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Forecasting	stock	market	returns	over	multiple	time	horizons	
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Abstract	In	 this	 paper	we	 seek	 to	 demonstrate	 the	 predictability	 of	 stock	market	 returns	 and	 explain	 the	nature	of	this	return	predictability.	To	this	end,	we	further	develop	the	news‐driven	analytic	model	of	the	stock	market	derived	in	Gusev	et	al.	(2015).	This	enables	us	to	capture	market	dynamics	at	various	 timescales	 and	 shed	 light	 on	 mechanisms	 underlying	 certain	 market	 behaviors	 such	 as	transitions	 between	 bull‐	 and	 bear	 markets	 and	 the	 self‐similar	 behavior	 of	 price	 changes.	 We	investigate	the	model	and	show	that	 the	market	 is	nearly	efficient	on	timescales	shorter	than	one	day,	 adjusting	quickly	 to	 incoming	news,	but	 is	 inefficient	 on	 longer	 timescales,	where	news	may	have	a	long‐lasting	nonlinear	impact	on	dynamics	attributable	to	a	feedback	mechanism	acting	over	these	horizons.	Using	the	model,	we	design	the	prototypes	of	algorithmic	strategies	that	utilize	news	flow,	quantified	and	measured,	as	the	only	input	to	trade	on	market	return	forecasts	over	multiple	horizons,	from	days	to	months.	The	backtested	results	suggest	that	the	return	is	predictable	to	the	extent	that	successful	trading	strategies	can	be	constructed	to	harness	this	predictability.	
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Introduction	The	integration	of	news	analytics	into	trading	strategies	continues	to	be	at	the	R&D	forefront	in	the	investment	industry.	The	efforts	have	mainly	focused	on	constructing	early	indicators	for	a	change	in	investor	sentiment	to	enable	a	trader	to	act	ahead	of	the	majority	of	investors.	The	potential	for	success	 is	 therefore	 reliant	on	 the	 speed	and	precision	with	which	 information	 retrieval	 and	 text	parsing	algorithms	process	vast	amounts	of	data	and	recognize,	 in	the	 incoming	 flow	of	news,	the	events	that	may	move	prices	substantially.		
As	prices	generally	tend	to	quickly	reflect	new	information,	the	objective	of	news‐based	trading	is	to	produce	short‐term	(intraday)	strategies.	On	short	timescales	prices	may	be	assumed	to	react	to	news	linearly.	This	linearization	is	helpful	because	a	trade’s	sign	would	then	depend	only	on	the	sign	 of	 sentiment	 assigned	 to	 a	 news	 item	 and	 its	 size	 on	 price	 sensitivity	 –	 each	 still	 being	 a	formidable	 task.	 As	 with	 any	 other	 short‐term	 trading	 strategy,	 the	 downside	 here	 is	 a	 limited	capacity	 and	high,	 turnover‐driven	 costs.	 Furthermore,	 should	 successful	 strategies	 eventually	 be	developed	 –	 so	 far	 results	 have	 been	mixed	 to	 the	 best	 of	 our	 knowledge	 –	 competition	 in	 this	segment	 will	 spur	 an	 “arms	 race”	 of	 speed,	 leading	 to	 increasingly	 fast	 price	 reaction	 to	 news,	exacerbating	capacity	restrictions	and	reducing	profit	margins.1		
The	above‐described	approach	is	based	on	a	premise	that	financial	markets	need	a	finite	amount	of	time	to	digest	news.	In	other	words,	return	prediction	using	news	analytics	relies	on	the	market’s	informational	inefficiency	in	the	time	interval	where	prices	adjust	to	new	information.	Does	it	then	follow	that	news	analytics	are	necessarily	useless	for	trading	over	longer	horizons?																																																															
1	For	example,	competition	among	high	frequency	trading	firms	has	increased	the	trade	execution	speed	from	roughly	100	milliseconds	to	10	microseconds	over	the	last	decade.		
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At	 first	 glance,	 the	 answer	 seems	 to	 be	 a	 firm	 “yes”.	 Indeed,	 while	 it	 appears	 reasonable	 to	suppose	 that	 a	market	 can	 “remember”,	 in	 terms	 of	 its	 reaction,	 previous	 events	 on	 the	 order	 of	minutes	and	hours,	this	same	supposition	sounds	absurd	when	considering	periods	that	span	days,	weeks	or	months.	Yet,	there	is	certain	empirical	evidence	of	long‐term	return	predictability.2			
It	might	be	useful	to	tackle	the	problem	from	a	different	angle	and	consider	whether	there	exist	any	 logical	 possibilities	 for	 long‐term	 predictability.	 Incidentally,	 such	 a	 possibility	 does	 exist,	provided	the	mechanism	of	price	formation	over	long	time	horizons	is	different	from	that	involved	on	short	timescales.	Let	us	hypothesize	how	it	may	operate.		
Efficient	markets	ensure	that	new	information	is	manifested	in	a	change	in	market	price	shortly	following	its	release.	However,	this	price	change	can	also	be	an	important	event	on	its	own	that	will																																																														
2	There	 is	a	 large	body	of	research	 that	examines,	 typically	applying	regression	methods,	 the	predictive	power	of	observable	variables,	such	as	the	dividend	yield	and	many	others;	see,	for	example,	Fama	and	French	(1988,	1989),	Campbell	 and	Shiller	 (1988a,b),	Baker	and	Wurgler	 (2000),	Campbell	and	Thompson	 (2008),	Cochrane	(2008).	However,	the	evidence	for	return	prediction	remains	inconclusive:	e.g.	Ferson	et	al.	(2003,	2008),	 Goyal	 and	 Welch	 (2003,	 2008).	 The	 model	 of	 stock	 market	 dynamics	 that	 we	 develop	 here	 is	fundamentally	nonlinear,	indicating	that	causal	relations	among	the	variables	are	substantially	more	complex	than	regression	dependence.	It	follows	that	the	standard	approach	to	return	prediction,	based	on	regression	methods,	 may	 be	 ill‐suited	 to	 capture	 this	 predictability;	 e.g.	 Novy‐Marx	 (2014)	 vividly	 pointed	 out	 this	limitation	by	extending	stock	market	predictive	regressions	to	a	number	of	rather	implausible	variables,	such	as	sunspot	activity	and	planetary	motion	among	others.	Gusev	et	al.	(2015)	proposed	an	alternative	approach	that	combines,	 analogous	 to	weather	 forecasting,	 theoretical	models	with	empirical	data.	The	present	work	applies	 this	 same	 approach	 to	demonstrate	 that	 stock	market	 returns	 can	 be	predicted	 in	 an	 economically	significant	manner.	
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draw	 media	 response.	 This	 can	 incite	 subsequent	 price	 changes,	 causing	 in	 turn	 further	 news	releases	and	so	forth.	Thus,	the	original	event	may	trigger	a	“ripple	effect”	of	the	interlinked	price	changes	and	news	releases,	unfolding	over	an	extended	time	period.	It	follows	that	news	can	have	a	long‐lasting	impact	in	the	market	via	the	above‐described	feedback	mechanism,3	which	is	absent	on	short	timescales	as	we	will	see	later.		
Thus,	from	a	news‐price	system	with	no	feedback,	likely	valid	on	the	order	of	a	day	or	less,	we	move	toward	a	mutually‐coupled	news‐price	system,	operating	over	longer	horizons.	Consequently,	we	 must	 apply	 a	 different	 framework	 for	 return	 prediction.	 While	 the	 short‐term	 prediction	requires	fast	detection	of	the	news	releases	that	may	provoke	material	changes	 in	price,	 the	 long‐term	prediction,	on	 the	contrary,	can	only	be	based	on	 the	regularity	of	 the	system’s	behavior.	 In	other	words,	we	must	develop	a	dynamic	model	that	correctly	describes	interaction	between	news	and	price.	Then,	provided	the	model	admits	non‐stochastic	solutions,	it	would	be	sufficient	to	know	the	market	position	 in	 the	news‐price	reference	 frame	 to	 forecast	 return	by	 following	 the	market	evolution	path	provided	by	the	model.			
Gusev	 et	 al.	 (2015)	proposed	 and	 investigated,	 theoretically	 and	 empirically,	 such	 a	model	 of	stock	market	dynamics.	This	model	describes	dynamics	in	terms	of	the	interaction	between	prices,	opinions	and	information.	It	is	formulated	as	an	Ising‐family	agent‐based	model4	with	two	types	of																																																														
3	The	idea	that	the	observations	of	price	changes	may	generate	a	feedback	loop	that	significantly	affects	market	dynamics	is	not	new	(see	Shiller,	2003).	However,	its	application	for	return	forecasting,	which	is	the	subject	of	the	present	work,	is	nontrivial	due	to	nonlinear	behaviors	induced	by	it.			
4	A	 family	 of	 models,	 named	 after	 Ising	 (1925),	 developed	 originally	 to	 explain	 the	 phenomenon	 of	ferromagnetism	via	 the	 interaction	 of	discrete	 atomic	 spins	 in	 an	external	magnetic	 field	 and	 later	broadly		
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interacting	 agents:	 investors,	who	 invest	 or	 divest	 according	 to	 their	 opinions,	 and	 analysts,	who	interpret	 news,	 form	 opinions	 and	 channel	 them	 to	 investors.5	To	 derive	 the	model	 equations	 in	analytic	form	and	facilitate	its	study,	it	was	assumed	that	investors	made	up	a	homogeneous	group	in	which	any	two	market	participants	interacted	identically.	Despite	this	and	other	simplifications,	the	 model	 reproduced	 the	 price	 path	 and	 return	 distribution	 of	 the	 S&P	 500	 Index	 within	reasonable	tolerance.	Based	on	these	results,	 the	authors	suggested	that	stock	market	returns	are	predictable,	but	did	not	conduct	tests	of	this	predictability.	
The	 objective	 of	 the	 present	 work	 is	 to	 elaborate	 on	 the	 ideas	 from	 Gusev	 et	 al.	 (2015)	 to	demonstrate	that	returns	can	be	predicted	over	time	horizons	longer	than	one	day.	To	accomplish	this,	we	introduce	heterogeneity	into	the	model	by	replacing	homogeneous	investors	with	groups	of	investors	that	have	different	investment	horizons.	This	enables	us	to	extract	characteristic	dynamics	on	 different	 timescales	 and	 produce	market	 forecasts	 of	multiple	 time	 horizons,	 upon	which	we	design	the	prototypes	of	trading	strategies.		
																																																																																																																																																																																																					

applied	to	study	problems	in	social	and	economic	dynamics	(see	the	reviews	by	Castellano	et	al.,	2009;	Lux,	2009;	 Slanina,	 2014;	 Sornette,	 2014).	We	 take	 note	 of	 two	 recent	works	 that	 share	 common	 ground	with	Gusev	 et	 al.	 (2015).	 First,	 Franke	 (2014),	 referencing	 Lux’s	 (1995)	 analytic	 stock	market	model,	 studied	 a	generic	sentiment‐driven	economic	model	with	feedback,	which	has	some	features	similar	to	those	found	in	Gusev	 et	 al.	 (2015).	 Second,	 Carro	 et	 al.	 (2015)	 investigated	 the	 influence	 of	 exogenous	 information	 on	endogenous	sentiment	dynamics	in	the	stock	market,	which	is	also	a	central	theme	in	Gusev	et	al.	(2015).	
5	This	 approach	 contrasts	 with	 that	 of	 the	 established	 agent‐based	 financial	 models,	 where	 market	dynamics	are	sought	 to	emerge,	primarily,	 through	the	 interaction	among	agents	pursuing	different	 trading	strategies,	such	as	the	influential	work	by	Lux	and	Marchesi	(1999)	among	many	others.		
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The	 paper	 is	 organized	 as	 follows.	 Section	 1	 describes	 the	 news‐driven	 market	 model	 with	homogeneous	investors	and	develops	the	model	with	heterogeneous	investors.	Section	2	studies	the	heterogeneous	model	analytically,	numerically	and	empirically.	Additionally,	Section	2.3	shows	that	the	market	is	efficient	on	short	timescales.	Section	3	designs	and	backtests	the	prototypes	of	trading	strategies.	 Section	 4	 further	 discusses	 the	 nature	 of	 return	 predictability.	 Section	 5	 provides	 a	summary	of	conclusions.	
1.	Models	This	section	 introduces	 the	model	with	homogeneous	 investors,	developed	 in	Gusev	et	al.	 (2015),	and	using	it	as	a	starting	point,	derives	the	model	with	heterogeneous	investors	that	we	will	apply	for	market	forecasting.		
1.1	Homogeneous	model	The	model	 of	 stock	market	 dynamics	 in	Gusev	 et	 al.	 (2015)	 is	 formulated	 as	 a	 dynamical	 system	governing	 the	 evolution	 of	 three	 independent	 variables:	market	 price	݌,	 investor	 sentiment	ݏ	and	information	 flow	݄.	 It	was	obtained	by	defining,	based	on	observed	behaviors,	 interactions	among	agents	 at	 a	 micro	 level	 and	 applying	 methods	 from	 statistical	 mechanics	 to	 produce	 dynamic	equations	for	averaged	variables	at	a	macro	level.	Before	exploring	the	equations,	it	may	be	helpful	to	explain	the	proper	context	in	which	sentiment	and	information	are	used	in	the	model.	

Investor	 sentiment	 is	 defined	 as	 a	 summary	 view	 on	 future	 market	 performance,	 averaged	across	the	 investment	community,	and	 is	determined	as	 the	ratio	of	 the	number	of	 investors	who	opine	that	the	market	will	rise	minus	the	number	of	 investors	who	opine	that	the	market	will	 fall	over	the	total	number	of	investors.	Thus,	sentiment	ݏ	can	vary	between	‐1	and	1.	By	this	definition	sentiment	ݏ	encompasses	all	types	of	opinions,	irrespective	of	whether	an	opinion	has	been	formed	rationally	or	irrationally.		
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Information	 flow	 considered	 in	 the	model	 as	 relevant	 comprises	 publicly	 expressed	 opinions	about	 the	direction	of	anticipated	market	movement.	 It	 is	quantified	similarly	 to	sentiment	as	 the	ratio	of	the	number	of	news	items	with	positive	expectations	minus	the	number	of	news	items	with	negative	expectations	over	the	total	number	of	news	items	concerning	the	market.	Like	sentiment,	information	݄	is	 bounded	 between	 ‐1	 and	 1.	 The	 fact	 that	݄	can	 be	 readily	 measured	 allows	 the	model	to	be	empirically	verified.6,7	

																																																													
6	Gusev	 et	 al.	 (2015)	 proposed	 that	 information	݄,	 referred	 to	 as	 “direct	 information”,	 can	 effectively	influence	 investors’	view.	That	paper	provided	a	 rule‐based	parsing	methodology	 for	measuring	݄	based	on	marketing	 research	 techniques,	 essentially	 treating	 each	 news	 item	 as	 if	 it	 were	 a	 “sales	 pitch”	 aimed	 at	investors	to	buy	or	sell	the	market.	In	practice,	as	news	about	current	and	recent	market	movements	can	also	influence	 investors,	 such	direct	 information	was	 included	 in	 the	measurement	 of	݄,	 along	with	 information	concerning	anticipated	market	movement.	
7	Extensive	research	has	been	done	on	empirical	measures	of	sentiment	–	which	include	indices	based	on	periodic	surveys	of	investor	opinion,	various	proxies	such	as	trading	volume,	call	vs.	put	contracts	and	others,	and	applications	of	machine	learning	and	rule‐based	techniques	for	parsing	financial	news	and	social	media	content	–	and	their	correlation	with	price	movement	(e.g.	Antweiler	and	Frank,	2004;	Brown	and	Cliff,	2004;	Baker	and	Wurgler,	2007;	Das	and	Chen,	2007;	Tetlock,	2007;	Loughran	and	McDonald,	2011;	Lux,	2011;	Da	et	al.,	2014).	Alternatively,	Gusev	et	al.	(2015)	modeled	empirical	sentiment	ݏሺ݄ሻ	and	price	݌ሺ݄ሻ	from	measured	݄,	using	the	homogeneous	model	described	in	this	section.	The	present	paper	adopts	this	same	approach,	but	applies	the	heterogeneous	model	developed	in	the	next	section.		
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The	model	is	described	by	the	differential	equations:8	
ሶ݌ ൌ ܽଵݏሶ ൅ ܽଶሺݏ െ 	ሺ1ܽሻ																																																																																																																																															ሻ,∗ݏ
߬௦ݏሶ ൌ െݏ ൅ tanhሺߚଵݏ ൅ 	ሺ1ܾሻ																																																																																																																																	ଶ݄ሻ,ߚ
߬௛ ሶ݄ ൌ െ݄ ൅ tanhሺߢଵ݌ሶ ൅ 	ሺ1ܿሻ																																																																																																																															௧ሻ.ߦଶߢ

The	first	equation,	derived	by	observing	that	investors	tend	to	act	on	their	opinions	differently	over	short	and	long	horizons,	defines	a	phenomenological	relation	between	the	change	in	log	price	and	investor	sentiment.	This	equation	states	that	price	changes	proportionally,	first,	to	the	change	in	sentiment	and,	second,	to	the	deviation	of	sentiment	from	a	certain	reference	level	ݏ∗.	The	former	is	the	main	 source	 of	 short‐term	price	 variation,	while	 the	 latter	 determines	 leading	 behavior	 over	long‐term	horizons.	
The	second	and	third	equations	were	derived	together	as	a	single	system,	using	methods	from	statistical	mechanics.	The	second	equation	describes	the	change	in	sentiment	due	to	the	 impact	of	information	 flow	 on	 investors	 via	 the	 term	ߚଶ݄	and	 the	 interaction	 among	 investors	 via	 the	 term	ߚଵݏ,	 where	߬௦	is	 the	 characteristic	 time	 of	 sentiment	 variation	 and	ߚଵ	determines	 the	 relative	importance	of	the	herding	behavior	and	the	random	behavior	of	investors.	Information	flow	acts	as	
																																																													
8	Gusev	et	 al.	 (2015)	 (Eq.	13,	 Fig.	 12).	The	dot	denotes	 the	derivative	with	 respect	 to	 time.	Parameters	ܽଵ, ܽଶ, ,ଵߚ ,ଶߚ ,ଵߢ ,ଶߢ ߬௦, ߬௛	are	 positive,	while	ݏ∗	can	 take	 any	 sign.	 The	 parameter	 values,	 estimated	 using	 the	empirical	data,	are	provided	in	Table	1	of	that	same	paper.	We	note	that	equation	(1b),	with	݄	as	an	exogenous	variable,	was	obtained	by	Suzuki	and	Kubo	(1968)	in	the	context	of	a	purely	statistical	mechanics	problem.	
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a	force	that	moves	sentiment	away	from	equilibrium.	If	it	were	to	cease,	sentiment	would	come	to	rest	at	a	nonzero	value	for	ߚଵ ൐ 1	(ordered	state)	or	at	zero	for	ߚଵ ൏ 1	(disordered	state).			
The	third	equation	states	 that	 the	change	 in	 information	 flow	 is	caused	by	exogenous	news	ߦ௧	and	news	about	price	changes	݌ሶ ,	with	߬௛	being	the	characteristic	response	time.9		
Equations	 (1)	 form	a	 three‐dimensional	 nonlinear	dynamical	 system.	Each	point	 in	 the	phase	space	ሺ݄, ,ݏ 	represents	ሻ݌ a	 unique	 market	 state	 and	 each	 solution	൫݄ሺݐሻ, ,ሻݐሺݏ 	represents	ሻ൯ݐሺ݌ a	phase	trajectory	of	market	evolution.	This	evolution	is	driven	by	the	flow	of	exogenous	news	ߦ௧	that	induces	random	fluctuations	of	the	phase	trajectory	and	by	the	feedback	mechanism	݄	‐>	ݏ	<‐	݌	‐>	݄	that	generates	inertial	dynamics,	giving	rise	to	deterministic	behaviors.	It	follows	that	according	to	this	model,	market	evolution	may	contain	deterministic	regimes	and	thus	be	potentially	predictable.		
It	is	important	to	note	that	equations	(1)	were	obtained	under	a	simplifying	assumption	of	the	all‐to‐all	 interaction	 pattern	 among	 agents.10	In	 reality,	 interaction	 among	 investors	 is	 hardly	 so	simple.	 The	 utilization	 of	 more	 sophisticated	 patterns	 of	 interaction	 in	 the	 Ising‐type	 models	 is	known	 to	 cause	 the	 emergence	 of	 heterogeneous	 structures	 –	 i.e.	 in	 the	 present	 case,	 clusters	 of	investors	with	co‐aligned	sentiments.	Because	the	size	of	a	cluster	determines	 its	reaction	time	to	incoming	 information,	 this	heterogeneity	can	generate	diverse	dynamics	 involving	 interactions	on	many	timescales.	 It	 follows	that	model	 (1)	should	be	regarded	as	a	coarse‐grained	approximation																																																														
9	We	note	that	this	form	of	the	equation	neglects	direct	interaction	between	the	agents,	omitting	the	terms	proportional	to	݄	and	ݏ	in	the	argument	of	the	hyperbolic	tangent	(Gusev	et	al.,	2015:	Eq.	12c).	
10	The	all‐to‐all	interaction	mode	is	the	leading‐order	approximation	for	a	general	interaction	topology	in	this	model,	which	makes	it	a	sensible	first	step	for	studying	this	problem.		
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that	 determines	 the	 average	 investor	 behavior	 evolving	 within	 a	 single	 timeframe	߬௦11.	 Thus,	although	 this	model	 provides	 certain	 valuable	 insights	 into	market	 dynamics,	 it	 is	 unlikely	 to	 be	sufficiently	realistic	for	market	forecasting	(especially	over	periods	shorter	than	߬௦).	We	must	refine	this	model	to	improve	precision,	which	is	the	subject	of	the	next	section.	
1.2	Heterogeneous	model	We	wish	 to	 replace	 the	 above‐described	 framework,	where	 each	 investor	 interacts	with	 all	 other	investors	 with	 the	 same	 strength,	 by	 a	 framework	 with	 a	 more	 realistic	 interaction	 pattern.	Selecting	 such	 a	pattern	 in	 the	 form	of	 rules	 applicable	 to	 individual	 agents	 is	 a	hard	problem	 to	solve.	This	is	because	there	exist	many	plausible	choices	for	interactions	at	the	micro‐level	and	the	model’s	statistical	properties	will	be	sensitive	to	these	choices.12	Additionally,	it	would	be	difficult,	if	at	all	possible,	to	derive	a	closed‐form	dynamical	system	for	the	evolution	of	macro‐level	variables	based	on	the	interaction	patterns	more	complex	than	all‐to‐all.		

Instead,	it	may	be	more	practical	to	account	for	investor	heterogeneity	via	a	phenomenological	approach.	As	discussed	above,	we	expect	that	realistic	interaction	patterns	would	produce	clusters	of	 investors,	 each	 characterized	 by	 a	 specific	 (as	 a	 function	 of	 size)	 response	 time	 to	 incoming	
																																																													
11	Gusev	et	al.	(2015)	estimated	߬௦	to	be	around	25	business	days.	
12	Cont	and	Bouchaud	(2000)	have	addressed	heterogeneity	in	opinion	formation	as	a	topological	problem	within	 the	 framework	 of	 percolation	 theory	 leading	 to	 the	 emergence	 of	 clusters	 of	 investors	with	 shared	sentiment.	 We	 note	 that	 following	 this	 work,	 a	 number	 of	 percolation	 models	 have	 been	 proposed	 that	replicate	some	of	distinctive	market	behaviors.	However,	as	mentioned	above,	the	results	are	sensitive	to	the	choice	of	topology	in	a	model	and	it	is	difficult	to	economically	justify	any	one	particular	topology	choice.						
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information,	 which	 we	 can	 assume	 proportional	 to	 the	 investment	 time	 horizon.	 It	 is	 therefore	sensible	to	select	the	investment	horizon	as	the	attribute	whereby	variability	is	introduced	into	the	model.	 Thus,	we	wish	 to	modify	model	 (1)	 by	 populating	 it	with	 the	 investors	 that	 have	 various	investment	horizons.13	
Next,	 we	 must	 make	 assumptions	 on	 how	 these	 investors	 would	 interact.	 Presumably,	 any	organization,	whether	in	the	investment	industry	or	elsewhere,	should	tend	to	connect	best	with	its	peers,	 owing	 to	 shared	 professional	 interests.	 For	 example,	 long‐term	 investors,	 such	 as	 pension	plans,	 have	 little	 in	 common	 with	 wealth	 management	 companies	 oriented	 toward	 mid‐term	performance	and	even	less	so	with	the	day‐trading	community.	Each	of	these	investment	industry	segments	 maintains	 its	 own	 professional	 publications,	 conferences,	 seminars,	 awards	 and	 other	platforms	for	discourse	 that	promote	networking	and	 interaction.	Therefore,	we	can	suppose	 that	interaction	 within	 the	 networks	 of	 peers,	 whom	 we	 propose	 to	 identify	 with	 respect	 to	 the	investment	horizon,	is	more	efficient	than	across	them.		
We	have	thus	arrived	at	a	framework	where	investors	with	similar	horizons	form	peer	networks	or	groups	within	which	 they	 interact	efficiently,	but	have	 little	 interaction	externally,	 at	 the	 same	time	being	 impacted	 in	equal	measure	by	 information	flow	݄.	 In	the	 limiting	case,	we	can	assume,	first,	 that	 the	 interaction	pattern	within	each	peer	group	 is	all‐to‐all	 and,	 second,	 that	 there	 is	no	
																																																													
13	We	presume	that	the	average	memory	time	span	and	the	average	holding	period	are	proportional	to	the	investment	horizon	and	use	these	terms	interchangeably,	depending	on	the	context.	We	note	that	the	agent‐based	model	developed	in	a	series	of	publications	by	Levy,	Levy	and	Solomon	(see	Levy	et	al.,	2000)	includes	investors	with	different	memory	time	spans.		
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interaction	across	 these	groups.	This	enables	us	 to	 apply	 equations	 (1b,c)	 to	describe	 the	market	with	ܰ	participating	peer	groups	as	follows:	
߬௜ݏሶ௜ ൌ െݏ௜ ൅ tanhሺߚଵݏ௜ ൅ ݅						,ଶ݄ሻߚ ൌ 1, 2, … ,ܰ,																																																																																													ሺ2ܽሻ	
߬௛ ሶ݄ ൌ െ݄ ൅ tanhሺߢଵ݌ሶ ൅ 	ሺ2ܾሻ																																																																																																																														௧ሻ,ߦଶߢ
where	ݏ௜	is	 the	 average	 sentiment	 of	 the	݅‐th	 group,	 which	 having	 been	 normalized	 by	 the	 total	number	of	 investors	 in	 the	group	takes	values	between	 ‐1	and	1,	and	߬௜	is	 its	 investment	horizon.	Note	 that	 both	 the	 “herding”	 parameter	ߚଵ	and	 the	 constant	ߚଶ,	 which	 determines	 sensitivity	 to	information	flow,	are	assumed	to	be	in	the	leading	order	uniform	across	the	groups.			

Next,	 we	 must	 adapt	 equation	 (1a).	 Its	 derivation	 in	 Gusev	 et	 al.	 (2015)	 was	 based	 on	 the	observation	that	capital	flows	in	the	market	are	caused	differently	on	different	timescales,	namely	by	݀ݏ	at	ݐ ≪ ߬௦	and	by	ݏ െ ݐ	at	∗ݏ ≫ ߬௦.	Let	us	consider	 the	݅‐th	network	of	 investors,	characterized	by	the	horizon	߬௜ ,	on	the	timescales	ݐ	where	ݐ ≪ ߬௜ .	In	this	regime,	݀ݏ௜ 	would	cause	the	capital	flow	݀ܿ௜~ܿ௜݀ݏ௜ ,	where	ܿ௜ 	is	the	total	capital	managed	within	this	network.	To	estimate	ܿ௜ ,	we	observe	that	market	liquidity,	which	implies	how	much	capital	can	be	traded	over	߬௜	without	materially	affecting	market	price,	effectively	 imposes	a	cap	on	ܿ௜ .	Assuming	 for	simplicity	that	ܿ௜	is	proportional	to	the	average	trading	volume	(as	a	proxy	of	liquidity)	and	noting	that	the	average	trading	volume	scales	linearly	 with	 time,	 we	 arrive	 at	ܿ௜~߬௜,	݀ܿ௜~߬௜݀ݏ௜	and	 ሶܿ௜~߬௜ݏሶ௜	at	ݐ ≪ ߬௜ .	 Similarly,	 we	 obtain	 that	ሶܿ௜~߬௜ሺݏ௜ െ ݐ	at	௜ሻ∗ݏ ≫ ߬௜ .		
	We	superpose	the	asymptotic	relations	 ሶܿ௜~߬௜ݏሶ௜	and	 ሶܿ௜~߬௜ሺݏ௜ െ 		:formation	price	of	equation	following	the	derive	to	݅	all	across	sum	market,	the	of	out	or	into	capital	of	flow	net	the	by	determined	is	price	market	in	change	the	as	and	௜ሻ∗ݏ

ሶ݌ ൌ ܽ෍ ሶܿ௜ ൌ ܽଵ ቆ∑߬௜ݏሶ௜∑߬௜ ቇ ൅ ܽଶ ቆ∑߬௜ሺݏ௜ െ ∑௜ሻ∗ݏ ߬௜ ቇ ൌ ܽଵݏሶ ൅ ܽଶሺݏ െ 	ሺ3ሻ																																																										ሻ,∗ݏ
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where	 the	 constants	ܽଵ	and	ܽଶ	are	 positive	 and	 the	 constant	ݏ∗	can	 be	 of	 any	 sign.	 Equation	 (3)	implies	 that	 the	sentiments	ݏ௜ 	of	 the	 investor	groups	with	various	߬௜ 	and	the	overall	 sentiment	ݏ	in	the	market	are	related	by	the	formula:14		
ݏ ൌ ∑ ߬௜ݏ௜∑߬௜ 	.																																																																																																																																																																						ሺ4ሻ	

The	heterogeneous	market	model	is	then	given	by	the	dynamical	system:	
ሶ݌ ൌ ܽଵݏሶ ൅ ܽଶሺݏ െ 	ሺ5ܽሻ																																																																																																																																															ሻ,∗ݏ
߬௜ݏሶ௜ ൌ െݏ௜ ൅ tanhሺߚଵݏ௜ ൅ ݅						,ଶ݄ሻߚ ൌ 1, 2, … ,ܰ,																																																																																														ሺ5ܾሻ	
߬௛ ሶ݄ ൌ െ݄ ൅ tanhሺߢଵ݌ሶ ൅ 	ሺ5ܿሻ																																																																																																																															௧ሻ,ߦଶߢ
where	the	aggregate	sentiment	ݏ	is	defined	by	(4).	

According	 to	 this	 dynamical	 system,	 investor	 groups	 with	 different	 investment	 horizons	collectively	form	the	aggregate	sentiment	that	determines	the	market	price,	which	in	turn	influences	the	information	flow	that	acts	on	all	groups	participating	in	the	market.	Although	there	is	no	direct																																																														
14	This	relation,	derived	using	the	scaling	property	of	the	average	trading	volume,	should	be	treated	as	an	average	relation	applicable	under	normal	market	conditions	or	over	extended	time	periods.	In	particular,	the	relation	 is	not	expected	 to	hold	during	spikes	 in	 trading	activity,	 such	as,	 for	example,	 those	accompanying	market	crashes.	Also,	this	relation	may	not	be	true	for	groups	with	very	long	investment	horizons	because	on	the	corresponding	timescales,	effects	due	to	the	finite	size	of	the	market	can	affect	the	assumed	linear	relation	between	the	investment	horizon	and	the	amount	of	investment	capital.	Nevertheless,	as	a	first	approximation,	this	relation	will	prove	helpful	for	gaining	insight	into	market	dynamics	on	the	relevant	timescales.			
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interaction	 among	 the	 investor	 groups,	 each	 continues	 to	 impact	 the	 others	 by	 eventually	contributing	to	 the	common	information	 flow.	Thus,	 the	 information	 flow	plays	a	dual	role:	 it	 is	a	force	that	 impacts	the	sentiments	of	different	investor	groups	and	also	a	 link	through	which	these	sentiments	are	mutually	coupled.		
2.	Study	of	heterogeneous	model	This	section	 investigates	the	model	with	heterogeneous	 investors.	Section	2.1	offers	a	preliminary	analysis	of	the	main	effects	expected	in	this	model.	Section	2.2	studies	the	model	numerically,	using	both	direct	 simulations	and	empirical	data.	Section	2.3	applies	 the	model	 to	demonstrate	 that	 the	efficient	market	regime	occurs	on	short	timescales.	The	relevant	technical	details	are	in	Appendix	A.	
2.1.	Preliminary	analysis:	key	effects	We	 can	 substitute	݌ሶ 	from	 (5a)	 into	 (5c)	 to	 obtain	 a	 self‐contained	 dynamical	 system	 for	ݏ௜	and	݄.	When	making	this	substitution,	we	follow	Gusev	et	al.	(2015)	and	approximate	the	second	term	on	the	 right‐hand	 side	 of	 (5a),	which	 describes	 the	 evolution	 of	 price	 over	 long‐term	horizons,	 by	 a	positive	 constant	 that	 represents	 the	 growth	 rate	 of	 the	 stock	market.15	We	 obtain	 the	 following	equations:	߬௜ݏሶ௜ ൌ െݏ௜ ൅ tanhሺߚଵݏ௜ ൅ ݅						,ଶ݄ሻߚ ൌ 1, 2, … ,ܰ,																																																																																													ሺ6ܽሻ	

																																																													
15	First,	since	ݏ~∑ ߬௜ݏ௜ 	and	|ݏ௜| ൑ 1,	the	term	ܽଶሺݏ െ ߬௜	large	to	corresponding	௜ݏ	is	that	investors,	long‐term	of	sentiment	the	by	dominated	is	(5a)	in	ሻ∗ݏ .	Second,	equation	(5b)	implies	that	ݏ௜ 	varies	by	ܱሺ1ሻ	over	߬௜ ,	 i.e.	the	 longer	 the	 investment	 horizon,	 the	 slower	 the	 sentiment	 variation	 (which	 is	 not	 unreasonable).	 Thus,	ܽଶሺݏ െ 	contributes	ሻ∗ݏ to	price	development	over	 the	 long	 term,	e.g.	months	and	years,	which	enables	us	 to	replace	it	in	the	leading	order	by	a	constant	growth	rate.		
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߬௛ ሶ݄ ൌ െ݄ ൅ tanhሺݏߛሶ ൅ ߜ ൅ 	ሺ6ܾሻ																																																																																																																											௧ሻ,ߦߢ
where	ݏ ൌ ∑ఛ೔௦೔∑ఛ೔ 		 in	 accordance	with	 	is	ߜ	,(4) a	 positive	 constant	 proportional	 to	 the	 stock	market	growth	rate,	ߛ ൌ 		.renamed	ଶߢ	is	ߢ	and	ଵܽଵߢ

Equations	(6)	define	a	dynamical	system	of	ܰ ൅ 1	mutually‐coupled	nonlinear	equations.	As	we	will	 see	 later,	 this	 coupling	 leads	 to	 interesting,	 nontrivial	 behaviors	 in	 the	 system,	 such	 as	 the	emergence	of	self‐sustained	oscillations	and	their	synchronization.		
To	develop	further	intuition	about	this	system,	we	express	it	in	the	following	approximate	form	(see	Appendix	A):	

߬௜ݏሷ௜ ൅ ሶ௜ݏ௜ሻݏሺܩ ൅ ܷ݀ሺݏ௜ሻ݀ݏ௜ ൌ ௜௖ܨ ൅ ݅					,௘ܨ ൌ 1, 2, … ,ܰ,																																																																																									ሺ7ሻ	
where	ܷሺݏ௜ሻ,	ܩሺݏ௜ሻ,	ܨ௜௖	and	ܨ௘ 	are	given	by	equations	(A3),	(A4),	(A5)	and	(A6),	respectively.	

Equations	 (7)	 govern	 the	 motion	 of	ܰ	particles	 (oscillators),	 each	 representing	 a	 network	 of	investors	characterized	by	horizon	߬௜ ,	driven	by	the	applied	force.	Interestingly,	as	follows	from	(7),	߬௜ 	takes	on	a	meaning	of	the	mass	of	the	݅‐th	particle	in	the	sense	that	particles	with	small	߬௜ 	(“light”	particles)	are	more	sensitive	to	any	force	than	particles	with	large	߬௜	(“heavy”	particles).	We	can	say	that	particles	with	small	߬௜ 	have	smaller	inertia	than	particles	with	large	߬௜ .		
The	form	of	equations	(7)	allows	their	interpretation	in	terms	of	the	particle’s	motion	inside	the	potential	 well	ܷሺݏ௜ሻ	in	 the	 presence	 of	 damping	െݏܩሶ௜ ,	 driven	 by	 the	 external	 force	ܨ௜௖	stemming	from	interaction	between	the	particles	(via	common	information	flow	݄)	and	the	external	force	ܨ௘ 	due	to	the	flow	of	exogenous	news.		
As	follows	from	(A3),	the	shape	of	the	potential	well	ܷሺݏ௜ሻ	is	identical	for	all	particles.	Further,	it	depends	only	on	two	parameters,	ߚଵ	and	ߜ.	Gusev	et	al.	(2015)	demonstrated	for	the	case	ܰ ൌ 1	that	
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the	regime	relevant	for	the	stock	market	corresponds	to	ߚଵ ൌ 1.1	and	ߜ ൌ 0.03,	which	results	in	an	asymmetric	double‐well	shape	of	the	potential	(Figure	1).16			

	
Figure	1:	 The	 profiles	 of	 the	 energy	 surface	 and	 the	 potential	well,	 corresponding	 to	ߚଵ ≳ 1	and	ߜ ≪ 1.	(a)	The	energy	surface	ܧሺݏ௜ , ௜ݏሺ	space	the	in	ሶ௜ݏ	and	௜ݏ	of	function	a	as	shown	is	ሶ௜ሻݏ , ሶ௜ݏ , ௜ݏ	of	function	a	as	shown	is	௜ሻݏܷሺ	well	potential	The	(b)	(red).	high	to	(blue)	low	from	levels,	energy	indicate	colors	The	ሻ.ܧ .	The	equilibrium	point	at	the	cusp	of	the	potential	is	the	unstable	saddle,	while	the	equilibrium	 points	 at	 its	 minima	 can	 be	 stable	 or	 unstable	 nodes	 or	 stable	 or	 unstable	 foci,	depending	on	the	value	of	feedback	strength	ߛ.	The	well	where	sentiment	is	positive	is	deeper	than	the	well	where	sentiment	is	negative.	Three	typical	trajectories	are	shown	schematically	in	the	well.	

Figure	 (1a)	 depicts	 a	 surface	 corresponding	 to	 the	 kinetic	 and	 potential	 energy	 of	 the	݅‐th	particle	as	a	function	of	ݏ௜ 	and	ݏሶ௜:	ܧሺݏ௜ , ሶ௜ሻݏ ൌ ఛ೔ଶ ሶ௜ଶݏ ൅ ܷሺݏ௜ሻ.	Its	cross‐section	by	the	plane	ሺܧ, 	the	gives	௜ሻݏ shape	 of	 the	 potential	 well	 and	 by	 the	 plane	ሺܧ, 	has	ሶ௜ሻݏ the	 familiar	 parabolic	 profile	 of	 the	
																																																													
16	As	ߚଵ	increases,	the	potential	well	undergoes	a	bifurcation	from	a	single‐well	U‐shape	to	a	double‐well	W‐shape	at	ߚଵ ൌ 1.	The	potential	is	symmetric	for	ߜ ൌ 0;	positive	ߜ	breaks	the	symmetry,	making	the	part	of	the	well	where	sentiment	is	positive	deeper	and	the	part	where	sentiment	is	negative	more	shallow.	
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kinetic	energy.	All	trajectories	lie	on	this	energy	surface.	Figure	(1b)	depicts	typical	trajectories	that	we	will	discuss	below.	
If	 the	 impacts	 of	 damping	ሺെݏܩሶ௜ሻ,	 interaction	ሺܨ௜௖ሻ	and	 news	ሺܨ௘ሻ	were	 negligible,	 a	 particle	would	 oscillate	 periodically	 in	 response	 to	 the	 restoring	 force	െ ௗ௎ௗ௦೔	along	 the	 energy	 conserving	trajectories,	given	by	ܧሺݏ௜ , ሶ௜ሻݏ ൌ constant,	on	horizontal	planes.			
Let	 us	 consider	 the	 impact	 of	 damping	 on	 a	 particle’s	 motion.	 Damping,	 if	 not	 counteracted,	causes	 the	 particle	 to	 lose	 energy,	 so	 that	 its	 path	 spirals	 down	 toward	 either	 the	 negative	 or	positive	 stable	 equilibrium	 points	 located	 in	 the	minima	 of	ܧሺݏ௜ , 	Momentarily	ሶ௜ሻ.ݏ returning	 from	this	 analogy	 to	 the	 real	world,	we	 can	 say	 that	 the	 interaction	 among	 investors	within	 each	peer	group,	 subject	 to	 random	 idiosyncratic	 influences,	 compels	 the	group’s	 sentiment	 toward	either	a	negative	or	positive	equilibrium,	where	the	consensus	of	opinion	will	be	reached.		
Price	 feedback	adds	a	 fascinating	twist	to	this	dynamic.	 It	 follows	from	(A4)	that	 the	damping	coefficient	ܩ	is	 a	 function	 of	 the	 particle’s	 position	 and	 is	 also	 dependent	 on	 several	 parameters,	most	notably	 the	price	 feedback	 strength	ߛ.	 Interestingly,	ܩ	becomes	negative	 in	 some	 regions	on	the	ሺݏ௜ , 	for	result,	a	As	it.	dissipating	of	instead	system	the	to	energy	supply	to	begins	damping	feedback,	strong	sufficiently	for	that	implying	A7),	(equation	value	critical	certain	a	exceeding	ߛ	for	ሶ௜ሻ‐planeݏ large	ߛ,	 some	or	 all	 trajectories	may	 converge	 to	 the	 limit	 cycle	 orbit	where	 the	 supplied	 and	dissipated	 energies	 compensate	 each	 other.	 This	 yields	 a	 potentially	 new	 state	 of	 dynamic	equilibrium	 in	which	ݏ௜	would	 exhibit	 self‐sustaining,	 large‐amplitude,	 periodic	 oscillations	 above	the	cusp	of	the	energy	surface	between	negative	and	positive	sentiment	values	(the	red	trajectory	in	Figure	1b).		
The	critical	value	of		ߛ	is	roughly	the	same	for	all	ݏ௜	(equation	A9).	Therefore,	for	supercritical	ߛ,	the	total	sentiment	will	undergo	the	limit	cycle	oscillations,	giving	rise	to	the	permanent	regime	of	
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rallies	and	crashes,	which	contradicts	the	observed	market	behavior.	Conversely,	Gusev	et	al.	(2015)	showed	 for	 the	 case	 where	ܰ ൌ 1	that	 subcritical	ߛ	leads	 to	 realistic	 market	 regimes.	 We	 should	briefly	 inspect	 this	 case	 because	 in	 the	 absence	 of	 interaction	ሺܨ௖ሻ,	 the	 situation	 of	ܰ ൐ 1	is	qualitatively	similar	to	that	of	ܰ ൌ 1	under	the	approximation	(7).		
The	case	ܰ ൌ 1	offers	a	simple	portrait	of	trajectories	as	numerical	solutions	to	equations	(6)	for	ߦ௧ ൌ 0	on	the	ሺݏ, ݄ሻ‐plane	(Figure	2a).	The	distinct	regimes	illustrated	schematically	 in	Figure	(1b)	in	 the	ሺݏ, 	ሶሻ‐spaceݏ are	 clearly	 visible	 here.17	First,	 there	 are	 small‐amplitude,	 decaying	 oscillations	around	the	positive	equilibrium	point	inside	the	deep	well.	Second,	there	are	large‐scale	trajectories	passing	above	the	cusp	of	the	potential,	along	which	the	particle	can	escape	from	one	well	into	the	other.	Third,	oscillations	also	occur	inside	the	shallow	well,	where	sentiment	is	negative,	but	as	the	equilibrium	point	there	is	unstable,	the	particle	is	quickly	ejected	onto	the	trajectories	leading	into	the	well	 in	which	sentiment	 is	positive.	Figure	 (2b),	which	depicts	 the	empirical	 sentiment	path18	traced	 by	 the	 US	 stock	market	 during	 1995‐2015,	 confirms	 the	 existence	 of	 the	 above‐described	three	types	of	sentiment	motion.		
Thus,	we	can	presume	that	subcritical	ߛ	permits	realistic	trajectories	of	sentiment	evolution	and	so	will	apply	subcritical	values	of	ߛ	in	the	numerical	and	empirical	analyses	in	the	next	section.		
																																																													
17	The	motion	 on	 the	ሺݏ, ݄ሻ‐plane	 bears	 resemblance	 to	 the	motion	 on	 the	ሺݏ, 	ሶሻ‐planeݏ because	݄	can	 be	expressed	as	a	function	of	ݏ	and	ݏሶ 	from	equation	(6a).		
18	Following	 the	methodology	 from	Gusev	et	 al.	 (2015),	we	have	 constructed	a	 time	series	of	daily	݄ሺݐሻ	from	 news	 data	 retrieved	 from	 the	 DJ/Factiva	 archive	 and	 substituted	݄ሺݐሻ	into	 equation	 (6a)	 for	ܰ ൌ 1	to	generate	a	time	series	of	daily	ݏሺݐሻ	and	obtain,	after	filtering,	the	empirical	sentiment	evolution	path.	
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Figure	2:	(a)	The	phase	portrait	on	the	ሺݏ, ݄ሻ‐plane	for	the	model	with	ܰ ൌ 1,	showing	an	unstable	focus	 in	 the	 negative‐sentiment	well	 (red	 asterisk),	 a	 stable	 focus	 in	 the	 positive‐sentiment	well	(green	 asterisk)	 and	 large‐scale	 trajectories	 crossing	 the	wells	 (from	Gusev	 et	 al.,	 2015).	 (b)	 The	phase	 portrait	 of	 the	 empirical	 market	 sentiment	 trajectory	 (1995‐2015).	 To	make	 this	 plot,	 the	empirical	series	of	daily	݄ሺݐሻ	and	ݏሺݐሻ	have	been	smoothed	by	a	Fourier	filter,	removing	harmonics	with	periods	 less	 than	100	business	days.	This	path	remained	predominantly	 in	 the	positive	well,	with	only	two	excursions	into	the	negative	well	during	the	bear	markets	of	2001‐2002	and	2008.	

Next,	we	 examine	 the	 influence	of	 the	 stochastic	 force	ܨ௘	generated	by	 the	 flow	of	 exogenous	news	 (equation	A6).	This	 force	acts	 to	 thrust	a	particle	 randomly	 from	one	 trajectory	 to	 another,	occasionally	forcing	it	into	a	region	which	can	lend	the	particle	new	dynamics	(e.g.	from	the	vicinity	of	the	equilibrium	points	to	the	large‐scale	trajectories	that	traverse	the	well	and	vice	versa).	Thus,	exogenous	news	flow	plays	a	key	role	in	market	dynamics,	being	a	random	external	force	that	may,	from	time	to	time,	trigger	changes	in	market	regimes.	Note	that	the	asymmetry	of	the	energy	surface	implies	 that	 a	 stronger	 force	 is	 needed	 to	 move	 a	 particle	 onto	 a	 path	 crossing	 from	 the	 deep	(positive)	well	to	the	shallow	(negative)	well.	
Additionally,	owing	to	 their	 lower	 inertia,	 “light”	particles	with	small	߬௜	react	more	strongly	to	ܨ௘ 	than	 “heavy”	 particles	 with	 large	߬௜ .	 As	 a	 result,	 “light”	 particles	 can	 be	 expected	 to	 appear	frequently	on	large‐scale	trajectories	high	on	the	energy	surface,	while	“heavy”	particles	are	likely	to	spend	most	 of	 their	 time	 on	 small‐scale	 trajectories	 around	 the	 equilibrium	 points	 at	 its	 bottom	
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(Figure	1b).19	This	situation	is	relevant	for	the	stock	market,	since	a	greater	volatility	in	sentiment	is	expected	from	short‐term	investors	than	from	long‐term	investors.		
Finally,	 there	are	effects	due	 to	 the	 force	ܨ௜௖	exerted	on	 the	݅‐th	particle	by	 the	other	particles	(equation	A5).	Its	action	can	be	viewed	through	the	prism	of	constraints	imposed	on	the	motion	by	the	 relations	between	each	pair	of	particles	 in	 terms	of	 their	mutual	positions	and	velocities	 that	restrict	the	degrees	of	freedom	of	the	motion.				
We	write	down	equations	for	these	constraints	by	observing	that	according	to	equation	(6a),	at	any	time	all	particles	must	share	the	same	݄	when	moving	along	their	paths	on	the	energy	surface.	Thus,	we	invert	(6a)	to	express	݄	as	a	function	of	ݏ௜	and	ݏሶ௜,	and	obtain	an	equation	for	the	constraint	

௜݂௝ 	between	the	݅‐th	and	݆‐th	particles:20		
௜݂௝ ൌ ݂൫ݏ௜ , ;ሶ௜ݏ ௝ݏ , ሶ௝൯ݏ ൌ arctanhሺݏ௜ ൅ ߬௜ݏሶ௜ሻ െ ௝ݏ௜arctanh൫ݏଵߚ ൅ ௝߬ݏሶ௝൯ െ ௝ݏଵߚ ൌ 1,				݅ ൌ 1, 2,… ,ܰ,				݆ ൌ 1, 2, … , ܰ.																											ሺ8ሻ	
Equations	 (8)	determine	 the	 relations	 between	 the	 sentiments	 and	 the	 rates	 of	 change	 in	 the	sentiments	of	different	 investor	groups	due	to	mutual	 influences	exerted	by	these	groups	on	each	
																																																													
19	This	analysis	is	relevant	for	the	particles	with	߬௜ ≳ ߬௛ .	In	Section	2.3	we	will	show	that	the	“ultra‐light”	particles	with	߬௜ ≪ ߬௛	possess	no	intrinsic	dynamics,	adjusting	instead	to	the	dynamics	of	“heavier”	particles.	
20	We	note	 that	 these	equations	constitute	ሺேିଵሻேଶ 	nontrivial	 first	 integrals	of	motion,	out	of	which	ܰ െ 1	are	 independent.	 The	 independent	 first	 integrals	 reduce	 the	 degrees	 of	 freedom	 of	 system	 (7)	 from	2ܰ	to	ܰ ൅ 1,	which	matches	the	number	of	equations	in	the	dynamical	system	(6).	
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other.	These	relations	drive	synchronization	patterns,	discussed	in	the	next	section,	resulting	in	self‐similar	behaviors,	as	well	as	other	effects,	in	the	market.21		
Acting	 together,	 the	 above‐described	 forces	 can	 generate	 diverse	 and	 complex	 dynamics.	 For	example,	“light”	particles	may	in	response	to	negative	news	migrate	from	higher	orbits	in	the	well	to	orbits	 in	 the	vicinity	of	 the	negative	sentiment	equilibrium	at	 the	well’s	bottom.	According	 to	 (8),	this	change	in	the	dynamic	of	“light”	particles	will	require	that	“heavy”	particles	adapt	their	motion	to	 synchronize	 frequencies	 and	 amplitudes.	 Should	 this	 dynamic	 persist,	 “heavy”	 particles,	which	make	a	major	contribution	to	total	sentiment	(4),	may	cross	from	the	positive	well	into	the	negative	well,	 tipping	 overall	 sentiment	 in	 the	market	 from	positive	 to	 negative	 and,	 as	 a	 result,	 pressure	market	price	downward.	We	will	encounter	this	scenario	of	a	bear	market	transition	in	numerical	simulations	and	empirical	analysis	in	the	next	section.	
At	 this	 point,	 we	 wish	 to	 remind	 the	 reader	 of	 the	 main	 purpose	 of	 this	 section,	 that	 is,	 to	develop	a	conceptual	understanding	of	the	dynamics	in	model	(6)	prior	to	submitting	it	to	the	brute	force	 of	 numerical	 simulations.	 We	 have	 therefore	 severely	 truncated	 this	 model	 to	 isolate	 the	forces	 acting	 on	 a	 particle	 (i.e.	 an	 investor	 group)	 in	 equation	 (7)	 and	 explored	 the	 dynamic	stemming	 from	 each	 force	 separately.	 The	 intuition	 developed	 here	 will	 aid	 in	 untangling	 the	dynamics	 obtained	 in	 the	 next	 section,	with	 the	 caveat	 that	 these	 interpretations	 remain	 inexact	because	a	specific	dynamic	of	a	particle,	strictly	speaking,	 can	neither	be	completely	attributed	to	one	particular	force,	nor	considered	in	isolation	from	other	particles.			
																																																													
21	Synchronization	is	ubiquitous	among	the	behaviors	of	interacting	nonlinear	oscillators:	e.g.	Pikovsky	et	al.	(2001)	provide	an	in‐depth	treatment	of	various	synchronization	effects	in	coupled	oscillator	systems.		
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2.2.	Numerical	and	empirical	analyses	In	this	section,	we	investigate	system	(6)	numerically	for	߬௜ ≳ ߬௛ ,	while	the	case	where	߬௜ ≪ ߬௛	will	be	treated	in	the	next	section.	Following	Gusev	et	al.	(2015),	we	use	the	estimate	߬௛~1	day,	which	is	consistent	with	the	behavior	of	the	autocorrelation	of	݄ሺݐሻ	showing	a	fast	decay	of	“memory”	effects	on	the	order	of	1‐3	business	days.			
We	 proceed,	 first,	 by	 considering	 only	 two	 groups	 of	 investors,	with	߬ଵ ൌ 1	business	 day	 and	߬ଵହ ൌ 15	business	 days,	 to	 illustrate	 the	 effects	 discussed	 in	 the	 previous	 section.	 In	 terms	 of	oscillator	dynamics,	the	groups	with	߬ଵ	and	߬ଵହ	behave,	respectively,	as	“light”	and	“heavy”	particles	on	the	energy	surface.		
Figure	3	depicts	 one	 simulation	 spanning	700	business	days.	The	 “light”	particle	undergoes	 a	large‐scale	motion	high	in	the	potential	well,	covering	the	distance	between	extreme	negative	and	extreme	 positive	 sentiment	 values	 in	 a	 1‐2	 week	 timeframe.	 However,	 this	 particle	 can	 also	 get	caught	 in	 a	 small‐scale	 motion	 around	 the	 equilibrium	 points	 at	 the	 well’s	 bottom,	 sometimes	staying	there	for	extended	periods	of	time	before	it	can	escape	(e.g.	the	intervals	120‐170	days	and	250‐290	days	in	the	positive	well	and	the	intervals	290‐440	days	and	610‐690	days	in	the	negative	well).	As	discussed	in	the	previous	section,	these	transitions	between	large‐	and	small‐scale	motions	are	triggered	by	the	stochastic	force	exerted	by	exogenous	news	flow	ߦߢ௧ .22		
																																																													
22	Exogenous	news	flow	ߦߢ௧ 	is	modeled	on	daily	 intervals	as	normally‐distributed	white	noise	with	zero	mean	and	unit	variance.	However,	we	have	chosen	ߦߢ௧	to	have	a	small	positive	intraday	autocorrelation	on	the	assumption	that	news	events	are	positively	correlated	on	intraday	time	intervals;	the	autocorrelation	is	zero	over	the	intervals	of	one	day	or	longer.				
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Figure	 3:	 Sentiment	 evolution	 in	 the	 two‐component	 theoretical	 model	 with	߬௜ ൌ 1,	 15.	 Other	parameters:	ߚଵ ൌ ଶߚ	,1.1 ൌ ߜ	,1.0 ൌ 0.02,	߬௛ ൌ ߛ	,1 ൌ 5.		

The	“heavy”	particle	stays	on	the	orbits	near	the	bottom	of	the	positive	well	during	the	first	300	days.	Its	motion	is	correlated	with	the	motion	of	the	“light”	particle,	such	that	its	path	shifts	toward	negative	or	positive	values	when	the	“light”	particle	is	in	the	negative	or	positive	sentiment	region,	respectively.	Equation	(8)	attributes	this	behavior	to	the	synchronization	of	the	particles’	dynamics.	As	 a	 result,	 by	 observing	 the	motion	 of	 one	 particle,	we	 can	deduce	 the	motion	 of	 the	 other.	 For	example,	when	the	“light”	particle	remains	sufficiently	long	as	the	solitary	particle	inside	a	well,	the	“heavy”	particle	will	move	from	the	well	where	it	resides	into	the	well	in	which	the	“light”	particle	is	residing.	Indeed,	we	observe	that	the	“heavy”	particle	 follows	the	“light”	particle	 into	the	negative	well	 in	 the	 interval	 300‐400	 days.	 Visually,	 it	 appears	 as	 if	 the	 “light”	 particle	 pulls	 the	 “heavy”	particle	 across	 the	 wells.	 As	 we	 will	 see	 below,	 this	 is	 the	 basic	 characteristic	 of	 the	 cascade	mechanism	governing	regime	transitions	between	bull‐	and	bear	markets.				
Let	 us	 now	 discuss	 the	 results	 of	 simulations	 in	 a	more	 realistic	model	 that	 consists	 of	 nine	investor	 groups	 with	τ୧ ൌ	1,	 2,	 3,	 4,	 11,	 15,	 19,	 24,	 28,	 which	 will	 be	 applied	 to	 design	 trading	strategies	 in	Section	3.	 Figure	4	 shows	 sentiment	evolution	 for	 four	groups	with	߬௜ ൌ	1,	3,	11,	19.	The	synchronicity	among	these	groups	is	evident.	For	example,	in	the	interval	750‐800	days	we	can	observe	how	the	move	of	the	group	with	߬௜ ൌ	1	from	the	negative	to	positive	well	causes	a	similar	move	of	 the	group	with	߬௜ ൌ	3,	 followed	by	 the	group	with	߬௜ ൌ	4	and	then	 the	rest	of	 the	groups,	
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each	with	 progressively	 smaller	 amplitude.	 Thus,	 it	 appears	 that	 regime	 transitions	 occur	 as	 the	cascades	propagating	from	“light”	investors	with	small	߬௜	toward	“heavy”	investors	with	large	߬௜ .23		

	
Figure	4:	Sentiment	evolution	in	the	nine‐component	theoretical	model	with	߬௜ ൌ	1,	2,	3,	4,	11,	15,	19,	24,	28.	Other	parameters:	ߚଵ ൌ ଶߚ	,1.1 ൌ ߜ	,1.0 ൌ 0.02,	߬௛ ൌ ߛ	,1 ൌ 10.		

Another	 pattern	 discernable	 in	 this	 figure	 is	 that	 the	 particles	 form	 two	 groups	with	 distinct	dynamics:	the	first	group	with	߬௜ ൌ	1,	3	that	follows	a	typical	“light”	particle	dynamic	and	the	second	group	 with	߬௜ ൌ	11,	 19	 that	 behaves	 like	 a	 typical	 “heavy”	 particle.	 This	 separation	 implies	 a	relatively	 sharp	 transition	 between	 the	 two	 dynamics	 as	 a	 function	 of	 the	 investment	 horizon	߬௜ .	Therefore,	for	a	qualitative	analysis,	 it	seems	justified	to	approximate	interaction	in	the	market	as	the	interaction	between	two	types	of	participants:	volatile	short‐term	investors	who	are	sensitive	to	incoming	 information	 and	 relatively‐static	 long‐term	 investors	 whose	 views	 on	 the	 market	 are	firmly	established.	 It	 is	 interesting	 that	both	groups	are	vital	 to	market	dynamics	since	 the	short‐																																																													
23	In	 this	 paper	 we	 do	 not	 consider	 the	 effect	 of	 a	 slowly	 varying	ߚଵ	on	 regime	 transitions,	 which	was	studied	in	detail	by	Gusev	et	al.	(2015).	These	authors	showed	that	ߚଵ	slightly	increased	during	bull	markets	and	slightly	decreased	during	bear	markets	(while	remaining	above	unity),	affecting	the	shape	of	the	potential	well	and,	correspondingly,	the	probability	of	regime	transitions.		
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term	investors	are	sufficiently	“nimble”	to	initiate	a	change	in	market	regime,	while	the	long‐term	investors	are	sufficiently	“massive”	to	actually	effect	the	change.24	
At	 this	 juncture,	we	 can	 test	 the	model	with	 empirical	 data	 for	 the	US	 stock	market	 between	1995‐2015,	 using	 the	model	with	 the	 nine	 components,	 studied	 above,	 to	 obtain	 daily	ݏ௜ሺݐሻ	from	measured	daily	݄ሺݐሻ.	Figure	5	shows	the	results	for	the	period	2005‐2009,	chosen	to	highlight	the	empirical	 behavior	 of	 sentiment	 during	 transition	 to‐	 and	 from	 the	 bear	 market	 regime.	 These	results	are	visually	similar	to	the	results	of	numerical	simulation.	We	particularly	note	the	cascade	mechanism	of	the	market	regime	transitions	and	the	distinct	patterns	in	the	behavior	of	the	short‐term	and	 long‐term	 investor	groups,	 thus	corroborating	the	main	 features	of	 the	model	dynamics	empirically.	

	

Figure	5:	Sentiment	evolution	in	the	nine‐component	empirical	model	with	߬௜ ൌ	1,	2,	3,	4,	11,	15,	19,	24,	28.	Other	parameters:	ߚଵ ൌ ଶߚ	,1.1 ൌ 1.0.		
																																																													
24	Incidentally,	there	appear	certain	parallels	between	the	behavior	of	these	two	investor	groups	and	the	two	types	of	 investors	ubiquitous	 in	 the	market	modeling	 literature,	namely	systematic	 traders	(also	called	chartists	or	noise	traders),	on	the	one	hand,	and	fundamental	or	informed	traders,	on	the	other	hand.		
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2.3.	Efficient	market	regime	In	 this	 section	we	 show	 that	 in	 the	 leading	 order	 the	dynamic	 of	 short‐term	 investors	 decouples	from	the	dynamics	of	investor	groups	with	longer	horizons,	where	short‐term	investors	are	defined	as	 traders	 operating	 on	 timescales	 much	 shorter	 than	߬௛~1	day.	 In	 particular,	 we	 will	 see	 that	investment	processes	on	these	timescales	are	not	involved	in	the	feedback	mechanism,	but	instead	cause	market	price	to	adjust	quickly	to	new	information,	contributing	to	market	efficiency.		
Let	us	consider	a	two‐component	25	system	(6)	such	that	߬ଵ ≪ ߬௛ ≲ ߬ଶ:	

߬ଵݏሶଵ ൌ െݏଵ ൅ tanhሺߚଵݏଵ ൅ 																																																																																																																											,ଶ݄ሻߚ ሺ9ܽሻ	
߬ଶݏሶଶ ൌ െݏଶ ൅ tanhሺߚଵݏଶ ൅ 	ሺ9ܾሻ																																																																																																																										ଶ݄ሻ,ߚ
߬௛ ሶ݄ ൌ െ݄ ൅ tanhሺ̅ߛሺ߬ଵݏሶଵ ൅ ߬ଶݏሶଶሻ ൅ ߜ ൅ 	ሺ9ܿሻ																																																																																																			௧ሻ,ߦߢ
where	̅ߛ ൌ ఊఛభାఛమ	.	

We	first	examine	this	system	on	timescales	~߬ଵ.	It	follows	from	(9a)	that	ݏଵ	can	change	by	ܱሺ1ሻ	over	߬ଵ.	Similarly,	 it	 follows	from	(9b,c)	that	݄	and	ݏଶ	change	respectively	by	ܱ ቀఛభఛ೓ቁ	and	ܱ ቀఛభఛమቁ	over	߬ଵ.	Such	a	slow	variation	in	݄	and	ݏଶ	can	in	the	first	order	be	neglected,	leading	to		
߬ଵݏሶଵ ൌ െݏଵ ൅ tanhሺߚଵݏଵ ൅ 																																																																																																																								,ଶ݄ሻߚ ሺ10ܽሻ	
ሶଶݏ ൌ 0,																																																																																																																																																																									ሺ10ܾሻ	
ሶ݄ ൌ 0.																																																																																																																																																																											ሺ10ܿሻ																																																														

25	This	result	holds	for	model	(6)	with	ܰ ൒ 2.	For	simplicity,	we	show	its	derivation	in	the	case	ܰ ൌ 2.	
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According	to	these	equations,	both	݄	and	ݏଶ	remain	approximately	constant	on	timescales	~߬ଵ,	over	which	ݏଵ	converges	from	any	initial	position	toward	its	equilibrium	state	(ݏሶଵ ൌ 0),	given	by	
ଵݏ ൌ tanhሺݏߚଵ ൅ .ଵ݄ሻߚ 																																																																																																																																											ሺ11ܽሻ	

Next,	we	study	system	(9)	on	timescales	~߬௛	or	longer.	As	viewed	on	these	timescales,	ݏଵ	almost	instantaneously	(~߬ଵ ≪ ߬௛)	converges	to	the	position	of	equilibrium	(11a).	Consequently,	sentiment	ݏଵ	behaves	as	if	it	were	in	a	state	of	permanent	equilibrium,	while	݄	and	ݏଶ	evolve	according	to		
߬ଶݏሶଶ ൌ െݏଶ ൅ tanhሺߚଵݏଶ ൅ 	ሺ11ܾሻ																																																																																																																								ଶ݄ሻ,ߚ
߬௛ ሶ݄ ൌ െ݄ ൅ tanhሺ̅߬ߛଶݏሶଶ ൅ ߜ ൅ 	ሺ11ܿሻ																																																																																																																	௧ሻ.ߦߢ
Accordingly,	system	dynamics	on	these	timescales	are	determined	by	equations	(11b,c),	whereas	ݏଵ	merely	follows	any	changes	in	݄	by	moving	along	the	equilibrium	solution	(11a),	which	is	called	the	isocline.	26,27		

																																																													
26	Strictly	speaking,	although	ݏଵ	spends	most	of	its	time	(~߬௛)	on	the	isocline,	where	its	velocity	is	close	to	zero,	it	can	also	leave	the	isocline	and	move	briefly	(~߬ଵ)	along	a	trajectory	in	its	vicinity	(Figure	6).	Therefore,	ݏሶଵ	is	nearly	 zero	at	all	 times,	 except	 for	brief	moments	when	 the	 trajectory	departs	 the	 isocline,	 so	 that	 the	average	contribution	in	(9c)	due	to	ݏଵ	is	small	as	compared	to	ݏଶ	and	can	be	neglected.		
27	This	approximation	does	not	work	in	a	system	with	ܰ ൌ 1,	as	there	exist	̅ߛ	for	which	the	term	̅߬ߛଵݏሶଵ	in	(9c)	cannot	be	neglected.	As	a	result,	for	large	̅ߛ	the	coupling	between	ݏଵ	and	݄	can	be	strong	enough	to	cause	a	limit	cycle	dynamic.	The	situation	is	different	in	systems	with	ܰ ൒ 2,	which	model	market	dynamics	with	a	greater	precision.	There,	߬ଵݏሶଵ	can	in	average	be	neglected	in	comparison	with	߬௜ݏሶ௜ 	(߬௜ ≳ ߬௛)	in	(9c),	so	that	the	motion	of	ݏଵ	is	completely	determined	in	this	case	by	the	dynamics	between	݄	and	ݏ௜	(݅ ് 1).			
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Figure	6:	The	isocline	(red)	and	trajectories	of	ݏଵ	(blue)	for	different	initial	conditions	in	system	(9)	with	߬ଵ ൌ 0.01	and	߬ଶ ൌ 25.	 Sentiment	ݏଵ	falls	 on	 the	 isocline	 along	 the	 approximately	 horizontal	lines:	the	motion	occurring	so	fast	that	݄	has	 little	time	to	change.	Sentiment	ݏଵ	continues	to	move	along	the	 isocline,	 following	slowly	evolving	݄.	The	segment	of	the	 isocline	between	 its	extrema	is	unstable,	which	 causes	 sentiment	 to	 vacillate	 between	 the	 isocline’s	 left	 and	 right	 branches.	 The	overall	motion	 consists	 of	 slow	passages	 along	 the	 isocline	 and	 fast	 jumps	 between	 its	 branches,	determined	solely	by	the	dynamics	between	݄	and	ݏଶ.		

Thus,	 we	 have	 shown	 that	 sentiment	ݏଵ,	 which	 develops	 on	 timescales	߬ଵ ≪ 1	day,	 decouples	from	 the	 system’s	 dynamics	 and	 does	 not	 participate	 in	 the	 sentiment‐information	 feedback;	instead,	 sentiment	ݏଵ	resides	 in	 a	 state	 of	 approximate	 equilibrium,28	adjusting	 instantaneously	 to	changes	in	information	flow	݄	and	so	driving	corresponding	changes	in	market	price.	We	therefore	conclude	 that	 market	 efficiency	 persists	 on	 timescales	 much	 less	 than	 one	 day.	 Further,	 we	 can	
																																																													
28	This	analytical	result,	which	follows	from	equations	(10)	and	(11),	has	been	verified	by	direct	numerical	simulations.	 We	 also	 note	 that	 equations	 (10)	 and	 (11)	 can	 be	 obtained	 by	 rescaling	 system	 (9)	 (using	 a	dimensionless	time	variable)	and	inspecting	the	leading‐order	balance	on	relevant	timescales;	we	have	chosen	an	informal	derivation	above	for	the	sake	of	preserving	the	readability	of	this	section.	
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reasonably	conjecture	that	intraday	investment	processes,	generally,	take	place	in	a	quasi‐efficient	market	 regime	 due	 to	weak	 feedback,	 gradually	 giving	way	 to	 the	 dynamics	 of	mutually	 coupled	information	and	sentiment	over	horizons	longer	than	one	day,	which	we	study	in	this	paper.		
3.	Trading	strategies	based	on	the	market	return	forecasts	The	previous	section	concluded	that	the	stock	market	is	efficient	on	short	timescales	߬ଵ ≪ ߬௛~1	day.	This	 conclusion	also	sheds	 light	on	 the	mechanics	of	 (intraday)	news‐based	 trading.	According	 to	model	(5),	analysts	take	exogenous	news	flow	ߦ௧	as	an	input	to	generate	and	propagate	information	݄	in	time	~߬௛.	Once	݄	is	released,	the	short‐term	traders	will	move	market	price	by	∆ݏ∆~݌ଵ	in	time	~߬ଵ,	i.e.	with	a	practically	instantaneous	effect.	It	follows	that	the	objective	of	news‐based	trading	is	to	capture	this	∆݌	by	estimating	݄	from	ߦ௧	before	݄	has	been	released.				

Model	 (5)	 states	 that	 this	 same	 release	 of	 information	݄	will	 cause	 further	 changes	 in	 price,	namely	due	to	∆ݏଶ,	∆ݏଷ,	∆ݏସ	and	so	forth,	that	will	be	unfolding	over	days,	weeks	and	months.	In	this	section,	we	aim	to	verify	this	statement	by	designing	and	testing	algorithmic	trading	strategies	that	can	capture	these	longer‐term	impacts.			
Thus,	we	apply	model	 (5)	 to	develop	return	 forecasts,	upon	which	we	build	 the	prototypes	of	trading	strategies	and	backtest	them	against	the	S&P	500	Index.	For	this	purpose,	we	make	use	of	the	empirical	 time	series	of	daily	݄ሺݐሻ,	ݏሺݐሻ	and	݌ሺݐሻ	for	the	period	1995‐2015	(Figure	7).	We	note	that	the	correlation	between	the	daily	model	prices	and	the	daily	index	log	prices	is	around	95%.		
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Figure	7:	 Daily	 time	 series	 of	 information	݄ሺݐሻ,	 sentiment	ݏሺݐሻ	and	 price	݌ሺݐሻ	from	1995	 to	 2015,	where	ݏሺݐሻ	and	݌ሺݐሻ	have	been	obtained	from	measured	݄ሺݐሻ,	using	the	nine‐component	model	(5b)	with	߬௜ ൌ	1,	2,	3,	4,	11,	15,	19,	24,	28	and	ߚଵ ൌ ଶߚ	,1.1 ൌ 1.0,	and	the	price	formation	equation	(5a)	with	ܽଵ ൌ 0.368,	ܽଶ ൌ ∗ݏ	,0.003 ൌ 0.126	and	 the	 integration	constant	 equal	 to	3.790.	As	mentioned	earlier,	݄ሺݐሻ	has	been	extracted	from	news	data	in	the	DJ/Factiva	archive,	applying	the	methodology	in	Gusev	et	al.	(2015).	SPDR	S&P	500	ETF	is	taken	as	an	investable	proxy	of	the	S&P	500	Index	in	(c).	
The	 approach	 to	 constructing	 strategies	 is	 as	 follows.	 In	 accordance	with	 (5a)	 and	 (4),	 price	changes	are	determined	by	 the	sentiments	of	 investor	groups	with	different	 investment	horizons,	which	 contribute	 to	 the	 formation	of	aggregate	market	 sentiment	on	different	 timescales.	Thus,	 if	we	 extract	 the	 characteristic	 sentiment	 dynamic	 pertaining	 to	 each	 group,	we	 can	 forecast	 price	over	multiple	time	horizons	and	implement	trades	based	upon	these	forecasts.	
We	 therefore	wish	 to	 capture	 the	 characteristic	dynamic	of	 each	 investor	 group,	while	 taking	into	account	the	influence	of	the	other	groups.	Then,	we	apply	this	dynamic	to	extrapolate	the	future	
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market	position	from	its	current	position,	given	by	empirically	obtained	݄	and	ݏሺ݄ሻ,	and	so	generate	return	forecast	over	the	relevant	horizon.	In	terms	of	the	motion	in	the	ሺܰ ൅ 1ሻ‐dimensional	phase	space	ሺ݄, ,ሻݐ൫݄ሺ	trajectory	phase	the	of	behavior	characteristic	the	investigating	means	this	ሻ,ݏ ,ሺ݄	the	on	projected	ሻ൯ݐሺݏ ௝ݏ	by	௜ݏ	on	imposed	constraints	to	subject	௜ሻ‐plane,ݏ 	ሺ݆ ് ݅ሻ.		
In	practice,	the	nine‐component	model	(5)	with	߬௜ ൌ	1,	2,	3,	4,	11,	15,	19,	24,	28	has	been	applied	to	produce	return	forecasts	over	time	horizons	corresponding	to	the	characteristic	timescales	in	the	model.	 These	 forecasts	 can	 form	 the	 basis	 of	 a	 number	 of	 trading	 strategies,	 four	 of	which,	with	different	 holding	 periods,	 are	 presented	 here.	 Specifically,	 we	 show	 one	 strategy	 based	 on	 the	shortest	forecast,	two	strategies	based	on	different	combinations	of	the	equally‐weighted	forecasts	and	 the	 last	 strategy	 based	 on	 the	 longest	 forecast.	 In	 the	 backtest	 results,	 the	 average	 holding	periods	of	these	strategies	have	been,	respectively,	around	9,	12,	25	and	45	business	days	(Table	I).	
Each	strategy	generates	daily	a	buy‐,	sell‐	or	hold	signal	on	the	SPDR	S&P	500	ETF	(Bloomberg	ticker:	 SPY),	 an	 exchange‐traded	 fund	 tracking	 the	 S&P	 500	 Index,	 such	 that	 today’s	 trading	instruction	is	applied	to	the	next	day’s	opening	price.	The	signal	has	no	price	input:	it	is	based	solely	on	the	forecast	derived	from	news.	We	emphasize	that	these	strategies	are	merely	crude	prototypes,	designed	not	 for	actual	 trading	but	 to	verify	return	predictability;	as	such,	 these	strategies	do	not	include	position	sizing	and	risk	management.		
These	strategies	have	been	backtested	over	the	period	1995‐2015.	Since	the	strategies	require	an	 in‐sample	period	of	 roughly	2000	business	days	 for	parameter	value	 selection,	 the	backtested	performance	is	reported	for	the	out‐sample	period	2003‐2015.	We	note	that	the	strategies	are	not	sensitive	to	the	location	of	the	in‐sample	period	in	the	backtest	interval	and	that	in‐sample	and	out‐sample	performance	statistics	are	similar.	The	backtested	results	are	compared	with	those	of	two	benchmarks:	 a	 passive,	 long‐only	 investment	 in	 SPDR	ETF	 and	an	active,	 long‐short	 strategy	 that	
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combines	a	5‐day	reversal	and	250‐day	momentum	strategies	applied	to	SPDR	ETF	over	this	same	period.		
Figure	 (8)	and	Tables	 I	 and	 II	 show	 the	 cumulative	 returns,	performance	statistics	 and	 cross‐correlations,	respectively.	

	
Figure	8:	Performance	graphs	of	four	news‐based	strategies	backtested	against	SPDR	S&P	500	ETF	(“SPY”)	and	a	simple	price‐based	momentum‐reversal	strategy	(“Mom‐Rev”)	during	the	out‐sample	period	2003‐2015.	The	 invested	 capital,	 as	 a	base	 for	daily	P&L	accruals	 in	 active	 strategies,	was	subject	to	a	requirement,	applied	on	the	in‐sample,	that	each	strategy	be	on	average	100%‐invested	during	the	periods	for	which	trading	signal	was	nonzero.	No	transaction	costs	were	applied.	No	risk‐free	returns	and	no	funding	costs	were	accrued	on	the	under‐	and	overinvested	days,	respectively.	(a)	Cumulative	returns.	(b)	3‐year	rolling	returns.	
Table	I:	Statistics	based	on	monthly	returns	

		 mean		(%,	p.a.)	 volatility	(%,	p.a.)	 mean	/	volatility	 alpha	 beta	
holding	period	(business	days)	Strategy	1	 17.5	 14.9 1.17 1.471 0.011	 8.6	Strategy	2	 18.7	 15.1 1.24 1.299 0.302	 12.0	Strategy	3	 20.8	 13.7 1.52 1.456 0.324	 25.3	Strategy	4	 18.3	 14.0 1.30 1.453 0.084	 44.6	Mom‐Rev	 9.8	 9.4 1.04 0.857 ‐0.034	 3.8	SPY	 10.4	 14.3 0.73 0.000 1.000	 n/a	
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Table	II:	Correlations	(%)	based	on	monthly	returns	

		 Strategy	1	 Strategy	2	 Strategy	3	 Strategy	4	 Mom‐Rev	 SPY	Strategy	1	 100	 79 62 35 30	 1	Strategy	2	 79	 100 82 45 23	 29	Strategy	3	 62	 82 100 65 25	 34	Strategy	4	 35	 45 65 100 13	 9	Mom‐Rev	 30	 23 25 13 100	 ‐5	SPY	 1	 29 34 9 ‐5	 100		 The	pro‐forma	returns	of	all	 four	strategies	have	exceeded	the	returns	of	the	equity	index	and	the	priced‐based	momentum‐reversal	strategy,	on	absolute‐	and	risk‐adjusted	bases,	and	have	also	exhibited	 a	 relatively	 low	 correlation	 with	 these	 benchmarks	 on	 the	 12‐year	 out‐sample	 period.	Note	that	the	lengths	of	the	average	holding	periods	of	the	news‐based	strategies	are	substantially	longer	 than	 that	 of	 the	 active	 benchmark.	 These	 results	 point	 toward	 return	 predictability	 and	indicate	that	the	model	has,	at	least	partially,	captured	this	predictability.		
4.	Discussion		The	 starting	 point	 for	 this	 paper	was	 the	 stock	market	model	 in	 Gusev	 et	 al.	 (2015).	 The	model	consists	 of	 analysts29,	who	extract	 relevant	 information	 from	price	 changes	 and	 exogenous	news,	and	 investors,	 who	 apply	 this	 information	 to	 trade.	 The	 interaction	 mode	 among	 the	 agents	 is	assumed	to	be	all‐to‐all	 to	derive	the	model	 in	analytic	form	as	a	dynamical	system	governing	the	evolution	of	 the	mutually‐coupled	endogenous	“macroscopic”	variables:	market	price	(݌),	 investor	sentiment	(ݏ)	and	information	(݄)	supplied	by	analysts	(equations	1).																																																															

29	This	term	is	applied	in	a	collective	sense,	comprising	financial	analysts,	newspaper	journalists,	market	commentators,	 finance	bloggers	and	other	participants	who	communicate	 their	market	views	through	mass	media.	
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The	above	assumption	on	the	 interaction	topology	in	the	model	 is	 instrumental	for	identifying	the	basic	mechanisms	that	drive	market	dynamics;	however	it	also	makes	the	model	 insufficiently	fine‐grained	 for	 testing	return	predictability.	An	 introduction	of	a	more	complex	topology	 is	not	a	straightforward	task,	mainly	for	the	lack	of	obvious	choices	and	because	of	the	sensitivity	of	model’s	properties	 to	 the	 topology,	 but	 also	 because	 an	 unnecessary	 complexity	 may	 rather	 impede	understanding	 than	help,	which	 is	a	general	problem	with	 selecting	 interaction	patterns	 in	agent‐based	models.			
We	sidestepped	this	problem	by	arranging	investors	in	peer	networks,	according	to	investment	horizons,	on	the	assumption	that	interaction	among	peers	is	strongest,	obtaining	in	the	limiting	case	the	all‐to‐all	 interaction	within	each	peer	network	and	zero	outside	interaction	(Section	1.2).	Note	that	 despite	 the	 absence	 of	 interaction	 across	 the	 networks,	 each	 still	 can	 impact	 the	 others	 by	contributing	 to	 the	 common	 information	 flow	 that	 affects	 all	 networks	 in	 equal	 measure.	 This	phenomenological	approach	has	enabled	us	to	derive	a	market	model	with	ܰ	investor	networks	or	groups,	which	is	still	simple	enough	to	be	expressed	in	analytic	form	and	yet	sufficiently	realistic	to	be	applied	for	return	prediction	(equations	5).	
In	particular,	this	model	demonstrates	that	with	respect	to	processing	 information	the	market	behaves	efficiently	on	intraday	timescales	(Section	2.3)	and	inefficiently	on	timescales	longer	than	one	 day	 (Section	 2.2).	 The	model	 equations	 reveal	 that	 it	 is	 price	 feedback	 that	 enforces	market	inefficiency	by	coupling	the	endogenous	variables.	We	have	shown	that	feedback	is	negligible	on	the	intraday	 scale,	 but	 is	 important	 over	 longer	 time	 horizons,	where	 it	 contributes	 to	 leading‐order	dynamics.			
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The	situation	where	a	system	exhibits	different	behaviors	on	different	scales	 is	not	unusual	 in	nature.	 Fluid	 dynamics	 provides	 an	 instructive	 example.	 In	 fluids,	 inertia	 plays	 a	 central	 role	 on	large	 scales,	 while	 viscous	 damping	 is	 dominant	 on	 small	 scales.30	As	 a	 result,	 the	 large‐scale	dynamics	 and	 the	 small‐scale	 dynamics	 are	 fundamentally	 different:	 inertia	 induces	 a	 nonlinear	endogenous	dynamic	at	macro	scales,	whereas	at	micro	scales	inertia	is	so	small	that	velocities	in	a	fluid’s	flow	can	adjust	immediately	to	exogenous	changes,	leading	to	a	state	of	adiabatic	equilibrium.		
The	above	example	presents	a	useful	analogy	for	market	dynamics	as	the	market	also	evolves	on	many	 (time)scales,	driven	by	participants	with	various	 investment	horizons.	 Indeed,	equation	 (7)	states	that	the	investment	horizon	߬௜	is	analogous	to	the	mass	of	the	݅‐th	investor	group’s	sentiment	in	the	context	of	sentiment	dynamics.	Accordingly,	the	contribution	of	inertia	to	dynamics	on	short	timescales	is	negligible	because	the	mass	of	the	sentiment	of	relevant	investor	groups	is	very	small:	these	 investors	 react	 so	 fast	 as	 to	 move	 prices	 almost	 instantaneously	 in	 response	 to	 new	information,	leading	to	an	(adiabatic)	equilibrium	regime	on	these	timescales	(Section	2.3).	On	the	contrary,	 inertia	 cannot	 be	 neglected	 on	 longer	 timescales,	 which	 results	 in	 effective	 interaction	between	investors	and	analysts	in	the	model,	yielding	complex	dynamics	characterized	by	nonlinear	feedback	(Section	2.2).		
The	 intraday	market	efficiency	does	not	 imply	the	 lack	of	short‐term	trading	opportunities.	 In	fact,	whereas	price	adjusts	instantaneously,	information	݄	is	released	by	analysts	on	average	on	the	scale	߬௛~1	day.	This	delay,	which	can	likely	be	attributed	to	information	processing	(e.g.	gathering,																																																														
30	For	example,	we	swim	by	using	water’s	resistance	to	create	momentum;	however	this	strategy	would	fail	if	we	were	the	size	of	bacteria:	for	microorganisms,	water	appears	as	viscous	as	honey	for	humans,	forcing	them	to	evolve	unique	propulsion	techniques,	such	as	corkscrew‐like	locomotion	mechanisms	among	others.	
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aggregation,	 analysis,	 editing)	 and	 distribution	 frequency,	 creates	 a	 window	 of	 opportunity	 for	intraday	trading	between	the	occurrence	of	a	news	event	(e.g.	the	release	of	an	earnings	report)	and	its	reflection	in	݄.		
This	 short‐term	price	 reaction	 to	 information	 released	 by	 analysts	 is	 incomplete	 because	 the	overall	market	 sentiment	also	 includes	 the	 sentiments	of	 investor	 groups	with	 longer	 investment	horizons,	which	 can	 influence	 the	mid‐	 and	 long‐term	price	 evolution.	Equations	 (6)	 imply	 that	 a	change	in	information	will	cause	changes	in	sentiment	on	many	different	timescales	and	that	these	changes	will	 in	turn	cause	changes	 in	 information	–	creating	a	 feedback	 loop.	This	complex	multi‐scale	 interplay	 between	 information	 and	 sentiment	 is	 the	 generator	 of	 the	 variety	 in	 market	behavior,	 including	 self‐similar	 variation	 patterns	 briefly	 explained	 as	 a	 synchronization	 effect	 in	Sections	2.1	and	2.2.		
In	addition,	the	market	is	subject	to	the	impact	of	exogenous	news	flow	that	acts	as	an	external	stochastic	driving	force	(equations	5).	However,	as	discussed	above,	on	long	timescales	the	market	acquires	inertia	and	with	it	a	resistance	to	change	in	direction.	As	a	result,	market	behavior	can	be	predictable	in	situations	where	inertia	outweighs	noise.	A	test	of	this	predictability	has	been	carried	out	in	Section	3.	
Our	approach	to	return	prediction	is	based	on	principles	similar	to	those	of	weather	forecasting,	i.e.	of	combining	theoretical	models	and	empirical	measurements.	We	have	obtained	the	empirical	time	 series	 of	 information	 and	 sentiment	 and	 applied	 model	 (5)	 to	 forecast	 market	 price	 and	develop	the	prototypes	of	trading	strategies.	The	backtested	results,	compared	to	passive	and	active	benchmarks,	 suggest	 that	market	 forecasting	 on	 the	 above‐described	 principles	 functions	with	 a	precision	 sufficient	 for	 the	 development	 of	 successful	 trading	 strategies	 operating	 over	 horizons	ranging	from	days	to	months.	
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In	 this	 paper,	we	 have	 sought	 to	 develop	 a	market	model	 that	 is	 sufficiently	 sophisticated	 to	both	replicate	past	performance	and	predict	future	returns,	while	being	tractable	to	highlight	some	of	 the	 mechanisms	 underlying	 market	 dynamics.	 We	 fully	 realize	 that	 the	 range	 of	 processes	occurring	in	the	market	is	substantially	broader	than	those	captured	by	this	model.	For	example,	we	have	not	included	fundamental	traders	(who	apply	financial	analysis)	and	systematic	traders	(who	use	price	data).	We	note,	however,	that	the	analysts	in	the	model	perform	analogous	functions,	so	that,	in	the	first	order,	the	impacts	due	to	these	two	types	of	investors	are	taken	into	account.	In	any	case,	this	is	work	in	progress:	modeling	of	economic	or	natural	systems	must	proceed	from	simple	to	complex	as	the	grasp	of	underlying	mechanisms	improves.	As	such,	the	objective	of	this	paper	has	been	to	improve	the	current	understanding	of	market	dynamics	and	thus	provide	a	basis	for	further	modeling	efforts.	
5.	Conclusion	In	this	paper	we	have	theoretically	and	empirically	investigated	stock	market	return	predictability	on	 various	 time	 horizons.	 In	 particular,	we	 introduced	 a	 news‐driven	model	with	 heterogeneous	investors	and,	using	this	model,	developed	and	backtested	the	prototypes	of	 trading	strategies.	 In	the	course	of	this	study	we	have	reached	the	following	conclusions:	1. There	exist	two	characteristic	timescales	of	stock	market	dynamics.	Over	time	horizons,	shorter	than	one	day,	 the	market	behaves	 efficiently	with	 respect	 to	processing	 information.	On	 time	horizons	longer	than	one	day,	the	market	becomes	inefficient.	2. This	 informational	 inefficiency	 is	 caused	 by	 a	 feedback	 loop,	which	 acts	 on	 timescales	 longer	than	one	day,	interconnecting	information,	opinion	and	price	and	so	resulting	in	fundamentally	nonlinear	overall	dynamics.			3. On	these	timescales,	the	relevant	model	for	market	dynamics	is	a	dynamical	system	governing	the	evolution	of	mutually‐coupled	information,	opinion	and	price,	driven	by	exogenous	news.		
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4. According	to	this	model,	 the	sentiments	of	 investor	groups	with	different	 investment	horizons	collectively	 form	 aggregate	 investor	 opinion	 that	 determines	 a	 price	 dynamic,	 which	 in	 turn	influences	information	flow	acting	on	all	groups	participating	in	the	market.		5. This	common	information	flow	provides	a	link	through	which	the	sentiments	of	investor	groups	are	 mutually	 coupled.	 As	 such,	 information	 induces	 self‐similar	 dynamics	 among	 investor	groups	on	different	timescales	through	synchronization,	leading	to	complex	self‐similar	patterns	observable	in	market	behavior.		6. These	 investor	 groups	 form	 two	 classes	 characterized	 by	 distinct	 dynamics.	 The	 first	 class	contains	 investors	 with	 horizons	 less	 than	 one	 week.	 Their	 average	 sentiments	 are	 typically	volatile,	 oscillating	 between	 negative	 and	 positive	 values	 in	 the	 timeframe	 from	 roughly	 one	week	to	one	month.	The	second	class	consists	of	 investors	with	horizons	exceeding	one	week.	Their	 average	 sentiments	 primarily	 undergo	 small‐amplitude	 oscillations	 around	 either	 a	positive	or	negative	equilibrium,	where	the	consensus	of	opinion	is	reached.			7. The	 regime	 change	 between	 bull‐	 and	 bear	 markets	 takes	 place	 when	 investors	 with	 long	investment	horizons	transit	from	one	sentiment	equilibrium	to	the	other.	This	transition	occurs	as	a	cascade,	whereby	investors	with	longer	horizons	follow,	one‐by‐one,	investors	with	shorter	horizons.	8. Lastly,	the	backtested	results	of	strategy	prototypes,	designed	by	combining	theoretical	models	(dynamical	 systems)	with	 empirical	 observations	 (news	 data)	 for	 trading	 over	 time	 horizons	that	range	from	days	to	months,	indicate	that	the	stock	market	dynamics	are	in	fact	predictable.	The	objective	of	our	future	research	is	to	test	this	predictability	in	actual	trading.	
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Appendix	A:	Approximation	of	the	dynamical	system	Here	we	express	the	dynamical	system	(6)	as	a	system	of	forced,	coupled,	nonlinear	oscillators.31	We	differentiate	equation	(6a)	with	respect	to	time	and	use	equation	(6b)	to	obtain	
߬௜ݏሷ௜ ൌ ௜ݏሺߔ , ሶ௜ݏ , ሶݏ , ௧ሻߦ

ൌ െݏሶ௜ ൅ ሺ1 െ ሺݏ௜ ൅ ߬௜ݏሶ௜ሻଶሻ ൬ߚଵݏሶ௜ ൅ ଵ߬௛ߚ ௜ݏ െ 1߬௛ arctanhሺݏ௜ ൅ ߬௜ݏሶ௜ሻ൰
൅ ሺ1 െ ሺݏ௜ ൅ ߬௜ݏሶ௜ሻଶሻ ଶ߬௛ߚ tanhሺݏߛሶ ൅ ߜ ൅ ௧ሻߦߢ ,					݅ ൌ 1, 2, … ,ܰ,																																									ሺ1ܣሻ	

where	ݏ ൌ ∑ఛ೔௦೔∑ఛ೔ 		in	accordance	with	(4).		
These	 equations	 govern	 the	motion	 of	ܰ	oscillators,	 that	 is	ܰ	particles	with	 the	 coordinates	ݏ௜	and	the	velocities	ݏሶ௜ ,	subjected	to	the	force	ߔሺݏ௜ , ሶ௜ݏ , ሶݏ , 	is	particles)	(“light”	߬௜	small	with	particles	the	on	force	a	of	impact	the	that	sense	the	in	particle	݅‐th	the	of	mass	the	to	analogous	is	߬௜	that	Note	௧ሻ.ߦ
																																																													
31	We	follow	the	steps	of	a	similar	derivation	 for	 	ܰ ൌ 1	in	Gusev	et	al.	 (2015)	(Appendix	C).	That	same	appendix	provides	a	detailed	analysis	of	the	phase	portrait	geometry,	including	the	bifurcations	of	equilibrium	points	and	the	formation	of	a	stable	limit	cycle.			
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greater	than	on	the	particles	with	large	߬௜ 	(“heavy”	particles).	In	other	words,	“light”	particles	have	small	inertia	and	“heavy”	particles	have	large	inertia.		
The	 first	 two	 terms	 in	ߔሺݏ௜ , ሶ௜ݏ , ሶݏ , 	contain	௧ሻߦ the	 restoring	 and	 damping	 force	 components	responsible	for	autonomous	dynamics.	The	third	term	describes	the	force	originating	from	the	݅‐th	sentiment	 component	 feedback	 	(ߜ~	and	ሶ௜ݏ௜߬ߛ~) and	 the	 external	 forces	 exerted	 by	 the	 other	particles	(~ߛ ∑ ௝߬ݏሶ௝௝ஷ௜ )	and	by	the	flow	of	exogenous	news	(~ߦߢ௧)	in	the	argument	of	the	hyperbolic	tangent.	Being	dependent	on	position	and	velocity,	these	forces	vary	along	a	particle’s	trajectory.			
For	illustration	purposes,	we	expand	ߔሺݏ௜ , ሶ௜ݏ , ሶݏ , 	:form	“canonical”	a	in	(A1)	equation	write	and	components	force	above‐mentioned	the	separate	to	series	Taylor	truncated	a	into	௧ሻߦ

߬௜ݏሷ௜ ൅ ሶ௜ݏ௜ሻݏሺܩ ൅ ܷ݀ሺݏ௜ሻ݀ݏ௜ ൌ ௜௖ܨ ൅ ݅					,௘ܨ ൌ 1, 2, … ,ܰ.																																																																																							ሺ2ܣሻ	
In	 this	 equation,	ܷሺݏ௜ሻ	has	 the	meaning	 of	 a	 potential	 and	 is	 given	with	 the	 precision	 up	 to	 a	constant	by	

ܷሺݏ௜ሻ ൌ 1߬௛ ቌߚଵ െ 234 ௜ସݏ െ ଵߚ െ 12 ௜ଶݏ െ ௜ቍݏߜଶߚ ;																																																																																															ሺ3ܣሻ	
		by	given	is	and	coefficient	damping	a	of	meaning	the	has	௜ሻݏሺܩ
௜ሻݏሺܩ 	ൌ ൬1 െ ଵߚ െ ߛଶ̅ߚ ߬௜߬௛ ൅ ߬௜߬௛൰ ൅ ଶߚ2 ߬௜߬௛ ௜ݏߜ ൅ ൬ߚଵ ൅ ߛଶ̅ߚ ߬௜߬௛ ൅ 2ሺߚଵ െ 1ሻ ߬௜߬௛൰ ;௜ଶݏ 																													ሺ4ܣሻ	
where		
ߛ̅ ൌ ∑ߛ ߬௜ 	by	given	is	and	particles	other	the	by	exerted	force	external	an	of	meaning	the	has	௜௖ܨ	;
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௜௖ܨ ൌ ௛߬ߛଶ̅ߚ ෍ ௝߬ݏሶ௝௝ஷ௜ ; 																																																																																																																																																					ሺ5ܣሻ	
and	ܨ௘ 	has	the	meaning	of	an	external	force	due	to	the	flow	of	exogenous	news	and	is	given	by	
௘ܨ ൌ ଶ߬௛ߚ ௧ߦߢ .																																																																																																																																																																	ሺ6ܣሻ	

As	 such,	 equation	 (A2)	 describes	 the	 motion	 of	 a	 particle	 inside	 an	 asymmetric	 W‐shaped	potential	well	(A3)	for	ߚଵ ൐ 1	(see	Figure	1)	in	the	presence	of	nonlinear	damping	(A4),	driven	by	the	 forces	 generated	 through	 interaction	 between	 particles	 (A5)	 and	 through	 the	 impact	 of	exogenous	news	 (A6).	Note	 that	 the	 feedback	 force	 in	 (A1),	 proportional	 to	̅߬ߛ௜ݏሶ௜	and	ߜ,	 has	 been	incorporated	 into	 the	potential	 force	(only	 the	component	~ߜ)	and	 into	 the	damping	 force	on	 the	left‐hand	side	of	(A2).	
To	 obtain	 equations	 (A2)‐(A6),	 we	 have	 truncated	 the	 Taylor	 series	 of	ߔሺݏ௜ , ሶ௜ݏ , ሶݏ , 	at	௧ሻߦ terms	above	cubic	in	ݏ௜ ,	linear	in	ݏሶ௜	and	linear	in	ߜ	and	have	kept	only	the	leading	terms	in	the	expressions	for	 the	 forces	ܨ௜௖	and	ܨ௘ .	 Consequently,	 these	 equations	 are,	 strictly	 speaking,	 only	 valid	 in	 the	region	 where	|ݏ௜| ≪ 1	and	|ݏሶ௜| ≪ 1.	 However,	 we	 expect	 that	 the	 formula	 for	 the	 potential	ܷሺݏ௜ሻ,	which	 does	 not	 contain	 the	 heavily	 truncated	 terms	~ݏሶ௜ ,	 holds	 reasonably	 well	 for	 all	 sentiment	values	(|ݏ௜| ൑ 1)	within	the	relevant	range	of	parameter	values,	namely	ߚଵ~1, ߜ	and	ଶ~1ߚ ≪ 1.		
As	follows	from	(A4),	the	damping	coefficient	ܩሺݏ௜ሻ	is	negative	if		

ߛ̅ ൐ ௜ݏ௖ሺߛ̅ , ߬௜ሻ ൌ ቀ1 െ ଵߚ ൅ ߬௜߬௛ቁ ൅ ଶߚ2 ߬௜߬௛ ௜ݏߜ ൅ ቀߚଵ ൅ 2ሺߚଵ െ 1ሻ ߬௜߬௛ቁ ଶߚ௜ଶݏ ߬௜߬௛ ሺ1 െ ௜ଶሻݏ .																																																			ሺ7ܣሻ	
Condition	(A7)	means	 that	 for	sufficiently	 large	̅ߛ	there	are	regions	where	energy	 in	 the	system	 is	amplified	(negative	damping),	pointing	toward	the	possibility	of	a	limit	cycle.	Because	this	condition	
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has	 been	 derived	 for	|ݏ௜| ≪ 1	and	ߜ ≪ 1,	 we	 can	 in	 the	 leading	 order	 neglect	 the	 terms	~ݏߜ௜	and	~ݏ௜ଶ	to	obtain			
ߛ ൐ ௖ሺ߬௜ሻߛ ൌ 1 െ ሺߚଵ െ 1ሻ ߬௛߬௜ߚଶ ෍߬௜ .																																																																																																																					ሺ8ܣሻ	

Since	ߚଵ~1	(we	use	ߚଵ ൌ 1.1),	 the	 second	 term	 in	 the	numerator	 in	 (A8)	 is	much	 smaller	 than	unity	 for	 particles	 with	߬௜ ൒ ߬௛	(we	 set	߬௛ ൌ 1	day)	 and	 can	 be	 neglected.	 This	 means	 that	ߛ௖	has	approximately	the	same	value	for	all	investors	with	investment	horizons	equal	to	or	longer	than	one	day,	given	by	
௖ߛ ൌ ଶ෍߬௜ߚ1 .																																																																																																																																																													ሺ9ܣሻ	
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