlier

detection procedure is also used to produce an outlier robust estimation. The main

results are shown in Tables 2 and 3. The absolute value of the DK, AK and TK statistics

are plotted against all possible breaks over the whole time period. They are shown in

Figures 3, 4 and 5, note that the DK statistics are for the IT test on GARCH residuals.

The graphical analysis of the return series show that they are very likely to be affected

by outliers. The Franses and van Dijk (1999) techniques are applied to detect outliers,

and then the outlier robust tests can be performed. The iterative procedure has identified

only one significant outlier. The tmax statistic is 58.722, and it is located on May 22, 1995

or the 37th observation. According to Franses and van Dijk (1999), the size of this outlier

is calculated as 36.46. The function value for the GARCH estimation before the outlier

is removed is -1509.29, whereas it is -1472.08 afterwards. This indicates how significantly

the outlier can affect the estimation.

After removing the outlier, we apply the CUSUM type tests again to obtain the

25% critical value is 14.82. The critical value is sensitive to the size of the parameters; thus it is
necessary to mention here that we use the method described Franses and van Dijk (1999, page 9) to
calculate the critical value.

11



outlier robust test results, which are shown in Table 3. Since we examine the impact of

the outliers for the GARCH model, only the IT and LTM test on the GARCH residuals

are performed here. Comparing the results with those in Table 2, there are significant

difference. First of all, without outlier correction, these tests are not consistent with each

other. The break dates are different for different methods. Secondly, without outlier

correction, the break date tends to be biased towards the early part of the time period,

in other words, biased towards the outlier. After correcting for outliers, both the IT and

LTM test consistently find a main break point at the 148th observation, which is July

07, 1997.

Further evidence on outliers and the benefit of outlier correction can be seen from the

figures which plot the absolute value of DK, AK and TK statistics against all possible

break points. From Figures 3 and 5, we can see the plots being skewed towards the

outlier and having more volatility. After correcting for outliers, the plots of the DK and

TK statistics are smoother and converge on the same break point.

3.2.2 Sub-sample estimation

The next step is to investigate sub-sample properties according to the results found above.

With outlier correction, there is only a single break under the IT test on the GARCH

residuals, whereas we find two breaks for the LTM test. Two break points will be used

to identify the sub-samples.

The break points occur in observations 148 and 407, and this divides the full sample

into three sub-samples: the first (Sample I) starts from Sep. 12, 1994 and goes on to

Jul. 07, 1997 with 148 observations; the second (Sample II) starts from Jul. 14, 1997

and finishes on Jun. 24, 2002 with 259 observations and the last (Sample III) starts

from Jul. 1, 2002 and goes on to the end of the data. This sub-sample division is also

consistent with the analysis from the rolling windows estimation. Table 4 presents the

estimation results. Here the model estimated is GARCH(1,1) with t-distributed errors.

µ is the constant parameter of the GARCH mean equation (Equation 3); ω, α, β are the
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parameters of the variance equation (Equation 4), where ψ is the degree of freedom of

the t-distribution estimated in the model.

The estimation of sub-samples can be summarized as follows. First, the estimation of

standard deviation shows a similar picture to the rolling windows estimation: volatility

falls, but in several stages. The magnitude of reduction from Sample I to Sample II is

quite remarkable, at almost 50% . Secondly, for the GARCH estimation, the results for

the model using the full sample are not accurate. They ignore some critical features of

the underlying data, so that the forecasts using the model will be significantly biased.

Thirdly, the coefficients of ARCH and GARCH terms in the full sample sum to 0.95,

which indicates a highly persistent process and one very close to an Integrated GARCH.

However, as mentioned in the introduction, this may be due to structural shifts and is

consistent with the interpretation of the sub-sample estimation. Although the level of

persistence in each sub-sample is different, we note that the values are generally lower

than the full sample estimation.

3.2.3 MSARCH estimation

In this sub-section, we perform an MSARCH estimation for returns on the SSE composite

index using Hamilton and Susmel (1994) settings. The result of a two-state model is given

in Table 5, together with a three-state model for comparison. The optimal lag order of

the ARCH process is decided via information criteria. These criteria can also be applied

to determine other key options such as the form of the mean equation in the ARCH

estimation and the optimal number of states. Again the error term is assumed to have

a t-distribution with a degree of freedom determined by the data. Since the return of a

financial series often responds to shocks asymmetrically, we also include a factor which

measures this leverage effect.

The parameters in Table 5 are defined as the following: µ is the constant in the

mean equation; ω is the constant in the variance equation; αs is the coefficient of the

ARCH term, since in both cases there is only one lag included and we have only one α
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coefficient; g1 and g2 are scale factors, where g2 applies only to the three-state model; ψ

represents the degree of freedom in the t-distribution, where the parameter is rounded

up to the nearest integer; ℓ is the coefficient of the leverage effect. The regime switching

transition probabilities are defined as pij = Pr(st+1 = j|st = i), which gives a probability

of switching from regime i to regime j.

We show the filtered and smoothed probabilities of an MSARCH estimation in Figure

6 for a two-state model. The graph gives a straightforward view of the probability of

being in each regime for each observation. This provides an indication of when regime

switching might happen.

From the diagrams, we can see that in the early part of the time period the SSE is

dominated by high volatility and the high persistence of State 2, whereas after mid-1997,

State 1 dominates. This is consistent with our previous regime switching analysis using

CUSUM type tests. However, the state after mid-1997 is not solely State 1, since there is

switching also in 1999 and around 2002. The first case was not identified from previous

analysis and it lasts for a fairly short period, whereas the second one is consistent with the

CUSUM test and corresponds to the second break point. This finding is very important,

since it suggests that the second break point found by the CUSUM test may only be a

short-lived phenomenon, or temporary shock.

4 Volatility switching and Regulation improvement

in SSE

The empirical analysis has discovered some very interesting results for the volatility mod-

elling of the returns of the SSE composite index. Volatility is reduced and is characterized

by some structural changes. The existence of outliers can affect the tests significantly.

Almost all the methods consistently identify a major break point in the middle of 1997.

There are two other short-run high volatility regimes after 1997. For the sub-sample

GARCH estimation, α coefficient is reducing, whereas the β coefficient increases from
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Sample I to Sample III. Considering all these features of our analysis, one of the key

questions is what causes such shifts.

For most literatures on the subject of volatility switching in the Asian stock markets,

such as Chaudhuri and Klaassen (2001), the financial crisis in 1997 across most of the

Asian markets is the focus, where most of the markets experienced huge increases in

volatility and falls in value. However, the volatility in SSE is not shown in the same

way; on the contrary, there is no evidence to suggest any relationship between changes

of volatility of stock returns in SSE and the crisis.

The driving force for the major volatility switching in May 1997 may have been

complicated. It may be better to look at the history of SSE from its very beginning. SSE

is one of the two stock exchanges in China and was founded on Nov. 26, 1990. It started

full operations in December of the same year. Some key statistics showing the features

of SSE are given in Table 6.

For a new stock market, it is normally to have high volatility. There are not enough

regulations available, the liquidity is low, investors and even market regulators are inex-

perienced. Meanwhile, there is a great deal of noise in the market, speculative trading

is normally frequent and big players such as banks and insurance companies can easily

control the market. All these added together create huge uncertainty and thus volatil-

ity. This can be observed not only in the SSE but also in the history of many other

stock markets. But as the market develops, more stocks are listed and the market size

increases, especially with proper regulation, volatility can be reduced. In this paper, we

found not only a general reduction of volatility, but also a significant shift in 1997. Thus,

in order to draw any conclusion about the relationship between volatility and regulation

improvement, it is necessary to refer to the situation in and around 1997.

There were almost no formal laws on the security market until Nov. 15 1997, where

the first ever securities regulation guides– “Provisional Measures on Administration of

Securities and Investment funds” was implemented. Other regulation measures were also

limited. In 1997, however, a significant number of regulation improvements and changes
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were implemented; see Table 7 for a list of the major ones.

Among these changes, a critical one was the direct regulation and supervision of

SSE by an independent regulatory body, the China Securities Regulation Commission

(CSRC). CSRC was established in 1992 as the executive branch of the State Council

Securities Commission (SCSC), responsible for supervising and regulating the securities

markets in accordance with the law. In August 1997, the State Council decided to put

the securities markets in Shanghai and Shenzhen under the supervision of the CSRC.

This kind of regulation agency can be observed in many other countries and regions, for

example, the Financial Services Authority (FSA) in the UK, the Hong Kong Securities

and Futures Commission, the U.S. Securities and Exchange Commission, etc. These

independent regulation agencies are designed to help maintain financial stability and

provide better regulation. The experiences in these developed markets show that this is

a very important and successful solution.

In the year 1997, apart from the above two major changes in the implementation and

regulation of the law, several other measures regarding trade restrictions on institutions,

banks, and other state-owned corporate were also promulgated. Moreover, many more

acts of regulation have been performed by the CSRC and the states since then. By the end

of 2003, there were over 300 sets of regulations, rules, guidelines and codes in force. These

regulations further help the SSE to build up a healthy environment, reduce speculative

trading and uncertainty and maintain financial stability, thus reduce volatility in stock

market.

Through the overall discussion above, it is quite clear and can be confidently argued

that regulation improvement is the main reason for the volatility switching in the SSE.

It may of course also be argued that there are other reasons for the volatility to switch,

the effect of which we do not deny, for example, an increase of market size or liquidity

(represented as turnovers) in the market. In a relatively small market, negative shocks

are more likely to generate large price movements; markets are more easily maneuvered

by big players and thus high volatility ensues. The historical statistics about market size
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and turnover show a large increase of both for 1997 over those of 1996.

The annual turnover of SSE for 1995 was only 310.346 billion RMB, but increased to

911.481 billion RMB in 1996 and 1376.317 billion RMB in 1997. Market capitalization

(excluding B share) increased significantly from 531.613 billion RMB in 1996 to 903.245

billion RMB in 1997. This increase may helped the stock market to absorb shocks and

avoid large shifts. Furthermore, the annual turnover reduced from 3137.386 billion RMB

in 2000 to 2270.938 billion RMB in 2001 and further reduced to 1695.909 billion RMB in

2002, which can be an explanation for the finding of a high volatility period around 2001

and 2002 in the MSARCH estimation.

5 Conclusion

We investigated volatility switching in the SSE in this paper. Through several recently

developed techniques, the objectives mentioned in the first section were successfully un-

dertaken. First of all, the empirical results show that there was volatility switching in

the SSE via CUSUM-type tests as well as the MSARCH model. Secondly, outliers in

the series were shown to significantly affect the results of our estimation. Using the pro-

cedure proposed by Franses and van Dijk (1999), we successfully identified an outlier.

After removing the outlier from the data, there was a consistent estimation of break

points. Regarding the major break point in May 1997, which was found by almost all

the methods, we argue that regulation improvements are the main cause. Looking back

at the history of the SSE, several key changes in regulation were implemented in 1997,

which would have worked in favour of a reduction in volatility. Among those changes, the

appearance of a formal law regarding securities and investment and CSRC direct super-

vision is considered to be critical. We further argue that other factors, such as increased

market size and liquidity were additional driving force for the low volatility regime in the

SSE.
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Table 1: Descriptive statistics

Mean 0.065
Median 0.000
Maximum 43.299
Minimum -23.343
Std. Dev. 4.956
Skewness 1.226
Kurtosis 16.888
Jarque-Bera 4325.980
Observations 522
ARCH(1) LM 40.487
ARCH(4) LM 42.476
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Table 2: CUSUM-type tests on Volatility Switching

Panel I: IT test on series

Type of break Test statistics Break point Break date
Single break 6.2053 149 Jul. 14, 1997
Multiple breaks 2.4277 38 May 29, 1995

3.0726 149 Jul. 14, 1997
2.0683 407 Jun. 24, 2002

Panel II: IT test on GARCH residuals

Type of break Test statistics Break point Break date
Single break 2.0431 38 May 29, 1995
Multiple breaks 2.2390 36 May 15, 1995

1.4377 120 Dec. 23, 1996
Panel III: KL test on series

Type of break Test statistics Break point Break date
Single break 1.6809 149 Jul. 14, 1997
Multiple breaks 1.6809 149 Jul. 14, 1997
Panel IV: LTM test on GARCH residuals

Type of break Test statistics Break point Break date
Single break 2.9221 38 May 29, 1995
Multiple breaks 5.2351 36 May 15, 1995

2.0042 120 Dec. 23,1996

Note: We use 5% asymptotic critical value of 1.358 to select break points. ICSS algorithm
is applied in all cases of multiple breaks. A GAUSS procedure is available upon request.
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Table 3: Outlier robust tests on Volatility Switching

Panel I: IT test on series

Type of break Test statistics Break point Break date
Single break 1.9830 148 Jul. 07, 1997
Panel IV: LTM test on GARCH residuals

Type of break Test statistics Break point Break date
Single break 2.8070 148 Jul. 07, 1997
Multiple breaks 2.8962 148 Jul. 07, 1997

1.6566 407 Jun. 24, 2002
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Table 4: Sub-sample estimation

Sample Full Sample I II III
Observation 522 148 259 115
Standard deviation 4.97 7.61 3.75 2.40
µ -0.0580 0.1736 0.1193 -0.3305

(-0.4221) (0.3808) (0.6388) (-1.3406)
ω 1.5429 19.1875 2.1200 0.6595

(2.3329) (1.2917) (1.5803) (0.2013)
α 0.2198 0.2941 0.2179 0.0207

(3.1517) (1.2239) (1.9286) (0.2713)
β 0.7282 0.3707 0.6656 0.8715

(10.7360) (0.9480) (4.5584) (1.4839)
ψ 4.1828 4.3402 4.3541 9.8359

(6.6161) (3.7731) (3.3381) (0.7252)

Note: the t-statistics are given in brackets.
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Table 5: MSARCH estimation
Parameters Two states MSARCH Three states MSARCH
µ -0.0593 -0.0612

(0.1381) (0.1368)
ω 6.5299 5.8127

(1.5096) (1.4947)
α 0.1479 0.1340

(0.0810) (0.0989)
g1 4.7944 4.0650

(0.9869) (2.7961)
g2 5.8141

(1.7694)
ℓ 0.1453 0.1305

(0.1590) (0.1603)
ψ 5 5
p11/p21/p31 0.9882/0.0118 0.9762/0.0213/0.0025
p22/p12/p32 0.9841/0.0159 0.9221/0.0779/0.0000
p33/p13/p23 0.9968/0.0000/0.0032
Function value -1430.1714 -1428.1546
AIC 5.5528 5.5643
BIC 5.6184 5.6710

Note: the standard errors of estimation are given in brackets.
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Table 6: Historical statistics of the SSE
Year Number of stock Annual turnover Capitalization I Capitalization II
1994 203 573.507 259.013 248.354
1995 220 310.346 252.566 243.371
1996 329 911.481 547.801 531.613
1997 422 1376.317 921.806 903.245
1998 477 1238.611 1062.591 1052.538
1999 525 1696.579 1458.047 1444.072
2000 614 3137.386 2693.086 2659.632
2001 690 2270.938 2759.056 2693.451
2002 759 1695.909 2536.372 –
2003 824 2082.414 2980.492 –

Data source: http://www.sse.com.cn/, Capitalization I includes B share and Capitaliza-
tion II excludes B share.
Units: billions of RMB (excludes number of stocks).
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Table 7: Major regulation improvements of the SSE in 1997

Date Regulation Items
Mar. 17 New modified Criminal Law of P.R.C. appear publicly

including securities criminal clause, which will be imple-
mented at Oct. 01, 1997.

Mar. 25 State Council Security Committee promulgate ’Provi-
sional Measures on Administration of Convertible Cor-
porate Bonds’

May. 22 State Council Security Committee, People’s Bank of
China, Economics and Trade Committee announced
State owned companies and listing companies are pro-
hibited from stock trading.

Jun. 06 People’s Bank of China announces that all commercial
banks stop securities Repo and trade on securities.

Aug. 15 The China State Council decide SSE under direct
administration of CSRC (China Securities Regulation
Commission)

Nov. 15 ’Provisional Measures on Administration of Securities
and Investment Funds’ implemented, this is the first ever
securities regulation guides

Dec. 31 State Council Security Committee promulgates ’Provi-
sional Measures on Administration of Securities and Fu-
tures Investment Consultation’.

Data source: http://www.sse.com.cn/.
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Figure 1: Returns of the SSE Composite Index
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Figure 2: Rolling Windows Estimation of the Standard Deviation of the SSE Composite
Index Return
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Figure 3: Graphs of Absolute value of the DK statistics
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Figure 4: Graphs of Absolute value of the KL statistics
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Figure 5: Graphs of Absolute value of the TK statistics
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Figure 6: Filtered and smoothed probabilities for a Two-State MSARCH model
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