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Abstract

This paper analyzes the predictive content of the level, slope and curvature

of the yield curve for U.S. real activity in a data-rich environment. We find that

the slope contains predictive power, but the level and curvature are not success-

ful leading indicators. The predictive power of each of the yield curve factors

fluctuates over time. The results show that economic conditions matter for the

predictive ability of the slope. In particular, inflation persistence emerges as a

key variable that affects the predictive content of the slope. The slope tends to

forecast output growth better when inflation is highly persistent.
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1. Introduction

Economists have long understood that the behavior of the yield curve changes across

the business cycle. In recessions, short-term interest rates tend to be low because the

Federal Reserve lowers the policy rate in order to boost economic activity. The long-

term rates tend to be high relative to the short-term rates because the Fed is expected

to raise the short-term rate in the future when the economic conditions get better.

The slope of the yield curve, or the term spread, is thus positive in recessions. In

contrast, the Fed raises the short-term rate when the economy is overheating or facing

inflationary pressures. A slowdown in real activity typically follows such a policy with

a lag. Monetary policy tightening will raise both short- and long-term interest rates.

If monetary policy is expected to ease once economic activity or inflation declines, the

short-term rate is likely to rise more than the long-term rate. Therefore, the yield

curve tends to flatten or even invert before slowdowns. This discussion suggests that

the short-term rate tends to be procyclical, and the slope of the yield curve tends to

be countercyclical. Based on this observation, economists have argued that the yield

curve might tell us something about future real activity.

Since the late 1980s, a large amount of literature has analyzed the predictive con-

tent of the yield curve (see, e.g., Abdymomunov, 2013; Aguiar-Conraria et al., 2012;

Bernanke, 1990; Bernanke and Blinder, 1992; Estrella and Hardouvelis, 1991; Hamil-

ton and Kim, 2002; Harvey, 1988; Mody and Taylor, 2003).1 This literature has found

that the yield curve contains substantial predictive power. In particular, the slope of

the yield curve has been identified as one of the most informative leading indicators

for U.S. real economic activity (see, e.g., Stock and Watson, 2003). The relationship

between the slope of the yield curve and future real activity is positive; i.e., a high slope

precedes periods of strong growth, while a low slope indicates weak activity in the fu-

1For a comprehensive survey of the literature, see Wheelock and Wohar (2009).
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ture. Other elements of the yield curve also contain information about subsequent real

activity. For instance, Ang et al. (2006) find that the short-term rate predicts U.S.

real GDP growth.

Today, much evidence shows that the predictive power of the yield curve fluctuates

over time (Estrella et al., 2003; Gertler and Lown, 1999; Mody and Taylor, 2003; Rossi

and Sekhposyan, 2011; Stock and Watson, 2003). For example, many studies have

found that the ability of the slope of the yield curve to predict U.S. real growth has

largely disappeared since the mid-1980s. There exists no universally agreed-upon ex-

planation why the predictive power of the yield curve varies over time. However, most

researchers point out that monetary policy and the yield curve are closely connected.

For instance, Giacomini and Rossi (2006) argue that the changes in the predictive

content of the yield curve can be linked to changes in the monetary policy behavior

of the Fed. They show that the reliability of the yield curve as a predictor of output

growth has changed during the Burns-Miller and Volker monetary policy regimes. In a

sequence of papers, Bordo and Haubrich (2004, 2008a, 2008b) suggest that the credi-

bility of the monetary policy is the key determinant of the predictive power of the yield

curve. Using a very long data sample from 1875 to 1997, they find that the slope of

the yield curve tends to forecast output growth particularly well when the credibility

of the monetary policy is low, i.e., when inflation is highly persistent. However, using

the same data sample as Bordo and Haubrich (2004, 2008a, 2008b) but more flexible

methods, Benati and Goodhart (2008) confirm that the predictive power of the slope of

the yield curve fluctuates over time, but these changes do not closely match changes in

inflation persistence. In a recent paper, Hännikäinen (2015) shows that the real-time

predictive content of the slope of the yield curve for U.S. industrial production growth

has changed since the beginning of the zero lower bound (ZLB) and unconventional

monetary policy period in December 2008. The beginning of the ZLB/unconventional

monetary policy era represents a fundamental change in U.S. monetary policy. Thus,
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the results reported in Hännikäinen (2015) provide evidence supporting the view that

changes in the monetary policy regime affect the predictive ability of the yield curve.

There are also other explanations for the apparent changes in the predictive power.

D’Agostino et al. (2006) argue that the reduced informativeness of the yield curve

in recent years is due to the increased stability of U.S. output growth and other key

macroeconomic variables since the mid-1980s. When the macroeconomic variable to

be forecast is not volatile, simple benchmark forecasting models, like low order autore-

gressive (AR) models, produce accurate forecasts. In such a case, it is very challenging

to find leading indicators that contain marginal predictive power over and above that

already encoded in the lagged values of the series to be forecast.

In this paper, we examine the predictive power of the entire yield curve for U.S.

industrial production growth. We extract the level, slope and curvature of the yield

curve using the dynamic Nelson-Siegel model developed by Diebold and Li (2006).

Unlike the vast majority of previous studies, we explore the out-of-sample predictive

content of each of the three components of the yield curve in a data-rich environment

using factor models. The standard practice in the extant literature is to analyze the

predictive power of the yield curve over and above that in the past values of output

growth using AR models. There are two reasons why we prefer factor models to AR

models. First, factor models provide a parsimonious way to study the crucial issue

of whether the components of the yield curve contain predictive information which is

not already encoded in other macroeconomic variables. Second, factor models produce

substantially more accurate industrial production forecasts than simple AR models

(see, e.g., Bernanke and Boivin, 2003; Clements, 2015; Stock and Watson, 2002a,

2002b). We also pay attention to time variations in the predictive power over time.

Finally, and most importantly, we investigate whether the forecasting ability of each

of the components of the yield curve can be linked to economic conditions. Following

recent papers by Dotsey et al. (2015), Hännikäinen (2015) and Ng and Wright (2013),
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we employ the test of equal conditional predictive ability developed by Giacomini

and White (2006). The novelty of the Giacomini and White (2006) test is that it

allows tests of forecast accuracy conditional on a set of possible explanatory variables.

Thus, it enables us to analyze, for instance, how inflation persistence, output volatility,

recessions and monetary policy regimes affect the reliability of the yield curve as a

predictor of real activity. To the best of our knowledge, no other paper has linked the

predictive power of the yield curve to economic conditions in a systematic way. Our

paper is intended to bridge this gap.

Our main findings can be summarized as follows. First, the slope of the yield curve

is a better predictor of real activity than the level or curvature of the yield curve.

We find that the slope contains predictive power for industrial production growth in

a data-rich environment. In contrast, the level and curvature perform poorly in the

out-of-sample forecasting exercise, and they are typically uninformative about future

output growth. Second, the results reveal that the slope estimated from the entire

yield curve outperforms the standard empirical slope (i.e., the difference between the

10-year and 3-month yields). This finding implies that the additional information in

the entire yield curve helps improve forecast accuracy. Third, the predictive power of

the yield curve components varies over time. For instance, the slope was a particularly

informative leading indicator in the late 1970s and early 1980s, but it performed poorly

in the latter half of the 1980s and the early 1990s. Fourth, the predictive ability of

the slope seems to depend on the state of the economy. The slope tends to forecast

output growth more accurately when inflation is highly persistent or when inflation is

not highly volatile.

The remainder of the paper is organized as follows. Section 2 describes the method-

ology we employ in the out-of-sample forecasting exercise. Section 3 introduces the

data, and Section 4 presents the empirical results. Section 5 contains concluding re-

marks. Appendix A provides a detailed description of the dataset.
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2. Methodology

In this section, we describe the econometric methodologies used in the out-of-sample

forecasting exercise. The purpose of this study is to examine whether different elements

of the yield curve contain predictive power for U.S. real economic activity.

2.1. Dynamic Nelson-Siegel yield curve model

We extract the latent level, slope and curvature of the yield curve using the dynamic

Nelson-Siegel yield curve model introduced by Diebold and Li (2006):

yt(τ) = β1t + β2t

(

1− e−λtτ

λtτ

)

+ β3t

(

1− e−λtτ

λtτ
− e−λtτ

)

, (1)

where yt(τ) is the yield of a zero-coupon bond with maturity τ ; β1t, β2t and β3t are three

time-varying latent factors, and λt is the exponential decay rate responsible for fitting

the yield curve at different maturities. A central feature of the dynamic Nelson-Siegel

model is that the latent factors β1t, β2t and β3t can be interpreted as the level, slope

and curvature of the yield curve, respectively. An increase in β1t increases all yields

by the same amount regardless of their maturity. Thus, β1t determines the level of the

yield curve. In contrast, β2t is related to the slope of the yield curve because a change

in β2t leads to an unequal change in short- and long-term yields. Finally, an increase

in β3t increases the medium-term yields to a greater extent than short- and long-term

yields. Therefore, β3t affects the curvature of the yield curve. We estimate the latent

factors using the two-step procedure proposed by Diebold and Li (2006). That is, we

first fix λt at 0.0609
2 for all t and then estimate the factors by OLS.

2As discussed in Diebold and Li (2006), λt determines the maturity at which the loading on the
curvature factor reaches its maximum. It is often assumed that the curvature is maximized either at
2- or 3-year maturity. The loading on the curvature factor is maximized at exactly 30 months, which
is the average between 2- and 3-year maturities, if λt is set to 0.0609.
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2.2. Forecasting models

We examine the predictive content of the yield curve using factor models. Factor

models are particularly well-suited to deal with a large number of candidate predictors.

The key insight of this method is that predictors are often strongly correlated, and

thus, the information in a large set of predictors can be summarized by a handful

of unobserved factors. As shown by Stock and Watson (2002a), these factors can be

consistently estimated by principal components. Factor models typically produce more

accurate macroeconomic forecasts than alternative forecasting models, such as AR and

vector autoregressive models. As a consequence, factor models have become popular

in macroeconomic forecasting in recent years.3

Our forecasting model is the following linear, h-step-ahead factor model, augmented

with an element of the yield curve:

yht+h = αh +
m
∑

j=1

k
∑

i=1

βhijF̂i,t−j+1 +

p
∑

j=1

γhjyt−j+1 + φhzt + εht+h, (2)

where the dependent variable and the lagged dependent variable are yht+h = (1200/h)

ln(IPt+h/IPt) and yt = 400ln(IPt/IPt−1), respectively, IPt is the industrial produc-

tion at month t, F̂i,t is the ith principal component constructed from the large set of

predictors, zt is either the level, slope or curvature of the yield curve, and εht+h is the

forecast error. The constant term is explicitly included in the forecasting model (2),

and the subscripts h indicate that the parameters are forecast horizon specific.

2.3. Out-of-sample forecasting exercise

We evaluate the forecasting performance of the components of the yield curve in a

pseudo-out-of-sample forecasting exercise. In this exercise, the forecast horizon h is

3See Luciani (2014) and Stock and Watson (2011) for recent surveys of factor models.
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chosen such that we forecast economic activity one, two, three, and four quarters

ahead (i.e., h = 3, 6, 9, and 12). At each forecast origin, the factors are extracted by

principal components using the whole data sample available at that date. In contrast,

the parameters of the forecasting model (2) are re-estimated at each forecast origin by

OLS using a rolling window of 120 observations, corresponding to 10 years of monthly

data.4 We restrict the forecasting model such that it contains only contemporaneous

values of factors F̂t (i.e., m = 1) and the components of the yield curve. The number

of autoregressive lags p and the number of factors k are determined by the data. We

consider several variants of the forecasting model (2). The first, denoted by DIAR,

includes contemporaneous factors and an element of the yield curve and lags of yt,

with k and p selected by minimizing the Bayesian information criterion (BIC), with

1 ≤ k ≤ 4, and 0 ≤ p ≤ 6. Thus, the smallest model that BIC can choose includes

only a single contemporaneous factor and a contemporaneous value of the yield curve.

The second variant, denoted by K1 and K2, includes a fixed number of factors (k

= 1 or 2) and a contemporaneous value of the yield curve.5 The third variant is a

simple AR model augmented with yield curve information. Thus, the model includes

the contemporaneous value of an element of the yield curve and lags of yt. Again, the

number of autoregressive lags is selected by BIC, with 0 ≤ p ≤ 6. We denote this

variant by AR in the following tables.

2.4. Forecast accuracy

A standard way to quantify out-of-sample performance is to compare the forecasting

accuracy of a candidate forecast model relative to that of a benchmark model. In

our framework, natural benchmark models are obtained by excluding the yield curve

4The Giacomini and White (2006) tests (discussed below) require limited memory estimators and
thus rule out the recursive estimation scheme.

5We also considered models with three or four factors. The results for these two specifications are
qualitatively similar to those reported for the K1 and K2 models. However, the K1 and K2 models
produce more accurate out-of-sample forecasts (cf. Stock and Watson, 2002b). To save space, we
report the results for the K1 and K2 specifications only.
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information from the forecasting model (2). Therefore, by comparing the accuracy of

the forecasting model that includes a component of the yield curve and the benchmark

model, we investigate the marginal predictive power of that element of the yield curve.

To facilitate comparisons between the yield curve model and the benchmark, we report

the results in terms of their relative mean squared forecast error (MSFE), which is the

ratio of the MSFE from the yield curve forecasting model over the MSFE from the

benchmark. Values of the relative MSFE below (above) one indicate that the forecasts

produced by the yield curve model are more (less) accurate than the forecasts produced

by the benchmark model. The statistical significance is evaluated using the one-sided

Giacomini and White (2006) test of equal unconditional predictive ability.

We also report the fraction of observations for which the yield curve model generates

a smaller absolute forecast error than the benchmark. The reason for this exercise is

twofold. First, it allows us to consider whether the yield curve forecasting model

qualitatively outperforms the benchmark model. Second, because the MSFE measure

gives more weight to large errors, a few extreme forecast errors might bias the MSFE

results. The sign statistic, on the other hand, puts smaller weight on outliers and,

thus, provides usefull robustness check. We evaluate the statistical significance using

the Diebold and Mariano (1995) sign test.

2.4.1. Fluctuation tests

The Giacomini and White (2006) unconditional test tells us whether the forecasts are

statistically significantly different from one another on average over the whole out-of-

sample period. The unconditional test implicitly assumes that the relative performance

of the forecasting models remains constant over time. Giacomini and Rossi (2010) point

out that the relative forecasting performance may change over time in an unstable

environment. In such a case, average relative performance over the whole out-of-

sample period may hide important information and even lead to incorrect conclusions.
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In practice, the relative performance of the forecasting models often fluctuate over time

(see, e.g., D’Agostino and Surico, 2012; Ng and Wright, 2013; Rossi, 2013). We analyze

time variations in the relative forecasting performance using methods developed by

Giacomini and Rossi (2010). Their fluctuation test examines whether the local relative

performance of two forecasting methods is equal at each point in time. The fluctuation

test is equivalent to the Giacomini and White (2006) unconditional test computed over

a rolling out-of-sample window. To be more specific, the unconditional test statistic is

computed for each rolling window. If the maximum test statistic exceeds the critical

value computed by Giacomini and Rossi (2010), the null of equal accuracy between the

two forecasting methods at each point in time is rejected.

2.4.2. Conditional predictive ability tests

Finally, we investigate whether the forecasting ability of each of the components of the

yield curve can be linked to economic factors. We employ the Giacomini and White

(2006) test of equal conditional predictive ability, which provides a simple method

for analyzing whether the state of the economy affects the accuracy of the yield curve

forecasting model relative to that of the benchmark model. It is important to emphasize

that the conditional Giacomini and White test is a marginal test. This means that the

conditional test tells us only whether conditioning on a certain variable significantly

improves the accuracy of one forecast relative to another, not whether the forecast is

actually more accurate. However, we can infer which model produces better forecasts

from an auxiliary regression. In this regression, the difference in the squared h-step-

ahead forecast errors between the benchmark model and the yield curve model, denoted

by δt+h, is regressed on the conditioning variable xt:

δt+h = β0 + β1xt + et+h. (3)
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The size and sign of the coefficients of this regression determine which forecasting model

yields more accurate forecasts. We are particularly interested in the β1 coefficient.

This coefficient tells us how conditioning on variable xt affects the relative forecasting

performance of the two models. For instance, a positive and statistically significant

β1 indicates that conditioning on xt improves the yield curve forecast relative to the

benchmark. Otherwise stated, the yield curve contains more marginal predictive power

when the variable xt is large.

3. Data

The data used in this paper come from two sources. The yield data are taken from

the Gürkaynak et al. (2007) database. This database is publicly available on the

Federal Reserve’s webpage,6 and it is updated regularly. The macroeconomic data

are obtained from the FRED-MD database, which is compiled and maintained by

the Federal Reserve Bank of St. Louis.7 The FRED-MD database is a new publicly

available monthly database for macroeconomic research. A detailed description of this

dataset can be found in McCracken and Ng (2015).

3.1. Yield curve data

We use monthly zero-coupon U.S. Treasury security yields with maturities of 3, 6, 9,

12, 24, 36, 48, 60, 72, 84, 96, 108, and 120 months covering the period from June 1961

to April 2015. The data refer to the yields on the last day of each month. All yields are

continuously compounded. Summary statistics of the yields are presented in Table 1.

A number of important features of the yield curve can be seen from this table. First,

the yield curve is typically upward sloping; i.e., the long-term rates are typically higher

than the short-term rates. Second, the short end of the yield curve is more volatile

6http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
7https://research.stlouisfed.org/econ/mccracken/fred-databases
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than the long end. Third, the long-term rates are more persistent than the short-term

rates.

We extract the latent level, slope and curvature of the yield curve from the raw

yield data using the dynamic extension of the Nelson-Siegel (1987) model introduced

by Diebold and Li (2006). We also consider widely used empirical proxies for the three

components of the yield curve. In particular, we use the 10-year yield as a proxy for the

level of the yield curve. The empirical slope is the difference between the 10-year and

3-month yields. The empirical proxy for the curvature is defined as twice the 2-year

yield minus the sum of the 3-month and 10-year yields. By comparing the forecasting

performance of the latent factors and their empirical proxies, we are able to analyze

whether the additional information encoded in the entire yield curve helps improve

forecast accuracy.

The level, slope and curvature of the yield curve and their empirical proxies play

a prominent role in the sequel. Thus, we focus on them now in some detail. Table

2 presents descriptive statistics for the three components of the yield curve. The

estimated factors and their empirical proxies display similar features. Furthermore,

the correlations between the estimated factors and their empirical proxies are very

high. The correlations are ρ(β̂1t, lt) = 0.981, ρ(−β̂2t, st) = 0.983, and ρ(β̂3t, ct) = 0.994,

where
{

β̂1t,−β̂2t, β̂3t

}

are the factors corresponding to the level, slope and curvature

of the yield curve and (lt, st, ct) are the empirical level, slope and curvature. Figure 1

plots the level, slope and curvature of the yield curve and 12-month-ahead industrial

production growth. For instance, in January 2000, we plot industrial production growth

from January 2000 to January 2001 together with a component of the yield curve at

January 2000. Two aspects of the graph are particularly interesting. First, the level

of the yield curve moves in the opposite direction to future economic activity. Second,

periods with high (low) slope are typically followed by high (low) industrial production

growth. The informal picture, then, is that there is a positive relation between the
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slope of the yield curve and future economic activity. The evidence for the curvature

is mixed. If anything, the curvature and industrial production growth seem to be

negatively correlated in the earlier part of the sample but positively correlated in

the latter part. This preliminary evidence suggests that the predictive ability of the

curvature might have changed over time.

3.2. Macroeconomic data

The macroeconomic factors are extracted from the FRED-MD dataset. This dataset

contains 134 monthly time series representing different facets of the U.S. macroecon-

omy (e.g., production, consumption, employment and price inflation). The principal

components estimation of the factors require a balanced panel of data. We form a bal-

anced panel by dropping series 64 (New Orders for Consumer Goods), 66 (New Orders

for Non-defense Capital Goods), 83 (S&P PE ratio), 101 (Trade Weighted U.S. Dol-

lar Index: Major Currencies) and 130 (Consumer Sentiment Index) from the original

dataset. To avoid multicollinearity between the estimated factors and the components

of the yield curve, we exclude the federal funds rate (series 84), Treasury bill rates

(series 86–87), Treasury bond rates (series 88–90), and Treasury spreads (series 94–98)

from the FRED-MD dataset. After these modifications, we are able to work with a

balanced panel of 118 monthly series dating from 1961:M6 to 2015:M4. We use the

August 2015 vintage values of data.8 The data are made stationary and standardized

to have zero sample mean and unit sample variance. A complete list of the series and

transformations applied to each series are reported in Appendix A.

8Most macroeconomic time series are published with a lag and are subject to important revisions
(see Croushore, 2011). In this paper, we follow the majority of the literature and do not take into
account the real-time nature of many macroeconomic time series.
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4. Empirical results

Next, we present the results of the out-of-sample forecasting exercise outlined in Section

2. The aim of this exercise is to analyze (i) whether the elements of the yield curve

contain predictive power in a data-rich environment, (ii) whether the predictive ability

fluctuates over time and (iii) whether the predictive power can be linked to economic

conditions.

4.1. Out-of-sample forecasting results

4.1.1. MSFE results

We start our analysis by considering the whole out-of-sample period running from

1972:M5 to 2015:M7. The MSFE results for this period are summarized in Table 3.

This table shows the MSFE value of the model augmented with a yield curve element

relative to the MSFE value of the benchmark model. Values below (above) unity

indicate that the model augmented with the yield curve element has produced more

(less) accurate forecasts than the benchmark, implying that the yield curve element

contains (does not contain) marginal predictive power. The statistical significance is

evaluated using the one-sided Giacomini and White (2006) test of equal unconditional

predictive ability.

Three main results emerge from Table 3. First, the slope of the yield curve contains

predictive power for U.S. industrial production growth in a data-rich environment. The

model augmented with the slope produces more accurate forecasts than the benchmark

model irrespective of which model specification or forecast horizon is considered. The

improvements in forecast accuracy are quite large. However, the Giacomini and White

(2006) test rejects the null of equal accuracy only in approximately one fourth of the

cases. Second, neither the level nor the curvature of the yield curve are useful predictors

14



of industrial production growth over the full out-of-sample period. In particular, the

model augmented with the level of the yield curve performs poorly. Inclusion of the

curvature factor increases forecast accuracy in a few cases. In these cases, however,

the curvature makes only a very slight improvements over the benchmark. Third, the

predictive ability of the estimated factors and their empirical counterparts seem to be

alike. This finding is not surprising. As discussed in Section 3, the estimated factors

and their empirical proxies are strongly correlated and display similar properties. If

anything, the results in Table 3 suggest that the estimated slope factor outperforms

the empirical slope. Furthermore, the empirical level and curvature seem to produce

better forecasts than the estimated level and curvature factors, respectively.

4.1.2. Sign predictability

Table 4 reports the fraction of observations for which the model augmented with a com-

ponent of the yield curve generates a smaller absolute forecast error than the benchmark

model over the 1972:M5–2015:M7 period. We test the statistical significance using the

Diebold and Mariano (1995) sign test. The results in Table 4 indicate that the fore-

casts from the model containing the slope are qualitatively superior to those from the

benchmark model. The model with the slope provides more accurate forecasts for more

than 50% of the observations in the clear majority of the model specification/forecast

horizon combinations. This finding provides further evidence supporting the view that

the slope of the yield curve has predictive power for real activity when the predictive

information encoded in a large number of macroeconomic variables is already taken

into account. The level of the yield curve performs somewhat better when we quantify

out-of-sample forecast accuracy with a qualitative measure. Still, the forecasting per-

formance of the level is not very convincing. The model that includes the level factor

outperforms the benchmark in approximately half of the cases. Consistent with the

results in Table 3, the model augmented with the curvature performs poorly relative
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to the benchmark. Thus, there is only very limited evidence that the curvature fac-

tor helps improve forecast accuracy in a data-rich environment. Again, the estimated

factors and their empirical counterparts seem to perform equally well.

4.2. Comparison between estimated and empirical yield curve

factors

We proceed by comparing more formally the relative performance of the estimated

factors and their empirical proxies. The goal of this exercise is to shed light on whether

the additional information encoded in the entire yield curve helps improve forecast

accuracy. To analyze the relative ranking of the methods, we compute the MSFE of

the model augmented with the estimated factor relative to the MSFE of the model

augmented with the corresponding empirical factor. In addition, we compute the

fraction of observations for which the model that includes the estimated factor produces

a smaller absolute forecast error than the model that includes the empirical factor. The

results are summarized in Table 5. The most important finding is that the estimated

slope produces systematically smaller MSFE values than the empirical slope, often by

quite a large margin. This implies that the slope estimated from the entire yield curve

contains more predictive power for output growth than the empirical slope typically

used in the previous literature. This finding is consistent with the results presented

in Abdymomunov (2013). The results are more mixed when we consider whether the

model with the estimated slope qualitatively outperforms the model with the empirical

slope. In general, the empirical slope performs better than the estimated slope. For

the level and curvature of the yield curve, the empirical factors dominate the estimated

ones regardless which measure of forecast performance is used. Therefore, for these two

components of the yield curve, using information from the entire yield curve does not

improve forecast accuracy.
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4.3. Rolling relative MSFE values

The results reported in Tables 3–5 focus on the average predictive power over the whole

out-of-sample period. There is a lot of evidence that shows that the predictive content

of leading indicators often fluctuate over time (see, e.g., D’Agostino and Surico, 2012;

Ng and Wright, 2013; Rossi, 2013). If the predictive ability is not stable over time, the

average performance over the full out-of-sample period may hide important information

and even lead to incorrect conclusions. For this reason, we next analyze whether the

predictive ability of the elements of the yield curve remains stable over time. To this

end, we plot the relative MSFE values computed over a rolling out-of-sample window

of 150 observations in Figure 2.9 To save space, we report the results only for the DIAR

model at h = 3 months. The results for the other model specifications and forecast

horizons are qualitatively similar.

Inspection of Figure 2 reveals interesting details concerning the predictive ability

of the yield curve. The evidence suggests that none of the three elements is a robust

predictor of output growth as the MSFE ratio fluctuates around one in all cases. The

rolling relative MSFE values are consistent with the observation that the slope contains

more predictive power than the level or curvature of the yield curve. We find that the

mid-1980s is a clear watershed for the predictive power of the slope. In the late 1970s

and early 1980s, the model augmented with the slope produces substantially smaller

MSFE values than the benchmark, implying that the slope was a particularly useful

leading indicator during that period. Despite the large differences in the predictive

ability, the Giacomini and Rossi (2010) fluctuation test rejects the null of equal accuracy

at conventional significance levels only for the first few rolling windows. The predictive

ability of the slope has substantially weakened since the mid-1980s. In particular, the

slope produces very inaccurate forecasts in the latter half of the 1980s and early 1990s.

9As recommended by Giacomini and Rossi (2010), we select the length of the rolling out-of-sample
window such that it corresponds roughly to 30% of the full out-of-sample period.
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The timing of the break in the forecasting ability of the slope—the mid-1980s—is in line

with the results from earlier contributions (see, e.g., Rossi and Sekhposyan, 2011; Stock

and Watson, 2003). The results for the level of the yield curve are also fascinating. At

the beginning of the out-of-sample period, the model with the level performs poorly and

produces substantially less accurate forecasts than the benchmark model. However, in

the period running from the late 1980s to early 2000s, inclusion of the level helps reduce

forecast errors, and thus, the level adds incremental predictive information during this

period. At the end of the sample, the level has again been less successful at predicting

output growth. For the curvature, the results of the rolling relative MSFE exercise

corroborate the findings in Tables 3 and 4. The rolling MSFE ratio fluctuates widely

around one. We conclude from this evidence that the curvature of the yield curve has

not been a useful forecasting tool for output growth over the last 43 years.

4.4. Rolling sign predictability

Figure 3 plots the rolling fraction of observations for which the forecasting model aug-

mented with a yield curve element produces more accurate forecasts than the bench-

mark model. The fraction is computed using a rolling window of 150 out-of-sample

observations. Again, we focus on the DIAR model and the 3-month-ahead forecast

horizon. Figure 3 confirms by and large the findings in Figure 2. The predictive ability

of each of the three yield curve elements varies over time. The slope was a useful

leading indicator in the late 1970s and early 1980s. The predictive power of the slope

disappeared for a short period in the mid-1980s. Similarly, the slope has not been an

informative indicator at the end of the sample. The level of the yield curve was a poor

predictor until the late 1980s but has performed well since then. The most notable dif-

ference between the results in Figures 2 and 3 is that the curvature contains predictive

power in the 1980s when we use the qualitative measure of forecast accuracy.
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4.5. Conditional predictive ability

As a final exercise, we investigate whether the predictive ability of the components

of the yield curve can be linked to economic conditions. To do this, we employ the

Giacomini and White (2006) test of equal conditional predictive ability. This test

allows us to examine whether the state of the economy affects the accuracy of the

yield curve model relative to the benchmark model. This means that we are able

to analyze, say, how inflation persistence affects the marginal predictive power of the

yield curve. Following Dotsey et al. (2015) and Ng and Wright (2013), we conduct the

test by regressing the difference in the squared h-step-ahead forecast errors between

the benchmark model and the model augmented with a yield curve component on

conditioning variables. We also consider a different specification where the dependent

variable is a binary variable that takes the value of one when the model with the yield

curve factor produces a more accurate forecast than the benchmark and zero otherwise.

4.5.1. Conditioning variables

We consider several conditioning variables. The first variable is the NBER recession

dates. Faust et al. (2013) find that the credit spread discussed in their paper contains

more predictive power in recessions than during normal times. In a similar vein, the

predictive power of the yield curve could differ in recessions and expansions. The re-

sults in the previous literature suggest that changes in the predictive content of the

yield curve often correspond closely to major changes in the conduct of monetary policy

(Bordo and Haubrich, 2008a, 2008b; Giacomini and Rossi, 2006; Hännikäinen, 2015).

To evaluate formally whether changes in the monetary policy affect the predictive

ability, we divide our out-of-sample period into three monetary policy regimes. The

first regime, called the Great Inflation, runs from 1972:M5 to 1983:M12. The second
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regime, the Great Moderation, spans from 1984:M1 to 2008:M11.10 The last regime

covers the period from 2008:M12 to the end of the sample. During this last period,

short-term interest rates have been stuck at the ZLB, and the Fed has used unconven-

tional monetary policy. In what follows, we use the first regime as a benchmark and

create dummy variables for the last two regimes. The third conditioning variable is

inflation persistence. Bordo and Haubrich (2004) find that the slope of the yield curve

forecasts output growth particularly well when inflation is highly persistent. Following

the common practice in the literature, persistence is measured by the sum of the AR

coefficients (see, e.g., Andrews and Chen, 1994; Benati, 2008; Clark, 2006; Pivetta and

Reis, 2007).11 We estimate an AR(5) model for monthly inflation.12 At each forecast

origin, the parameters of the model are re-estimated using a rolling window of 60 ob-

servations, and inflation persistence is computed as the sum of the AR coefficients. We

obtain a measure for output persistence using exactly the same procedure. Finally,

D’Agostino et al. (2006) argue that the reduced informativeness of the yield curve

in recent years is due to the increased stability of U.S. output growth and other key

variables since the mid-1980s. To examine the plausibility of this argument, we condi-

tion the forecasting performance of the yield curve components on U.S. output growth

and inflation volatility. The measure of output volatility is the 5-year rolling standard

deviation of annual industrial production growth (cf. Blanchard and Simon, 2001).

Similarly, we use the 5-year rolling standard deviation of annual inflation as a measure

of inflation volatility (cf. Lamla and Maag, 2012). The behavior of the conditioning

10D’Agostino and Surico (2012) also use these two periods when they investigate inflation pre-
dictability in the U.S. across the monetary regimes of the 20th century. For an in-depth discussion of
U.S. monetary regimes, see Bordo and Schwartz (1999).

11We also considered the non-parametric measure of inflation persistence introduced by Marques
(2005). The results are similar for both measures of inflation persistence and hence we report the
results only for the sum of the AR coefficients measure.

12We select the lag order of the AR model using the 1972:M5–2015:M4 sample. The possible lag
lengths are p = 1, . . . , 6, and we choose the model that minimizes the BIC and AIC. The BIC selects
the model with three lags, and the AIC recommends the model with five lags. Overall, the preliminary
analysis indicates that the AR(5) model fits the data the best. However, other model specifications
yield similar estimates of inflation persistence.
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variables is depicted in Figure 4.

4.5.2. Conditional predictive ability tests

The results of the conditional predictive ability tests are summarized in Table 6. For

the sake of exposition, we concentrate on the DIAR model at h = 3 and h = 12 forecast

horizons. The results for the slope of the yield curve are especially interesting. The

null of equal conditional predictive ability between the model augmented with the slope

and the benchmark model is rejected at the shortest forecast horizon. This means that

the state of the economy affects the accuracy of the model with the slope relative to

the benchmark model in a statistically significant way.

The most intriguing finding is that the performance of the slope depends on infla-

tion persistence. The slope tends to forecast output growth better during periods when

inflation is highly persistent (cf. Bordo and Haubrich, 2004). This observation helps

explain why the slope is a particularly informative leading indicator in the late 1970s

and early 1980s (see Figures 2–4). Theories of intertemporal consumption smoothing

state that the real yield curve contains information about future real activity (Harvey,

1988). It is worth emphasizing that the extent to which changes in the nominal yield

curve studied in this paper reflect changes in the real yield curve depends on inflation

persistence. Consider first the case where inflation is a random walk (i.e., very persis-

tent). In this case, inflation shocks shift expected inflation at all horizons by an equal

amount. Inflation shocks have no effect on the slope of the nominal yield curve, as

short- and long-term rates move up by the amount of the permanently higher inflation

rate. Because the nominal yield curve fluctuates one-for-one with the real yield curve,

the predictive power intrinsic to the slope of the real yield curve translates to the slope

of the nominal yield curve. However, when inflation has little persistence, inflation

shocks increase short-term inflation expectations more than long-term inflation expec-

tations. As a consequence, short-term rates rise relative to the long-term rates. This
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means that, for a given real yield curve, inflation shocks tend to flatten the nominal

yield curve. Because the real yield curve and the nominal yield curve do not move

hand-in-hand, the nominal yield curve is a less reliable predictor of future real activity.

Thus, according to the real yield curve explanation, a decrease in inflation persistence

should lead to a decrease in the predictive power of the slope of the nominal yield

curve. Our findings are consistent with this argument. Hence, our results can be seen

as providing empirical support to Harvey’s (1988) theoretical conjecture.

Another important finding from Table 6 is that the coefficient of inflation volatil-

ity is negative and statistically significant. This implies that the slope produces less

accurate forecasts when inflation is highly volatile. Our analysis reinforces the find-

ing that regime shifts in monetary policy play a role for the predictive content of the

slope (see, e.g., Bordo and Haubrich, 2004, 2008a, 2008b; Giacomini and Rossi, 2006;

Hännikäinen, 2015). The dummy for the Great Moderation period (MPR2) is nega-

tive and statistically significant. Thus, the slope of the yield curve was a less reliable

indicator of future real activity during the Great Moderation period. The coefficient

on the NBER recession dates is insignificant, suggesting that whether the economy is

in a recession or not does not matter for the predictive power of the slope. Finally,

we find no evidence supporting the conjecture in D’Agostino et al. (2006) that output

volatility affects the predictive ability of the slope.

The Giacomini and White (2006) test rejects the null of equal conditional predictive

ability between the model augmented with the level and the benchmark model at the 3-

month-ahead horizon. The predictive power of the level depends on inflation volatility.

The level tends to produce less accurate forecasts when inflation is highly volatile. In

addition, at the longer 12-month-ahead horizon, the model augmented with the level

performs better relative to the benchmark when output persistence is low and output

volatility is high. The conclusions are substantially different for the curvature factor.

Examination of Table 6 leads us to conclude that none of the conditioning variables
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systematically affects the predictive ability of the curvature across all specifications

and forecast horizons.13

4.5.3. Binary dependent variable specification

Table 7 shows the results for the binary dependent variable specification. These re-

sults confirm our main findings from Table 6. Most importantly, inflation persistence

and inflation volatility emerge as key variables that affects the predictive ability of

the slope of the yield curve. The higher the persistence of inflation or the smaller

the volatility of inflation, the more likely the model augmented with the slope yields

qualitatively superior forecasts relative to the benchmark model. The most notable

difference between the results in Tables 6 and 7 is that when qualitative differences

are considered, regime shifts in monetary policy seem to matter less for the predictive

ability of the slope. The results for the level and curvature factors are qualitatively

similar. The probability that the model augmented either with the level or curvature

factor outperforms the benchmark model appears unrelated to any of the conditioning

variables.14

4.5.4. Conditional predictive ability tests with quarterly data

As a sensitivity check, we repeat the above analysis using alternative conditioning

variables. We replace the monetary policy regime dummies with three macroeconomic

regimes discussed in Baele et al. (2015). These regimes are derived from a New-

Keynesian model that accommodates regime switches in systematic monetary policy

and macroeconomic shocks. The macroeconomic regimes are the high inflation shock

volatility regime, the high output shock volatility regime and the active monetary policy

13The adjusted R2s for the slope regressions (not reported) range from 6.1% to 17.1%. The adjusted
R2s for the level and curvature regressions are typically substantially lower than those for the slope
regressions.

14The adjusted R2s for the slope specifications range between 5.9% and 6.8%. Again, the adjusted
R2s for the slope specifications are larger than those for the level and curvature specifications.
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regime in which the Fed aggressively stabilizes inflation. The data for the macroeco-

nomic regimes run from 1972:Q2 to 2008:Q2. Figure 5 shows the smoothed probabilities

of the regimes. Because macroeconomic regimes are available on a quarterly frequency,

we use quarterly (rather than monthly) observations in our exercise. Monthly forecasts

and conditioning variables are aggregated to the quarterly frequency by using the value

of the last month of each quarter.15

The results of this sensitivity analysis, reported in Tables 8 and 9, confirm by and

large the findings in Tables 6 and 7. In particular, the positive relationship between

inflation persistence and the predictive ability of the slope is robust to using quarterly

specification and an alternative set of conditioning variables. Similarly, the negative

link between inflation volatility and the predictive power of the slope is robust to using

quarterly observations and alternative conditioning variables. An important finding

from Table 8 is that the coefficient of active monetary policy regime is negative and

statistically significant for the slope at the longer forecasting horizon. Thus, there

is some evidence supporting the view that monetary policy activism matters for the

predictive power of the slope. The results suggest that the slope forecasts less accurately

when the Fed concentrates on controlling inflation (cf. Estrella, 2005).

5. Conclusions

This paper examines the predictive power of the level, slope and curvature of the yield

curve for U.S. real activity in a data-rich environment. Our analysis leads us to four

main conclusions. First, of the three yield curve factors, the slope is the most informa-

tive leading indicator. We find that the slope contains predictive power for industrial

production growth when the information encoded in a large set of macroeconomic pre-

dictors is already taken into account. In general, the level and curvature of the yield

15To check whether the results in Tables 6 and 7 are overturned by using quarterly data, we estimate
the same model specifications (excluding MPR3 dummy) over the 1972:Q2–2008:Q2 period. The
results of this exercise are very similar to those in Tables 6 and 7.
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curve are not good predictors of future real activity. Second, the slope estimated from

the entire yield curve produces more accurate forecasts than the empirical slope (i.e.,

the difference between the 10-year and 3-month yields). This is an important finding

because the empirical slope is used extensively in the literature. In short, our results

suggest that one should use the slope extracted from the entire yield curve rather than

the empirical slope when forecasting subsequent real activity. Third, the predictive

power of each of the components of the yield curve fluctuates over time. The slope was

a particularly good leading indicator in the late 1970s and early 1980s, but it performed

poorly in the late 1980s and early 1990s. On the other hand, the level contains pre-

dictive power only from the late 1980s to early 2000s. Fourth, and most importantly,

the predictive power of the slope depends on economic conditions. The slope tends to

forecast output growth better when inflation is highly persistent and when inflation is

not highly volatile. The finding that the performance of the slope as a predictor of

output growth depends on the persistence of inflation is an intriguing one because it

provides empirical support for the real yield curve explanation for the predictive power

suggested by Harvey (1988).

Our results could be extended in several ways. We have considered the predictive

power of the yield curve factors for U.S. industrial production growth. It would be

interesting to know whether our results hold for other measures of real activity. In

addition, evidence from other countries may lead to a better understanding of how

economic conditions affect the predictive content of the yield curve. Therefore, analyz-

ing the predictive ability further using, e.g., the international dataset of 10 countries

studied by Wright (2011) might be a fruitful area for future research.
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Appendix A

Table 10: Data description

id Mnemonic Trans. code Description
1 RPI 5 Real Personal Income
2 W875RX1 5 Real Personal Income ex transfer receipts
3 DPCERA3M086SBEA 5 Real personal consumption expenditures
4 CMRMTSPLx 5 Real Manu. and Trade Industries Sales
5 RETAILx 5 Retail and Food Services Sales
6 INDPRO 5 IP Index
7 IPFPNSS 5 IP: Final Products and Nonindustrial Supplies
8 IPFINAL 5 IP: Final Products (Market Group)
9 IPCONGD 5 IP: Consumer Goods
10 IPDCONGD 5 IP: Durable Consumer Goods
11 IPNCONGD 5 IP: Nondurable Consumer Goods
12 IPBUSEQ 5 IP: Business Equipment
13 IPMAT 5 IP: Materials
14 IPDMAT 5 IP: Durable Materials
15 IPNMAT 5 IP: Nondurable Materials
16 IPMANSICS 5 IP: Manufacturing (SIC)
17 IPB51222s 5 IP: Residential Utilities
18 IPFUELS 5 IP: Fuels
19 NAPMPI 1 ISM Manufacturing: Production Index
20 CUMFNS 2 Capacity Utilization: Manufacturing
21 HWI 2 Help-Wanted Index for United States
22 HWIURATIO 2 Ratio of Help Wanted/No. Unemployed
23 CLF16OV 5 Civilian Labor Force
24 CE16OV 5 Civilian Employment
25 UNRATE 2 Civilian Unemployment Rate
26 UEMPMEAN 2 Average Duration of Unemployment (Weeks)
27 UEMPLT5 5 Civilians Unemployed - Less Than 5 Weeks
28 UEMP5TO14 5 Civilians Unemployed for 5-14 Weeks
29 UEMP15OV 5 Civilians Unemployed - 15 Weeks & Over
30 UEMP15T26 5 Civilians Unemployed for 15-26 Weeks
31 UEMP27OV 5 Civilians Unemployed for 27 Weeks and Over
32 CLAIMSx 5 Initial Claims
33 PAYEMS 5 All Employees: Total nonfarm
34 USGOOD 5 All Employees: Goods-Producing Industries
35 CES1021000001 5 All Employees: Mining and Logging: Mining
36 USCONS 5 All Employees: Construction
37 MANEMP 5 All Employees: Manufacturing
38 DMANEMP 5 All Employees: Durable goods
39 NDMANEMP 5 All Employees: Nondurable goods
40 SRVPRD 5 All Employees: Service-Providing Industries
41 USTPU 5 All Employees: Trade, Transportation & Utilities
42 USWTRADE 5 All Employees: Wholesale Trade
43 USTRADE 5 All Employees: Retail Trade
44 USFIRE 5 All Employees: Financial Activities
45 USGOVT 5 All Employees: Government
46 CES0600000007 1 Avg Weekly Hours: Goods-Producing
47 AWOTMAN 2 Avg Weekly Overtime Hours: Manufacturing
48 AWHMAN 1 Avg Weekly Hours: Manufacturing
49 NAPMEI 1 ISM Manufacturing: Employment Index
50 HOUST 4 Housing Starts: Total New Privately Owned
51 HOUSTNE 4 Housing Starts, Northeast
52 HOUSTMW 4 Housing Starts, Midwest
53 HOUSTS 4 Housing Starts, South
54 HOUSTW 4 Housing Starts, West
55 PERMIT 4 New Private Housing Permits (SAAR)
56 PERMITNE 4 New Private Housing Premits, Northeast (SAAR)
57 PERMITMW 4 New Private Housing Permits, Midwest (SAAR)
58 PERMITS 4 New Private Housing Permits, South (SAAR)
59 PERMITW 4 New Private Housing Permits, West (SAAR)
60 NAPM 1 ISM: PMI Composite Index

(Continued)
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Table 10 – (Continued)
id Mnemonic Trans. code Description
61 NAPMNOI 1 ISM: New Orders Index
62 NAPMSDI 1 ISM: Supplier Deliveries Index
63 NAPMII 1 ISM: Inventories Index
65 AMDMNOx 5 New Orders for Durable Goods
67 AMDMUOx 5 Unfilled Orders for Durable Goods
68 BUSINVx 5 Total Business Inventories
69 ISRATIOx 2 Total Business: Inventories to Sales Ratio
70 M1SL 6 M1 Money Stock
71 M2SL 6 M2 Money Stock
72 M2REAL 5 Real M2 Money Stock
73 AMBSL 6 St. Louis Adjusted Monetary Base
74 TOTRESNS 6 Total Reserves of Depository Institutions
75 NONBORRES 7 Reserves of Depository Institutions, Nonborrowed
76 BUSLOANS 6 Commercial and Industrial Loans, All Commercial Banks
77 REALLN 6 Real Estate Loans at All Commercial Banks
78 NONREVSL 6 Total Nonrevolving Credit Owner and Securitized Outstanding
79 CONSPI 2 Nonrevolving Consumer Credit to Personal Income
80 S & P 500 5 S&P’s Common Stock Price Index: Composite
81 S & P: indust 5 S&P’s Common Stock Price Index: Industrials
82 S & P div yield 2 S&P’s Composite Common Stock: Dividend Yield
85 CP3Mx 2 3-Month AA Financial Commercial Paper Rate
91 AAA 2 Moody’s Seasoned Aaa Corporate Bond Yield
92 BAA 2 Moody’s Seasoned Baa Corporate Bond Yield
93 COMPAPFFx 1 3-Month Commercial Paper Minus FEDFUNDS
99 AAAFFM 1 Moody’s Aaa Corporate Bond Minus FEDFUNDS
100 BAAFFM 1 Moody’s Baa Corporate Bond Minus FEDFUNDS
102 EXSZUSx 5 Switzerland / U.S. Foreign Exchange Rate
103 EXJPUSx 5 Japan / U.S. Foreign Exchange Rate
104 EXUSUKx 5 U.S. / U.K. Foreign Exchange Rate
105 EXCAUSx 5 Canada / U.S. Foreign Exchange Rate
106 PPIFGS 6 PPI: Finished Goods
107 PPIFCG 6 PPI: Finished Consumer Goods
108 PPIITM 6 PPI: Intermediate Materials
109 PPICRM 6 PPI: Crude Materials
110 OILPRICEx 6 Crude Oil, spliced WTI and Cushing
111 PPICMM 6 PPI: Metals and Metal Products
112 NAPMPRI 1 ISM Manufacturing: Prices Index
113 CPIAUCSL 6 CPI: All Items
114 CPIAPPSL 6 CPI: Apparel
115 CPITRNSL 6 CPI: Transportation
116 CPIMEDSL 6 CPI: Medical Care
117 CUSR0000SAC 6 CPI: Commodities
118 CUUR0000SAD 6 CPI: Durables
119 CUSR0000SAS 6 CPI: Services
120 CPIULFSL 6 CPI: All Items Less Food
121 CUUR0000SA0L2 6 CPI: All Items Less Shelter
122 CUSR0000SA0L5 6 CPI: All Items Less Medical Care
123 PCEPI 6 Personal Cons. Expend.: Chain Price Index
124 DDURRG3M086SBEA 6 Personal Cons. Expend.: Durable Goods
125 DNDGRG3M086SBEA 6 Personal Cons. Expend.: Nondurable Goods
126 DSERRG3M086SBEA 6 Personal Cons. Expend.: Services
127 CES0600000008 6 Avg Hourly Earnings: Goods-Producing
128 CES2000000008 6 Avg Hourly Earnings: Construction
129 CES3000000008 6 Avg Hourly Earnings: Manufacturing
131 MZMSL 6 MZM Money Stock
132 DTCOLNVHFNM 6 Consumer Motor Vehicle Loans Outstanding
133 DTCTHFNM 6 Total Consumer Loans and Leases Outstanding
134 INVEST 6 Securities in Bank Credit at All Commercial Banks

Notes: The transformation code (column 3) denotes the transformation applied to the variable before principal compo-
nents are calculated. The transformation codes are 1 = no transformation, 2 = first difference, 3 = second difference,
4 = natural logarithm, 5 = first difference of logarithms, 6 = second difference of logarithms. The data sample is
1961:M6–2015:M4. The data source is the FRED-MD database.
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Table 1: Summary statistics for U.S. Treasury yields

Maturity (Months) Mean Std. dev. Min. Max. ˆρ(1) ˆρ(12)
3 4.867 3.107 0.010 15.520 0.986 0.825
6 5.193 3.260 0.089 16.219 0.986 0.832
9 5.263 3.256 0.079 16.182 0.987 0.841
12 5.330 3.244 0.099 16.110 0.988 0.848
24 5.557 3.168 0.188 15.782 0.989 0.867
36 5.738 3.078 0.306 15.575 0.990 0.878
48 5.890 2.990 0.453 15.350 0.990 0.885
60 6.020 2.909 0.627 15.178 0.990 0.888
72 6.133 2.838 0.815 15.061 0.990 0.889
84 6.231 2.775 1.007 14.987 0.990 0.890
96 6.318 2.722 1.197 14.940 0.990 0.890
108 6.393 2.676 1.380 14.911 0.990 0.889
120 6.459 2.638 1.552 14.892 0.990 0.888

Notes : The table presents summary statistics for monthly U.S. Treasury
yields at different maturities. The last two columns contain sample autocor-
relations at displacements of 1 and 12 months. The sample period runs from
1961:M6 to 2015:M4.

Table 2: Summary statistics for the level, slope and curvature of the yield curve

Mean Std. dev. Min. Max. ˆρ(1) ˆρ(12)
Level 6.771 2.401 2.121 13.919 0.989 0.883
Level (empirical) 6.459 2.638 1.552 14.892 0.990 0.888

Slope 1.841 1.873 -5.106 5.632 0.958 0.534
Slope (empirical) 1.592 1.362 -2.555 4.395 0.950 0.504

Curvature -0.861 2.708 -8.181 6.764 0.934 0.645
Curvature (empirical) -0.211 1.005 -2.690 2.907 0.924 0.603

Notes : We fit the Diebold–Li (2006) model using monthly yield data from
1961:M6 to 2015:M4. We fix λt at 0.0609. The three estimated factors β̂1t,−β̂2t

and β̂3t are the level, slope and curvature of the yield curve. Following Diebold
and Li (2006), we define the empirical level as the 10-year yield, the empirical
slope as the difference between the 10-year and 3-month yields, and the empirical
curvature as twice the 2-year yield minus the sum of the 3-month and 10-year
yields.
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Table 3: Out-of-sample MSFE values

Model h = 3 h = 6 h = 9 h = 12
Level

DIAR 1.089 1.089 1.112 1.096
K1 1.058 1.100 1.128 1.152
K2 1.029 1.030 1.015 0.987
AR 1.063 1.088 1.116 1.133

Level (empirical)
DIAR 1.135 1.163 1.126 1.106
K1 1.039 1.077 1.114 1.119
K2 1.017 1.014 1.006 0.969
AR 1.055 1.084 1.125 1.124

Slope
DIAR 0.947 0.973 0.948 0.950
K1 0.933* 0.880* 0.868* 0.855
K2 0.982 0.960 0.953 0.945
AR 0.929* 0.869** 0.857* 0.861

Slope (empirical)
DIAR 0.968 1.000 0.988 0.982
K1 0.954 0.911 0.893* 0.878
K2 0.997 0.989 0.974 0.963
AR 0.952 0.909* 0.877* 0.892

Curvature
DIAR 1.012 0.986 1.010 1.034
K1 1.010 1.009 1.009 1.021
K2 0.995 0.978 0.982 1.009
AR 1.023 1.029 1.036 1.057

Curvature (empirical)
DIAR 1.009 0.982 1.003 1.023
K1 1.002 1.000 0.997 1.006
K2 0.988 0.972 0.972 0.995
AR 1.014 1.015 1.021 1.036

Notes: The out-of-sample forecasting period runs from 1972:M5 to 2015:M7. Each row
reports the ratio of the MSFE of a forecasting model augmented with an element of the
yield curve relative to the MSFE of the benchmark model. Asterisks mark rejection of the
one-sided Giacomini and White (2006) test at the 1%(***), 5%(**) and 10%(*) significance
levels, respectively. The truncation lag for the Newey-West (1987) HAC estimator is h-1,
where h is the forecast horizon.
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Table 4: Sign predictability

Model h = 3 h = 6 h = 9 h = 12
Level

DIAR 0.516 0.519 0.516 0.509
K1 0.502 0.515 0.494 0.475
K2 0.519 0.540** 0.498 0.464
AR 0.457 0.480 0.425 0.412

Level (empirical)
DIAR 0.500 0.505 0.524 0.513
K1 0.514 0.552*** 0.533* 0.533*
K2 0.523 0.554*** 0.531* 0.521
AR 0.450 0.472 0.461 0.473

Slope
DIAR 0.512 0.499 0.527 0.507
K1 0.527 0.530* 0.524 0.523
K2 0.490 0.530* 0.514 0.497
AR 0.496 0.511 0.490 0.501

Slope (empirical)
DIAR 0.488 0.509 0.512 0.501
K1 0.529* 0.548** 0.533* 0.523
K2 0.502 0.550** 0.512 0.491
AR 0.512 0.526 0.510 0.503

Curvature
DIAR 0.488 0.480 0.480 0.454
K1 0.521 0.487 0.520 0.487
K2 0.488 0.491 0.518 0.467
AR 0.459 0.450 0.457 0.438

Curvature (empirical)
DIAR 0.481 0.480 0.480 0.456
K1 0.516 0.489 0.520 0.485
K2 0.483 0.487 0.506 0.462
AR 0.455 0.444 0.461 0.436

Notes: The out-of-sample forecasting period runs from 1972:M5 to 2015:M7. Each row reports
the fraction of observations for which the forecasting model augmented with the yield curve
element produces more accurate out-of-sample forecasts than the benchmark model. Asterisks
mark rejection of the Diebold and Mariano (1995) sign test at the 1%(***), 5%(**) and 10%(*)
significance levels, respectively.
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Table 5: Out-of-sample performance of estimated versus empirical
factors

Model h = 3 h = 6 h = 9 h = 12
Level

DIAR 0.958* 0.952 0.971** 0.967*
K1 1.019 1.022 1.013 1.029
K2 1.012 1.016 1.009 1.019
AR 0.993 1.012 0.997 1.014

Slope
DIAR 0.981 0.972* 0.961* 0.977*
K1 0.978** 0.965* 0.973 0.973
K2 0.985 0.970 0.978 0.981
AR 0.976* 0.967 0.986 0.964

Curvature
DIAR 1.005 1.001 1.008 1.011
K1 1.008 1.009 1.012 1.016
K2 1.007 1.007 1.010 1.014
AR 1.010 1.014 1.027 1.024

Level (sign)
DIAR 0.496 0.528 0.514 0.469
K1 0.500 0.489 0.478 0.473
K2 0.504 0.485 0.455 0.489
AR 0.548** 0.552*** 0.525 0.499

Slope (sign)
DIAR 0.508 0.561*** 0.553*** 0.544**
K1 0.519 0.497 0.478 0.458
K2 0.483 0.474 0.453 0.422
AR 0.492 0.485 0.447 0.471

Curvature (sign)
DIAR 0.506 0.468 0.465 0.503
K1 0.496 0.483 0.471 0.442
K2 0.488 0.499 0.484 0.485
AR 0.490 0.485 0.496 0.456

Notes: The out-of-sample forecasting period runs from 1972:M5 to 2015:M7. The upper
panel reports the MSFE of the model that includes the estimated factor relative to that of
the model that includes the corresponding empirical factor. Asterisks mark rejection of the
one-sided Giacomini and White (2006) test at the 1%(***), 5%(**) and 10%(*) significance
levels, respectively. The truncation lag for the Newey-West (1987) HAC estimator is h-1,
where h is the forecast horizon. The lower panel reports the fraction of observations for
which the forecasting model augmented with the estimated factor produces more accurate
out-of-sample forecasts than the model augmented with the empirical factor. Asterisks mark
rejection of the Diebold and Mariano (1995) sign test at the 1%(***), 5%(**) and 10%(*)
significance levels, respectively.
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Table 6: Test of conditional predictive ability

Intercept NBER MPR2 MPR3 Infl. pers. Infl. volatility Output pers. Output volatility p-value
h = 3
Level 6.384 11.351 3.344 6.338 53.857 -7.671* -55.234 -0.359 0.061

(27.416) (11.816) (7.956) (10.847) (38.706) (4.394) (40.538) (1.802)

Level (empirical) -1.711 12.805 7.170 10.179 49.944 -8.883* -43.511 -0.823 0.022
(28.737) (12.374) (9.633) (13.378) (41.867) (5.365) (39.419) (1.963)

Slope 12.365 16.599* -10.004** -9.086* 37.006** -6.653** -40.910 1.826 0.075
(21.233) (9.492) (4.438) (5.108) (17.923) (2.901) (32.371) (1.719)

Slope (empirical) 4.197 12.894 -2.709 -5.037 34.783** -5.370*** -39.559 2.343 0.056
(17.411) (8.020) (2.499) (3.590) (15.361) (1.947) (28.459) (1.441)

Curvature -3.809 0.248 -0.521 0.907 -11.438 1.145 17.617* -0.942* 0.417
(7.381) (3.322) (2.897) (2.229) (10.452) (1.611) (9.219) (0.508)

Curvature (empirical) -3.092 0.554 -1.631 0.667 -7.533 0.829 14.579 -1.025** 0.397
(7.144) (3.518) (2.951) (2.174) (10.609) (1.572) (9.502) (0.510)

h = 12
Level 67.422 17.405* 0.356 -13.509 28.102 -9.471* -103.695*** 3.140* 0.105

(41.814) (8.874) (9.714) (14.012) (45.272) (5.709) (33.099) (1.831)

Level (empirical) 70.320 15.184 -2.226 -19.114 46.388 -10.279* -124.208*** 3.771* 0.304
(56.336) (10.436) (10.271) (16.139) (54.589) (6.091) (45.621) (2.119)

Slope 0.920 7.764 -17.991*** -5.742 52.932*** -8.986*** -26.445 -0.123 0.166
(14.599) (7.217) (5.712) (5.133) (19.395) (3.471) (19.337) (1.510)

Slope (empirical) 1.254 5.015 -12.302** -3.919 43.569*** -8.084** -26.422* 0.574 0.230
(14.386) (5.593) (5.237) (4.349) (16.720) (3.138) (15.690) (1.330)

Curvature -16.680 -5.382 -1.538 -1.443 4.270 -0.236 17.372 -0.506 0.290
(12.046) (4.006) (3.487) (3.440) (13.820) (2.043) (11.658) (0.646)

Curvature (emprical) -18.014 -4.145 -2.424 -1.675 2.428 -0.547 21.990* -0.532 0.305
(12.640) (3.802) (3.452) (3.505) (13.898) (1.936) (12.411) (0.643)

Notes: The difference in the squared h-step-ahead forecast errors between the benchmark model and the yield curve model, denoted by δt+h, is regressed on the conditioning
variables xt. ‘MPR2’ and ‘MPR3’ denote the Great Moderation and the ZLB/unconventional monetary policy periods, respectively. Newey-West standard errors are reported in
parentheses. Asterisks denote statistical significance at the 1%(***), 5%(**) and 10%(*) levels, respectively. The p-value of the Giacomini and White (2006) test of conditional
predictive ability is reported in the last column. The forecasting model is DIAR. The sample period runs from 1972:M5 to 2015:M7.
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Table 7: Conditional predictive ability for the binary model

Intercept NBER MPR2 MPR3 Infl. pers. Infl. volatility Output pers. Output volatility
h = 3
Level 1.788*** -0.034 -0.114 -0.157 -1.151* -0.009 0.029 -0.031

(0.681) (0.098) (0.101) (0.108) (0.591) (0.060) (0.659) (0.028)

Level (empirical) 2.052*** 0.036 -0.001 -0.257** -1.314** -0.057 -0.306 0.016
(0.632) (0.098) (0.106) (0.109) (0.566) (0.061) (0.563) (0.029)

Slope -1.323* 0.042 -0.220*** -0.087 1.883*** -0.158*** 0.550 -0.012
(0.693) (0.090) (0.084) (0.101) (0.619) (0.045) (0.498) (0.029)

Slope (empirical) -1.625** 0.077 -0.113 -0.075 2.117*** -0.179*** 0.483 0.008
(0.665) (0.084) (0.080) (0.100) (0.573) (0.045) (0.545) (0.028)

Curvature 0.300 -0.006 -0.128 -0.013 -0.124 0.064 0.567 -0.059**
(0.837) (0.090) (0.093) (0.115) (0.682) (0.057) (0.484) (0.024)

Curvature (empirical) -0.315 0.021 -0.143 -0.007 0.701 0.045 0.395 -0.050**
(0.717) (0.096) (0.091) (0.103) (0.576) (0.057) (0.535) (0.025)

h = 12
Level 2.676*** 0.208* 0.108 -0.355** -1.084 -0.052 -1.432** 0.047

(0.761) (0.114) (0.171) (0.149) (0.794) (0.096) (0.405) (0.043)

Level (empirical) 2.331** 0.124 0.115 -0.196 -0.964 -0.067 -1.269** 0.071
(1.021) (0.152) (0.160) (0.186) (0.916) (0.094) (0.602) (0.043)

Slope -0.297 0.022 -0.190 0.153 2.359*** -0.150** -1.162* 0.001
(0.990) (0.089) (0.140) (0.143) (0.730) (0.064) (0.653) (0.043)

Slope (empirical) -0.501 0.099 -0.107 0.179 2.379*** -0.177*** -1.042 0.011
(1.033) (0.096) (0.135) (0.148) (0.772) (0.062) (0.739) (0.042)

Curvature -0.680 -0.065 -0.022 -0.106 1.191* 0.008 0.045 0.003
(0.676) (0.107) (0.144) (0.132) (0.617) (0.070) (0.591) (0.037)

Curvature (empirical) -0.311 -0.076 -0.070 -0.085 1.002 0.023 -0.099 -0.010
(0.682) (0.101) (0.135) (0.123) (0.646) (0.066) (0.575) (0.035)

Notes: The dependent variable is an indicator variable taking the value of one when the model augmented with a yield curve element produces more accurate
forecast than the benchmark model and zero otherwise. ‘MPR2’ and ‘MPR3’ denote the Great Moderation and the ZLB/unconventional monetary policy periods,
respectively. Newey-West standard errors are reported in parentheses. Asterisks denote statistical significance at the 1%(***), 5%(**) and 10%(*) levels, respectively.
The forecasting model is DIAR. The sample period runs from 1972:M5 to 2015:M7.
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Table 8: Test of conditional predictive ability (Quarterly variables)

Intercept NBER ActiveMP Infl. reg. Output reg. Infl. pers. Infl. volatility Output pers. Output volatility p-value
h = 1 quarter

Level -34.545 9.155 11.655 19.140 -5.897 26.866 -9.238 25.896 -4.315 0.571
(65.328) (13.989) (14.902) (12.093) (10.036) (46.859) (6.591) (71.458) (2.743)

Level (empirical) -12.011 6.556 17.039 18.276 -7.895 42.219 -10.507 -14.858 -4.241 0.625
(82.624) (18.135) (19.631) (16.172) (12.476) (61.492) (8.886) (92.726) (3.176)

Slope 0.701 19.810 -9.425 -9.228 13.399 61.945 -5.961 -65.265 3.632 0.203
(82.436) (18.353) (7.977) (15.572) (14.982) (48.345) (3.905) (132.639) (3.445)

Slope (empirical) 44.488 15.890 -5.430 -11.101 7.282 49.263 -4.884* -104.598 4.550* 0.351
(62.933) (15.974) (7.515) (12.302) (12.046) (39.884) (2.796) (101.243) (2.425)

Curvature -10.319 0.496 0.505 1.272 1.820 3.603 1.982 9.030 -1.480 0.628
(23.065) (6.422) (3.892) (5.427) (5.133) (15.418) (2.610) (21.243) (0.985)

Curvature (empirical) -22.992 1.771 -0.491 3.117 0.983 9.645 1.253 17.588 -1.496 0.636
(24.556) (7.512) (4.614) (5.486) (5.289) (17.051) (2.522) (22.590) (0.998)

h = 4 quarters

Level -91.777 17.201** -4.608 44.089*** -37.590*** -4.102 -17.567** 106.295 2.121 0.058
(74.663) (7.765) (8.215) (16.496) (13.701) (45.473) (6.845) (71.558) (3.095)

Level (empirical) -123.707 15.121 -8.965 45.129*** -38.910*** 10.878 -18.162** 126.776* 2.527 0.152
(80.839) (9.204) (9.277) (17.151) (14.383) (51.884) (7.432) (72.265) (3.413)

Slope -118.015* 9.108 -10.253* 27.625* -12.849 74.258** -18.146*** 63.411 2.307 0.266
(59.874) (10.387) (5.482) (14.060) (11.960) (37.093) (6.506) (68.987) (2.563)

Slope (empirical) -45.480 6.650 -7.302* 13.410 -7.775 67.090*** -15.134*** -14.326 3.727** 0.141
(44.797) (6.275) (4.052) (11.319) (9.016) (25.580) (5.486) (42.969) (1.871)

Curvature -18.157 -3.303 -6.069** 2.616 -4.233 20.157 -1.315 0.375 0.549 0.115
(29.601) (4.648) (2.867) (7.583) (5.163) (12.237) (3.419) (27.304) (1.207)

Curvature (emprical) -27.799 -1.753 -7.215*** 5.527 -5.392 26.982** -2.779 4.530 0.798 0.113
(27.283) (4.695) (2.685) (6.588) (4.341) (11.533) (2.836) (28.382) (1.161)

Notes: The difference in the squared h-step-ahead forecast errors between the benchmark model and the yield curve model, denoted by δt+h, is regressed on the conditioning
variables xt. ‘ActiveMP’, ‘Infl. reg.’, ‘Output reg.’ denote the active monetary policy, high inflation shock volatility, and high output shock volatility regimes, respectively.
Newey-West standard errors are reported in parentheses. Asterisks denote statistical significance at the 1%(***), 5%(**) and 10%(*) levels, respectively. The p-value of the
Giacomini and White (2006) test of conditional predictive ability is reported in the last column. The forecasting model is DIAR. The sample period runs from 1972:Q2 to
2008:Q2.
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Table 9: Conditional predictive ability for the binary model (Quarterly variables)

Intercept NBER ActiveMP Infl. reg. Output reg. Infl. pers. Infl. volatility Output pers. Output volatility
h = 1 quarter
Level -0.825 0.008 0.042 0.300 -0.122 -1.598 -0.014 3.359** -0.099**

(1.283) (0.128) (0.138) (0.203) (0.180) (0.983) (0.085) (1.574) (0.045)

Level (empirical) 1.354 0.134 0.183 0.163 -0.087 -1.174 -0.123 0.261 0.014
(1.242) (0.124) (0.131) (0.200) (0.190) (0.949) (0.085) (1.626) (0.047)

Slope -1.241 0.081 -0.114 0.104 -0.179 2.633*** -0.169** -0.634 0.041
(1.365) (0.136) (0.144) (0.198) (0.186) (1.005) (0.081) (1.609) (0.055)

Slope (empirical) 0.151 0.168 -0.148 0.018 -0.321* 2.899*** -0.223*** -2.538 0.103**
(1.366) (0.131) (0.132) (0.206) (0.163) (0.991) (0.082) (1.604) (0.045)

Curvature 1.041 -0.035 0.168 0.067 0.183 -0.482 0.145 -0.052 -0.102*
(1.309) (0.121) (0.144) (0.211) (0.192) (1.004) (0.089) (1.690) (0.054)

Curvature (empirical) -0.445 -0.153 0.181 0.143 0.343** 0.466 0.120 0.751 -0.150***
(1.077) (0.116) (0.134) (0.202) (0.158) (0.965) (0.080) (1.507) (0.045)

h = 4 quarters
Level 2.122 0.167 -0.055 0.222 -0.403 -1.025 -0.063 -0.766 0.047

(1.596) (0.148) (0.204) (0.294) (0.247) (1.095) (0.133) (2.025) (0.080)

Level (empirical) 1.877 0.124 -0.082 0.208 -0.405 -1.711* -0.059 0.186 0.051
(1.528) (0.159) (0.208) (0.293) (0.247) (0.963) (0.131) (1.856) (0.075)

Slope 1.034 0.071 -0.027 0.077 0.029 2.550** -0.196** -3.224* 0.070
(1.446) (0.120) (0.189) (0.217) (0.222) (1.086) (0.094) (1.869) (0.069)

Slope (empirical) 1.194 0.169 -0.041 -0.157 0.072 2.486** -0.147 -3.318 0.072
(1.642) (0.121) (0.202) (0.247) (0.227) (1.172) (0.106) (2.037) (0.072)

Curvature 0.458 -0.027 -0.176 -0.268 0.042 2.882*** -0.004 -2.930* 0.056
(1.476) (0.130) (0.140) (0.258) (0.208) (0.674) (0.111) (1.657) (0.063)

Curvature (empirical) 1.147 -0.066 -0.035 -0.242 0.188 2.747*** 0.054 -3.598** 0.024
(1.342) (0.128) (0.126) (0.233) (0.180) (0.707) (0.092) (1.600) (0.051)

Notes: The dependent variable is an indicator variable taking the value of one when the model augmented with a yield curve element produces more accurate forecast than the
benchmark model and zero otherwise. ‘ActiveMP’, ‘Infl. reg.’, ‘Output reg.’ denote the active monetary policy, high inflation shock volatility, and high output shock volatility regimes,
respectively. Newey-West standard errors are reported in parentheses. Asterisks denote statistical significance at the 1%(***), 5%(**) and 10%(*) levels, respectively. The forecasting
model is DIAR. The sample period runs from 1972:Q2 to 2008:Q2.
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Figure 1: Yield curve and industrial production growth

Notes: The figure displays the level, slope and curvature of the yield curve (black line, left
scale) and the subsequent 12-month-ahead industrial production growth (red line, right scale)
from 1961:M6 to 2014:M7. The latent factor extractions are based on full-sample parameter
estimates. Shaded areas indicate NBER recession dates.
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Figure 2: Rolling relative MSFE values

Notes: The figure plots relative MSFE values computed over a rolling window of 150 out-
of-sample observations. The shaded areas denote the midpoints of windows in which the
Giacomini and Rossi (2010) fluctuation test rejects the null of equal accuracy at the 10%
significance level. The forecasting period runs from 1972:M5 to 2015:M7. The forecasting
model is DIAR, and the forecast horizon is h = 3 months.
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Figure 3: Rolling sign predictability

Notes: The figure plots the fraction of observations for which the forecasting model aug-
mented with a yield curve element produces more accurate out-of-sample forecasts than the
benchmark model. The fraction is computed using a rolling window of 150 out-of-sample
observations. The forecasting period runs from 1972:M5 to 2015:M7. The forecasting model
is DIAR, and the forecast horizon is h = 3 months.
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Figure 4: Conditioning variables

Notes: The figure depicts the conditioning variables used in the Giacomini and White (2006)
test of equal conditional predictive ability. The sample period runs from 1972:M5 to 2015:M7.
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Figure 5: Quarterly conditioning variables

Notes: The figure depicts the conditioning variables used in the Giacomini and White (2006)
test of equal conditional predictive ability. The sample period runs from 1972:Q2 to 2008:Q2.
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