
Munich Personal RePEc Archive

Reducing the role of random numbers in

matching algorithms for school admission

Hulsbergen, Wouter

Nikhef National Institute for Subatomic Physics, Amsterdam, The

Netherlands

12 March 2016

Online at https://mpra.ub.uni-muenchen.de/70374/

MPRA Paper No. 70374, posted 01 Apr 2016 17:17 UTC



Reducing the role of random numbers in matching

algorithms for school admission

Wouter Hulsbergen

Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands

Abstract

New methods for solving the college admissions problem with indifference are
presented and characterised with a Monte Carlo simulation in a variety of simple
scenarios. Based on a qualifier defined as the average rank, it is found that these
methods are more efficient than the Boston and Deferred Acceptance algorithms.
The improvement in efficiency is directly related to the reduced role of random
tie-breakers. The strategy-proofness of the new methods is assessed as well.
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algorithm, Zeeburg algorithm, pairwise exchange algorithm, strategic behaviour

1. Introduction

After six years of primary school education pupils in the Netherlands choose a
secondary school. In Amsterdam children have abundant choice, with up to a dozen
different schools at each of the available school levels. Pupils will have a preference
for a certain school based primarily on the distance to their home, objective and
less objective public data on the quality of education, and the impression the
schools make in their advertisement and ‘open days’.

Unfortunately, the number of pupils a school can accept is not necessarily
proportional to its popularity. Therefore, the local government has introduced a
matching system to assign pupils to schools, similar to that used in many other
cities in the world.1 Each pupil composes an ordered list of schools of their choice.
2 Based on the collection of these preference lists the matching is performed.
Although the pupils have clear preferences, the schools in the Amsterdam system
are not allowed to differentiate pupils. In literature, this matching problem is also
referred to as the college admissions problem with indifference [1, 2]. As all pupils
may hand in exactly the same preference list, the system requires a method for
arbitration, or tie-breaking, at popular schools. This arbitration is performed by
assigning pupils a lottery number.

The matching system relies on a procedure, or algorithm, to turn the available
list of choices and lottery numbers into a final assignment of pupils to schools.
Different methods were applied in the past. Up to the year 2014 the city of

1In Amsterdam the matching system is referred to with the Dutch word kernprocedure.
2In the language of the field we say that students only provide their ordinal preferences.

Their cardinal preferences, how much they value schools compared to one another on a more
continuous scale, are unknown to the matching system.
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Amsterdam effectively used the so-called “Boston” algorithm. A disadvantage of
the Boston method is that it is not strategy-proof [3], a well-known concept in game
theory: Using predictions on how other pupils will vote (e.g. from the popularity
of schools in previous years), pupils may benefit from providing a preference list
that is different from their true preference list.

Whether this is actually a disadvantage or not is a topic for debate [4, 5],
but nevertheless, in 2015 the Deferred Acceptance (DA) algorithm [6] was intro-
duced, which is known to be strategy-proof [7]. In the implementation chosen in
Amsterdam, a different random tie-breaker for each school was used. This algo-
rithms is sometimes abbreviated as DA-MTB [8], where MTB stands for multiple
tie-breakers. Unfortunately, the DA-MTB algorithm is not what is called Pareto

efficient : two students may find that they both end up higher on their preference
list if they exchange schools after the assignment. Not surprisingly this led to a
public outcry from parents that had not anticipated this. As a result the system
was yet again changed for the current calendar year: In 2016 Amsterdam will
apply the DA algorithm with a single random tie-breaker (a.k.a. DA-STB).

The college admission problem is a well-studied problem. Yet, the pace with
which algorithms are replaced in Amsterdam illustrates the lack of consensus on
how to decide what is the best algorithm. The aim of this article is threefold.
First, we introduce a qualifier, a single number that measure for the welfare of the
students, by which one can compare algorithms. Second, we introduce alternatives
for the Boston and DA algorithms. One alternative, which we will call the ‘Zeeburg
algorithm’, is a matching algorithm specifically designed to minimize the number of
comparisons made with the random tie-breaker. The other alternative is a method
to improve on the solutions given by DA and Boston by introducing pairwise
exchanges. Using simulated data for a number of different scenarios we show that
these algorithms are less sensitive to the results of the lottery and better respect
the preferences of the pupils. Finally, we argue that although the new algorithms
are not strategy-proof, there is a compelling reason for favouring them over the
algorithm that is currently applied in Amsterdam: even students that do not apply
a strategy are better off.

2. The average rank as a welfare qualifier

Before discussing the algorithms and results, we briefly introduce notation and
a few definitions. We consider a set of M schools labeled by an index j. Every
school has place for Nj new pupils. We label the pupils by an index i and assume
that the total number of pupils N is smaller or equal to the total number of places,
N ≤

∑
j Nj.

Based on personel preference, every pupil ranks the M available schools in a
list. We call that ranked list a preference and denote it with the symbol p. For
example, given four schools with labels 1, 2, 3 and 4, the list of pupil i, could look
like

pi = (3, 1, 2, 4)

such that each of the four schools appears exactly once. We label the j-th entry in
the list by pi,j such that the most preferred school is pi,1 (school 3 in the example)
and the least preferred school is pi,N . The total set of preferences {pi} of all
students is the preference set, or simply dataset.
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The result of the matching procedure is an assignment of pupils to schools j.
We denote the value of j for student i by the ai. Every pupil is assigned to only
one school and that school is ai. Furthermore, every school can be assigned as
most as many pupils as it has place, or, for every school j,

∑

pupils i

δai,j ≤ Nj (1)

where δij is 1 for i = j and 0 otherwise. We call a set of N assignments {ai} a
solution S if it satisfies this property.

We now introduce a simple qualifier to be able to rank solutions. The lower
the assigned school ranks on the pupils preference list, the less satisfied the pupil
is with the assignment. For a given solution S we quantify the dissatisfaction as
the pupil’s rank of the assigned school, or

rSi = “value of j for which pi,j = aSi ” (2)

For instance, in the example above, the pupil’s rank for a solution in which it
would get assigned school 1 is two, etc. Our welfare qualifier for the solution S is
now simply the average rank

Q(S) =
1

N

∑

i

rSi . (3)

We define the optimal solution as the solution for which Q is minimal.
The optimal solution is not necessarily unique: there may be several solutions

with the same value Q. In theory these solutions could be found by simply try-
ing all possible assignments. Unfortunately, in any realistic scenario the number
of possible combinations is far too large to try even a small fraction of them.3

Therefore, in practice it is not easy to find even a single optimal solution.
As we shall see below the Boston algorithm maximizes the number of students

with rank one. One may wonder if the optimal solution always satisfies this prop-
erty as well. However, a simple counter example shows that it does not.4 This
illustrates that the solution cannot be found by first maximising the number of
rank one assignments, then rank two, etc. As far as we know, there is no algo-
rithm that can find the optimal solution to this matching problem in a reasonable
amount of time.

We label an algorithm efficient if it provides the optimal solution. Lacking a
truly efficient algorithm, all that we can wish for is an algorithms that is nearly

efficient. In the following, we shall call one algorithm more efficient than another
algorithm if on an ensemble of similar datasets it gives a solution that on average
has a smaller value for Q.

3With N pupils divided equally over M schools the total number of permutations equals
N !/(N/M)M . With 1000 pupils and 10 schools there are more permutations than atoms in the
universe! CHECK

4Take four schools with one student each. If the students preference sets are
(1, 3, 2, 4), (2, 1, 3, 4), (3, 4, 1, 2), (2, 3, 1, 4), the solution with the most pupils at rank one is
a = (1, 2, 3, 4), which has Q = 7/4. The solution with the smallest average rank is a = (1, 2, 4, 3),
with Q = 6/4.
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3. Characterisation of algorithms in a Monte Carlo simulation

The DA algorithm was originally developed to solve a two-sided market prob-
lem in which both sides have a strict ordinal preference to partners on the other
side [6]. The college matching in Amsterdam and many other cities is different:
Schools are not allowed to rank students. To apply the traditional algorithms any-
way, a sequence of random numbers, the tie-breaker, takes the role of the ordinal
preferences of the schools.

The Boston and DA algorithms can use a random tie-breaker in two ways [4]:
If all schools share the same tie-breaker, we talk about the single tie-breaker (STB)
variant. If every school has its own tie-breaker, we call it the multiple tie-breaker

(MTB) variant. It can be shown that, independent of the tie-breaker, the Boston
algorithm is not strategy-proof, while the DA-MTB algorithm is not Pareto effi-
cient.

Using random numbers as a tie-breaker may lead to inefficient matching, be-
cause the real preferences of the students for schools compete with the random
preference from schools for students [4]. To illustrate this we now compare the
behaviour of these algorithms in a Monte Carlo simulation.

3.1. Description of the simulation

In [8] the matching algorithms are compared on an actual dataset collected in
the year 2015 in Amsterdam. This has the advantage that it corresponds to a
real scenario, with real preferences of students including correlations. It has the
disadvantage that only a single dataset can be used for the comparison: It tells little
about the sensitivity to variations in the input dataset. One could imagine that
an algorithm can be tuned to be efficient on one dataset, but behaves differently
on the next.5

As an alternative we have chosen to define a set of simple scenarios that allow us
to randomly generate datasets. This technique is called a Monte Carlo simulation.
One generated dataset is called an experiment. We consider a matching problem
with 10 schools, labeled 1 to 10. Each school has place for 100 pupils, giving a
total of 1000 pupils. Consequently, a single generated dataset consists of 1000
rankings of ten schools.

We now consider four scenarios that differ in the way students on average fill
in their preference list. More specifically, in each scenario we choose how often a
pupil puts a particular school as its first choice. The selected scenarios are given
in table 1.

In scenario A all schools are equally popular. In scenario B school 1 is ten times
more popular than school 10, and the rest is in between at fixed intervals. Scenario
C is a variation of this, with two highly popular schools and two highly unpopular
schools. We shall use this scenario to assess the effect of strategic ranking. The
motivation for scenario D is given later.

A single dataset is now generated as follows. Using the popularity of the schools
a set of random numbers determines the order of the schools for each pupil. To

5The authors of [8] have used their single input set to simulate multiple experiments by
varying the random numbers for the tie-breakers. This helps to understand the sensitivity to the
tie-breakers, but not to variations in the data, e.g. variations in students in different years.
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scenario A scenario B scenario C scenario D

fraction of students 100% 100% 100% 60% 40%

school 1 1 10 50 20 1
school 2 1 9 50 20 1
school 3 1 8 10 20 1
school 4 1 7 10 20 1
school 5 1 6 10 20 1
school 6 1 5 10 1 20
school 7 1 4 10 1 20
school 8 1 3 10 1 20
school 9 1 2 1 1 20
school 10 1 1 1 1 20

Table 1: Relative popularity of schools in the different scenarios. A value of 10 means that a
school is ten times more likely to appear as a first choice than a school with a value of 1. In
scenario D two populations of students are simulated, with a relative size of 60:40.

determine the first school, the relative popularities are normalized to add up to
one and a random number in the interval [0, 1) is thrown. The quantile of the
random number determines the first school. A second random number determines
the second school on the list, by considering the popularity normalized over the
remaining schools. This procedure is repeated, until there are no schools left. It is
then performed a thousand times — once for each pupil — to obtain the dataset
for one experiment. Figure 1 shows for scenarios A, B and C how often a particular
school appears first, and which position it takes on average on a pupil’s preference
list, averaged over 1000 experiments.
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Figure 1: Fraction of times a school is ranked first (left) and average rank (right) as function of
school number in scenarios A, B and C, measured over 100 experiments.

In scenarios A, B and C the preferences of the pupils are uncorrelated: The
selection of the preference for the second school is independent of which school was
put first. In practice, pupil preferences are often correlated, for example because
students prefer schools that are close to their neighbourhood. To include also a
scenario with correlations we consider yet another scenario, labeled by D in the
table. In this scenario there are two categories of students who have each their own
popularity assignment: the first set of students strongly prefer the first five schools
while the second set prefer the last five schools. If the two categories had an equal
number of students, we could just factorise the matching problem, and effectively
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end up with scenario A. However, to simulate also the effect of an imbalance in
capacity, we generate 60% of the students in the first category and 40% in the
second category. That means that for 20% of the students in the first category no
school in their top-five can be assigned.

3.2. Results of the simulation

Given a simulated dataset we can now use the algorithms discussed above
to obtain a matching. We have found that the Boston-MTB and Boston-STB
are close in behaviour on all considered scenarios, and therefore we only consider
Boston with a single tie-breaker.

Besides DA and Boston we also test a new algorithm that we have called the
Zeeburg algorithm. The details are described in appendix Appendix A. In brief,
this algorithm minimizes the number of times the tie-breaker is used to compare
students by making students jump to a queue of a school that appears later in their
preference list if by doing so they are guaranteed to be admitted to that school.
In some sense, the algorithm encodes a strategy for the students. The Zeeburg
algorithm is Pareto efficient and stable6, but not strategy-proof.

Figure 2 shows the distribution of the assigned rank for one single experiment
for each of the four scenarios. The first bin shows how many students get assigned
to the school of their first choice, the second bin their second choice, etc. These
distributions will look different for every experiment, because the preferences of
the students differ and because the tie-breakers used in the matching algorithms
differ.

A convenient way to summarise the information in Fig. 2 for many experiments
is to integrate this distribution, normalize it and average over the experiments. The
result of this is shown in Fig 3. The curves in this figure show which fraction of
students get assigned to the school of their first choice, to their first or second
choice, etc.

It is clear from these graphs that independent of the scenario, the Boston
algorithms assigns most pupils to the school of their first choice. This is a property
of the algorithm: it actually assigns the maximum possible number of students to
their first choice. The DA-MTB scores poorly when it comes to the first choice,
but it has a smaller tail. The reason for this is that with multiple tie-breakers, it
is unlikely that a student is unlucky at every school.

Each of the points in Fig. 3 has a vertical ‘error’ bar. The size of the error
reflects the variation in the integrals between the different experiments. This
variation is larger for the DA-MTB algorithms than for the Boston algorithm,
because the former is more sensitive to the random numbers in the tie-breaker.
Another way to represent the variation between experiments is to consider the
distribution of the average rank (our qualifier Q) in each experiment, shown in
Fig. 4. In scenario A the difference between the algorithms is small, but in all
others it is substantial. In terms of the qualifier defined above, there is clear order
in the efficiency of the four algorithms, with Zeeburg having the highest efficiency

6In a two-sided market problem with strict preferences on both sides a stable solution is a
solution in which there is no pair of a student and a school that would prefer each other over
their actual assigned partner(s). However, since the school preferences in the college problem
with indifference are entirely fictitious, stability is not really relevant here.
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Figure 2: Distribution of rank for one experiment in each of the four scenarios sketched in the text
for the Boston, DA-STB and DA-MTB algorithms. Each distribution has a thousand entries,
corresponding to the thousand students in the experiment.

and DA-MTB the lowest. For example, in scenario B students are on average
assigned to their third rank school by the DA-MTB algorithm, while the average
assignment of Zeeburg is between the first and second ranked school.

Figure 4 also indicates a large variation in the rank of an algorithm between
different experiments. This variation has two sources, namely the actual differences
in the datasets and the random character of the tie-breakers. To illustrate the
importance of the latter we show yet another distribution. For each experiment
we run the algorithms a second time, but with a different tie-breaker, a different
student lottery. For each algorithm we now count how many students are the
second time assigned to a different school, that is, how ‘deterministic’ the algorithm
is. The result is shown in Fig. 5 for all four algorithms. Comparing to Fig. 4 we
note that that the sensitivity to the tie-breaker is correlated with the efficiency:
the less important the tie-breaker, the more efficient the algorithm.

3.3. The pairwise exchange method

Given a particular set of matches one can improve the average ranking using
pairwise exchanges (PE), a swap of the schools assigned to a pair of students. In
principle, using pairwise exchanges one can transform any solution into any other,
including the optimal solution. In practice, in order to limit the time-consumption
of such an algorithm, it is necessary to limit the set of considered exchanges.

In [8] only pairwise exchanges that improved the ranking for both pupils in-
volves in the swap were considered. If any such swaps can be found, the original
solution was not Pareto efficient. However, exchanges that reduce the sum of the
ranks of the two pupils improve the solution as well. Therefore, in order for the
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Figure 3: Average cumulative acceptance functions for the four considered scenarios and for the
Boston, DA-STB and DA-MTB algorithms, averaged over 1000 experiments. The vertical error
bars correspond to the standard deviation of the variation between experiments.

pairwise exchange method to be effective, such exchanges should be considered.
Besides pairwise exchanges, one can also consider exchanges of higher order in
which the average improves. Unfortunately, in our implementation in the python

programming language, the time consumption of even a tripple exchange algorithm
was found to be prohibitively large and we have not pursued this any further.

The pairwise exchange method may reduce the number of students assigned to
their first preference. Although this is perfectly allowed, we do build in a small
bias towards rank one: Besides exchanges that decrease the average rank, we
also consider exchanges that leave the average rank invariant, but for which the
minimum of the rank of the two students after the exchange is smaller than before.
That is, we prefer an assignment with ranks one and three to an assignment with
ranks two and two, etc.

Our pairwise exchange algorithm thus becomes:

1. order the pupils in decreasing rank according to the original solution;

2. starting from the first pupil, labeled i, consider an exchange with all other
pupils, labeled j;

3. if the change in the average rank is smaller than zero, or if it is equal to zero
but the minimum of the ranks of the two students becomes smaller, make
the exchange;

4. continue until exchanges of all pairs of pupils have been considered.

We have found that it does not improve the performance of the exchange algorithm
on our scenarios if the pupils are sorted again after every exchange. However, we do
’restart’ the loop on pupil j after a successful exchange. By running the algorithm
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Figure 4: Distribution of the average rank Q over 1000 experiments for the four different scenarios
in the Boston, DA-STB, DA-MTB and Zeeburg algorithms.

more than once we have verified that the algoritm effectively converges in one
iteration.

Figure 6 shows the cumulative acceptance functions for all four algorithms
after the PE algorithm is applied. It is both interesting and reassuring that the
curves depend little on which algorithm was used to provide the solution that
the PE starts from. The PE algorithm can be successfully applied to improve
the inefficiency of any of the tested algorithms to about the same level. This is
also indicated by the average rank Q shown in Tab. 2 for all scenarios and for all
algorithms before and after the pairwise exchange.

A B C D

DA-MTB 1.14± 0.05 3.03± 0.13 3.96± 0.09 1.79± 0.06
DA-STB 1.11± 0.03 2.17± 0.06 2.76± 0.05 1.45± 0.04
Boston 1.10± 0.03 1.95± 0.05 2.53± 0.04 1.41± 0.03
Zeeburg 1.08± 0.02 1.51± 0.04 2.26± 0.07 1.21± 0.03

DA-MTB-PE 1.05± 0.01 1.44± 0.03 2.06± 0.04 1.18± 0.02
DA-STB-PE 1.04± 0.01 1.44± 0.03 2.06± 0.04 1.18± 0.02
Boston-PE 1.04± 0.01 1.43± 0.03 2.06± 0.04 1.17± 0.02
Zeeburg-PE 1.04± 0.01 1.43± 0.03 2.07± 0.04 1.17± 0.02

Table 2: Average rank Q for the scenarios and algorithms discussed in the text for 1000 experi-
ments. The quoted error is the standard deviation of the variation between experiments.

To illustrate the stability of the result figure 7 (left) shows the fraction of
students changing schools for two independent sets of tie-breakers for a subset of
the DE improved algorithms in scenario C. Note that there is still a large variation
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Figure 5: Number of students that gets a different assignment in two consecutive calls to the
same algorithm in 1000 experiments.

in the assignment. However, as illustrated in the right figure, the solutions are
actually very close in rank. We found that most of the difference between the
solution can be attributed to pairs of students that have exchanged places such
that the final change is rank neutral, simply because the students have ranked the
two schools in the same way.

One may wonder how close to the optimal solution the result of the pairwise
exchange is. As the starting point is determined by the random tie-breaker and
only a finite set of pairwise exchanges is tried, the result may correspond to a ‘local
minimum’ of the average rank. As a different local minimum is obtained with a
different tie-breaker, one can try to assess the distance to the true minimum by
trying different random tie-breakers. We have compared the average rank obtained
with a single call to Boston plus PE to that obtained with a pick of ‘the best of
10’. The difference was found to be small, of the order of the variations seen on
the right in Fig. 7. We did not study the asymptotic behaviour in more detail but
it seems that in practice the solution is close to optimal.

Finally, we have also compared the alternative option for dealing with ’neutral’
exchanges, namely to choose the one with the smallest maximum rank, rather than
the smallest minimum rank. The former will lead to a smaller variance of the rank
distribution. The comparison for Boston with PE is shown in Fig. 8, where the
alternative is labeled with the abbreviation PEM. As expected, the acceptance
functions cross: the PE method gives slightly more results with rank 1, but has
slightly more tail. The average rank is practically the same for both methods.
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Figure 6: Average cumulative acceptance functions for a 1000 experiments in the four considered
scenarions and for the DA-MTB, DA-STB, Boston and Zeeburg algorithm after the pairwise
exchange (PE) algorithm. The Zeeburg algorithm without PE is included for the comparison.
The vertical error bars correspond to the RMS of the variation between experiments.

3.4. Tests of strategy-proofness

A matching method is strategy-proof if pupils do not benefit from specifying
a preference list different from their true ordinal preference. It is not apriori clear
what ‘benefit’ means in this context, since there is always a price to pay. As we
shall see below, students could apply a strategy that gives them a higher chance
to get their first preference, at the expense of having a higher change to end up
with a school that ranks low on their list; or they could aim to increase the chance
to get within their top three, by ranking their actual first choice lower. Therefore,
one may argue that determining a strategy is just a cost-benefit analysis that
individual pupils should be allowed to make.

The main reason that we should worry about strategy-proofness anyway is
because pupils that do not apply a strategy may be harmed by the behaviour of
the strategists. This leads to a form of inequality as the background of students
and parents influences their ability to understand the consequences of different
strategies. In the following we test the effect of two simple selection strategies in
our simulations.

It should be emphasised that for a subset of students the current system in
Amsterdam is already not strategy-proof for any matching algorithm. The reason
is that some schools give preference to students that either have brothers or sisters
at the same school, or that attended a certain type of primary school. As this
preference is only given if students rank the school first, it is an incentive to put
the school at the first place, even if it is not actually the first preference.

To investigate strategy-proofness we can compare the efficiency of the matching
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Figure 8: Average cumulative acceptance functions for a 1000 experiments in scenario B and C
for Boston with the default pairwise exchange algorithm (PE) and for pairwise exchange with
minimal variance (PEM).

algorithms for students that apply different kind of strategies. We have found that,
in practice, it is not that simple to define a popularity scenario and a ranking
strategy that actually lead to a benefit for strategic students. After some trial and
error, we have come up with scenario C: two schools that are so popular that mosts
student will rank them as one and two, and two schools that are so unpopular that
they are almost always at the bottom of the list.

In this scenario strategic students can try to evade the unpopular school by
putting one of the less unfavourable schools in their top two. To keep the imple-
mentation generic the actual applied strategy is that students re-order their true
top three according to the known average popularity (table 1). Figure 9 shows
the effect on the acceptance curves in a simulation of scenario C with 50% of the
students applying this strategy. Note that the cumulative acceptance is given as
function of the true rank, not the rank that the strategic student provided. The
students applying a strategy are called ‘cautious’, while the remaining students in
the sample are ‘honest’. For reference also the original curves with only honest
students are shown.

As expected, the DA algorithm with a random tie-breaker (be it STB or MTB)
is indeed strategy-proof: students applying the cautious strategy are worse of than
honest students, so applying a strategy makes no sense. The Boston algorithm is
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Figure 9: Average cumulative acceptance as function of the true rank with and without 50% of
the students following the ‘cautious’ strategy described in the text for 100 experiments according
to popularity scenario C.

not strategy-proof in this scenario: although the cautious loose on their top one
and two ranking, they beat their victims in the top three and beyond. The Zeeburg
algorithm and any algorithm combined with pairwise-exchange optimisation are
not strategy-proof either. Interesting enough, in this scenario, they seem to be
more strategy-proof than Boston, even though they are more efficient. This shows
that efficiency is not directly coupled to strategy-proofness.

In any case, it is important to note that in this scenario the victims are not
worse off with any of the improved algorithms than they are with DA-STB. This
can be seen by comparing the ‘original’ curve for DA-STB with the ‘honest’ curve
in DA-STB-PE. The costs of DA’s strategy-proofness is simply too high to com-
pensate for the inefficiency caused by the lack of strategy-proofness in the other
algorithms.

Students could also apply a strategy that increases their chances to get assigned
to their first choice by exploiting that some of the algorithms effectively give higher
preferences to students that are more difficult to place at another school. This
holds in particular for the Zeeburg and PE algorithm. We implement this strategy
by keeping the first choice as is as, but rank the remaining schools in order of
decreasing popularity. We call this the ‘gambling’ strategy as these students give
up on anything but their first choice. The result is shown for Zeeburg and DA-
STB-PE in figure 10 for a scenario with 50% gamblers. Clearly, the gamblers
manage to profit from their strategy as the fraction of them that gets a rank one
assignment is larger than for the ’honest only’ scenario. However, it also shows
that the effect on the remaining students is small. Those students are still better
of with the improved algorithm than with the original strategy-proof algorithm.
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Figure 10: Average cumulative acceptance as function of the true rank with and without 50% of
the students following the ‘gambling’ strategy described in the text for 100 experiments according
to popularity scenario C.

cautious gambling

strategists honest strategists honest

Boston 2.50 2.73 3.68 1.66
Zeeburg 2.26 2.20 3.41 1.79
Boston-PE 2.33 2.00 3.58 1.61
Zeeburg-PE 2.31 2.03 3.55 1.63
DA-STB-PE 2.34 1.99 3.58 1.61

Table 3: Average (true) rank Q for strategic and honest pupils measured over 100 experiments
in scenario C with either 50% cautious strategists (left) or 50% gambling strategists (right).

Table 3 shows the average rank obtained for strategic and honest pupils in the
scenarios above. One clearly observes the price the strategists pay: as they do
not provide their true preferences, their average rank is usually higher than for
the honest students. Comparing to Tab. 2 we find that in terms of the average
rank the honest do not score worse in Zeeburg and PE algorithms than they did
without the strategists.

In the other scenarios (A, B and D) the negative effect on honest students as a
result of cautious and gambling strategies was found to be insignificant. That does
not mean that there do not exist scenarios in which honest students are better off
with a strategy-proof inefficient algorithm as DA-STB. However, it illustrates that
in practice such scenarios may be rare.

4. Practical considerations and other discussion points

4.1. School preferences

Some of the schools in Amsterdam may give a subset of pupils a preference over
others, for example because elder siblings attend the school. In order to respect
these constraints, they need to be built into the tie-breaker at the school. It is not
easy to use such constraint in the Zeeburg algorithm. The easiest solution is to
deal with this subset of students first, and use the matching algorithms only for
the students that remain.

4.2. Incomplete preference lists

Above we have simulated a situation in which all pupils submit an ordered list
that contains all schools. In Amsterdam, pupils do not need to hand in a full list:
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they may hand in a list with just one school. If a pupil cannot be assigned to that
school in Boston or DA, the consequence is that the pupil needs to participate in
a second round, in which only schools participate that still have places left.

Clearly, this has consequences for the implementation of the algorithms. For
instance, the Zeeburg and pairwise exchange cannot be applied in a fair way unless
all preference lists are complete, as students may on purpose hand in lists that do
not contain less popular schools.

One practical solution is to complete the preference lists. They could be com-
pleted deterministically as follows: once the preference lists are available, schools
are ranked by popularity. Every pupil preference lists is completed with the miss-
ing schools in order of increasing popularity. This is a clear motivation for students
to hand in a long preference list.

4.3. School types

In contrast to many other countries in the world, the school system in the
Netherlands differentiates the level of education directly at the start of secondary
education. The level appropriate for a pupil’s secondary education is determined
by the teachers at the primary school based on scores to standard tests performed
during the pupil’s primary school career. The proposed level is called the advice.

There are roughly four ‘levels’ of education. In theory, this just splits the
matching in four independent parts. In practice, it is not that simple. First,
students may be given a mixed advice. Second, many schools offer transition
classes for the first or second year that combine more than one level.

This complication is not a show-stopper, however. If the matching can be
applied with Boston or DA, then the pairwise exchange algorithm can be applied
a such, as long as it only exchanges students that have the same school advice.

4.4. Simplicity

An important property of a suitable matching algorithm is that it is sufficiently
simple that it can be both easily be explained and unambiguously described and
implemented. In this respect the Zeeburg algorithm is perhaps a bordercase. How-
ever, the pairwise exchange algorithm certainly qualifies as simple.

4.5. Alternative optimisation criterion

The pairwise exchange method optimised the average rank Q. In the optimi-
sation the difference between rank 8 and 9 is the same as between rank 1 and
2. However, pupils probably care less about the order in the tail, than the order
of their top ranked schools. This was the main reason that we preferred the PE
method with larger variance over the one with minimal variance (PEM).

Still, one may wonder if alternative definitions of Q, for example as a power-
law Q ∝

∑
i r

α
i with α < 1, would not lead to a solution that better reflects the

cardinal preferences of the pupils. Inevitably, this will lead to a larger tail in the
rank distribution. We have not further investigated this.

5. Conclusions

As was known long before it was introduced in Amsterdam, the DA algorithm is
not a particularly efficient solution to the college admission problem with indiffer-
ence [4, 5], as it was developed for a two-sided market problem with preferences on
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both sides. The Boston algorithm better respects the students preferences. Other
algorithms, such as the Zeeburg algorithm and the pairwise exchange optimisa-
tion introduced here, perform even better, in a variety of simple scenarios. The
reason is that the sensitivity to the tie-breaker, the lottery tickets of the pupils, is
significantly smaller in these alternatives.

The inefficiency of the DA algorithms with random tie-breakers is the cost
of strategy-proofness [4]. The more efficient algorithms are not strategy-proof.
However, in the considered scenarios the costs of the lack of strategy-proofness is
smaller than the costs of the inefficiency of DA: Even students that do not apply a
strategy are better of with the non-strategy-proof algorithms. Therefore, it seems
hard to maintain strategy-proofness as a requirement of the matching algorithm.

To understand whether or not these conclusions hold in more realistic scenarios,
an analysis like the one in [8] will need to be performed. However, based on the
current results we strongly advise local authorities to reconsider their choice for
DA in school matching. The most simple way to ‘fix’ the algorithm is to augment it
with the pairwise exchange algorithm that we described. This algorithm is simple
and suffers little from the practical limitations discussed above. We believe that
by applying this method, the results of the matching will be significantly more in
line with the students preferences.

From personel experience we know that pupils and their parents spend a lot of
effort to prioritise the schools in Amsterdam. If these efforts are taken seriously,
random number should play a minimal role in the matching.
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Appendix A. The Zeeburg algorithm

The DA and Boston algorithms rely on a random tie-breaker that effectively
describes the school preferences. We have implemented another algorithm in which
the number of ties broken by the random tie-breaker is minimised. The algorithm
works as follows:

1. For every school keep track of

(i.) the number of vacant places at the school;
(ii.) the rank of the current queue;
(iii.) the pupils in the queue.

In addition keep track of the list of completed student-school matches. This
defines the state of the algorithm.

2. Sort pupils according to a single random tie-breaker. Set the rank of the
queue of every school to one and assign the number of vacant places. Line
up pupils in the queue of their favourite school. This populates the queue in
every school and completes the initial state of the algorithm;

3. Now run the following loop:
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(a.) select a school that can entirely admit the queue of its current rank.
If there is more than one such school, select the school with the queue
with the smallest rank. If there is more than one such queue, select
the school for which the number of places remaining after accepting all
pupils in the queue is the smallest;

(b.) for this queue, accept all pupils. Remove these pupils in every other
queue that they appear. (Initially, pupils appear in only one queue, but
this changes while the algorithm is running.) Reduce the number of
vacant places according to the number of newly accepted students. If
there are places left at the school, increase the rank of the queue, and
line up all pupils that have not yet found a place and that rank the
school according to the rank of the queue. (These students will now be
in more than one queue);

(c.) repeat until the condition under (3a.) can no longer be satisfied for any
school.

4. Apply the tie-breaker to force a decision on one of the queues:

(a.) select the queue with the smallest rank in a school that is not yet full. If
there is more than one such queue, select the queue that has the smallest
overflow (that is, for which the length of the queue minus the number
of available places is minimal);

(b.) accept pupils from the start of this queue until the school is full. Remove
accepted pupils from other queues;

5. Repeat steps 3 and 4 until all pupils have been accepted.
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[3] A. Abdulkadiroğlu, T. Sönmez, School Choice: A Mechanism Design Approach,
The American Economic Review 93 (3) (2003) 729–747.
URL http://www.jstor.org/stable/3132114
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