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Abstract 
 

In this paper we introduce a method for quantifying the benefits and costs of 
implementing a grid-connected onshore wind project that is owned and operated by an 
independent power producer (IPP). The proposed policy analysis tool is applied to the 
appraisal of a wind farm in Santiago Island, Cape Verde. The policy analysis is conducted 
from the perspectives of the electric utility, the country’s economy, the government and 
the private sector investor. The key question is whether the design of the power purchase 
agreement (PPA) will yield a high enough rate of return to the project to be bankable, while 
at the same time yielding a positive net financial and economic present value to the electric 
utility and the country respectively. The PPA results in a negative outcome for the 
economy of Cape Verde in almost all circumstances. In contrast the owners of the IPP are 
guaranteed a very substantial return for their modest investment under all circumstances.  
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 Financial, Economic and Stakeholder Appraisal of onshore grid-connected wind 
farm project 

 Located in Cape Verde with very high fuel prices for electricity generation 

 Power purchase agreement has fixed price path for wind electricity sales 

 Risk of future fuel prices borne by Cape Verde 

 All stakeholders expected to lose except for foreign IPP 
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1. Introduction 

 
The focus of this paper is the economics of onshore wind energy and the design of appropriate 

power purchase agreements (PPA) for such investments in isolated power systems. The role of 

the private sector in undertaking renewable energy projects has greatly increased over time 

(World Bank, 2013).1 With the increased integration of renewable energy sources using public–

private partnership (PPP), electricity sector regulators have had to devise new regulatory policies. 

It is common practice in developing countries for state-owned electric utilities to sign long-term 

PPAs with private electricity generators with the objective of making the projects bankable 

(Eberhard and Gratwick, 2013; Garcia and Meisen, 2008; Lesser and Su, 2008; Weisser, 2004)2.  

 

To assess the economic welfare impacts of a grid-connected wind farm project, one needs to 

learn from the appraisal how alternative designs of PPA and the overall PPA arrangements affect 

the allocation of benefits and costs for each of the stakeholders. In this paper, a clear distinction 

is drawn between the economic analysis and the financial analysis or, expressed differently, 

between the evaluation of public benefits and costs versus private benefits and costs3. The 

second aspect is to evaluate such an investment from the perspectives of the different market 

players. These include the public electric utility, the private investor, the economy and the 

government budget (Jenkins et al., 2011a).  

 

The results of such an integrated analysis provide the information needed to improve the design 

of such arrangements so that a sustainable outcome is realised. In this paper, the impacts of 

                                                           

1World Bank Database for Private Participation in Infrastructure Database, including investments in electricity 
sector. Up-to-date country data is available at: http://ppi.worldbank.org/resources/ppi_glossary.aspx 
2 While developing countries are experiencing transition in private sector opening of their electricity markets, it 
appears to be very problematical, however (e.g. Phadke, 2009; Karekezi and Kimani, 2002). 
3 Some studies evaluated the economic viability of wind farm projects assuming such investments are made by utility. 
Therefore, estimation of the social cost of wind investment is expressed as capital, operation and maintenance costs 
net of avoided fuel and environmental costs enabled by the facility (e.g. O’Malley, 2007; Kennedy, 2005).  
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adding grid-connected onshore wind power are investigated in the context of the installation 

made on the island of Santiago, Cape Verde. The wind farm has been built by a foreign-owned 

independent power producer (IPP) who signed a long-term PPA contract with the public utility. 

Although the proposed framework is applied to the situation in Cape Verde, the model can be 

used for any isolated power system that uses similar contractual arrangements to acquire such 

renewable investments. This power system is typical of island economies and the smaller 

countries of Africa, Asia and Latin America (Alves et al., 2000; Deichmann et al., 2011).  

2. Energy Power Profile of Santiago, Cape Verde  

 

Cape Verde is a lower-middle-income archipelago in the central Atlantic Ocean off the west coast 

of Africa, with a total population of 503,600 spread over ten islands (World Bank, 2015). 

Santiago is the largest, with about 60% of the total population of the country living there (AfDB, 

2014). As of 2014, the nominal GDP per capita in Cape Verde reached $3,715 (World Bank, 

2015). The electricity coverage is almost 100% in urban areas, and is 84% in rural areas, where 

35% of the total population lives (IEA, Africa Energy Outlook, 2014). The Cape Verde electricity 

network is composed of isolated electricity grids on each island without any interconnection 

between them. The public electric utility company, ELECTRA, is responsible for generation, 

transmission and distribution of electricity.4 

 

The high cost of electricity generation, frequent black-outs and high energy losses have created a 

barrier to sustaining higher economic growth in Cape Verde (AfDB, 2014; Briceño-Garmendia 

and Benitez, 2011; Eberhard et al., 2008; Foster and Steinbuks, 2009; Oseni and Pollitt, 2013; 

                                                           

4 ELECTRA is also responsible for the water supply on some islands of Cape Verde, including Santiago.  
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World Bank, 2011).5 In response to both the deterioration of ELECTRA’s capital assets and the 

need to meet the ensuing increased demand for power, the government of Cape Verde has 

initiated a long-term investment plan for the generation, transmission and distribution of 

electricity. As a first step, the national government implemented a series of rehabilitation projects 

with financial support from international organizations (World Bank) and regional banks (African 

Development Bank and the European Investment Bank). Investments were undertaken to 

increase the reliability of the power supply through reductions in energy losses and the frequency 

of black-outs. These investments have included transmission/distribution lines, substations and 

network upgrades.6 Another purpose of extending the transmission lines to isolated loads is to 

increase the potential for fuel switching, as these isolated loads were being supplied by small, 

expensive and polluting diesel generators (World Bank, 2011). Alongside investments in 

renewables and grid infrastructure, ELECTRA also undertook to switch fuels from the more 

expensive heavy fuel oil (HFO) 180 to a less expensive HFO 380 (World Bank, 2011). These new 

and rehabilitation investments in generation, transmission and distribution will eventually allow 

ELECTRA to take advantage of economies of scale in generation by operating a small number of 

centralized power stations. 

 

The stated objective of the government is to supply about 50% of the total electricity supplied 

solely through private sector investments in renewable electricity generation plants by 2020 

(European Commission, February 2014). Investments in grid-connected onshore wind farms 

have been perceived as way to reduce the costs of thermal generation and to insulate electricity 

tariffs from the variability of oil prices. Owing to the quality and strength of the wind speed 

                                                           

5 The 2011 estimates reveal that hidden costs included distributional losses, under-pricing and uncollected energy 
costs, and accounted for approximately 2% of the country’s GDP (Briceño-Garmendia and Benitez, 2010). 
Therefore, the electricity supply costs incurred by the utility cannot be covered from consumers’ bills paid to it.  
6 See African Development Fund Electricity Transmission and Distribution Network Development Project, available 
at http://www.afdb.org/fileadmin/uploads/afdb/Documents/Environmental-and-Social-
Assessments/Resume_PGES_CaboVerde_DevelopReseauTransportDistribution_ORQR_final-_EN.pdf 
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across the islands and the high delivered costs of petroleum products, Cape Verde is potentially a 

very favourable location for electricity generation investments powered by wind (Cabral et al., 

2009; InfraCO, n.d.; Lundsager and Hansen, 2002; Ranaboldo et al., 2014). To illustrate this, the 

average annual wind speed at a height of 70 m is 9 m/s and is very stable during most of the year 

(Cabral et al., 2009). In addition, the average daily solar irradiation level in Cape Verde is about 

6 kWh/m2 (Ranaboldo et al., 2014). The high solar irradiance level on the islands allows 

residential, hotel and industrial users to utilize it for water heating. Such solar applications 

contribute to the reduction of fuel use for electricity generation and potentially reduce the overall 

peak demand on the grid.  

 

Previous studies have argued that the integration of a major wind farm into the power supply on 

Santiago would be economically viable. For example, based on their estimates of the capital costs, 

Cabral et al. (2009) concluded that a 5.1 MW grid-connected utility scale constituted a good 

investment for Cape Verde. Norgard and Fonseca (2009) studied the technical utilization of grid-

connected utility-scale wind integration into the energy systems of Cape Verde’s islands as a 

function of the wind capacity. Based on their technical study and the characteristics of the energy 

system on Santiago, they argued that a share of wind of up to 21% of the total generation can be 

produced and transmitted to the national grid without any losses. They further concluded that the 

avoided fuel savings from diesel plants alone justify the installation of wind farms in Cape Verde, 

including on Santiago. A World Bank study for Cape Verde suggested that wind-based sources of 

electricity generation will not provide firm generation capacity on Santiago, so that the integration 

of wind will not enable any reduction in thermal capital expenditures in Cape Verde (World 

Bank, 2011, p. 9). As a consequence, wind sources of electricity generation are limited in their 

substitutability for conventional thermal generators and cannot meet the entire demand for 

energy due to their uncontrollable variability.  
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A major problem with the Cabral et al. (2009) study is that the wind investment capital costs are 

assumed to be only $1.1 million per MW of wind capacity, which is much lower than the actual 

capital costs associated with such onshore wind investments. Furthermore, the studies by Cabral 

et al. (2009), Norgard and Fonseca (2009) and the World Bank (2011) do not take into account 

the actual electricity system supply and demand conditions of Cape Verde when evaluating the 

economic feasibility of wind farm investments. Finally, they do not carry out their financial and 

economic appraisal of the feasibility of electricity generation using a wind farm that is built and 

operated through an IPP. 

 

An additional factor in the investment planning of the electricity sector of Cape Verde is that the 

volume of energy losses owing to low infrastructure quality is a major concern, particularly in 

Santiago. As of 2009, energy losses from electricity generation were 26.1% in ELECTRA’s power 

operations in Cape Verde (Briceño-Garmendia and Benitez, 2011). This means that only 73.9% 

of generated electricity is actually distributed to existing customers – that is equivalent to 

137 GWh out of 185 GWh total electricity generation in 2009. Economic costs of energy losses 

are enormous in Cape Verde such that losses in firms’ annual sales revenue from power outages 

account for 8% of total potential revenue, as compared to 0.8% in middle-income countries 

(Briceño-Garmendia and Benitez, 2011). This means that considerable cost savings are possible 

from improving the performance of the existing transmission and distribution systems. 

3. Methods 

 

3.1 Screening Curve Analysis “with” and “without” Wind Integration  

 

The economic value of a renewable energy source depends heavily on the time when it is 

produced, the wind intensity, its degree of penetration in the system (Holttinen et al., 2011; 
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Touhy et al., 2009), and the characteristics of the supply mix, such as fuel mix and system 

flexibility, correlation between renewable energy source and system load, and forecast error in 

wind (Bode, 2006; Denholm and Han, 2011; Hirst and Hild, 2004; Lew et al., 2011; Lund, 2005; 

Lund and Munster, 2003). This is why, in the load duration curve analysis, the wind power supply 

is best treated as a negative demand, since its output is intermittent and not dispatchable. To do 

this, one simply subtracts the electricity produced by the wind generators from the total system 

demand in each hour to give net demands that form a new annual load curve7. Over the year, the 

amount of electricity generated is given by the period-by-period wind capacity factor multiplied 

by the total installed nominal wind capacity, as expressed in equation (1).  

 

 
w wtwhtwht KCFq      ht      (1) 

 
 

where h refers to the time demand blocks of the year (off-peak, mid-merit, peak), t is planning 

years (t,…,T), w  is wind turbine, whtq  is total MW wind power generated from each wind 

turbine  w  at hours h of time t , whtCF  is the capacity factor the of wind turbine at hours h of 

time t (%) and wtK is wind turbine capacity MW at time t .  

 
The net of wind generation load duration curve depends on the wind capacity installed, the 

technical availability factor of the wind farm, and the quality and intensity of the wind at any 

moment. These factors, in turn, determine the capacity factor of the wind farm within the project 

site (i.e. wind farm site).8 Demand and supply have to balance every second, so the remaining 

                                                           
7
 Screening curve analysis approach simplifies the analysis of the intermittency of electric power from renewables. 

See, for example, Kennedy (2005), Lamont (2006) and George and Banerjee ( 2011) for a similar approach. 
8
 The availability factor directly relates to the technical point of view and describes the ability to operate the wind 

farm safely. The capacity factor of wind turbines is a function of the wind speed in the area of construction of the 
farm and the power curve of the particular wind turbines constructed. Therefore, the capacity factor is the key 
parameter that actually dictates the amount of electricity that can be produced by the wind turbine. 
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demand for electricity (residual load) has to be supplied by the thermal generators. Wind power is 

therefore an exogenous variable in our analysis. This can be expressed as follows: 

 

wht

g

ht

n

ht qDD        ht     (2) 

 

where n

htD  is demand net of wind capacity (equivalent of  total supply of  electricity from thermal 

generators) and g

htD  is demand gross of  wind capacity at block h in MW. From equation (2), the 

demand for electricity that the conventional system must meet ( n

htD ) is the total demand less the 

quantities supplied by wind generation.is the net of wind quantities such that: 

 

 
z

n

htzht
Dq       ht                  (3) 

 

where 
zht

q  is MW conventional electricity supplied by plant z  “with” wind integration at hours 

h of time t  and n

htD
 
is total MW residual demand for electricity at hours h  of time t . 

 
From equations (1) to (3), the wind power output can be expressed by the following equation: 
 
 

  
z htzhtzhtwht lqqq̂      ht     (4) 

 
      

where whtq̂
 
is wind electricity supplied at hours h of time t , zhtq  is conventional electricity 

supplied by plant z  “without” wind at hours h of time t , zhtq  is conventional electricity supplied 

by plant z  “with” wind at hours h of time t , l  is load (e.g. peak demand, off-peak demand load) 

and htl  is the number of hours (duration) in each demand load l at time t . 

 

In Panel B of Figure 1, the area ABC represents the sum of the reduced electricity generation in 

MWh from each type of thermal power generation that is brought about by the introduction of 
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the wind facility into the system. Santiago’s power system is small enough to allow one simply to 

rank the generators from the lowest to highest marginal running cost. If the installed amount of 

wind power penetrates the system, an analysis of the optimal power mix “with” wind must be 

carried out in order to derive the costs and benefits of wind power. Comparing Panel B with 

Panel A in Figure 1, the optimal power mix “with” the wind generation will necessitate a larger 

proportion of peaking capacity  PP KK   than would be the case without the wind farm.  

 

Figure 1. Long-Run Impacts of Wind Capacity Integration on System Scheduling and Planning  

 

                (A) without wind integration              (B) with wind integration 

 

 

In deciding the capacity and the year of investment, both the growth in the demand for electricity 

and system reliability are considered. The peak demand for electricity generation capacity is 

expected to grow as fast as the overall growth in energy demand in Cape Verde. In order to 

minimize the total generation costs a simulation program was used that reflected the fixed and 
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variable costs of electric utility9. These are the sum of the discounted fixed and variable fuel costs 

subject to the set of constraints, including deterministic demand balance net of deterministic 

wind quantities and the output constraints of each plant. Wind power is examined in terms of the 

way it is used as supplementary or substitute for generation from conventional thermal power 

plants. The wind turbines are introduced into a conventional power grid with multiple sources of 

diesel generation capacity running with fuel oil and diesel oil. Thus, the annual MWh of energy 

displaced by the wind turbines is estimated based on simulation results. These values from 

simulations are used to evaluate the feasibility of the wind farm investments. 

 

3.2 An Integrated Investment Appraisal Framework 

 

An integrated investment appraisal framework incorporates financial, economic and stakeholder 

impacts of the investment project with a single cash/resource flow model of the investment10. 

This framework includes both an economic impact analysis and a distributional assessment for 

each of the impacted groups, namely the IPP, the electric utility, the country’s economy and the 

national government budget. Hence, the integrated appraisal framework allows us to determine 

who picks up the benefits and costs of this private IPP wind electricity investment. This, in turn, 

allows us to re-allocate (re-distribute) the benefits and costs according to the provisions of the 

PPA.  

 

The financial analysis component of the integrated investment appraisal framework gives the 

results for both the private wind power supplier and the public utility. The economic analysis 

yields the results for the country’s economy, an externality analysis for the government of Cape 

Verde and for the global economy. The riskiness of all project variables that may potentially 

                                                           

9 The simulations are carried out using General Algebraic Modeling System (GAMS) programming software. 
10 For details, see Jenkins et al. (2011a, 2011b). 
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affect the viability of the project can be tested and their impacts on each stakeholder evaluated in 

a consistent fashion to allow better management/distribution of the risks associated with the 

project. In this way, regulators can link renewable energy investments and relevant energy policies 

in such a way as to benefit both the economy and utilities while allowing private investors to earn 

a fair return on their investment. 

The IPP’s Point of View 

 
Unlike the situation for the thermal electricity generation operations, the private investors who 

own such wind farms incur low variable costs (mostly operating and maintenance costs, O&M) 

to generate electricity, but face very substantial capital costs (Krohn et al., 2009). Since the capital 

costs are known, the objective of a long-term PPA is to reduce the risks of the operation and to 

provide a stable stream of revenue to the IPPs to cover their operating and maintenance (O&M) 

and financing costs (Burer and Wustenhagen, 2009; Weiss and Sarro, 2013; Wiser and Pickle, 

1998).  

 

Both the MWh of the electricity supplied from wind turbines and selling price per MWh of 

power are pre-determined with PPAs. The price of energy per MWh may also be adjusted for 

inflation or an agreed fixed rate of price escalation to account for movements in the price level 

over time. Thus, the revenues of the IPP are secured and the market risks for the private 

investors are removed, with the exception of the risk associated with their O&M costs (Baylis 

and Hall, 2000; Jensen and Stonecash, 2005; Lock, 1995). The financial viability of the wind 

power project for the IPP is estimated by deducting the costs of capital, O&M costs and taxes 

from the revenues from wind power sold out to the public utility. An additional source of 

revenue to the IPP is from the sale of the carbon credits that it receives for implementing this 

wind power project. The financial cash inflows, outflows and net present value (NPV) from the 

perspective of the IPP can be expressed as in equations (1), (2) and (3) in the Appendix. 
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The State-Owned Electric Utility Company’s Point of View  
 
From the public utility’s perspective, the actual incremental benefits of having an IPP investing in 

wind turbines is the lower fuel consumption that results from the sum of the reduced power 

generation from the conventional thermal generation plants. These thermal generators are 

heterogeneous in terms of their characteristics, such as age, type and amount of fuel used and the 

load factor. Fuel savings from individual thermal plants are therefore directly dependent on the 

MWh amount of electric power actually displaced from each conventional thermal generator by 

the power supplied by the wind energy. The payment amounts to the IPP are made on the basis 

of the MWh of power supplied by the wind farm in a given year. They are calculated without 

considering the type and time of displacement of power from conventional generators. In short, 

the net annual savings of the electric utility are estimated by the financial value of fuel and fixed 

cost savings minus the financial payments made to the wind power generation. 

 

In PPP-type renewable investments, all investment costs associated with the wind farm will be 

paid for by the foreign IPP, but the public utility pays for the additional investments needed in 

new transmission lines to connect the wind farm to the national grid and maintain reliability with 

wind integration (Karki and Billinton, 2004; MacCormack et al., 2010). The financial cash flow 

and the NPV from the perspective of the state-owned utility company can be expressed as in 

equations (4), (5) and (6) in the Appendix. 

 

The Country’s Economy’s Point of View  
 

The economic costs and benefits resulting from wind turbine investments are different from the 

financial benefits and costs due to tax distortions in the markets. The financial benefits and costs 

of the project to the Cape Verdean economy are adjusted for taxes and distortions to arrive at 

their economic values to the country, as we carry out quantitative economic analysis from 
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economic prices, not market prices. The economic benefits of the wind project that accrue to the 

country are basically fuel savings and the taxes levied on the revenues that the IPP receives from 

the carbon credits. When moving from the financial analysis of fuel savings to the economic 

analysis of fuel savings, a fuel oil specific conversion factor is used to estimate the savings in fuel 

from a country’s economy point of view11. In addition, any excise taxes levied on the value of the 

carbon credits are added to the economic benefits generated from the wind project on Santiago, 

as they are a net inflow of resources to the country.  

 

The social cost of carbon saved through electricity generation by wind does not enter into 

economic analysis because the carbon credits earned by the project allow external generation 

elsewhere to produce more 
2

CO  emissions. Hence, the economic benefit from 
2

CO  emission 

reduction is the marginal resource costs saved by the entity abroad that is willing to buy the 

carbon credits. Therefore, the global economic value of 
2

CO  reduction by Cape Verde is fully 

captured by the price of the carbon credits. These do not accrue to Cape Verde because they are 

paid to the foreign IPP. On the economic costs side, the financial payments as stipulated by the 

PPA for each of the MWh of electricity supplied by the foreign IPP are made in foreign 

currencies. Hence, these payments must be increased by the foreign exchange premium (FEP) to 

estimate the economic costs paid to the host country12. The economic resource inflows, outflows 

and NPV can be expressed as in equations (7), (8) and (9) in the Appendix.  

 

 

                                                           

11 The import duties and VAT on fuel oil will cause the financial price to be greater than its economic cost, while the 
existence of a foreign exchange premium will increase its economic cost. The net effect in this particular case is to 
cause the economic cost to be less than the financial price of fuel oil.  
12 FEP captures all domestic and international taxes and distortions associated with tradable items, so it captures the 
changes in welfare in a country from foreign exchange payments that are paid to the foreign private investor (Kuo et 
al., 2015).  
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Externality Analysis13  

 
A stakeholder impact analysis is also carried out. There are some externalities associated with the 

economic activity (project) that cause the economic benefits and costs to be different from the 

financial benefits and costs. The difference between the economic resource flow and financial 

cash flow represents the tax and other externalities associated with the wind project in question. 

The tax externalities created by the wind farm project are identified and quantified. The 

stakeholder analysis of a typical renewable project is conducted to identify which particular 

segments of society reap the project benefits and which ones, if any, lose from the 

implementation of that particular renewable project. The stakeholder analysis of any project 

builds on the relationship described in equation (5).14 

 

 kExtFVEV           (5) 

 

where EV is the economic value of an input or output in monetary terms, FV  is the financial 

value of the same variable and  kExt  is sum of all the externalities that make the economic 

value different from the financial value of the item.  

 

It should be noted that this statement is true only if the economic opportunity cost of capital 

(EOCK) is used to the count net cash flow for financial and economic analysis. The economic 

NPV and financial NPV will also differ due to the application of economic conversion factors 

and the FEP and NTP adjustments made on the financial benefits and costs. These account for 

the government fiscal impacts as part of the externalities. In other words, the economic value of 

an item can be expressed as the sum of its financial value plus the value of externalities (i.e. taxes, 

                                                           

13 See notation described in Appendix.  
14 See Jenkins (1999).  
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tariffs, consumer/producer surplus). On the basis of equation (5) above, the following 

accounting relationship also holds, if a common economic discount rate is applied to all financial 

and resource flows: 

 

 GFI

EOCK

EU

EOCK

CV

EOCK PVNPVNPV         (6) 

 

where CV

EOCKNPV  is the PV of the net economic benefits (country, CV) discounted by the EOCK, 

EU

EOCKNPV  is the PV of the net financial cash flow (electric utility) discounted by the EOCK and 

 GFI

EOCKPV  is the sum of the PV of all the tax externalities (GFIs, government fiscal impacts) 

generated by the wind project. 

 

In this case, GFIs arise in a number of ways. First, there is a reduction of tax revenues owing to 

the decline in petroleum imports. Second, the government collects taxes on the project’s earnings 

from the sale of carbon credits. Third, because both the fuel saving and the PPA payments to the 

IPP involve foreign exchange, an FEP is applied to these offsetting resource flows. In this case, 

the FEP is simply the extra tax revenues that can be generated from the purchase of tradable 

goods and services when additional foreign exchange is acquired by Cape Verde. When foreign 

exchange is used by the project to make payments abroad, the premium reflects the indirect taxes 

given up by the country. There will be a loss in indirect tax revenue as fewer tradable goods and 

services can be now purchased by others. Rearranging equations (5) and (6) will yield the 

following relationship: 

 

EU

EOCK

CV

EOCK

GFI

EOCK NPVNPVPV          (7) 
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where  GFI

EOCKPV  is sum of the PV of all the tax externalities (GFIs) generated by the wind 

project, CV

EOCKNPV  is the PV of the net economic benefits (country, CV) by the EOCK and 

EU

EOCKNPV  is the PV of the net financial cash flow (electric utility) discounted by the EOCK.  

 

In summary, the GFIs are equal to the sum of the loss in tax revenues from reduced oil imports 

(−), the gain in the value of the FEP on fuel savings (+) and the loss in FEP due to the payments 

now made to the IPP (−), and the gain in excise taxes levied on the carbon credits received by the 

private operators of the project (+). 

4. Data for Santiago Island of Cape Verde 

 
The demand for electric generation in 2010 is presented in Figure 2. The amount of electricity 

that falls into the extreme peak load time is about 40 MW, which must be supplied over only 261 

hours a year. It is expected that increasing population growth, the expansion of the service 

sectors, including real estate, tourism development and increased production of desalinated water 

will create strong growth in the demand for electricity.  

 

Using Santiago’s historical annual demand for electric energy in 2006 and a subsequent demand 

study for the island prepared for ELECTRA by Simonsen Associados (February 2008), the 

annual projected load duration curves from 2010 to 2031 are produced for the island. The 

demand for electricity is projected such that there is a 15.5% annual increase from 2007–2012, a 

6.25% annual increase from 2013–2017, a 5% annual increase from 2018–2022, a 4.75% annual 

increase from 2023–2027, and a 4.5% annual increase from 2028–2031. Therefore, the focus of 

this research is entirely on the supply side of the power system. The demand side is simply 

assumed to follow this set of projected growth rates.  
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Figure 2. Annual Load Duration Curve of Santiago Island of Cape-Verde in 2010 
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 Source: Reproduced from data supplied by Simonsen Associados (February 2008) 
 

The existing power supply mix of the island in 2012 includes diesel generators running with fuel 

oil and diesel oil. Cape Verde has some of the highest transportation costs for fuels of any 

jurisdiction in the world. For instance, the domestic fuel oil costs for electricity generation are 

about 50% more than the world price as a result of transportation costs and taxes and other 

charges. The power supply and fuel characteristics of the existing system are provided in Table 1 

with each power plant’s year of establishment (t), MW available capacity, type of fuel and amount 

of fuel oil requirements to generate each kWh of electric output. As expected, the generation 

plants are heterogeneous. Thus, the operating costs and emissions from individual power plants 

for each MWh of electricity are not the same because of differences in their type and amount of 

fuel consumption. 

 

A 1% annual increase in fuel requirements for electricity generation by any existing or new power 

plants added to the system is assumed, owing to the degradation of the plant, which starts after 

the first year of operation. Similarly, there will be a 1% annual decrease in fuel requirement for 
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new power plants until the time of operation as a result of technological advancement. Both 

parameters are assumed to be only a function of time. Furthermore, it is assumed that all 

candidate power plants are running with heavy fuel oil and also that tax and other charges paid 

on fuel and fuel transportation will not change throughout the project’s life.  

 

Table 1. Diesel Generator Capacity and Fuel Characteristics of Santiago Island Grid in 2012 

Generator 
Year 

Commissioned 
Capacity 

(MW) 
Type of Fuel 

Used 

Fuel 
Consumption 
(litre/kWh) 

Palmarejo III 2011/2012 22 HFO 0.206 

Palmarejo II 2008 14.9 HFO 0.213 

Palmarejo I 2002 11.2 HFO 0.220 

Prai II 1992 5.1 Gasoil 0.207 

Prai I 1987 2.4 Gasoil 0.206 

Assomada 2006 3.9 Gasoil 0.230 

Tarrafal 1995-200 1.4 Gasoil 0.244 

S. Cruz n.d. 2.2 Gasoil 0.236 

Total 
 

62.9 
   Source: Annual Report, 2012, Energy Regulatory Agency of Cape Verde (www.are.cv) 

 

The Cabeólica onshore wind farm project15 is a PPP between the government of Cape Verde, the 

electric utility (ELECTRA) and a foreign private sector investor (InfraCO). The wind power 

project is owned by the foreign-owned IPP, which is responsible for installation, operation and 

maintenance of the wind farm. The electric utility is the off-taker of the generated wind 

electricity. The wind farm is located in the southern part of Santiago, near the city of Praia, and 

occupies 30 hectares of land that is rented at a fixed rate per year by the project from the local 

municipality. The wind farm started its operations at the beginning of 2011 and is expected to 

continue until the end of 2030. It was implemented on the basis of a 20-year PPA. With the 

                                                           

15 For more information about Cabeólica onshore wind farm project, see UN, Clean Development Mechanism (2012) 
and InfraCO (n.d).  

http://www.are.cv/
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completion of the wind project, the private IPP installed 11 onshore wind turbines, each with a 

generation capacity of 0.85 MW, yielding 9.35 MW of installed wind capacity into the existing 

system in Santiago. This total installed wind capacity is expected to generate, in the early years, 

25% of the island’s energy needs (InfraCO, n.d.). The wind farm is connected to the island’s 

power grid by transmission lines, which need to be installed. The public utility is responsible for 

the transmission as well as the distribution of power to the existing users on the island.  

 

The technical availability factor of the wind turbines is assumed for the purpose of this analysis to 

be 100%, with an average annual load (capacity) factor of 40% for the wind farm at all times and 

for all demand blocks. For the sake of simplicity and owing to wind speed data constraints, the 

availability factor and capacity factor of the wind turbines are assumed to be the same throughout 

the life of the project and represented by PPA volumes. The penalty or compensation payments 

may also occur during the project operation time. The penalty payment is made by the private 

sector if it cannot supply the power, and the compensation payment is made by the public utility 

when the private IPP supplies more wind power than is stated in the contract. In our analysis, the 

power from wind is assumed to be supplied successfully such that the system is flexible enough 

to cope with wind power variability. Therefore, we assume that the IPP will continuously supply 

electric power without any technical problems. The revenues from wind power generation are 

subject to the pricing scheme of the PPA. 

 

Revenues of the foreign IPP are based here on an assumed PPA tariff that is agreed upon 

between the private supplier and public utility before the implementation of the project. Based on 

the PPA, the wind project is contracted for 20 years and the wind energy tariff has two 

components: a fixed portion and annual escalation factor. Based on PPA, the utility will pay a 

fixed tariff at 120 €/MWh for energy. This rate is subject to a fixed escalation factor of 3.5% per 
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year for the duration of the contract (UN, Clean Development Mechanism, 2012). Because the 

private sector will generate a green source of electricity, it will also earn carbon credits from the 

Clean Development Mechanism (CDM). The base for calculating the €/MWh carbon credits is 

the quantity of CO2 expressed, since electricity production is calculated in MWh. The conversion 

factor for carbon    is given by 0.9049 tCO2/MWh and the carbon price/tonne is assumed to 

be the rates offered by the CDM (2006, p. 27), which are 15 €/tonne until 2013 and 10 €/tonne 

after 2013. We assume these carbon payments will be paid throughout the project lifetime. The annual 

earnings of the IPP from carbon credits are subject to a 7.5% excise tax collected by the 

government of Cape Verde. 

 

Table 2. Capital and O& M Costs of Installed Wind Capacity in Santiago Island, 201016 
 

Investment Costs (€ millions) 
Equipment, procurement and construction (EPC) 15.2 
Contingency 1.1 
Land 0.35 
Development 1.00 
Total capital costs 17.3 
Fixed operating expense*  
O& M - % of wind farm investment 1 
Total Investment Costs (million €/MW) 2.3  

Source: United Nations, UNFCCC, CDM, July 2006, p.14. (*) Lundsager and Hansen (2002). 
 

The capital costs of the project are assumed to be disbursed in two periods: 50% at the end of 

2010 and the remaining payments at the end of 2011. The capital and O&M expenses of the wind 

project are presented in Table 2. In our empirical estimates, we assume that non-fuel operating 

costs for the rest of the electric utility do not increase when the wind farm is integrated into the 

system, but in reality they will increase (Lamont, 2006). Furthermore, we assume that there are no 

negative externalities associated with wind power itself. 

                                                           

16 For analysis, we converted all USD ($) monetary variables into Euro (€). The exchange rate between $/€ is 1.28 in 
2010. Real exchange rate appreciation/depreciation factor is assumed to be 0% throughout the project. 
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While evaluating the feasibility of the wind farm project, a single real rate of discount (net of 

inflation) of 10% is used for the cost of capital to both the IPP and the country throughout the 

project life. For economic analysis, the FEP for Cape Verde is estimated as 10% (Kuo et al., 

2015) and the economic conversion factor for oil is calculated to be 0.99. Incorporating the 

demand for and supply of electricity and wind parameters (both financial and economic), NPVs 

are estimated to show the beneficiaries and losers from the wind power project. We also test the 

impacts of the key variables, including price of wind energy, fuel price and expected capacity 

factor for the wind generation that would make electricity generation by wind turbines financially 

and economically feasible. The empirical results for Santiago illustrate how a set of estimates of 

the costs and benefits can be distributed between the public utility, the IPP, the economy and the 

local government.  

 

In our analysis, we estimate the revenues from gas emission reductions for the private sector 

participants and tax gains from emissions reductions for the economy of Cape Verde and the 

local government. The private sector will potentially earn more if it is able to sell carbon credits at 

a higher price, but global emissions from electricity generation will not be reduced. 

4. Results and Discussion 

 
Using the integrated framework, equations (1 to 9), in Appendix A.2, the net impacts of the 

Cabeólica wind farm project on the Santiago island grid are quantified and distributed to find the 

viability of the project from each point of view. These results are presented in Table 3, 4 and 5. 

As a first step, the actual PPA price at 120 €/MWh is used to evaluate the feasibility of the wind 

farm project for each stakeholder.17 Based on this PPA price, we find (Table 3, row 5) that the 

                                                           

17 The pricing of renewable power is subject to financing parameters and sensitive to financing arrangements of IPP 
investments, market and non-market (e.g. political risks), involved in its investments and strongly affects the 
distribution of project benefits and costs. See also similar cost-based approach for tariff setting in renewable projects 
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NPV accruing to the foreign IPP is €14.8 million. This is a substantial return to the owners of the 

project given that the total investment cost of the project is just €17.3 million. The net loss to the 

electric utility is €2.3 million; the net loss to government tax revenues is €3.2 million, while the 

net loss to the entire economy of Cape Verde is €5.5 million. As reported in Table 3, row 1, the 

actual PPA price of wind energy is twice the break-even of PPA price of 60 €/MWh that would 

leave the foreign IPP with a zero NPV or 10 percent real rate of return. 

 

Table 3. Impacts of PPA wind energy tariff (NPV values in million €)*  

 Perspective /  
PPA tariff  (€/MWh) 

Foreign  
IPP 

Electric  
Utility 

Government 
Budget 

Cape Verde 
Economy 

       1. 2. 3. 4. 5. 

1. 60 0.00 13.356 −2.376 10.980 

2. 80 4.539 8.550 −2.626 5.924 

3. 100 9.858 2.919 −2.919 0.00 

4. 110 12.615 0.00 −3.071 −3.071 

5. 120 14.764 −2.276 −3.189 −5.465 

Source: Authors’ own calculations.  
(*) NPVs are evaluated at 10% real discount rate, heavy fuel oil price at $60/barrel and wind capacity 
factor at 40%. In each case, the 3.5% annual escalation is used as specified in the PPA for Cape Verde.  
 

The break-even PPA prices that make the country and the utility indifferent between generation 

from the wind farm or by its generation plants would be approximately 100 €/MWh and 

110 €/MWh, respectively, Table 3, rows 3 and 4. These prices are well above the 60 €/MWh 

which makes the NPV of the IPP equal to zero. If the PPA price of wind-generated electricity 

were lowered to 80 €/MWh, all stakeholders would be better off with the implementation of the 

project, except for the national government (Table 3, row 2). 

 

                                                                                                                                                                                     

in the USA, CREST Model, Renewable Energy Cost Modeling: A Toolkit for Establishing Cost-Based Incentives in the United 
States, National Renewable Energy Laboratory, US Department of Energy.  
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As stated previously, the government is planning a shift from HFO 180 to HFO 380 starting 

from 2015, because importing HFO 380 is cheaper for Cape Verde (World Bank, 2011). Benefits 

for the electric utility and the economy of the country from the implementation of the wind farm 

project come mainly from fuel cost savings, so heavy fuel oil prices for electricity generation are 

also a key parameter in the feasibility of wind farm projects. Therefore, we test for the impact of 

changes in the world price of HFO 380 on the public utility and the economy of Cape Verde.18  

 

In Table 4 column 2 we find that the net gains of the foreign IPP do not change with fuel price 

changes, as both quantities and prices are guaranteed before the implementation of wind 

investment. On the other hand, we see in columns 3, 4 and 5 that fuel price changes greatly affect 

the cash flow statement of public utility, the economy of Cape Verde and the national 

government. While it is often stated that such renewable electricity generation technologies 

reduce the risk to the country of changes in petroleum prices we see from the results that this is 

clearly not the case. The electric utility and economy of Cape Verde bear the risks of oil price 

fluctuations. The only difference is that with such a renewable generation investment it is the 

value of future benefits that are at risk instead of future generation costs.  

 

Based on the empirical results, we find in Table 4, row 1 that at a world fuel price of $60/barrel, 

the net loss to the electric utility is €2.3 million, the net loss to government tax revenues is €3.2 

million and the net loss to the economy of Cape Verde is €5.5 million. Because the wind farm is 

saving fuel, as the fuel price increases the net loss imposed by the wind farm on the electric utility 

and on the economy decreases. As fuel price risk is entirely borne by the economy and the utility, 

such wind investments can only be viable with an expectation of higher fuel prices. In this case, 

the break-even world price of heavy fuel oil that makes the utility and economy of Cape Verde 

                                                           

18 This is average world price from 2010 to 2015. The delivered price of heavy fuel oil for electricity generation in 
Santiago is approximately 50 percent higher than the world price of $120/ barrel.  
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indifferent between generation from the wind farm or by thermal generation would be 

approximately $70/barrel for the utility and $80/barrel for the economy. These prices are above 

current heavy fuel oil prices19’20.  

 

Table 4. Impacts of World Price of HFO (NPV values in millions €) 

 Perspective /  
Fuel Price ($/barrel) * 

Foreign  
IPP 

Electric  
Utility 

Government 
Budget 

Cape Verde 
Economy 

      1. 2. 3. 4. 5. 

1. 60 (95) 14.764 −2.276 −3.189 −5.465 

2. 68 (100) 14.764 0.00 −3.324 −3.324 

3. 70 (105) 14.764 610 −3.360 −2.750 

4. 80 (120) 14.764 3.533 −3.533 0.00 

5. 90 (135) 14.764 6.382 −3.701 2.681 

Source: Authors’ own calculations.  

(*) In column 1 the first price is the world price per barrel of HFO380 and the values in parenthesis are 

approximate prices for the fuel delivered to generation sites in Cape Verde. NPVs are evaluated using a 

10% discount rate, the PPA energy tariff is held at 120 €/MWh and wind capacity factor is assigned to be 

40%. 

 

With the stated wind investment costs, price of wind energy and fuel prices, there is a negative 

relationship between the wind capacity factor of the wind farm and the NPVs of the 

stakeholders, with the exception of the foreign IPP. These results are presented in Table 6. An 

increase in the wind capacity factor increases the amount of wind energy produced and sold, and, 

as a result, increases the revenue of the IPP. At a fuel price of $60/barrel, both the electric utility 

and the economy of Cape Verde will lose even more. At the low fuel prices, the additional fuel 

                                                           

19Although crude oil prices dropped sharply in mid-2014 down to below $50/barrel, recent crude oil forecasts 
released by the US Energy Information Administration (April 2015) and World Bank (April 2015) show that the US 
government expects the average annual oil prices will increase over time. For the complete EIA report, see 
http://www.eia.gov/forecasts/aeo/pdf/0383(2015).pdf and for the complete World Bank report, see 
http://www.worldbank.org/content/dam/Worldbank/GEP/GEPcommodities/GEP2015b_commodity_Apr2015.
pdf 
20 For real-time crude oil price data, see, for example, http://www.oil-price.net/. These are world prices, so exclude 
transportation and taxes paid by utilities. In our analysis, international and domestic transportation charges as well as 
taxes (both import tariff and excise tax) are added to the world prices of HFO in order to arrive at the financial cost 
of fuel for electricity generation in Cape Verde. 

http://www.eia.gov/forecasts/aeo/pdf/0383(2015).pdf
http://www.worldbank.org/content/dam/Worldbank/GEP/GEPcommodities/GEP2015b_commodity_Apr2015.pdf
http://www.worldbank.org/content/dam/Worldbank/GEP/GEPcommodities/GEP2015b_commodity_Apr2015.pdf
http://www.oil-price.net/
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saving as a result of the higher capacity factor of the wind farm does not compensate for the 

additional MWh high energy payments paid to the foreign IPP. The tax losses of the government 

of Cape Verde also increase at the higher capacity factor, because the taxes paid by the IPP to the 

government are less than the taxes foregone from oil imports. Comparing Tables 5 and 6, we can 

clearly conclude that the wind farm project is feasible for the electric utility and the economy of 

Cape Verde only at high fuel prices. A higher wind capacity factor is good for the IPP but costly 

for Cape Verde’s economy and the public utility.  

 

Table 5. Impacts of Wind Capacity Factor (%) (NPV values presented in million €)*  

 Perspective / Wind 
Capacity Factor (%) 

Foreign  
IPP 

Electric 
Utility 

Government 
Budget  

Cape Verde 
Economy 

          1. 2. 3. 4. 5. 

1. 30 6.481 −1.707 −2.413 −4.120 

2. 35 10.622 −1.991 −2.801 −4.792 

3. 40 14.764 −2.276 −3.189 −5.465 

4. 45 18.906 −2.560 −3.577 −6.138 

5. 50 23.048 −2.845 −3.966 −6.810 

Source: Authors’ own calculations.  
(*) NPVs are evaluated at a 10% discount rate, a PPA Tariff of 120 €/MWh and a heavy fuel price of 

$60/barrel.  

 
Within the range of wind capacity factors considered in this analysis, the change in private sector 

earnings is very sensitive to the capacity factor as compared to the change in earnings by the 

utility and the economy of Cape Verde. The private supplier takes more risk when a lower 

capacity factor of the wind farm is realized, while the utility takes the risk of there being a lower 

heavy fuel oil price after the implementation of the wind farm project.  
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6. Conclusions and Policy Implications 

 
Using this integrated investment appraisal framework one can determine whether the wind 

project is bankable and will provide the necessary return for the foreign IPP. At the same time 

one can see the clear policy trade-offs that arise in design of such arrangements.  For the utility 

and the country, the net benefits of the project are directly tied to the future world prices of 

petroleum fuels, the capacity factor of the wind farm and the PPA price of wind energy paid to 

the private sector supplier. Policy initiatives to expand the use of grid-connected utility-scale wind 

farms in Cape Verde are promising only if heavy oil prices increase substantially. Even though 

the cost of HFO delivered to Santiago Island is 50 percent higher than most places in the world, 

this wind farm investment creates losses for the economy at a likely range of world prices of 

HFO. 

 

In the case of thermal electricity generation, fuel prices are likely to fluctuate over time. In some 

periods, fuel prices will rise, while at other times they will fall. Fuel price risk can go in either 

direction. For a generation by a wind farm, the utility and the country must settle on a PPA price 

of electricity beforehand that makes the project bankable. If the electricity price agreed to in the 

PPA allows the utility to purchase electricity at the same cost as it could supply electricity using 

its thermal plants, then if the petroleum prices fall the utility will be worse off. This arises because 

the PPA price is fixed and it must purchase all the electricity supplied the wind farm at that price. 

For the economy of Cape Verde, entering into this 20-year agreement with a wind farm is 

comparable to entering into a 20-year forward contract to purchase heavy fuel oil for thermal 

generation at a fixed real price of $80/barrel. The fact that no such long term forward contracts 

exist for any petroleum product is a testimony to the perceived riskiness of such contracts by the 

private sector.  
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While Cape Verde has reduced its risk exposure to fuel price increases above $80/barrel, it has 

done this by forfeiting all the expected benefits from petroleum prices falling below $80/barrel. 

If the real price of $80/barrel is above the supply price that in the foreseeable future brings 

increased supplies of oil on to the market, this is essentially a bet against the effectiveness of the 

forces of demand and supply to maintain petroleum prices below $80/barrel. The only 

participant in the deal who has had its risks mitigated is the private IPP. Even in the case of the 

IPP it faces the political risk of consumers demanding a renegotiation downward of the PPA 

price of electrical energy should the rest of the world be fortunate enough to enjoy lower 

petroleum prices.  In the case of Cape Verde with its higher petroleum costs for electricity 

generation, where a world price of petroleum of $80/barrel translates into a delivered price of 

$120/barrel, still this IPP investment in a wind farm is a highly risky and fundamentally 

unattractive investment from the perspective of the consumers of electricity in Cape Verde who 

will be expected to pay the bills. 

 

From the perspective of the government the wind electricity tariff should be a socially desirable 

tariff; that is to say, it must be at the lowest possible cost of supplying electricity. On the flip side, 

the price of wind energy must also yield a sufficiently high rate of return to the IPP so that these 

investments will still be attractive from the private owner’s point of view and bankable from the 

lender’s point of view. As of today, long-term contracts between the private sector investor and 

the electric utility (on behalf of the government) provide price certainty to the investors in 

renewable investments. This allows producers to increase their debt leverage and lower their 

financing costs. Based on the long-term contracts, the electric utility is obliged to buy wind 

electricity at a fixed price path for 20 years. This unloads most of the risks of the value of the 

future benefits from such investments onto the utility and the country. 
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The major concern of private sector participation relates to weak institutional and regulatory 

mechanisms (i.e. governance). Weak governance results in higher risks for such a IPP 

infrastructure investment and so increases the cost of both equity and debt financing of such 

projects – and hence the price of energy. Unlike many developing countries, Cape Verde has a 

relatively high governance index with respect to the quality of its institutions, including the rule of 

law, control of corruption and property rights (Worldwide Governance Indicators, World Bank, 

2014). Hence, the contractual arrangements are highly credible from the perspectives of both the 

private owners and the lenders. In such a case, the financial and economic costs set in the PPA 

have a high likelihood of being paid by the utility and borne by the economy.  

Appendix 

 

A.1 Notation for Calculations in Section 3.2 

 

Symbol  Description 

CV

tEB , CV

tEC  economic benefits earned and costs paid by the country’s economy from wind 

investments at time t , respectively (€) 
EOCK  economic opportunity cost of capital (%)  

EV  economic value of an input or output (€) 

 kExt  sum of all the externalities created due to the project (€) 

wtF   fixed operating and maintenance expenses of wind farm in €/MW 

ztF  fixed operating and maintenance costs of installed existing thermal generators running in 

the system (€/MW) 
EU

tFB , EU

tFC  annual financial benefits and costs of the public utility for wind integration (€) 
IPP

tFB , IPP

tFC  annual financial benefits and financial cost of the IPP (€)  
FEP   foreign exchange premium paid on international currency transactions (%) 

FV  financial value of the same variable (€) 

wtgp   annual wind price escalation agreed by parties (%) 

h   time demand blocks (off-peak, mid-merit, peak)  

t
I   investment costs associated with wind investments in million €/MW 

wtK   total wind capacity installed in MW 

ztK   MW of thermal capacity from each plant “without” wind integration at time t  

ztK    MW of thermal capacity from each plant “with” wind integration at time  t  

htl   number of hours of duration of load (e.g. number of peak hours, off-peak hours)  
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IPP

tNPV
0  net present value of IPP in millions of € at 2010 price level 

EU

tNPV
20  net present value of electric utility (EU) in millions of € at 2010 price level 

CV

EOCKNPV  PV of the net economic benefits (country, CV) in millions of € at 2010 price level, 

discounted by the EOCK 
EU

EOCKNPV  PV of the net financial cash flow (electric utility) in millions of € at 2010 price level, 

discounted by the EOCK  

ctp   private costs of carbon credits earned from fuel replacement (€/MWh) 

wtp   fixed portion of wind energy price (€/MWh) 

e

jt

f

jt PFPF ,  financial and economic cost of j type of fuel in period t , respectively (€/litre) 

zht
qf   fuel consumption of conventional diesel generators (liter/MWh) 

 GFI

EOCKPV  sum of the PV of all the tax externalities (fiscal impacts) generated by the wind project (€) 

zhtq  MWh of energy produced from installed thermal plants in each demand block h  and 

year t  “without” wind integration (MWh) 

zhtq  MWh of energy produced from installed thermal plants in each demand block h  and 

year t  “with” wind integration (MWh) 

zjtq   quantities of fuel used by each thermal generator in converted into litres/MWh in t  

whtq̂  estimated MWh amount of wind energy at each demand block in t  

r   financial discount rate (%) 

e

wt

f

wt RR ,  financial and economic cost of grid reliability with wind, respectively (€/MWh) 

t   planning years  Tt,...  

z   set of all conventional generators in the system in year t  

c   excise tax on carbon credits paid by the IPP (%) 

   income tax paid by the IPP (%) 

   conversion for carbon credits (MWh to tCO2) 
 
 
 
A.2 Cash and Resource Flow Calculations 

 

Cash Flow Statement – IPP’s Point of View 
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Cash Flow Statement – Electric Utility’s Point of View 
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Resource Flow Statement – Country Economy’s Point of View 
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