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invariant Schumpeterian growth model with endogenous human capital accumulation.
We model money demand via a cash-in-advance (CIA) constraint on R&D investment.
Our results can be summarized as follows. We find that an increase in the nominal
interest rate leads to a decrease in R&D and human capital investment, which in turn
reduces the long-run growth rates of technology and output. This result stands in stark
contrast to the case of exogenous human capital accumulation in which the long-run
growth rates of technology and output are independent of the nominal interest rate.
Simulating the transitional dynamics, we find that the additional long-run growth effect
under endogenous human capital accumulation amplifies the welfare effect of monetary
policy. Decreasing the nominal interest rate from 10% to 0% leads to a welfare gain
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1 Introduction

How does monetary policy affect economic growth and social welfare? To explore this ques-
tion, this study develops a scale-invariant monetary Schumpeterian growth model with hu-
man capital. The novelty of our analysis is that we allow for endogenous human capital
accumulation and show that the interaction between endogenous technological progress and
human capital accumulation gives rise to important implications on the effects of monetary
policy. Following previous studies, such as Chu and Cozzi (2014) and Chu et al. (2015), we
model money demand via a cash-in-advance (CIA) constraint on R&D investment.1 In this
growth-theoretic framework, we find that an increase in the nominal interest rate leads to a
decrease in R&D and human capital investment, which in turn reduces the long-run growth
rates of technology and output. This result stands in stark contrast to the case of exogenous
human capital accumulation in which the long-run growth rates of technology and output
are independent of the nominal interest rate.
The intuition of the above results can be explained as follows. We follow the setup in the

seminal Romer (1990) model in which human capital (or skilled labor) is allocated between
production and R&D. An increase in the nominal interest rate raises the cost of R&D via the
CIA constraint and leads to a reallocation of human capital from R&D to production, which
in turn improves the marginal product of raw labor (or unskilled labor) in the production
sector. As a result, more labor is allocated to production crowding out the amount of labor
available for education, which in turn reduces the growth rate of human capital. Given the
increasing-complexity effect of technology on the productivity of R&D in our scale-invariant
Schumpeterian growth model, the long-run growth rate of technology is determined by the
growth rate of human capital. Therefore, the negative effect of the nominal interest rate on
education also leads to a negative effect on the growth rates of technology and output in the
long run. However, in the case of exogenous human capital accumulation, the growth rate
of human capital is exogenous and independent of monetary policy.
We also calibrate the model to simulate the transitional dynamics of the economy from a

change in the nominal interest rate. We find that under exogenous human capital accumu-
lation, decreasing the nominal interest rate from 10% to 0% leads to a welfare gain that is
equivalent to 2.38% of consumption. Allowing for endogenous human capital accumulation
amplifies the welfare gain to 2.82%. In other words, the additional long-run growth effect
under endogenous human capital accumulation raises the welfare effect of monetary policy.
This study relates to the literature on inflation and economic growth; see Stockman

(1981) and Abel (1985) for seminal studies of the CIA constraint on capital investment in
the Neoclassical growth model. Instead of analyzing the effects of monetary policy in the
Neoclassical growth model, we consider an R&D-based growth model in which economic
growth in the long run is driven by innovation and endogenous technological progress. The
seminal study in this literature on inflation and innovation-driven growth is Marquis and
Reffett (1994), who analyze the effects of a CIA constraint on consumption in the Romer
variety-expanding model. In contrast, we consider a Schumpeterian quality-ladder model
and explore the effects of monetary policy via a CIA constraint on R&D investment as in

1See Berentsen et al. (2012), Chu and Cozzi (2014) and Chu et al. (2015) for a discussion of empirical
evidence for the presence of CIA constraints on R&D.
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Chu and Cozzi (2014), Chu et al. (2015), Chen (2015) and Huang et al. (2015).2 However,
this study differs from previous studies by allowing for human capital accumulation. To our
knowledge, this is the first study that analyzes the effects of monetary policy in a growth-
theoretic framework featuring both R&D-driven innovation and human capital accumulation
as dual engines of economic growth. Furthermore, we find that allowing for endogenous
human capital accumulation amplifies the welfare effect of monetary policy.
This study also relates to the literature on innovation and human capital. Early studies,

such as Romer (1990), Segerstrom et al. (1990), Grossman and Helpman (1991) and Aghion
and Howitt (1992), on innovation-driven economic growth do not consider human capital
accumulation. More recent studies, such as Eicher (1996), Zeng (1997, 2003), Strulik et
al. (2013) and Hashimoto and Tabata (2016), explore human capital accumulation and its
interaction with endogenous technological progress. Our study complements these studies
by introducing money into an R&D-based growth model with human capital to explore the
effects of monetary policy on the interaction between endogenous technological progress and
human capital accumulation.
The rest of this paper is organized as follows. Section 2 sets up the monetary Schum-

peterian growth model. Section 3 analyzes the growth and welfare effects of monetary policy.
The final section concludes.

2 A monetary Schumpeterian growth model

In this section, we consider a monetary version of the quality-ladder growth model in Gross-
man and Helpman (1991).3 Following previous studies, we model money demand via a CIA
constraint on R&D investment and also a more conventional CIA constraint on consump-
tion. We also allow for human capital accumulation and remove the scale effect through
an increasing-complexity effect of technology similar to Segerstrom (1998).4 Given that the
quality-ladder model has been well-studied, we will describe the familiar features briefly to
conserve space and discuss the new features in details.

2.1 Household

There is a representative household which has the following lifetime utility function:

U =

∫
∞

0

e−ρt ln ctdt. (1)

2For other approaches of modeling money demand in the Schumpeterian growth model, see Funk and
Kromen (2010) who consider sticky prices, Chu and Lai (2013) who consider the money-in-utility approach,
and also Chu and Ji (2016) who consider the CIA constraint on consumption in a scale-invariant Schum-
peterian model with endogenous market structure. However, these studies do not feature human capital.

3See also Aghion and Howitt (1992) and Segerstrom et al. (1990) for other seminal studies of the quality-
ladder growth model.

4See Jones (1999) for a discussion of the scale effect in R&D-based growth models.
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The variable ct denotes the consumption of final goods (numeraire) at time t. The parameter
ρ > 0 is the subjective discount rate. The asset-accumulation equation is given by

ȧt + ṁt = rtat + wl,tlt + wh,tht + τ t − ct − πtmt + itbt. (2)

at is the real value of financial assets (in the form of equity shares in monopolistic intermediate
goods firms), and rt is the real interest rate. lt is raw labor supplied to production, and wl,t
is the real wage rate of raw labor. ht is human capital supplied to production and R&D.
wh,t is the real wage rate of human capital. The household also receives a real lump-sum
transfer τ t from the government (or pays a lump-sum tax if τ t < 0). πt is the inflation rate
that determines the cost of holding money, and mt is the real money balance held by the
household partly to facilitate purchases of consumption goods. The CIA constraint is given
by γct ≤ mt − bt, where the parameter γ > 0 determines the strength of the CIA constraint
on consumption. bt is the amount of money borrowed by entrepreneurs to finance R&D
investment, and the rate of return on bt is it.
At any time t, the household has one unit of raw labor that is allocated between work lt

and education et subject to
lt + et = 1. (3)

The accumulation equation of human capital is given by5

.

ht = ξhtet, (4)

where ξ is a productivity parameter for human capital investment.
From standard dynamic optimization,6 we derive a no-arbitrage condition given by it =

rt+πt; therefore, it is also the nominal interest rate. The optimality condition for consump-
tion is

ct =
1

ηt(1 + γit)
, (5)

where ηt is the Hamiltonian co-state variable on (2). The intertemporal optimality condition
is

−
η̇t
ηt
= rt − ρ. (6)

In the case of a constant nominal interest rate i, (6) becomes the familiar Euler equation
ċt/ct = rt − ρ. Finally, we also have the following no-arbitrage condition that equates the
return to financial assets given by rt and the return to human capital:

rt = ξht
wh,t
wl,t

+

.
wl,t
wl,t

. (7)

We will show that this condition determines the equilibrium growth rate of human capital.

5We do not impose a CIA constraint on human capital investment for the following reason. Although
human capital investment may be subject to credit constraints that are influenced by the real interest rate,
there is no evidence that human capital investment is subject to CIA constraints that are influenced by the
nominal interest rate.

6We provide the derivations in an unpublished appendix (see Appendix B).
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2.2 Final goods

Final goods are produced by competitive firms that aggregate a unit continuum of differen-
tiated intermediate goods using a standard Cobb-Douglas aggregator given by

yt = exp

(∫ 1

0

ln xt(j)dj

)
. (8)

The variable xt(j) denotes intermediate good j ∈ [0, 1]. From profit maximization, the
conditional demand function for xt(j) is

xt(j) = yt/pt(j), (9)

where pt(j) is the price of xt(j) denominated in units of final goods.

2.3 Intermediate goods

There is a unit continuum of industries producing differentiated intermediate goods. Each
industry is temporarily dominated by an industry leader until the arrival of the next in-
novation, and the owner of the new innovation becomes the next industry leader.7 The
production function for the leader in industry j is

xt(j) = z
qt(j)[hx,t(j)]

α[lt(j)]
1−α. (10)

The parameter z > 1 is the step size of productivity improvement, and qt(j) is the number
of productivity improvements that have occurred in industry j as of time t. lt(j) is raw labor
employed for production in industry j. hx,t(j) is human capital employed for production in
industry j. From cost minimization, the marginal cost of production for the industry leader
in industry j is

mct(j) =
1

zqt(j)

(wh,t
α

)α( wl,t
1− α

)1−α
.

It is useful to note that we here adopt a cost-reducing view of vertical innovation as in
Peretto (1998).
Standard Bertrand price competition leads to a profit-maximizing price given by pt(j)

determined by a markup µ = pt(j)/mct(j) over the marginal cost. In the original Grossman-
Helpman model, the markup µ is assumed to equal the step size z of innovation. Here we
consider patent breadth similar to Li (2001) and Iwaisako and Futagami (2013) by assuming
that the markup µ ∈ (1, z] is a policy instrument determined by the patent authority.8 This

7This is known as the Arrow replacement effect in the literature. See Cozzi (2007) for a discussion of the
Arrow effect.

8Intuitively, the presence of monopolistic profits attracts potential imitation; therefore, stronger patent
protection allows monopolistic producers to charge a higher markup without losing their markets to potential
imitators. This formulation of patent breadth captures Gilbert and Shapiro’s (1990) seminal insight on
"breadth as the ability of the patentee to raise price".
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formulation provides as a simple way to separate the markup µ from the step size z. The
amount of monopolistic profit in industry j is

Πt(j) =

(
µ− 1

µ

)
pt(j)xt(j) =

(
µ− 1

µ

)
yt, (11)

where the second equality follows from (9). Finally, wage income for hx,t(j) and lt(j) is

wh,thx,t(j) =

(
α

µ

)
yt; wl,tlt(j) =

(
1− α

µ

)
yt. (12)

2.4 R&D

Denote vt(j) as the real value of the monopolistic firm in industry j. Given that Πt(j) = Πt
for j ∈ [0, 1] from (11), vt(j) = vt in a symmetric equilibrium that features an equal arrival
rate of innovation across industries.9 The familiar no-arbitrage condition for vt is

rt =
Πt +

.
vt − λtvt
vt

. (13)

This condition equates the real interest rate to the asset return per unit of asset. The
asset return is the sum of (a) monopolistic profit Πt, (b) potential capital gain

.
vt, and (c)

expected capital loss λtvt from creative destruction for which λt is the arrival rate of the
next innovation.
There is a unit continuum of R&D firms indexed by k ∈ [0, 1]. They employ human

capital hr,t(k) for innovation. The wage payment is wh,thr,t(k); however, to facilitate this wage
payment, the entrepreneur needs to borrow money from the household. Each entrepreneur
borrows the amount bt(k) of money from the household. Following Chu and Cozzi (2014),
we impose a CIA constraint on R&D investment, and the cost of borrowing per unit time
is bt(k)it. To parameterize the strength of this CIA constraint, we assume that a fraction
β ∈ [0, 1] of R&D investment requires the borrowing of money from the household such that
bt(k) = βwh,thr,t(k). Therefore, the total cost of R&D per unit time is wh,thr,t(k)(1 + βit).
The CIA constraint on R&D gives the monetary authority an ability to influence the

equilibrium allocation of human capital across sectors through the nominal interest rate.
The zero-expected-profit condition of firm k is

vtλt(k) = (1 + βit)wh,thr,t(k). (14)

The firm-level innovation arrival rate per unit time is λt(k) = ϕthr,t(k), where ϕt = ϕ/Zt
captures an increasing-complexity effect of technology.10 This formulation of increasing R&D

9We follow the standard approach in the literature to focus on the symmetric equilibrium. See Cozzi et
al. (2007) for a theoretical justification for the symmetric equilibrium to be the unique rational-expectation
equilibrium in the quality-ladder growth model.
10See Venturini (2012) for empirical evidence based on industry-level data that supports the presence of

increasing R&D difficulty.

6



difficulty serves to remove a scale effect of human capital11 in the innovation process as in
Segerstrom (1998).12 Finally, the aggregate arrival rate of innovation is

λt =

∫ 1

0

λt(k)dk =
ϕhr,t
Zt

=
ϕht
Zt
sr,t, (15)

where we have defined sr,t ≡ hr,t/ht as the R&D share of human capital. Similarly, we will
define sx,t ≡ hx,t/ht as the production share of human capital. Finally, we will also define a
transformed variable Ωt ≡ ϕht/Zt.

2.5 Monetary authority

The nominal money supply is denoted by Mt, and its growth rate is Ṁt/Mt. By definition,
the aggregate real money balance is mt =Mt/Pt, where Pt denotes the price of final goods.
The monetary policy instrument that we consider is it. Given an exogenously chosen it by the
monetary authority, the inflation rate is endogenously determined according to πt = it − rt.
Then, given πt, the growth rate of the nominal money supply is endogenously determined
according to Ṁt/Mt = ṁt/mt + πt. Finally, the monetary authority returns the seigniorage
revenue as a lump transfer τ t = Ṁt/Pt = ṁt + πtmt to the household.

2.6 Decentralized equilibrium

The equilibrium is a time path of allocations {ct,mt, ht, lt, et, yt, xt(j), lt(j), hx,t(j), hr,t(k)},
a time path of prices {pt(j), wl,t, wh,t, rt, vt}, and a time path of monetary policy {it}. Also,
at each instance of time, the following conditions hold:

• the household maximizes utility taking {it, rt, wl,t, wh,t} as given;

• competitive final-goods firms produce {yt} to maximize profit taking {pt(j)} as given;

• each monopolistic intermediate-goods firm j produces {xt(j)} and chooses {lt(j), hx,t(j), pt(j)}
to maximize profit taking {wl,t, wh,t} as given;

• R&D firms choose {hr,t(k)} to maximize expected profit taking {it, wh,t, vt} as given;

• the market-clearing condition for raw labor holds such that lt + et = 1;

• the market-clearing condition for human capital holds such that hx,t + hr,t = ht;

• the market-clearing condition for final goods holds such that yt = ct;

11The level of education has been increasing in many developed countries. However, this increase in the
level of human capital is not accompanied by a rise in the growth rate of total factor productivity; see for
example Jones (1995).
12Segerstrom (1998) considers an industry-specific index of R&D difficulty. Here we consider an aggregate

index of R&D difficulty to simplify notation without altering the aggregate results of our analysis.
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• the share value of monopolistic firms adds up to the total value of the household’s
assets such that vt = at; and

• the real money balance borrowed by R&D entrepreneurs from the household is bt =
βwh,thr,t.

Substituting (10) into (8) yields the aggregate production function given by

yt = Zt(hx,t)
α(lt)

1−α = Zt(htsx,t)
α(lt)

1−α, (16)

where sx,t ≡ hx,t/ht and aggregate technology Zt is defined as

Zt = exp

(∫ 1

0

qt(j)dj ln z

)
= exp

(∫ t

0

λυdυ ln z

)
. (17)

The second equality of (17) applies the law of large numbers. Differentiating the log of (17)
with respect to t yields the growth rate of aggregate technology given by

gz,t ≡

.

Zt
Zt
= λt ln z = sr,tΩt ln z, (18)

where sr,t ≡ hr,t/ht and Ωt ≡ ϕht/Zt.

2.7 Balanced growth path

We consider the balanced growth path in this section. We first derive the steady-state
equilibrium growth rates of technology and human capital. On the balanced growth path,
the R&D share of human capital sr is constant and the arrival rate of innovation is also
constant. Therefore, ht and Zt must grow at the same rate as implied by (18). In other
words, the steady-state growth rate of technology gz is equal to the steady-state growth rate
of human capital gh.

gz = gh ⇔ srΩ ln z = ξe. (19)

We now manipulate the R&D free-entry condition in (14) to determine the steady-state
equilibrium allocation sr. Combining (12) and (14), we derive the first condition for solving
the steady-state equilibrium as follows.

vtλt
(1 + βi)hr,t

= wh,t =
αyt
µhx,t

⇔
sr

1− sr
=

1

1 + βi

(
µ− 1

α

)
λ

ρ+ λ
, (20)

where we have used sx = 1 − sr, vt = Πt/(ρ + λ) and (11). The steady-state equilibrium
innovation-arrival rate λ is given by

λ = gz/ ln z = ξe/ ln z, (21)

where we have used (18) and (19). Given that education is endogenous, we need a second
condition to determine the steady-state equilibrium allocation e. Substituting (12) into (7)
yields

8



ρ =
ξα

1− α

(
1− e

1− sr

)
, (22)

where we have used the Euler equation ċt/ct = rt− ρ and the steady-state condition ċt/ct =
ẇl,t/wl,t.
We are now ready to solve for the steady-state equilibrium {sr, e}. Substituting (21) into

(20) yields the following R&D free-entry condition, which we refer to as the R curve:

sr
1− sr

=
1

1 + βi

(
µ− 1

α

)
ξe

ρ ln z + ξe
. (23)

Re-expressing (22) yields the household’s optimality condition for education, which we refer
to as the E curve:

sr
1− sr

=
ρ

ξ

1− α

α

1

1− e
− 1. (24)

We impose the following parameter restriction to ensure the existence of a unique equilibrium:

ρ/ξ < α/(1− α). (P1)

Figure 1 plots (23) and (24) in terms of sr/(1 − sr) against e and shows that a unique
equilibrium must exist given (P1).

Figure 1: Steady-state equilibrium
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3 Growth and welfare effects of monetary policy

In this section, we analyze the growth and welfare effects of monetary policy. In Section 3.1,
we analyze the effects of the nominal interest rate on economic growth. In Section 3.2, we
calibrate the model and simulate the transitional dynamics to provide a quantitative analysis
on the effects of the nominal interest rate on economic growth and social welfare. In Section
3.3, we present the results from a simplified version of our model with exogenous human
capital accumulation.

3.1 Growth analysis

Figure 1 shows that an increase in the nominal interest rate i rotates the R curve downwards
and leads to a decrease in both R&D share sr and education e. First, the effect of the nominal
interest rate i on R&D share sr operates through the CIA constraint on R&D captured by
β rather than the CIA constraint on consumption captured by γ due to the absence of
leisure in utility. Then, from (19) we know that the long-run growth rate of technology is
given by gz = gh = ξe. Therefore, the decrease in education e reduces both the long-run
growth rates of human capital gh and technology gz. Intuitively, the higher nominal interest
rate raises the cost of R&D via the CIA constraint on R&D and leads to a reallocation of
human capital from R&D to production, which in turn improves the marginal product of
labor l and its wage rate in the production sector. As a result, the increase in l crowds out
education e, which in turn reduces the growth rate of human capital and also the growth rate
of technology given that the long-run growth rate of technology is determined by the growth
rate of human capital in the model. As for the effect of i on the growth rate of output, (16)
implies the following steady-state equilibrium growth rate of output:

gy = gz + αgh = (1 + α)gh. (25)

Therefore, the long-run growth rate of output is also decreasing in the nominal interest rate.
We summarize these results in Proposition 1.

Proposition 1 An increase in the nominal interest rate reduces the growth rates of human

capital, technology and output.

Proof. Proven in text.

Using the Fisher identity i = r+π and the Euler equation gc = r−ρ, we can write down
an expression for the equilibrium inflation rate given by

π = i− gc − ρ, (26)

where gc = gy is decreasing in the nominal interest rate i. Differentiating (26) with respect
to i yields the following positive long-run relationship between the inflation rate and the

10



nominal interest rate:13
∂π

∂i
= 1−

∂gc
∂i

> 0. (27)

Therefore, we have the following empirical implications from (27) and Proposition 1. First,
an increase in the nominal interest rate is associated with a decrease in innovation and
an increase in the inflation rate. This finding is consistent with the empirical evidence in
Chu and Lai (2013) and Chu et al. (2015), who provide empirical evidence for a negative
relationship between inflation and R&D. Second, an increase in the nominal interest rate
is associated with a decrease in the growth rate of output and an increase in the inflation
rate. This negative relationship between inflation and economic growth is supported by the
empirical results in recent studies, such as Vaona (2012) and Chu et al. (2014).

3.2 Quantitative analysis

In this section, we calibrate the model and simulate the transitional dynamics to provide a
quantitative analysis on the growth and welfare effects of monetary policy. Proposition 2
provides the three differential equations that summarize the dynamics of the economy.

Proposition 2 The dynamics of the economy is given by the following differential equations:

ṡr,t = (1− sr,t)

{
ρ+

[
sr,t −

µ− 1

α(1 + βi)
(1− sr,t)− sr,t ln z

]
Ωt + ξet

}
, (28)

ėt = (1− et)

[
ρ−

ξα (1− et)

(1− α) (1− sr,t)

]
, (29)

Ω̇t = Ωt [ξet − sr,tΩt ln z] . (30)

Proof. See Appendix A.

The model features the following set of parameters {ρ, µ, z, α, ξ, β}. For the discount
rate ρ, we set it to a conventional value of 0.04. We follow Acemoglu and Akcigit (2012) to
calibrate the innovation step size z by targeting an innovation-arrival rate λ of 1/3, which
implies an average duration of 3 years between the arrival of innovations. We calibrate the
markup µ by targeting an R&D share of GDP of 0.03, which is in line with recent US data.
As for the human-capital intensity α in production, we consider a conventional value of 1/3;
see for example Mankiw et al. (1992). As for the education productivity parameter ξ, we
will use the human-capital growth rate gh to calibrate its value. We consider a long-run GDP
per capita growth rate gy of 2%, and we pin down the value of gh = gy/(1 + α) from (25).
Given α = 1/3, we have gh = gz = 1.5%, which is in line with the the long-run total factor
productivity growth rate reported in Jones and Williams (2000). Then, we find a value of ξ
such that gh = ξe(ξ) = 0.015, where e(ξ) is the steady-state equilibrium value determined

13Empirical studies, such as Mishkin (1992) and Booth and Ciner (2001), provide evidence for this Fisher
effect of a positive long-run relationship between inflation and the nominal interest rate.
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by (23) and (24). Finally, we set the parameter β in the CIA constraint on R&D to 1.14

In summary, the parameter values are {ρ, µ, z, α, ξ, β} = {0.04, 1.04, 1.05, 0.33, 0.09, 1}. We
consider a policy experiment of decreasing the nominal interest rate from 10% to 0% and use
the relaxation algorithm developed by Trimborn et al. (2008) to simulate the transitional
dynamics of the economy.
Figure 2 shows the original balanced growth path and the transition path of the human-

capital growth rate gh,t. The decrease in the nominal interest rate increases the amount of
human capital allocated to R&D, which in turn leads to a decrease in human capital and
raw labor allocated to production. As a result, there is more labor allocated to education,
and hence, the growth rate of human capital jumps up and gradually converges to the new
steady-state growth rate that is higher than the initial steady-state growth rate.
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Figure 2: The transition path of gh,t

Figure 3 shows the original balanced growth path and the transition path of the technol-
ogy growth rate gz,t. When the nominal interest rate decreases, the growth rate of technology
jumps up on impact and gradually converges to the new steady-state growth rate that is
higher than the initial steady-state growth rate. The steady-state growth rate of technology
increases because of the higher steady-state growth rate of human capital.

14The growth and welfare effects of the nominal interest rate is roughly proportional to the value of β.
Due to the lack of an empirical value, we consider β = 1 as an illustrative benchmark. However, it is useful
to note that our focus is to compare the welfare effects of monetary policy under endogenous human capital
accumulation and under exogenous human capital accumulation. Our finding of a larger welfare effect under
endogenous human capital accumulation is robust to different values of β.
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Figure 3: The transition path of gz,t

Figure 4 shows the original balanced growth path and the transition path of the (log)
level of consumption ln ct. The decrease in the nominal interest rate leads to a decrease in
production human capital hx,t and production labor lt, which in turn reduces output yt and
consumption ct initially. Then, the higher growth rates of technology and human capital give
rise to a higher growth rate of output and consumption. Gradually, the level of consumption
converges to the new balanced growth path that features a higher growth rate than the initial
balanced growth path.
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Figure 4: The transition path of ln ct

Table 1 summarizes the initial and new steady-state growth rates of technology, human
capital and output. It also reports the effect of the decrease in the nominal interest rate on
the household’s lifetime utility. In summary, the welfare gain is equivalent to a permanent
increase in consumption of 2.82%.
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Table 1: Endogenous human capital
i gz gh gy ∆U
10% 1.50% 1.50% 2.00% n/a
0% 1.57% 1.57% 2.09% 2.82%

3.3 Exogenous human capital accumulation

To highlight the importance of endogenous human capital accumulation, we also consider
the case in which human capital accumulation is exogenous. In this case, the steady-state
growth rate of technology is determined by the exogenous growth rate of human capital as
gz = gh = ξe, and the R&D free-entry condition in (23) becomes

sr
1− sr

=
1

1 + βi

(
µ− 1

α

)
ξe

ρ ln z + ξe
, (31)

where e is an exogenous parameter. We consider the same parameter values as before.
Therefore, we can calibrate the value of e using e = gh/ξ = 0.17. The resource constraint
on labor becomes l = 1− e = 0.83. The dynamics of the economy is now determined by the
following two differential equations:

ṡr,t = (1− sr,t)

{
ρ+

[
sr,t −

µ− 1

α(1 + βi)
(1− sr,t)− sr,t ln z

]
Ωt + ξe

}
, (32)

Ω̇t = Ωt [ξe− sr,tΩt ln z] . (33)

In this case, the growth rate of human capital is exogenous and constant at gh = ξe.
Figure 5 shows the original balanced growth path and the transition path of the technology
growth rate gz,t. When the nominal interest rate decreases, the growth rate of technology
jumps up on impact and gradually converges back to the initial steady-state growth rate.
The steady-state growth rate of technology does not change because of the constant and
exogenous growth rate of human capital.
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Figure 6 shows the original balanced growth path and the transition path of the (log)
level of consumption ln ct. The decrease in the nominal interest rate leads to an increase
in R&D human capital hr,t and a decrease in production human capital hx,t, which in turn
reduces output yt and consumption ct initially. Then, the higher transitional growth rate
of technology gives rise to a higher transitional growth rate of output and consumption.
Gradually, the level of consumption converges to the new balanced growth path that is
higher than the initial balanced growth path but features the same growth rate in the long
run.
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Figure 6: The transition path of ln ct

Table 2 summarizes the initial and new steady-state growth rates of technology, human
capital and output. The steady-state growth rates of technology and output do not change
because the growth rate of human capital is exogenous and constant. Table 2 also reports
the effect of the decrease in the nominal interest rate on the household’s lifetime utility. In
summary, the welfare gain is equivalent to a permanent increase in consumption of 2.38%,
which is smaller than the welfare gain under endogenous human capital accumulation.

Table 2: Exogenous human capital
i gz gh gy ∆U
10% 1.50% 1.50% 2.00% n/a
0% 1.50% 1.50% 2.00% 2.38%

4 Conclusion

In this study, we have analyzed the effects of monetary policy in a scale-invariant Schum-
peterian growth model. The novel element in our analysis is endogenous human capital
accumulation, which gives rise to some interesting results. In the case of exogenous human
capital accumulation, an increase in the nominal interest rate has no effect on the long-run
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growth rates of technology and output despite the CIA constraint on R&D. However, in
the case of endogenous human capital accumulation, an increase in the nominal interest rate
reduces the long-run growth rates of technology, human capital and output. Due to this addi-
tional long-run growth effect, endogenous human capital accumulation amplifies the welfare
effect of monetary policy. Therefore, we argue that when evaluating the effects of monetary
policy on economic growth and social welfare, it is important to take into consideration this
interaction between endogenous technological progress and human capital accumulation that
has been neglected in the literature.
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Appendix A

Proof of Proposition 2. Substituting the Euler equation rt = ρ+ ċt/ct and (12) into (7)
yields

ρ+
ċt
ct
=

ξα

1− α

lt
sx,t

+

.
wl,t
wl,t

, (A1)

where we have used sx,t = hx,t/ht. Differentiating the log of (12) with respect to time and
substituting the resulting expression into (A1) yields

ρ =
ξα

1− α

lt
sx,t

−
l̇t
lt
, (A2)

where we have used ċt/ct = ẏt/yt. Applying sx,t = 1− sr,t, lt = 1− et and l̇t = −ėt to (A2)
yields (29).
Substituting ϕt = ϕ/Zt into (14) and differentiating the resulting expression with respect

to time yields
v̇t
vt
−
Żt
Zt
=
ẇh,t
wh,t

. (A3)

Substituting (13) and then (14) into (A3) yields

rt + λt −
Πtλt

(1 + βi)wh,thr,t
−
Żt
Zt
=
ẇh,t
wh,t

. (A4)

Substituting the Euler equation rt = ρ+ ċt/ct, (11) and (12) into (A4) yields

ρ+
ċt
ct
+ λt −

(µ− 1)λt
α(1 + βi)

sx,t
sr,t

−
Żt
Zt
=
ẇh,t
wh,t

, (A5)

where we have used sx,t = hx,t/ht and sr,t = hr,t/ht. Differentiating the log of (12) and
substituting the resulting expression into (A5) yields

ρ+ λt −
(µ− 1)λt
α(1 + βi)

sx,t
sr,t

−
Żt
Zt
= −

ḣx,t
hx,t

, (A6)

where we have used ċt/ct = ẏt/yt. Adding ḣt/ht = ξet to both sides of (A6) yields

ρ+ λt −
(µ− 1)λt
α(1 + βi)

sx,t
sr,t

−
Żt
Zt
+ ξet = −

ṡx,t
sx,t
, (A7)

where we have used ṡx,t/sx,t = ḣx,t/hx,t − ḣt/ht. Substituting (15) and (18) into (A7) yields

ρ+

[
sr,t −

µ− 1

α(1 + βi)
sx,t − sr,t ln z

]
Ωt + ξet = −

ṡx,t
sx,t
. (A8)

Applying sx,t = 1− sr,t and ṡx,t = −ṡr,t to (A8) yields (28).
As for (30), we differentiate the log of Ωt ≡ ϕht/Zt with respect to time to obtain

Ω̇t
Ωt
=
ḣt
ht
−
Żt
Zt
= ξet − sr,tΩt ln z, (A9)

where the second equality comes from (4) and (18).
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Appendix B: Not for publication

Household’s dynamic optimization: In this appendix, we solve the household’s dy-
namic optimization problem. The Hamiltonian function is

Ht = ln ct+ ηt[rtat+wl,t(1− et) +wh,tht+ τ t− ct− πtmt+ itbt] + ζtξhtet+ϑt(mt− bt− γct).

The first-order conditions include

∂Ht
∂ct

=
1

ct
− ηt − γϑt = 0, (B1)

∂Ht
∂et

= −ηtwl,t + ζtξht = 0, (B2)

∂Ht
∂bt

= ηtit − ϑt = 0, (B3)

∂Ht
∂at

= ηtrt = ρηt − η̇t, (B4)

∂Ht
∂mt

= −ηtπt + ϑt = ρηt − η̇t, (B5)

∂Ht
∂ht

= ηtwh,t + ζtξet = ρζt − ζ̇t. (B6)

Combining (B1) and (B3) yields
1

ct
= ηt(1 + γit). (B7)

Substituting (B3) into (B5) and equating it to (B4) yield it = rt + πt, which is the nominal
interest rate. Taking the log of (B2) and differentiating it with respect to t yield

ζ̇t
ζt
+
ḣt
ht
=
η̇t
ηt
+
ẇl,t
wl,t

. (B8)

Substituting (B2), (B4) and (B6) into (B8) yields

rt = ξht
wh,t
wl,t

+
ẇl,t
wl,t

. (B9)
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