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Abstract

The fact that voters can manipulate election outcomes by misrepresenting their true pref-

erences over competing political parties or candidates is commonly viewed as a major flaw of

democratic voting systems. It is argued that insincere voting typically leads to suboptimal voting

outcomes. However, it is also understood that insincere voting is rational behavior as it may

result in the election of a candidate preferred by the voter to the candidate who would otherwise

be selected. The relative magnitude of the welfare gains and losses of those who benefit from

and those adversely affected by insincere voting behavior is consequently an important empirical

issue. We address this question by providing exact asymptotic bounds on the welfare effects, in

equilibrium, of insincere voting for an infinite class of democratic rules. We find, for instance,

that preference manipulation benefits one-half to two-thirds of the population in three-candidate

elections held under first-past-the-post, and one-third to one-hundred percent of the population in

antiplurality elections. These bounds differ from those obtained under out-of-equilibrium manip-

ulation. Our partial identification analysis provides a novel approach to evaluating mechanisms

as a function of attitude towards risk, and it has practical implications for the choice of election

rules by a mechanism designer facing a worst-case or a best-case objective. It also provides a new

answer to the longstanding question of why certain rules, such as first-past-the-post, are more

common in practice.
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1 Introduction

In tightly contested elections, voters whose true preferences are best reflected by candidates with no

realistic hope of winning are commonly entreated to vote for a candidate who has a better chance of

success, and whom they prefer to the candidate who would win if they voted sincerely. Some scholars

have argued that such strategic or tactical voting may lead to the selection of a bad candidate,

whereas others take the view that this is rational behavior and may lead to a socially preferred

election outcome. The measurement of the social welfare gains or losses resulting from insincere

voting is consequently an empirically relevant question and is as yet unresolved. We contribute

to this debate by providing exact asymptotic bounds on the equilibrium welfare effects of tactical

voting for an infinite class of democratic rules. Our results have practical implications for the choice

of election rules by a mechanism designer facing a worst-case or a best-case objective, and offer a new

rationale for why certain rules– such as first-past-the-post (or simple plurality)– are more common

in practice than others.

The notion that, under most voting rules, voters can sometimes achieve a more preferred voting

outcome for themselves by misrepresenting their preferences when casting their ballots is perceived

as a major weakness of democratic systems. Charles L. Dodgson complained that strategic behavior

"makes an election more a game of skill than a real test of wishes of electors" (Black, 1958, p. 232).

The underlying concern is that insincere voting will result in welfare-inferior outcomes. Summarizing

this view, Barberà (2011) writes:

"As for the consequences of manipulation, if they occur, there may be many, but the

possible loss of efficiency is particularly worrisome from the point of view of the designer.

Social choice functions that would always select an efficient outcome if voters provide

truthful information may end up recommending an inefficient alternative after voters

distort their preferences in order to manipulate." (p. 739).

The view that preference misrepresentation results in social welfare loss is widespread, but at-

tempts to establish this view formally have proven difficult. Individuals who engage in manipulation

are acting in their self-interest, and expect to gain from doing so (e.g., Ehlers et al. (2004), Schummer

(2004), Campbell and Kelly (2009), Moyouwou and Pongou (2012), Carroll (2013)). Insincere voting

is therefore likely to lead to outcomes which increase the utility of certain voters, but to be harmful

to others as compared to the outcome that would be selected if each individual expressed his true

preferences (Gibbard (1973)). The main difficulty in studying the social welfare consequences of in-

sincere voting therefore stems from it potentially having both positive and negative effects, rendering

the alternative outcomes Pareto non-comparable.

In the absence of a particular specification of the social-welfare function, or individual utility

functions, it is unrealistic to expect that much can be said about whether or not strategic manipu-

lation of preferences under the most widely used voting procedures will definitely lead to outcomes

which are welfare-inferior - or, alternatively, welfare-superior - to the outcomes that would prevail

under sincere voting. We consider intensity or positional voting rules, which constitute an infinite

class of democratic rules. Importantly, this class includes well-known rules such as simple plurality,

antiplurality (a particular form of approval voting), and the Borda rule. Under these rules, assuming
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that an election involves three competing political candidates, each voter submits a ballot consisting

of his ranking of the candidates, the first-ranked candidate receiving one point, the second receiving

λ points (0 ≤ λ ≤ 1), and the third receiving 0 points; the candidate who receives the most points
wins. Under simple plurality, λ is 0, which means that each voter votes only for one candidate, and

the candidate who receives the most votes wins. Under antiplurality (λ = 1), each voter votes against

one candidate, and the candidate with the fewest negative votes wins. Unlike these two rules, the

traditional Borda rule (λ = 1
2) requires that each voter fully rank the candidates. Obviously, our

focus on these rules is justified by the fact that they are the most widely used in elections around the

world. In particular, simple plurality is used in most countries to select presidents, legislators, and

mayors. It follows that our findings about the welfare consequences of preference misrepresentation

in elections held under these rules have testable implications.

For each of these democratic rules, we compare two different behavioral scenarios. In the first,

citizens vote strategically, possibly misrepresenting their preferences in equilibrium. In the "coun-

terfactual" scenario, they vote sincerely.1 The outcomes of these two scenarios are then compared

for each individual, enabling us to calculate the proportion of voters who benefit or lose when the

insincere voting outcome emerges as the winner as opposed to the honest outcome. This way to

measure the welfare effect of voting manipulation is natural under our assumption that voters have

ordinal utility.2

The following example illustrates our purpose. Consider an election involving seven voters 1-7

and three political parties a, b and c. Voters 1 to 3 prefer a to b to c; voters 4 and 5 prefer b to

c to a, and voters 6 and 7 prefer c to b to a. If all voters vote sincerely, and the electoral rule is

first-past-the-post, then party a will be elected, as it will attract three votes, which is more than

the two votes for each of b and c. In contrast, if voters 4 and 5 vote strategically, and cast their

ballots for c rather than b, then c will prevail, which is an outcome preferred by voters 4 through

7, but which makes voters 1 through 3 worse off. It is immediately evident that the outcome under

strategic voting is Pareto non-comparable to the outcome under sincere voting, as 57% of voters are

better off if the strategic outcome wins compared to 43% under the sincere outcome.

This example leads to the following important questions which we answer in this paper:

1. How does the proportion of voters who benefit or lose from manipulation in equilibrium vary

depending on voters true preferences and the voting rule? What are the limits to these effects

under each rule?

2. What are the practical implications for the choice of an election rule by a social planner or a

mechanism designer?

The analysis below addresses these issues. We show that the equilibrium welfare effects of prefer-

1These two scenarios are natural (e.g., Barberà (2011)).
2 In general, the measurement of social welfare depends on whether or not utility is assumed to be comparable

across individuals. If interpersonal utility comparison is allowed, welfare is usually measured by a weighted sum of
individual utilities. The welfare effect of voting manipulation would then be obtained by subtracting aggregate utility
under the strategic winner from aggregate utility under the sincere winner. Our ordinal utility assumption, which is
also the assumption made in the classical papers of Gibbard (1973) and Sattherwaite (1975), clearly precludes such an
approach. Vickrey (1960) and several subsequent scholars have highlighted the difficulty of using cardinal utility in the
evaluation of social welfare. The ordinal approach followed by our analysis also has the advantage of imposing very
little structure on preferences.
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ence misrepresentation depend both on voters’ true preferences and the voting rule. This naturally

implies that the determination of these effects for each rule should follow a partial identification

approach, as the effects vary across elections depending on voters’ possibly unknown preferences.

Indeed, we show that it is possible to obtain sharp upper and lower bounds for the proportion of

voters who – in equilibrium – benefit from and, conversely, who are adversely affected by the

strategic manipulation of individual preferences. For some rules, strategic misrepresentation may

benefit the majority of voters, and under a number of different social welfare functions it could then

be expected that the equilibrium outcome with strategic voting would be socially-preferred to the

equilibrium outcome with sincere voting. From a policy perspective, and given that the choice is

between electoral mechanisms that are known to be subject to strategic manipulation, there might

therefore be reason to prefer using a mechanism which seems more likely to deliver better outcomes

when citizens vote strategically, rather than one where the expectation is that strategic voting will

lead to an aggregate loss in social welfare. In this sense, our analysis fits into a new research agenda

on mechanism design. Whereas the traditional agenda has been concerned with the construction

of mechanisms that minimize manipulation (see Serrano (2004) for an excellent literature review),

the new agenda investigates mechanisms that guarantee good outcomes in equilibrium, even if these

mechanisms are susceptible to manipulation (see, e.g., Bergemann and Morris (2005), Chung and

Ely (2007), Barberà (2011)).

1.1 Equilibrium Welfare Gains and Losses from Manipulation

For each of the democratic rules analyzed in this study, we determine the minimum and maximum

proportion of voters who gain or lose from a manipulation leading to a strong Nash equilibrium. In a

static political game like the one investigated in our analysis, there are several reasons for preferring

this notion of equilibrium to the notion of Nash equilibrium. From a theoretical viewpoint, the notion

of strong Nash equilibrium is a useful refinement of Nash equilibrium.3 The notion of strong Nash

equilibrium (henceforth equilibrium) also more realistically describes voters’ behavior in modern

societies because it is based on the premise that voters have the ability to act either individually

or coalitionally as is generally observed in ethnic societies or in contexts where a leader may act

as a political coordinator by instructing his followers to vote in a certain manner (Posner (2004,

2005), Fish (2008), Ishiyama (2012), Diffo Lambo et al. (2015)). In such contexts, members of a

group generally vote as a bloc as opposed to spreading their votes among several competing parties

(Ishiyama (2012)).

For three-party elections, the minimum and maximum proportion of voters who gain or lose from

manipulation in equilibrium are functions of the political rule λ and the number of voters n. For

sufficiently large electorates (that is, as n goes to infinity), these proportions, denoted respectively

by m∗(λ) and M∗(λ), are explicitly derived and presented in Figure 1.

3The concept of Nash equilibrium is often criticized because its predictions are sometimes unrealistic in politics.
For instance, in a plurality election involving any number of voters greater than two and two competing candidates a
and b, and where each voter prefers a to b, the strategy profile in which each voter casts a ballot for b instead of a is a
Nash equilibrium, but it is not a strong Nash equilibrium. The more realistic voting profile in which everybody votes
for a is a strong Nash equilibrium and hence a Nash equilibrium.

4



Figure 1: Maximum and Minimum Gains from Manipulation in Equilibrium

The proportion of voters who benefit from the strategic voting equilibrium outcome winning at the

expense of the sincere voting outcome belongs to the interval [
1

2
,
2− 2λ− λ2
3− 3λ ] if 0 ≤ λ ≤ λ∗ ≈ 0.312,

[
1

2
,
1 + 2λ

2 + 2λ
] if λ∗ ≤ λ ≤ 1

2 , and [
2− λ
3

,
1

2− λ ] if
1

2
< λ ≤ 1. It follows that manipulation benefits

one-half to two-thirds of the population under simple plurality (λ = 0) and the traditional Borda rule

(λ =
1

2
), and one-third to the one-hundred percent of the population under antiplurality (λ = 1). It

follows from these results that it is only under antiplurality that manipulation can lead to a Pareto

improvement.

We also quantify the minimum and maximum proportions of voters who lose from manipulation in

equilibrium. The share of voters who lose from manipulation ranges from 1−M∗(λ) to 1−m∗(λ), as,

for each rule λ, the proportion of voters positively affected by manipulation attains the boundsm∗(λ)

and M∗(λ). In particular, it follows that manipulation hurts one-third to one-half of the population

under simple plurality and the Borda rule, and zero percent to two-thirds of the population under

antiplurality.

Although elections involving at most three major political parties are highly prevalent in real-

life politics, we generalize our findings to elections involving any number of competing candidates.

Here, we consider simple plurality, the Borda rule, and antiplurality. For each of these rules, we

are able to derive exact bounds on the equilibrium welfare effects of manipulation as a function of

the number of voters and the number of candidates, where the number of candidates is at least

equal to three. In particular, for each of these rules, the exact asymptotic bounds are represented in

Figure 2. In this figure, M∗(F,m) and m∗(F,m) are respectively is the maximum and the minimum

proportions of voters who benefit from manipulation in a large m-candidate election held under the

rule F ∈ {Pl,AP l,Borda}, where Pl is for plurality, Borda for the traditional Borda rule, and APl
is for antiplurality. For a large enough electorate, we find that, in equilibrium, manipulation benefits

from half to a fraction of 1 − 1

m
of the population under simple plurality and Borda, and from a

fraction of
1

m
of the electorate to the entire population under antiplurality. It follows that, whereas

the minimum welfare gain from manipulation is insensitive to the level of political competition under

first-past-the-post and Borda, it goes to zero under antiplurality as political competition increases.
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Figure2: Maximum and Minimum Gains from Manipulation (m ≥ 3)

We argue that our partial identification analysis offers practical advice to a social planner faced

with the task of choosing an election rule for a society when the planner is ignorant of the preferences

of its members. Two main approaches are generally followed in order to compare the performance

of rules or mechanisms, with each approach making a different assumption on the attitude of the

social planner towards risk. The first approach is the "worst-case" approach, in which the social

planner assumes that manipulation will always lead to the worst possible outcome. His goal is

then to choose the rule that minimizes this negative effect. This approach has been followed in

several important papers on mechanism designs (see, e.g., Hurwicz and Shapiro (1978), Segal (2003),

Bergemann and Morris (2005), Chung and Ely (2007), Carroll (2013)). The second approach is

the "best-case" approach, in which the social planner, considering the uncertain welfare effect of

manipulation, assumes that manipulation will always lead to the best possible outcome for the

society. This approach makes an assumption that is similar to the optimistic behavioral assumption

proposed in Greenberg (1996). It is however not very popular in the mechanism design literature. We

also consider a third approach which combines these two classical approaches under a lexicographic

ordering (see below).

Under the best-case approach, the social planner will choose the rule that yields the highest

possible gain from manipulation. In the class of rules we analyze in this paper, antiplurality is the

only rule under which manipulation can benefit everybody (see Figure 1 for λ = 1 and Figure 2),

and so is the only rule that satisfies the best-case objective in equilibrium. Under the worst-case

approach, the social planner chooses the rule that minimizes the maximum loss due to manipulation.

Within the class of rules we analyze, the plurality rule, the Borda rule, and all the rules λ such

that 0 < λ < 1
2 meet this objective. Our third approach combines the best-case and the worst-

case approaches. Under this approach, the social planner chooses among the rules that minimize the

maximum loss due to manipulation the rule that leads to the highest possible gain from manipulation.

In our context, only simple plurality (λ = 0) and the Borda count (λ = 1
2) satisfy these requirements.

Our analysis therefore offers a new rationale for why these two rules are far more common than others

in real-life politics and organizations.4 Interestingly, our third approach to evaluating voting rules

reveals that the rule λ∗ ≈ 0.312 should never be used, as it is the worst-performing rule in three-party
elections.

4As already noted, simple plurality is used in most countries to select leaders. A trivial justification for the popularity
of this rule in large elections is that it minimizes voting cost, as choosing one candidate is less costly than ranking all
the candidates, especially when they are many. Our analysis shows that simple plurality may also be justified on the
ground that it minimizes welfare loss from manipulation.
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1.2 Contributions to the Closely Related Literature

Following the canonical contributions of Vickrey (1960) and Dummett and Farquharson (1961) who

argued that any reasonable voting mechanism is manipulable, and the classical works of Gibbard

(1973) and Sattherwaite (1975) who formally established this conjecture for any non-dictatorial

deterministic mechanism, a number of studies have drawn attention to the potential loss of efficiency

that manipulation can engender (see, e.g., Mas-Colell et al. (1995), Sonnenschein (1998), Serrano

(2004), Barberà (2011)). However, the longstanding question of whether or not, in equilibrium, voting

manipulation in a democracy is likely to benefit more individuals than are harmed had not been

answered. Also, the question of the exact number of individuals who gain or lose from manipulation

leading to a political equilibrium had not been answered. To our knowledge, this paper is the

first to address these questions. Our analysis further provides a novel approach to evaluating voting

mechanisms based on the quantification of the equilibrium welfare gains and losses that manipulation

can cause under each mechanism. An interesting feature of our analysis is the assumption that agents

have ordinal utility. We therefore impose very little structure on utility, and so the sharp bounds on

the welfare externality of manipulation that we derive for each rule do not depend on a particular

functional form. We also note that, although we consider only voting mechanisms in this paper, our

approach can potentially apply to a wide range of other mechanisms.

Our analysis fits into a broader research agenda on mechanism design. This literature has been

traditionally concerned with the construction of mechanisms that prevent or minimize manipulation.

Launching this research agenda, Vickrey (1960) wrote:

"An analysis of the ways in which a social welfare function might be set up so as

to minimize the probable influence of strategy might be interesting, but appears ... to

present formidable difficulties." (p. 519).

However, as noted earlier, a recent literature has advocated for a paradigm shift, arguing that the

goal of a social planner should instead be to select a mechanism that guarantees a good outcome in

equilibrium, even if it is subject to manipulation (see, e.g., Bergemann and Morris (2005), Chung and

Ely (2007)). Indeed, if no interesting voting mechanism is immune to manipulation – as shown by

Gibbard (1973) and Satterthwaite (1975) – then a more appropriate goal should be to identify those

mechanisms that yield the greatest social welfare gains or that minimize welfare losses in equilibrium;

this is precisely one of the achievements of our analysis.

Our paper is also related to a recent literature on the effect of manipulation. The closest paper

to ours is Moyouwou and Pongou (2012), who determine both the minimum and the maximum

proportion of voters who gain or lose from manipulation by one individual under the infinite class

of rules that we consider in this paper. But this paper limits its analysis to only three-candidate

elections. Campbell and Kelly (2014) provide an upper bound on the number of voters who are

harmed by manipulation, but unlike Moyouwou and Pongou (2012), they are not interested in the

number of voters who gain from it. Caroll (2013) quantifies the susceptibility of a voting rule to

manipulation, where susceptibility is measured by the maximum expected utility an individual can

gain by misrepresenting his preferences.

A common assumption made in all these studies is that there is only one manipulator. In

Moyouwou and Pongou (2012) and in Campbell and Kelly (2014), the manipulator believes that
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other voters behave sincerely. Therefore, deviation from sincere voting does not necessarily lead to an

equilibrium outcome. Caroll (2013) assumes that the manipulator holds a belief over the preferences

of other voters and manipulates only if the expected gain from doing so is greater than a certain

fixed cost. He then derives his measure of susceptibility under the assumption that the manipulator

believes that the preferences of other voters are identically and independently distributed.

Our paper takes an entirely different approach, in which preference misrepresentation only occurs

as an equilibrium strategy. This approach would be justified under the rational voter model (see, e.g.,

Myerson and Weber (1993)). Indeed, if one voter manipulates, this may induce others to manipulate

as well. It follows that several voters can manipulate at the same, acting either individually or jointly

in order to best-respond to each other’s action. Vickrey (1960) already made the same point in the

following statement:

"In general, whenever intensity of preference is given effect in the social welfare func-

tion, whether directly as such or through considering the number of intervening ranks,

it will be to the advantage of an individual or a group, whenever it can be discerned in

advance which alternatives are likely to be close rivals for selection as the social choice

and which alternatives are almost certain to be defeated, to exaggerate preferences among

the close rivals, at the expense, if necessary, of understating the relative intensity of pref-

erences for or against the less promising ("irrelevant") alternatives, whether this lack of

promise is due to technical difficulty or impossibility or simply to lack of general appeal.

Such a strategy could, of course, lead to counterstrategy, and the process of arriving at a

social decision could readily turn into a "game" in the technical sense. It is thus not for

nothing that we often hear references to "the game of politics"." (p. 517-518).

Consistent with the point made by Vickrey (1960), our analysis views a voting economy as a

"game". It therefore differs from the aforementioned studies on the welfare effect of manipulation

in that it allows for several manipulators who only misrepresent their preferences as an equilibrium

strategy.

Owing to this fundamental difference in our approach, we obtain results that are very different

from those in these papers. For instance, Moyouwou and Pongou (2012) find that, in large three-

candidate elections, the proportion of voters who benefit (or lose) from the strategic outcome winning

the election at the expense of the honest outcome ranges from 1
3 to

2
3 if 0 ≤ λ ≤ 1

2 , and from
1−λ
2−λ

to 1
2−λ if

1
2 ≤ λ ≤ 1. Campbell and Kelly (2014) examine a different set of rules than the one

we analyze. Their set however includes simple plurality and the Borda rule, enabling a limited

comparison with our results. Their findings imply that, in a three-candidate election, manipulation

hurts at most two-thirds of a large electorate under simple plurality and at least the same proportion

under the Borda rule. These results compare with those found by Moyouwou and Pongou (2012) for

these two rules, but they clearly differ from the findings of the present paper. Our analysis implies

that manipulation hurts at most one-half of a large electorate under simple plurality and the Borda

rule. Importantly, this finding is also true for elections involving more than three candidates. Figure

3 provides a better comparison of our findings with those in Moyouwou and Pongou (2012) (the

functions m(λ) and M(λ) are respectively the minimum and maximum shares of voters who benefit

from non-equilibrium manipulation by only one voter). As the reader can observe, our bounds are
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completely different.

Figure 3: Maximum and Minimum Losses from Equilibrium and Non-Equilibrium Manipulation

Like our paper, a number of other studies have analyzed positional voting rules in elections

involving three alternatives (see, e.g., Sengupta (1978), Saari (1999), Myerson (2002), Myatt (2007),

Goertz and Maniquet (2011)). There is also a literature on the efficient aggregation of private

information in elections (e.g., Feddersen and Pesendorfer (1997), Myerson (2000), Koriyama and

Szentes (2009), Goertz and Maniquet (2011), Bhattacharya (2013)). These papers, however, are

not concerned with the social welfare consequences of manipulation. Also, from a purely conceptual

point of view, we differ from most of these studies by assuming ordinal preferences, which precludes

interpersonal utility comparison. In this respect, we also view our partial identification approach

and our use of linear programming in an ordinal framework as a contribution.

Our work also contributes to the broad literature that evaluates and compares mechanisms on

the basis of their performance. In particular, evaluation based on worst-case performance has been

explored in mechanism design theory (Hurwicz and Shapiro (1978), Bergemann and Morris (2005),

Chung and Ely (2007)), voting (Sprumont (1995), Carroll (2013)), matching (Sönmez and Ünver

(2011)), contract theory (Chassang (2013), Carroll (2015), Frankel (2015)), and pricing theory (Segal

(2003)) among many other applications. The worst-case paradigm, also known as the "conservative

approach", has also been applied to study rational behavior in sequential games (see, e.g., Harsanyi

(1974), Greenberg (1996), Ray (2015), Xue (1998), Moyouwou et al. (2015)). Greenberg (1996) also

advanced the optimistic approach, in which the decision-maker hopes for the best outcome possi-

ble when making a decision that has an uncertain consequence. We have shown that evaluating

voting rules using the worst-case and best-case approaches lead to different conclusions about their

performance. For instance, a social planner who chooses a rule based on the minimization of the

worst-case-scenario loss should prefer the plurality rule over antiplurality, whereas a social planner

who chooses a rule based on the maximization of the best-case-scenario gain should prefer antiplu-

rality over all the other rules. These findings mean that our analysis has empirical relevance, as it

concerns rules which are extremely popular in real-life political settings as well as in organizations.

The remainder of this paper is as follows. Section 2 formalizes the problem we study. Section 3

states the main results for three-candidate elections held under the infinite class of intensity or posi-

tional voting rules. Section 4 studies an extension to elections involving more than three candidates.

Section 5 derives the implications of our findings for the choice of an election rule by a social planner,

and Section 6 concludes. For clarity in the exposition, all the proofs are collected in Section 7.
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2 The Problem: Manipulation and Social Benefit and Harm

2.1 Notation and Definitions

A society N = {1, ..., n} of n individuals is considering choosing a ruling party or a leader from a

finite set A of political parties or candidates. Following the literature, we first assume that there are

only three candidates a, b and c, and analyze the infinite class of the democratic rules λ.5 In Section

4, we consider elections involving more than three candidates. We assume n to be sufficiently large.

In particular, we derive our main results under the assumption that n goes to infinity.

Any nonempty subset of the set N is called a coalition or a group, and the set of all possible

coalitions is denoted by 2N . For any finite set X, |X| represents the cardinality of X.
Each individual i ∈ N has a preference relation Ri over A which we assume to be linear,

that is, reflexive, transitive, antisymmetric, and complete. Each individual’s preference relation

therefore belongs to the set L = {abc, acb, bac, bca, cab, cba}, where Ri = abc, for instance, means

that individual i prefers a over b over c. An individual i who has preference Ri may nonetheless

choose to cast a different ballot Qi ∈ L, and in this case, we refer to Qi as an insincere ballot or as
a misrepresentation of i’s true preferences.

A preference profile is a collection of individual preferences. We denote by LN the set of all

the preference profiles. Given a preference profile RN and a coalition S, R−S denotes the preference

profile obtained from RN by omitting the preferences of all the individuals in S. It follows that any

profile RN can be rewritten as
(
RS , R−S

)
. To simplify notation, we write R−i for R−{i}. The profile

denoted
(
QS , R−S

)
is the profile obtained from RN by substituting Qi to Ri for all i ∈ S.

Given a linear order R and two candidates x and y, the relation denoted R[y] is obtained from R

only by moving y to the top, and the relation denoted R[yx] is obtained from R only by moving y to

the top and x to the second position.

A deterministic social choice function (SCF) is a voting rule F which maps each voting profile

RN into a single party or candidate F
(
RN
)
, which is the election winner at RN . In this paper, as

already mentioned, the only SCFs in which we are interested are the voting rules λ described in the

Introduction, and denoted by Fλ. These rules include the plurality rule (λ = 0), the antiplurality (or

negative plurality) rule (λ = 1), and the Borda rule (λ = 1
2); these are the most frequently used rules

in actual elections. Under the plurality rule, each voter votes for only one party, which receives 1

point, each of the remaining parties receiving 0 points. Under the antiplurality rule, each voter votes

against one party, which receives 0 points, each of the remaining parties receiving 1 point. The other

rules, including the Borda rule, better reveal the (strategic) rankings of candidates by voters than

the plurality rule and the antiplurality rule. Under any of these rules, the candidate who receives

the most points wins.

Manipulability. Gibbard (1973) and Satterthwaite (1975) have shown that any non-dictatorial

deterministic social choice function is manipulable: under complete information of voters’ pref-

erences, a voter can obtain a more preferred election outcome by not voting according to his true

preferences. A SCF F is said to be strategy-proof if it is non-manipulable, that is, if no voter

5Three-candidate elections under the class of rules λ have been extensively studied (see, e.g., Saari (1999), Myerson
(2002), Goertz and Maniquet (2011)), but the questions addressed in the available literature are not those we answer
in this paper.

10



can profitably misrepresent his preferences. More formally, F is said to be strategy-proof if for

all i ∈ N , RN ∈ LN and Qi ∈ L, F
(
RN
)
RiF

(
Qi, R−i

)
. A SCF F is strongly strategy-proof

if no group of voters can profitably misrepresent their preferences: for all S ∈ 2N , RN ∈ LN and

QS ∈ LS , F
(
RN
)
RiF

(
QS , R−S

)
for some i ∈ S. Strong strategy-proofness is preferred to (indi-

vidual) strategy-proofness in many real-world contexts. As noted by Barberà, Berga, and Moreno

(2016), "individual strategy-proofness is a rather fragile property, unless one can also preclude ma-

nipulations of the social outcome by potential coalitions..." (p. 1073). Following this pertinent

observation, the equilibrium concept we use in this paper is related to strong strategy-proofness, as

this implies that the outcome can be manipulated by individual voters as well as by coordinated

groups of voters.

2.2 Formalizing the Problem

In this paper, we determine the minimum and the maximum proportion of voters who benefit or lose

from some voters misrepresenting their preferences. We consider only manipulations that lead to a

political equilibrium.

Consider an election with a status quo. Without loss of generality, assume the status quo to be

a. The election is a one-shot game held under a political rule Fλ biased towards the status quo.6

Let RN ∈ LN be a preference profile. Let S ⊂ N be a group of voters and TN =
(
TS , R−S

)
∈ LN a

preference profile such that Fλ
(
TS , R−S

)
RiFλ

(
RN
)
for all i ∈ S. We say that RN is manipulable

under the rule Fλ and that TN is an effective manipulation of RN . Denote by P (Fλ) the set of

manipulable preference profiles under Fλ and by U(Fλ|RN ) the set of effective manipulations of RN
under Fλ.

A preference profile RN is an equilibrium if for any coalition of voters S ⊂ N and any profile

QS ∈ LS , we have Fλ
(
RN
)
RiFλ

(
QS , R−S

)
for some individual i ∈ S. If RN is not an equilibrium

(because members of some coalition find it in their interest to deviate from their true preferences), we

say that RN is (jointly)manipulable or unstable. Denote by SN(Fλ|RN ) the set of equilibria that
are effective manipulations of RN when RN is the profile of true preferences. Assume that RN is not

an equilibrium and let TN ∈ SN(Fλ|RN ) be an effective manipulation of RN that is an equilibrium.
We call Fλ(TN ) a political equilibrium at RN supported by TN . Denote by Eλ(RN , TN ) the set

of all the voters who benefit from the effective manipulation of RN leading to the equilibrium TN :

Eλ(R
N , TN ) = {i ∈ N : Fλ

(
TN
)
RiFλ

(
RN
)
}.

Our goal is to determine the maximum and the minimum of |Eλ(R
N ,TN )|
n

for large electorates. For

an electorate of size n, these maximum and minimum are respectively:

M∗(λ, n) = max
(RN ,TN )∈P (Fλ)×SN(Fλ|RN )

|Eλ(RN ,TN )|
n

(P1)

and
6A one-shot game in our context is a game in which each voter votes only once, the ballots are counted, and a

winner is proclaimed in accordance with the rule Fλ. As is usual in the literature, the status quo bias implies that the
status quo is replaced if and only if it is beaten by one of the challengers under the election rule. Therefore, if there is
a tie, the status quo is proclaimed the winner. This way to break the tie is the alphabetic tie-break rule in our context.
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m∗(λ, n) = min
(RN ,TN )∈P (Fλ)×SN(Fλ|RN )

|Eλ(RN ,TN )|
n

(P2)

M∗(λ, n) and m∗(λ, n) are, respectively, the maximum and the minimum fraction of the voting

population which benefits from some group of voters misrepresenting their preferences under Fλ, and

where this manipulation leads to an equilibrium. We would like to evaluate M∗(λ, n) and m∗(λ, n)

as n goes to infinity. Let:

M∗(λ) = lim
n−→+∞

M∗(λ, n) (P3)

and

m∗(λ) = lim
n−→+∞

m∗(λ, n) (P4)

We solve problems (P3) and (P4) by bounding M∗(λ, n) and m∗(λ, n) below and above and

taking the limit of these bounds when n goes to infinity (Theorems 1 and 2).We also determine the

minimum and maximum proportion of voters who are adversely affected by manipulation. Given

that voters have strict preferences, these are 1−M∗(λ, n) and 1−m∗(λ, n), respectively. This partial

identification approach essentially acknowledges that the equilibrium welfare effects of tactical voting

varies depending on voters’ true preferences.

2.3 A Simple Illustrative Example

To illustrate our purpose, we would like to analyze the equilibrium welfare effects of preference

misrepresentation for each of the three canonical rules in an election that involves 8 voters and 3

political parties. Preferences are as follows: R1 = R2 = R3 = bac, R4 = bca, R5 = R6 = R7 = abc

and R8 = cab.

2.3.1 Plurality Rule

Assume that the election is held under the plurality rule. If all voters cast a sincere ballot, then b will

win with four votes. But if voter 8 submits an insincere ballot Q8 = acb, then a and b will tie with

four favorable votes each, and so the tie-breaking rule means that a will win. Observe that the profile

RN is not an equilibrium, whereas the profile (Q8, R−8) is. By misrepresenting his true preferences,

voter 8 gets his second-ranked party elected, which is better for him than the honest outcome b. This

preference misrepresentation benefits not only voter 8, but voters 5, 6 and 7 as well. The share of

voters who benefit from the manipulation is therefore 12 , whereas the share of voters who are harmed

is 12 . We will see in the next sections that manipulation, in equilibrium, always benefits at least half

of the population under the plurality rule, regardless of the number of candidates.

2.3.2 Borda Rule

Assume now that the election is held under the Borda rule. If all voters are honest, then b will win

with 5.5 points versus 5 points for a and 1.5 points for c. But if voters 5, 6, 7 and 8 submit an

insincere ballot Q5 = Q6 = Q7 = Q8 = acb, then a will win with 5.5 points versus 4 points for b

12



and 2.5 points for c. We note that the voting profile QN = (QS , R−S) where S = {5, 6, 7, 8} is an
equilibrium. By misrepresenting their true preferences, voters 5, 6, and 7 get their first-ranked party

elected and voter 8 gets his second-ranked party elected, which is better for them than the honest

outcome b. As under the plurality rule, the share of voters who benefit from manipulation is 1
2 ,

whereas the share of voters who are harmed is 12 . We will formally show that manipulation always

benefits at least half of the population in equilibrium under the Borda rule.

2.3.3 Antiplurality Rule

Assume now that the election is held under the antiplurality rule. If all voters cast a sincere ballot,

then a and b will tie with one negative vote each, and a will win following the alphabetical tie-

breaking rule. But if voters 1 and 2 submit an insincere ballot Q1 = Q2 = bca, then b will win with

only one negative vote against three negative votes for a and two negative votes for c. Note that

the profile RN is not an equilibrium, whereas the profile QN = (QS , R−S), where S = {1, 2}, is.
By misrepresenting their true preferences, voters 1 and 2 get their first-ranked party elected, and

their tactical voting also benefits voters 3 and 4 who also see their first-ranked party elected, but

the other voters are harmed. We see that voting manipulation benefits half of the population in

equilibrium. However, we will see that the minimum fraction of the population that benefits from

voting manipulation under antiplurality is less than half in general, and decreases with the number

of competing candidates in large elections.

Importantly, this example also shows that voting behavior depends on the voting rule. We

have also seen that the welfare effects of tactical voting varies across rules. A more formal and

comprehensive analysis is provided below.

3 Welfare Gains and Losses from Manipulation in Equilibrium

In this section, our goal is to identify, for large populations, the maximum and minimum proportion

of voters who, in equilibrium, experience welfare gains and losses from the strategic manipulation of

the electoral outcome. We focus on the infinite class of rules λ for three-candidate elections. We first

identify bounds around the minimum (m∗(λ, n)) and the maximum (M∗(λ, n)) proportion of those

who experience welfare gain as a result of insincere voting for any value of λ and for sufficiently large

values of n. From these results, we derive the asymptotic bounds. We present a step-by-step proof

of each result in the appendix.

3.1 Equilibrium Maximum Gains

Our first result identifies an upper bound of the maximum proportion of voters who are positively

affected by insincere voting when n ≥ 2 and 0 ≤ λ ≤ 1

2
. The range of voting rules covered by this

result therefore includes the plurality rule and the traditional Borda rule.

Proposition 1 Assume that 0 ≤ λ ≤ 1
2 and n ≥ 2. Let λ

∗ = 1
2
3
√
2
√
3 + 2− 1

3
√
2
√
3+2

≈ 0.312. Then:

1. If 0 ≤ λ ≤ λ∗, M∗ (λ, n) ≤ 2−2λ−λ2
3−3λ .
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2. If λ∗ ≤ λ ≤ 1
2 , M

∗ (λ, n) ≤ 1+2λ
2+2λ .

The second result bounds the maximum proportion of voters who benefit from insincere voting

in large elections held under the rules 0 ≤ λ ≤ 1

2
.

Proposition 2 Assume that 0 ≤ λ ≤ 1
2 . Then:

1. If 0 ≤ λ ≤ λ∗ and n ≥ 21,

1

n

⌊
2− 2λ− λ2
3− 3λ n

⌋
− 2

n
< M∗ (λ, n) ≤ 2− 2λ− λ2

3− 3λ . (1)

2. If λ∗ ≤ λ ≤ 1
2 and n ≥ 36,

1

n

⌊
1 + 2λ

2 + 2λ
n

⌋
≤M∗ (λ, n) ≤ 1 + 2λ

2 + 2λ
. (2)

The third result establishes bounds around the maximum welfare benefit of insincere voting for

sufficiently large n when
1

2
< λ ≤ 1.

Proposition 3 Assume that n ≥ 15 and 1
2
< λ ≤ 1. Then 1− 1

n

⌈
1− λ
2− λn

⌉
≤M∗(λ, n) ≤ 1

2− λ .

From Propositions 1-3, we obtain our first main result, which identifies the maximum proportion

of voters who, in equilibrium, will gain from manipulation in large elections.

Theorem 1 For 0 ≤ λ ≤ 1,

M∗(λ) =






2− 2λ− λ2
3− 3λ if 0 ≤ λ ≤ λ∗

1 + 2λ

2 + 2λ
if λ∗ ≤ λ ≤ 1

2

1

2− λ if
1

2
< λ ≤ 1

where λ∗ = 1
2
3
√
2
√
3 + 2− 1

3
√
2
√
3+2
.

We note that the function M∗(λ) is continuous. It is also differentiable, except at λ = λ∗ and at

λ = 1
2 . While under the plurality rule (λ = 0), insincere voting benefits at most two-thirds of the

electorate in equilibrium, under the antiplurality rule (λ = 1), it may lead to a Pareto improvement.

In such circumstances, strategic behavior may be viewed as a virtue, rather than a vice.

3.2 Equilibrium Minimum Gains

In this section, we identify the minimum proportion of the population which experiences welfare

gains from insincere voting. Strikingly, our first result shows that, in equilibrium, a majority of the

population will benefit from strategic manipulation of the voting outcome for the rules 0 ≤ λ ≤ 1

2
.
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Proposition 4 Assume that 0 ≤ λ ≤ 1
2 and n ≥ 2. Then m∗ (λ, n) ≥ 1

2 .

The second result establishes bounds around the minimum share of voters who benefit from

manipulation for sufficiently large populations when 0 ≤ λ ≤ 1
2 .

Proposition 5 Assume that 0 ≤ λ ≤ 1
2 and n ≥ 37. Then 1

2 ≤ m∗ (λ, n) ≤ 1
2 +

1
n
.

The next result is concerned with the rules
1

2
< λ < 1.

Proposition 6 Assume that 1
2 < λ < 1 and that n > max

(
6(λ+1)(2−λ)
λ(4λ−λ2−1)

, 3λ(2λ−1)
(1−λ)(4λ−λ2−1)

)
. Then

2−λ
3 ≤ m∗ (λ, n) ≤ 1− 1

n

⌊
1+λ
3 n

⌋
+ 1

n
.

We conduct a similar analysis for antiplurality below.

Proposition 7 Assume that n ≥ 6. Then 1
3 ≤ m∗ (1, n) ≤ 1

3 +
2
n
.

Having established bounds around the minimum proportion of the voting population which enjoys

welfare gains from manipulation, we now derive our second main result of the paper.

Theorem 2 For 0 ≤ λ ≤ 1,

m∗(λ) =






1

2
if 0 ≤ λ ≤ 1

2

2−λ
3 if

1

2
< λ ≤ 1

Theorem 2 allows us to study some interesting properties of the minimum welfare gain function

m∗(λ). In particular, we note that this function is continuous and is everywhere differentiable, except

at λ =
1

2
. It also implies that insincere voting benefits at least one-half of the population under the

plurality rule (λ = 0) and the traditional Borda rule (λ =
1

2
), and one-third of the population under

antiplurality (λ = 1).

3.3 Exact Asymptotic Bounds on Equilibrium Gains and Losses from Manipu-

lation

From Theorems 1 and 2, we deduce that the proportion of a large electorate that is positively affected

by preference misrepresentation ranges from a minimum of m∗(λ) to a maximum of M∗(λ). Denote

by G(λ) this interval and let λ∗ = 1
2
3
√
2
√
3 + 2− 1

3
√
2
√
3+2

≈ 0.312. It follows that:

G(λ) =






[
1

2
,
2− 2λ− λ2
3− 3λ ] if 0 ≤ λ ≤ λ∗

[
1

2
,
1 + 2λ

2 + 2λ
] if λ∗ ≤ λ ≤ 1

2

[2−λ3 ,
1

2− λ ] if
1

2
< λ ≤ 1.
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Similarly, the proportion of a large population of voters negatively affected by preference mis-

representation ranges from 1 −M∗(λ) to 1 −m∗(λ). If we denote by L(λ) this interval. It follows

that:

L(λ) =






[
1− λ+ λ2
3− 3λ ,

1

2
] if 0 ≤ λ ≤ λ∗

[
1

2 + 2λ
,
1

2
] if λ∗ ≤ λ ≤ 1

2

[
1− λ
2− λ,

1 + λ

3
] if

1

2
< λ ≤ 1.

It follows that, under simple plurality (λ = 0), manipulation benefits from one half to two-

thirds of the population in equilibrium (G(0) = [
1

2
,
2

3
]) and hurts from one-third to one half of the

population (L(0) = [
1

3
,
1

2
]). Under the traditional Borda rule (λ =

1

2
), manipulation benefits from

one half to two-thirds of the population (G(
1

2
) = [

1

2
,
2

3
]) and hurts from one-third to one half of the

population (L(
1

2
) = [

1

3
,
1

2
]). Under antiplurality (λ = 1), manipulation benefits from one-third to

one-hundred percent of the population (G(1) = [
1

3
, 1]) and hurts from zero percent to two-thirds of

the population (L(1) = [0,
2

3
]). As we will see later, these findings have an implication for the choice

of an election rule by a social planner facing a worst-case or a best-case objective.

4 An Extension: Elections Involving More than Three Political

Parties or Candidates

We now assume that there are m ≥ 3 competing political parties or candidates and we analyze the
equilibrium welfare effects of tactical voting for each of the three canonical positional voting rules:

simple plurality, Borda count, and antiplurality. We again assume that each voter has a linear

preference relation over candidates. Let Ri be the preference relation of voter i, we write Ri = abc...

to mean that i strictly prefers a over b, b over c, and so on. We write aj ...ak for any preference

relation in which aj is ranked first and ak is ranked last. Given a linear order R and two candidates

a and b, we notate by Ra,b the linear order obtained from R by shifting only a and b so that: (i) a

or b is top ranked in Ra,b; (ii) the relative ranking of a and b in R is preserved in Ra,b; (iii) the total

number of candidates ranked between a and b is the same in R and in Ra,b; and (iv) R and Ra,b
coincide over A\ {a, b}. Similarly, we notate by R[b] the linear order obtained from R by only moving
b to the top, and by R[ba] the linear order obtained from R by only moving b to the top and a to the

second position. For example for R = a1a2a3a4a5, we have Ra3,a5 = a3a1a5a2a4, R[a5] = a5a1a2a3a4
and R[a5aa3 ]

= a5a3a1a2a4.

Hereafter the set of candidates is A = {a1, a2, ..., am} and the lexicographic order is the linear
ranking on A for which aj is ranked jth for any j = 1, 2, ...,m. A scoring vector is a vector v =

(λ1, λ2, ..., λm) of decreasing real numbers such that λ1 = 1 and λm = 0. Under the scoring rule

associated with the vector v, λk points are given to a candidate whenever he is ranked at the kth

position by a voter; the winner at a voting profile RN is the candidate who receives the most points.
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Denote by Sv
(
a,RN

)
the total number of points received by a candidate a at a voting profile RN .

Analyzing the welfare effects of tactical voting under any scoring rule as we have done for three-

candidate elections is intractable. For this reason, we will only focus on the three canonical rules

mentioned above. The scoring vector is vPl = (1, 0, ..., 0) for simple plurality (Pl), vAPl = (1, ..., 1, 0)

for antiplurality (APl), and vB =
(
1, m−2
m−1 , ...,

1
m−1 , 0

)
for the Borda rule (Borda). The winner of

an election held under, say simple plurality, will be denoted by Pl(RN ) if RN is the voting profile.

Let RN be a preference profile, TN an effective manipulation of RN under a rule F , and a and

b two competing candidates. We denote by:

1. E
(
a,RN

)
the set of voters who rank candidate a first in the profile RN ;

2. E(F,RN , TN ) the set of voters who benefit from the manipulation from RN to TN ; and

3. E(a, b, RN ) the set of voters who prefer b to a under the profile RN .

We denote respectively byM∗(F, n,m) and m∗(F, n,m) the maximum and the minimum fraction

of voters who benefit from manipulation in an election involving n voters and m candidates and held

under the rule F ∈ {Pl,Borda,AP l}. As n tends to infinity, these bounds are denoted by M∗(F,m)

and m∗(F,m), respectively.

For any real number x, we denote by bxc the greatest integer weakly smaller than x and by dxe
the smallest integer weaker greater than x. Formally,

bxc ≤ x < bxc+ 1 and dxe ≥ x > dxe − 1 (3)

4.1 Simple Plurality: Equilibrium Maximum and Minimum Gains from Manip-

ulation

In this section, we study the equilibrium welfare effects of manipulation in plurality elections. First,

we show that the winner of a plurality election under a voting profile RN is the first-ranked candidate

for at least
⌈
n
m

⌉
voters.

Proposition 8 Let RN ∈ LN . If Pl
(
RN
)
= aj then

∣∣E
(
aj , R

N
)∣∣ ≥

⌈
n
m

⌉
.

The next result states that if the number of voters who prefer the winner aj of an election to

any other candidate under a profile RN is smaller than the number of voters who rank aj first at a

different profile TN , and if that number is strictly smaller than the number of voters who rank aj
first at RN , then TN is an equilibrium given RN .

Proposition 9 Let TN be an effective manipulation of RN under simple plurality. Let Pl(TN ) = aj.

If
∣∣E(aj , al, RN )

∣∣ ≤
∣∣E(aj , TN )

∣∣ ∀l > j and
∣∣E(aj , al, RN )

∣∣ <
∣∣E(aj , TN )

∣∣ ∀l < j, then TN is an

equilibrium given RN .

The next result identifies the maximum equilibrium welfare gain from manipulation.

Proposition 10 Assume that n ≥ 2 and m ≥ 3. Then M∗ (Pl, n,m) = 1− 1
n

⌈
n
m

⌉
.
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We now identify the minimum equilibrium gain from manipulation, showing that manipulation

benefits at least half of the electorate in a plurality election.

Proposition 11 Let n ≥ 2 and m ≥ 3. Then m∗ (Pl, n,m) = 1
n

⌈
n
2

⌉
.

4.2 Borda Rule: EquilibriumMaximum and Minimum Gains fromManipulation

In this section, we determine the minimum and maximum equilibrium gains and losses from manipu-

lation under the Borda rule. We first remark that, by definition, whenever a candidate x is preferred

to another candidate y by a voter, the score of x is greater than that of y by at least 1
m−1 in the

ranking of that voter.

Remark 1 Let RN be a profile, i ∈ N a voter, and {x, y} ⊆ A two candidates. Then S
(
x,Ri

)
≥

S
(
y,Ri

)
+ 1

m−1 whenever xR
iy.

The proposition below states that the winner of a Borda election under a voting profile RN is

preferred to any of the other candidates by at least
⌈
n
m

⌉
voters.

Proposition 12 Let RN ∈ LN . If Borda
(
RN
)
= x, then

∣∣E
(
x, y,RN

)∣∣ ≥
⌈
n
m

⌉
for all {x, y} ⊆ A.

The next proposition identifies the maximum equilibrium welfare gain from manipulation, which

is identical to the bound found for simple plurality.

Proposition 13 Assume that n ≥ 2 and m ≥ 3. Then M∗ (Borda, n,m) = 1− 1
n

⌈
n
m

⌉
.

We now derive the minimum equilibrium welfare gain from manipulation, finding, like for simple

plurality, that manipulation benefits at least half of the electorate in a Borda election.

Proposition 14 Let n ≥ 2 and m ≥ 3. Then m∗ (Borda, n,m) = 1
n

⌈
n
2

⌉
.

4.3 Antiplurality Rule: Equilibrium Maximum and Minimum Gains from Ma-

nipulation

This section identifies the maximum and minimum equilibrium welfare gains and losses from manip-

ulation in an antiplurality election. We find that tactical voting might benefit the entire electorate

in equilibrium.

Proposition 15 Assume that n ≥ 2 and m ≥ 3. Then M∗ (APl, n,m) = 1.

The minimum equilibrium gain from tactical voting in an antiplurality election depends on the

size of the electorate relative to the number of competing candidates or political parties. If the

number of voters is strictly smaller than the number of candidates minus 1 (that is, n + 1 < m),

then manipulation will benefit at least a fraction of
1

n
of the population. Otherwise, manipulation

will benefit a greater fraction of the population.

Proposition 16 Assume that n ≥ 2 andm ≥ 3. Thenm∗ (APl, n,m) =






1

n
if n+ 1 < m

1

n

⌊
n+1
m

⌋
otherwise.
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4.4 Exact Asymptotic Bounds on Equilibrium Gains and Losses from Manipu-

lation

From Propositions 10, 11, 13, 14, 15 and 16, we derive exact asymptotic bounds on the welfare gains

and losses from tactical voting under each of the three canonical rules we have analyzed. The gains

from manipulation ranges from a minimum of m∗(F,m) to a maximum of M∗(F,m) for an election

involving m candidates held under a rule F ∈ {Pl,Borda,AP l}. We have the following theorem.

Theorem 3 The following assertions are true:

1) m∗(Pl,m) = 1
2 and M

∗(Pl,m) = 1− 1

m
.

2) m∗(Borda,m) = 1
2 and M

∗(Borda,m) = 1− 1
m
.

3) m∗(APl,m) = 1
m
and M∗(APl,m) = 1.

The proof simply follows by taking the limit ofm∗(F, n,m) andM∗(F, n,m) as n tends to infinity

for each rule F ∈ {Pl,Borda,AP l}. Again, an interesting and distinctive property of antiplurality is
that strategic manipulation of the voting outcome may lead to a Pareto improvement. This finding

obtains for the plurality rule and the Borda rule only if the number of candidates tends to infinity.

Similarly, the proportion of a large population of voters negatively affected by manipulation

ranges from 1−M∗(F,m) to 1−m∗(F,m). If we denote by L(F,m) this interval. It follows that:

L(F,m) =






[ 1
m
, 12 ] if F = Pl

[ 1
m
, 12 ] if F = Borda

[0, 1− 1
m
] if F = APl.

5 A Social Planner’s Problem: Choosing A Voting Mechanism

In this section, we derive the implications of our findings for the evaluation and comparison of the

democratic rules we have analyzed, and address the problem of a social planner charged with the

task of choosing an election rule. This analysis advances a recent literature which argues that, given

the susceptibility of the most interesting mechanisms to manipulation, a social planner charged with

the task of choosing a mechanism should select the one that ensures a good outcome in equilibrium.

There exist two broad approaches to this problem. The first is the pessimistic or worst-case approach,

in which a social planner believes that manipulation will lead to the worst loss in welfare and chooses

the rule that minimizes this effect. The second approach is the optimistic or the best-case scenario

approach, in which the social planner believes that manipulation will lead to the maximum gain in

welfare and chooses the mechanism that maximizes this positive effect. We will consider a third

approach which combines both approaches under a lexicographic ordering.

Within our framework, a social planner concerned about worst-case scenarios solves the following

problem:

min
λ∈[0,1]

m∗(λ) (P5)

And a social planner facing a best-case objective solves the following problem:

19



max
λ∈[0,1]

M∗(λ) (P6)

From Theorems 1 and 2, it is immediately evident that the solution to problem (P5) is any rule

λ ∈ [0, 12 ] and the solution to problem (P6) is λ = 1. Given the popularity of the worst-case approach
and the multiplicity of solutions to the worst-case problem (P5), one could refine it. For instance,

the social planner could choose among the solutions to problem (P5) the one that maximizes the

gain occurring under the best-case scenario. In the class of rules we are analyzing, there are two

solutions, namely simple plurality (λ = 0) and the Borda count (λ = 1
2).

Simple plurality, the Borda rule and antiplurality therefore emerge from our analysis as having

distinct properties. In general, a risk-averse social planner should choose simple plurality or Borda as

the election rules, whereas a risk-lover or optimistic social planner should choose antiplurality. This

suggests a new rationale for why these rules are the most commonly observed in practice, especially

simple plurality.

6 Conclusion

This paper contributes to a longstanding debate concerning the social welfare consequences of tac-

tical voting on the outcome of elections in democratic societies. Importantly, our analysis of this

question provides a new approach to evaluating and comparing voting mechanisms based on a partial

identification approach to the quantification of the equilibrium welfare gains and losses that manip-

ulation can cause under each mechanism. It solves the problem of a social planner charged with the

task of choosing an election rule. We have seen that the solution to this problem depends on the

attitude of the social planner towards risk.

Although it is well understood that commonly-used voting rules are susceptible to manipulation

by strategic voters, the extent to which such behavior is likely to harm or benefit other voters has

received scant attention in the literature. Our analysis considers a very large class of rules used

to select leaders and policies in democratic countries, and determines the minimum and maximum

proportion of the voting population which, in equilibrium, experiences welfare gains and losses as

a result of insincere voting . An interesting feature of our work is that the results are derived

within the ordinal framework, which puts very little structure on preferences and does not make the

assumption of interpersonal utility comparison. We are also the first to study this question under

the assumption that deviation from sincere voting leads to an equilibrium. Not surprisingly, the

results obtained under this assumption differ markedly from those obtained under the assumption

of out-of-equilibrium manipulation (see Figure 3).

By considering a continuum of rules, our analysis enables the comparison of different rules by

either the minimization of the worst-case-scenario loss or the maximization of the best-case-scenario

gain. For instance, a social planner who chooses a rule based on the minimization of the worst-case

scenario loss should prefer the plurality rule over antiplurality, whereas a social planner who chooses

a rule based on the maximization of the best-case-scenario gain should prefer antiplurality over any

other rule. In fact, we have seen that, in three-candidate elections, manipulation benefits from half

to two-thirds of the papulation under simple plurality, whereas it benefits one-third to one-hundred

percent of the population under antiplurality. Our conclusions do not change qualitatively when
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we consider elections that involve more than three candidates. These results also demonstrate the

empirical relevance of our analysis, given that the rules considered in this paper are extremely popular

in democratic countries and in organizations. They also suggest a new rationale for why certain rules

like simple plurality are and should be more common than others.
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7 Proofs

A step-by-step proof is provided for each result. A few preliminary results, of interest in themselves,

are needed to prove certain propositions. In all the proofs, the six possible linear preferences on the

set of alternatives {a, b, c} are labelled as follows: R1 = abc, R2 = acb, R3 = bac, R4 = bca, R5 = cab
and R6 = cba. Each profile RN is associated with its anonymous version x = (x1, x2, x3, x4, x5, x6),

where xj is the total number of voters whose preferences are represented by Rj , j = 1, 2, ..., 6. Given

0 ≤ λ ≤ 1, we denote by S
(
u, λ,RN

)
the score of an alternative u at RN .

7.1 Proof of Proposition 1

In order to prove Proposition 1, we need to state preliminary results which provide necessary condi-

tions for manipulation to occur. These results are also necessary to prove Proposition 4. The first

result is stated below.

Lemma 1 Let RN be a preference profile whose anonymous version is x = (x1, x2, x3, x4, x5, x6).

Suppose that a is the winner at RN . Assume that a manipulation can occur at RN in favor of a

political equilibrium b. Then there exists two non negative integers y3 and y6 such that x, y3 and y6

satisfy: (1) the constraints (C1 : C6) (that is, the constraints (C1) to (C6) below); (2) at least one

constraint from (C7 : C9); and (3) at least one constraint from (C10 : C12) where:

x1 + x2 + x3 + x4 + x5 + x6 = 1 (E0)

(λ− 1)x1 − x2 + (1− λ)x3 + x4 − λx5 + λx6 ≤ 0 (C1)

−x1 + (λ− 1)x2 − λx3 + λx4 + (1− λ)x5 + x6 ≤ 0 (C2)

(1− λ) (x1 − x3 − y6) + x2 − x4 + λ (x5 − x6 − y3) ≤ 0 (C3)

λ (x2 + y3 − x1)− x3 + (λ− 1) (x4 − x6 + 2y6) + x5 ≤ 0 (C4)

y3 − x3 ≤ 0 (C5)

y6 − x6 ≤ 0 (C6)

x1 − (λ− 1) (x2 + x5 + y6) + λ (x3 − x4 − 2y3)− x6 ≤ 0 (C7)

x1 + x2 − (1− λ)x3 − x4 + x5 − λx6 − λy3 − (1− λ)y6 ≤ 0 (C8)

(2− λ) (x1 + x2 + x5) + (2λ− 1)x3 − (1 + λ) (x4 + x6)− 3λy3 ≤ 0 (C9)

−x1 + (1− λ) (x2 + x5)− λ (x3 − x4 − 2y3) + x6 ≤ 0 (C10)

−λ (x1 − y3) + x2 − x3 − (1− λ)x4 + x5 + x6 ≤ 0 (C11)

−(1 + λ) (x1 + x3) + (2− λ) (x2 + x5 + x6) + (2λ− 1)x4 + 3λy3 ≤ 0 (C12).

Proof. Consider λ such that 0 ≤ λ ≤ 1 and a profile RN at which a is elected and a manipulation

may occur in favor of a political equilibrium b. In this proof, we denote by
(
C ′j

)
the inequality

obtained from (Cj) by replacing ” ≤ ” with ” ≥ ”. We shall proceed in four steps.

Step 1. Let x = (x1, x2, x3, x4, x5, x6) be the anonymous version of RN . Then x satisfies (E0).

Since a is elected at x, then S
(
a, λ,RN

)
− S

(
b, λ,RN

)
≥ 0 and S

(
a, λ,RN

)
− S

(
c, λ,RN

)
≥ 0.

These yield (C1) and (C2). By hypothesis, Sλ is manipulable from RN to an equilibrium TN by

some voters, inducing the election of b. Let y3 be the total number of bac voters who strategically

report bca and let y6 be the total number of cba voters who now report bca. Then the new profile
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TN is described by y = (x1, x2, x3−y3, x4+y3+y6, x5, x6−y6). Note that by definition of y3 and y6,
we have y3 ≤ x3 and y6 ≤ x6. Thus (C5) and (C6) hold. Since b is the winner at TN , y is such that
S
(
b, λ, TN

)
−S

(
a, λ, TN

)
≥ 0 and S

(
b, λ, TN

)
−S

(
c, λ, TN

)
≥ 0. Expliciting these two constraints

gives (C3) and (C4).

Since TN is an equilibrium, there is no profitable deviation from TN . We now prove that x, y3 and

y6 should satisfy at least one constraint from (C7 : C9) and at least one constraint from (C10 : C12).

We proceed as follows:

Step 2. We assume that the assumption that TN is an equilibrium is disrupted by the existence

of a profitable deviation from TN in favor of a. This is possible only if a can be elected when all

cab voters now report acb while an appropriate number z1 of abc voters report acb. The anonymous

version of the new profile, say QN , is z = (x1− z1, x2+ z1+ x5, x3− y3, x4+ y3+ y6, 0, x6− y6) with
0 ≤ z1 ≤ x1. Since a should be elected at QN , z1 is such that S

(
a, λ,QN

)
− S

(
b, λ,QN

)
≥ 0 and

S
(
a, λ,QN

)
− S

(
c, λ,QN

)
≥ 0. For λ > 0, rewriting these two conditions, we obtain

z1 ≥ max(0,
(λ− 1)x1 − x2 + (1− λ)x3 + x4 − x5 + λx6 + λy3 + (1− λ)y6

λ
) = z−1

and

z1 ≤ min(x1,
x1 + (1− λ)x2 + λx3 − λx4 + (1− λ)x5 − x6 − 2λy3 + (1− λ)y6

λ
) = z+1 .

Clearly, z1 exists only if z−1 ≤ z+1 . Equivalently each term from z−1 should be less than or equal to

each term from z+1 . Thus comparing each term from z
−
1 to each term from z

+
1 yields (C

′
7 − C ′9). Now

for λ = 0, (C ′9) is implied by (C
′
7) and (C

′
8); and S

(
a, λ,QN

)
− S

(
b, λ,QN

)
≥ 0 and S

(
a, λ,QN

)
−

S
(
c, λ,QN

)
≥ 0 immediately yield (C ′7) and (C

′
8). In both cases, (C

′
7 − C ′9) hold when QN exists.

Since there should not exist a profitable deviation from TN , at least one inequality from (C ′7 − C ′9)
does not hold. This prove that at least one inequality from (C7 − C9) holds.

Step 3. Similarly we assume that the assumption that TN is an equilibrium is disrupted by the

existence of a profitable deviation from TN in favor of c. To favor the election of c instead of b, all

acb voters should report cab, an appropriate number z6 of cba voters should now submit cab while

the rest of cba voters truthfully report cba. The anonymous version of the new profile, say HN , is

z = (x1, 0, x3 − y3, x4 + y3, x5 + x2 + z6, x6 − z6) with 0 ≤ z6 ≤ x6. Since c should be elected at HN ,

z6 satisfies S
(
c, λ,HN

)
− S

(
a, λ,HN

)
≥ 0 and S

(
c, λ,HN

)
− S

(
b, λ,HN

)
≥ 0. For λ > 0, these

amount to:

z6 ≥ max(0,
λx1 − x2 + x3 + (1− λ)x4 − x5 − (1− λ)x6 − λy3

λ
) = z−6

and

z6 ≤ min(x6,
−x1 + (1− λ)x2 − λx3 + λx4 + (1− λ)x5 + x6 + 2λy3

λ
) = z+6 .

Clearly, z6 exists if and only if z−6 ≤ z+6 . As above, comparing each term from z−6 to each term

from z+6 yields (C
′
10 − C ′12). Now for λ = 0, (C ′12) is implied by (C ′10) and (C ′11); and S

(
c, λ,HN

)
−

S
(
a, λ,HN

)
≥ 0 and S

(
c, λ,HN

)
− S

(
b, λ,HN

)
≥ 0 immediately yield (C ′10) and (C

′
11). In both
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cases, (C ′10 − C ′12) hold when HN exists. Since there should not exist a profitable deviation from

TN , at least one inequality from (C ′10 − C ′12) does not hold. This proves that at least one inequality
from (C10 − C12) holds.

Step 4. We conclude from the previous steps that x, y3 and y6 simultaneously satisfy: (1)

(C1 : C6); (2) at least one inequality from (C7 : C9); (3) and at least one inequality from (C10 : C12).

From Lemma 1, we obtain nine subdomains Di,j with 7 ≤ i ≤ 9 and 10 ≤ j ≤ 12 where Di,j is
defined by:

Di,j = {x : there exist two integers y3 ≥ 0 and y6 ≥ 0 such that (E0) , (C1 : C6) , (Ci) , and (Cj)} .
(4)

For each such subdomain, we provide an upper bound of the maximum and the minimum value of

x3 + x4 + x6. This yields Lemmas 2, 3 and 4 below.

Lemma 2 Assume that 0 ≤ λ ≤ 1
2 . For each of the three subdomains D7,j for j = 10, 11, 12, the

maximum value M∗ (D7,j) and the minimum value m∗ (D7,j) of x3 + x4 + x6 are such that :

D7,10 D7,11 D7,12

M∗ (D7,j) ≤ 2−2λ−λ2
3−3λ

2λ(3−λ)
1+7λ−3λ2 , λ1 ≤ λ ≤

1
2






2−2λ−λ2
3−3λ , 0 ≤ λ ≤ λ2

6−6λ+λ2
3(3−2λ) , λ2 < λ ≤

1
2

m∗ (D7,j) ≥ 2−λ
3

λ3+λ2−6λ+2
3−8λ−λ2+λ3 , λ1 ≤ λ ≤

1
2

2−λ
3

with λ1 =
3−
√
5

2 with λ2 =
3−
√
3

3

Proof. In the present proof, we rewrite each inequality (Cj), j = 1, 2, ..., 12, as an equality (Ej) by

introducing a positive slack variable ej .7 For example, (C1) becomes (E1) : (λ − 1)x1 − x2 + (1 −
λ)x3 + x4 − λx5 + λx6 + e1 = 0.

Subdomain D7,10: By solving (E0 : E6), (E7) and (E10) with respect to e5, e6, e3, e4, x1, x2,

x3, x6 and y3, we obtain

x3 + x4 + x6 =
2− 2λ− λ2
3− 3λ − λx4 + (λ− 1)x5 +

λ2y6
2λ− 2 +

(λ+ 1) e1
3λ− 3 +

(2λ− 1) e2
3− 3λ − λ

2 (e7 + e10)

2 (1− λ)2

Since each variable has a negative coefficient, we conclude that M∗ (D7,10) ≤ 2−2λ−λ2
3−3λ .

Similarly, by solving (E0 : E6), (E7) and (E10) with respect to e1, e6, e2, e3, e10, x1, x2, x3 and

x4, we obtain

x3 + x4 + x6 =
2− λ
3

+
1

3
e4 +

2

3
e7 +

1− λ
3

x5 + λe5

7The same set of notations will also be used to prove subsequent propositions.
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Since each variable has a positive coefficient, we conclude that m∗ (D7,10) ≥ 2−λ
3 .

Subdomain D7,11: It appears that D7,11 is not feasible when 0 ≤ λ < 3−
√
5

2 . To see this, first

assume that 0 ≤ λ ≤ λ0 where λ0 ≈ 0.36445 is the unique solution to 3 − 8λ − λ2 + λ3 = 0 that

belongs to [0, 1]. By combining (C1), (C5), (C7) and (C11) as

(C1) +
λ
(
3 + λ− 4λ2

)

3− 2λ+ λ2
(C5) +

3− 2λ− 2λ2
3− 2λ+ λ2

(C7) +
3− 5λ

3− 2λ+ λ2
(C11)

and since each coefficient of this combination is positive, it appears that:

λ3

λ2 − 2λ+ 3
+ λx4 +

(
3− 8λ− λ2 + λ3

)
x2 +

(
6− 13λ+ 2λ2

)
x5 + (1− λ)

(
3− 2λ− 2λ2

)
y6

3− 2λ+ λ2
≤ 0.

This is a contradiction since the left hand side of this inequality is positive for 0 ≤ λ ≤ λ0.
First assume that λ0 < λ < λ1 = 3−

√
5

2 . By combining (E1), (E5), (E6), (E7) and (E11) as

(C1) +
λ
(
4− 5λ+ λ2

)

1 + 3λ− λ2
(C5) +

8λ+ λ2 − λ3 − 3
1 + 3λ− λ2

(C6) +
2− λ

1 + 3λ− λ2
(C7) +

λ (3− λ)
1 + 3λ− λ2

(C11)

and since each coefficient of this combination is positive, it follows that

λx4 + (1− λ)x5 +
2λ2 − λ3 + 5λ− 1
3λ− λ2 + 1

y6 +
λ2 − 3λ+ 1
3λ− λ2 + 1

≤ 0.

This is also a contradiction since the left hand side of this inequality is positive for λ0 < λ < λ1.

Now assume that λ1 ≤ λ ≤ 1
2 . By solving (E0 : E6), (E7) and (E11) with respect to e5, e6,

e2, e3, e4, x2, x3, x6 and y3, we obtain

x3 + x4 + x6 =
2λ (3− λ)
1 + 7λ− 3λ2

+

(
2− 6λ− λ2

)
x1 + λ (λ− 3)x4 + (1− λ) (λ− 3)x5

1 + 7λ− 3λ2

+
(1− 2λ) (λ− 1) y6 + (λ− 3) e1 + (2λ− 1) e7 + (4λ− 2) e11

1 + 7λ− 3λ2

Since each variable has a negative coefficient, we conclude that M∗ (D7,11) ≤ 2λ(3−λ)
1+7λ−3λ2 .

Similarly, by solving (E0 : E6), (E7) and (E11) with respect to e6, e2, e3, e4, x1, x2, x3, x6
and y3, we obtain:

x3 + x4 + x6 =
λ3 + λ2 − 6λ+ 2
3− 8λ− λ2 + λ3

+

(
λ− 2λ2

)
x4 +

(
2λ2 − 3λ+ 1

)
x5 +

(
λ2 + 3λ− 1

)
e7

λ2 + 8λ− 3− λ3

+
(1− 2λ) e1 +

(
λ3 + 6λ2 − 2λ

)
e5 +

(
4λ− 1− 2λ2 − λ3

)
y6 + λ

2e11

λ2 + 8λ− 3− λ3
.

Since each variable has a non-negative coefficient, we conclude that m∗ (D7,11) ≥ λ3+λ2−6λ+2
3−8λ−λ2+λ3 .

Subdomain D7,12: By solving (E0 : E6), (E7) and (E12) with respect to e1, e12, e6, e2, e3, x1,

x2, x3 and x4, we obtain:

x3 + x4 + x6 =
2− λ
3

+
1− λ
3

x5 +
1

3
e4 + λe5 +

2

3
e7
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Each variable has a non-negative coeffocient. Thus m∗ (D7,12) ≥ 2−λ
3 .

About M∗ (D7,12), first assume that 0 ≤ λ ≤ λ2 =
3−
√
3

3 . Then by solving (E0 : E6), (E7)

and (E12) with respect to e5, e6, e2, e3, e4, x1, x3, x6 and y3, we obtain:

x3 + x4 + x6 =
2− 2λ− λ2
3− 3λ +

(
2− 6λ+ 3λ2

)
x2 + (2λ− 1) (2λ− 3)x5 + (1− 2λ) e7

λ− 1 − λx4

+(2λ− 1) y6 − e1 −
2

3

(2λ− 1) e12
λ− 1 .

Each variable has a non-positive coefficient. Thus M∗ (D7,12) ≤ 2−2λ−λ2
3−3λ for 0 ≤ λ ≤ λ2.

Now assume that λ2 < λ ≤ 1
2 . Similarly, by solving (E0 : E6), (E7) and (E12) with respect

to e6, e2, e3, e4, x1, x2, x3, x6 and y3, we obtain:

x3 + x4 + x6 =
6− 6λ+ λ2
3(3− 2λ) − λ (λ− 1)

2 x4 + (1− λ)3 x5 + (1− λ)
(
3λ− λ2 − 1

)
y6

(2λ− 1) (2λ− 3)

−(λ− 1)
2 e1 +

(
3λ− λ2 − 1

)
e7 + λ

(
6λ− 3λ2 − 2

)
e5

(2λ− 1) (2λ− 3) − 1
3

λ2e12
(2λ− 1) (2λ− 3) .

Each variable has a non-positive coefficient. Thus M∗ (D7,12) ≤ 6−6λ+λ2
3(3−2λ) for λ2 < λ ≤

1
2 .

The next lemma concerns the subdomains D8,j , j = 10, 11, 12.

Lemma 3 Assume that 0 ≤ λ ≤ 1
2 . For each of the three subdomains D8,j, j = 10, 11, 12, the

maximum value M∗ (Di,j) and the minimum value m∗ (Di,j) of x3 + x4 + x6 are such that:

D8,10 D8,11 D8,12

M∗ (D8,j) ≤






2−2λ−λ2
3−3λ , 0 ≤ λ ≤ λ3

2−4λ−λ2+λ3
4−10λ+3λ2 , λ3 < λ ≤ λ1

2λ(2−λ)
3λ−λ2+1 , λ1 < λ ≤

1
2






λ+2λ2−2
(2λ+3)(λ−1) , 0 ≤ λ ≤ λ4

2λ+1
2λ+2 , λ4 < λ ≤ 1

2






2−2λ−λ2
3−3λ , 0 ≤ λ ≤ 1

3

1+5λ−2λ2
3+3λ , 13 < λ ≤ 1

2

with λ3 = 3−
√
7, λ1 =

3−
√
5

2 λ4 =
√
17−3
4

m∗ (D8,j) ≥ 1
2

1
2

1
2

Proof. Subdomain D8,10: By solving (E0 : E6), (E8) and (E10) with respect to e1, e2, e3, e4, e10,

x1, x3, x4 and x6, we obtain:

x3 + x4 + x6 =
1

2
+
1

2
e8 +

1

2
λe5 +

(
1

2
− 1
2
λ

)
e6.

Therefore m∗ (D8,10) ≥ 1
2 . To deal with M

∗ (D8,10), we distinguish three cases.
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First assume that 0 ≤ λ ≤ λ3 = 3−
√
7. By solving (E0 : E6), (E8) and (E10) with respect

to e5, e6, e2, e3, e4, x1,x3, x6 and y6, we obtain:

x3 + x4 + x6 =
λ2 + 2λ− 2
3λ− 3 +

(
λ2 − 6λ+ 2

)
x2

3λ− 3 − λx4 −
2λ− 1
λ− 1 x5

−2
3

λ (2λ− 1)
λ− 1 y3 +

λ+ 1

3λ− 3e1 −
1

3

2λ− 1
λ− 1 e10.

Thus M∗ (D8,10) ≤ 2−2λ−λ2
3−3λ for 0 ≤ λ ≤ λ3.

Now assume that λ3 < λ ≤ λ1 = 3−
√
5

2 . By solving (E0 : E6), (E8) and (E10) with respect

to x6, x3, e5, e2, e3, e4, x1, x2 and y6, we obtain:

x3 + x4 + x6 =
2− 4λ− λ2 + λ3
4− 10λ+ 3λ2

− 2λ (λ− 1)2 x4
−10λ+ 3λ2 + 4

− λ (λ− 1) (λ− 2)x5
−10λ+ 3λ2 + 4

− λ
(
2− 6λ+ 3λ2

)
y3

−10λ+ 3λ2 + 4

− λ (2− λ) e1
−10λ+ 3λ2 + 4

+

(
λ2 − 6λ+ 2

)
e8

3λ2 − 10λ+ 4
− (λ− 1)

(
2− 6λ+ λ2

)
e6

−10λ+ 3λ2 + 4
− λ2e10

3λ2 − 10λ+ 4
.

Thus M∗ (D8,10) ≤ 2−4λ−λ2+λ3
4−10λ+3λ2 for λ3 < λ ≤ λ1.

Finally, assume that λ1 < λ ≤ 1
2 . By solving (E0 : E6), (E8) and (E10) with respect to e5,

e6, e2, e3, e4, e8, x2, x3 and x6, we obtain:

x3 + x4 + x6 =
2λ (2− λ)
3λ− λ2 + 1

+
λ2 − 6λ+ 2
3λ− λ2 + 1

x1 −
3λ− 3λ2
3λ− λ2 + 1

x4 +
λ2 − 1

3λ− λ2 + 1
x5

− 2λ− 4λ2
3λ− λ2 + 1

y3 −
λ+ 1

3λ− λ2 + 1
e1 +

2λ− 1
3λ− λ2 + 1

e10.

Subdomain D8,11: By solving (E0 : E6), (E8) and (E11) with respect to e1, e2, e3, e4, e11, x1,

x4, x3 and x6, we obtain:

x3 + x4 + x6 =
1

2
+
1

2
e8 +

λ

2
e5 +

(
1

2
− λ
2

)
e6.

Therefore m∗ (D8,11) ≥ 1
2 .

To deal with M∗ (D8,11), first assume that 0 ≤ λ ≤ λ4 =
√
17−3
4 . By solving (E0 : E6), (E8)

and (E11) with respect to e5, e6, e2, e3, e4, e8, x1, x3 and x6, we obtain:

x3 + x4 + x6 =
λ+ 2λ2 − 2

(2λ+ 3) (λ− 1) −
3λ+ 2λ2 − 1
(2λ+ 3) (λ− 1)x2 −

λ (2λ− 3)
(2λ+ 3) (λ− 1)x4

−(λ+ 3) (2λ− 1)
(2λ+ 3) (λ− 1)x5 −

λ (2λ− 1)
(2λ+ 3) (λ− 1)y3 +

2

(2λ+ 3) (λ− 1)e1 −
2λ− 1

2λ2 + λ− 3
e11.

Since each variable has a non-negative coefficient, we conclude that M∗ (D8,11) ≤ λ+2λ2−2
(2λ+3)(λ−1) for

0 ≤ λ ≤ λ4 =
√
17−3
4 .
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Now assume that λ4 < λ ≤ 1
2 . By solving (E0 : E6), (E8) and (E11) with respect to e5, e6,

e2, e3, e4, e8, x2, x3 and x6, we obtain:

x3 + x4 + x6 =
2λ+ 1

2λ+ 2
− 1
2

3λ+ 2λ2 − 1
λ+ 1

x1 +
1

2

λ (2λ− 3)
λ+ 1

x4

+
λ− 1
λ+ 1

x5 +
1

2

λ (2λ− 1)
λ+ 1

y3 −
e1
λ+ 1

+
2λ− 1
2λ+ 2

e11.

Therefore M∗ (D8,11) ≤ 2λ+1
2λ+2 for λ4 < λ ≤ 1

2 .

Subdomain D8,12: By solving (E0 : E6), (E8) and (E12) with respect to e1, e12, e2, e3, e4, x1,

x3, x4 and x6, we obtain:

x3 + x4 + x6 =
1

2
+
1

2
e8 +

λ

2
e5 +

(
1

2
− λ
2

)
e6.

Thus m ∗ (D8,12) ≥ 1
2 .

About M∗ (D8,12), first assume that 0 ≤ λ ≤ 1
3 . Then by solving (E0 : E6), (E8) and (E12)

with respect to e5, e6, e2, e3, e4, e8, x1, x3 and x6, we obtain:

x3 + x4 + x6 =
2− 2λ− λ2
3− 3λ +

1

2

1− 3λ
λ− 1 x2 − λx4 −

2λ− 1
λ− 1 x5

−λ
2

(2λ− 1)
λ− 1 y3 +

1

2

1

λ− 1e1 −
1

6

2λ− 1
λ− 1 e12.

Thus M∗ (D8,12) ≤ 2−2λ−λ2
3−3λ for 0 ≤ λ ≤ 1

3 .

Now assume that 13 < λ ≤ 1
2 . By solving (E0 : E6), (E8) and (E12) with respect to e5, e6,

e2, e3, e4, e8, x2, x3 and x6, we obtain:

x3 + x4 + x6 =
1 + 5λ− 2λ2
3 + 3λ

+
1− 3λ
λ+ 1

x1 +
2λ (λ− 1)
λ+ 1

x4 +
λ− 1
λ+ 1

x5

+
λ (2λ− 1)
λ+ 1

y3 −
1

λ+ 1
e1 +

1

3

2λ− 1
λ+ 1

e12.

Therefore M∗ (D8,12) ≤ 1+5λ−2λ2
3+3λ for 13 < λ ≤ 1

2 .

The next lemma concerns the subdomains D9,j , j = 10, 11, 12.

Lemma 4 Assume that 0 ≤ λ ≤ 1
2 . For each of the three subdomains D9,j, j = 10, 11, 12, the

maximum value M∗ (Di,j) and the minimum value m∗ (Di,j) of x3 + x4 + x6 are such that :

D9,10 D9,11 D9,12

M∗ (D9,j) ≤






2−2λ−λ2
3−3λ , 0 ≤ λ ≤ λ2

1
3
−10λ+5λ2+6
(λ−1)(3λ−4) , λ2 < λ ≤ 1

2






1
6
5λ−4
λ−1 , 0 ≤ λ ≤ λ5

1
3
1+8λ−2λ2
1+3λ−λ2 , λ5 < λ ≤

1
2






1
3
2λ+λ2−2
λ−1 , 0 ≤ λ ≤ λ1

1
3
3−4λ+2λ2
(λ−1)(λ−2) , λ1 < λ ≤ 1

2

with λ2 =
3−
√
3

3 with λ5 =
√
13−3
2 with λ1 =

3−
√
5

2

m∗ (D9,j) ≥ 2−λ
3

2−λ
3

2−λ
3
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Proof. Subdomain D9,10: By solving (E0 : E6), (E9) and (E10) with respect to e1, e6, e2, e3, e4,

e10, x1, x3 and x4, we obtain:

x3 + x4 + x6 =
2− λ
3

+ λe5 +
1

3
e9.

Therefore m∗ (D9,10) ≥ 2−λ
3 .

To deal with M∗ (D9,10), we distinguish two cases.

First assume that 0 ≤ λ ≤ λ2 = 3−
√
3

3 . By solving (E0 : E6), (E9) and (E10) with respect to

e5, e6, e2, e3, e4, x1, x3, x6 and y3, we obtain:

x3 + x4 + x6 =
1

3

2λ+ λ2 − 2
λ− 1 +

−6λ+ 3λ2 + 2
λ− 1 x2 − λx4

+
(2λ− 1) (2λ− 3)

λ− 1 x5 − e1 −
2

3

2λ− 1
λ− 1 e9 −

2λ− 1
λ− 1 e10.

Thus M∗ (D9,10) ≤ 2−2λ−λ2
3−3λ for 0 ≤ λ ≤ λ2.

Now assume that λ2 < λ ≤ 1
2 . By solving (E0 : E6), (E9) and (E10) with respect to e5, e6,

e2, e3, e4, x1, x2, x3 and y3, we obtain:

x3 + x4 + x6 =
1

3

−10λ+ 5λ2 + 6
(λ− 1) (3λ− 4) −

λe10
(λ− 1) (3λ− 4) +

−6λ+ 3λ2 + 2
(λ− 1) (3λ− 4)x6

+
λ (λ− 2)x4

(λ− 1) (3λ− 4) −
λ− 2
3λ− 4x5 +

λ− 2
(λ− 1) (3λ− 4)e1 −

2

3

λe9
(λ− 1) (3λ− 4) .

Thus M∗ (D9,10) ≤ 1
3
−10λ+5λ2+6
(λ−1)(3λ−4) for λ2 < λ ≤

1
2 .

Subdomain D9,11: By solving (E0 : E6), (E9) and (E11) with respect to e1, e6, e2, e3, e4, e11,

x1, x3 and x4, we obtain:

x3 + x4 + x6 =
2− λ
3

+
1

3
e9 + λe5.

Therefore m∗ (D9,11) ≥ 2−λ
3 .

To deal with M∗ (D9,11), first assume that 0 ≤ λ ≤ λ5 =
√
13−3
2 . By solving (E0 : E6), (E9)

and (E11) with respect to e5, e6, e2, e3, e4, x1, x3, x6 and y3, we obtain:

x3 + x4 + x6 =
1

6

5λ− 4
λ− 1 −

1

2

(
3λ+ λ2 − 1

)
x2

(λ− 1) (λ+ 1) −
1

2

λ (λ− 2)x4
(λ− 1) (λ+ 1) −

1

6

(2λ− 1) e9
(λ− 1) (λ+ 1)

−3
2

2λ− 1
(λ− 1) (λ+ 1)x5 −

1

2

λ− 2
(λ− 1) (λ+ 1)e1 −

1

2

2λ− 1
(λ− 1) (λ+ 1)e11.

Since each variable has a non positive coefficient, we conclude that M∗ (D9,11) ≤ 1
6
5λ−4
λ−1 for

0 ≤ λ ≤ λ5 =
√
13−3
2 .
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Now assume that λ5 < λ ≤ 1
2 . By solving (E0 : E6), (E9) and (E11) with respect to e5, e6,

e2, e3, e4, x2, x3, x6 and y3, we obtain:

x3 + x4 + x6 =
1

3

1 + 8λ− 2λ2
1 + 3λ− λ2

+

(
3λ+ λ2 − 1

)
x1

−3λ+ λ2 − 1
+
λ (λ− 2)x4
3λ− λ2 + 1

+
(λ− 1) (λ− 2)x5
−3λ+ λ2 − 1

+
λ− 2

3λ− λ2 + 1
e1 −

1

3

2λ− 1
−3λ+ λ2 − 1

e9 +
2λ− 1

3λ− λ2 + 1
e11.

Therefore M∗ (D9,11) ≤ 1
3
1+8λ−2λ2
1+3λ−λ2 for λ5 < λ ≤

1
2 .

Subdomain D9,12: By solving (E0 : E6), (E9) and (E12) with respect to e1, e12, e6, e2, e3, e4,

x1, x3 and x4, we obtain:

x3 + x4 + x6 =
2− λ
3

+
1

3
e9 + λe5.

Therefore m∗ (D9,12) ≥ 2−λ
3 .

About M∗ (D9,12), first assume that 0 ≤ λ ≤ λ1 =
3−
√
5

2 . Then by solving (E0 : E6), (E9)

and (E12) with respect to e5, e6, e2, e3, e4, e8, x1, x3, x6 and y3, we obtain:

x3 + x4 + x6 =
1

3

2λ+ λ2 − 2
λ− 1 +

−3λ+ λ2 + 1
λ− 1 x2 − λx4 − e1

+
(2λ− 1) (λ− 2)

λ− 1 x5 −
1

3

2λ− 1
λ− 1 e9 −

1

3

2λ− 1
λ− 1 e12.

Thus M∗ (D9,12) ≤ 2−2λ−λ2
3−3λ for 0 ≤ λ ≤ λ1.

Now assume that λ1 < λ ≤ 1
2 . By solving (E0 : E6), (E9) and (E12) with respect to e5, e6,

e2, e3, e4, x1, x2, x3 and y3, we obtain:

x3 + x4 + x6 =
1

3

3− 4λ+ 2λ2
(λ− 1) (λ− 2) −

λx4
(λ− 1) (λ− 2) −

1

3

λe12
(λ− 1) (λ− 2)

+
1− 3λ+ λ2
(λ− 1) (λ− 2)x6 −

1

3

λ

(λ− 1) (λ− 2)e9 +
x5
λ− 2 −

e1
(λ− 1) (λ− 2) .

Therefore M∗ (D9,12) ≤ 1
3
3−4λ+2λ2
(λ−1)(λ−2) for λ1 < λ ≤

1
2 .

We are now ready to prove Proposition 1.

Proof. (Proposition 1) Suppose that Sλ is manipulable at a given profile RN . Without loss of

generality, assume that a is elected at RN and that a manipulation can occur in favor of a political

equilibrium b. Then the anonymous version x = (x1, x2, x3, x4, x5, x6) belongs to at least one of the

nine subdomains Di,j described at (4). Thus:

M∗ (λ, n) ≤ max
7≤i≤9,10≤j≤12

M∗ (Di,j) .

Using bounds provided by Lemmas 2, 3 and 4, we deduce8 that M∗ (λ, n) ≤ 2−2λ−λ2
3−3λ if 2−2λ−λ

2

3−3λ ≥
1+2λ
2+2λ andM

∗ (λ, n) ≤ 1+2λ
2+2λ if

2−2λ−λ2
3−3λ ≤ 1+2λ

2+2λ . Note that for 0 ≤ λ ≤ 1
2 ,

2−2λ−λ2
3−3λ ≥ 1+2λ

2+2λ is equivalent

8A simple way to see this is to sketch the curve of M∗ (Di,j) for each subdomain in order to deduce the maximum
bound.
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to 0 ≤ λ ≤ λ∗.

7.2 Proof of Proposition 2

Proof. The proof is done in three steps.

Step 1. We show that M∗ (λ, n) > 1
n

⌊
2−2λ−λ2
3−3λ n

⌋
− 2

n
for 0 ≤ λ ≤ λ∗ and n ≥ 21. Assume that

0 ≤ λ ≤ λ∗ and n ≥ 21. Let q =
⌊
1+λ
3 n

⌋
and p =

⌊
1−2λ
3−3λn+

1+λ
3 n

⌋
− q. Note that 1−2λ3−3λ is decreasing

as λ increases from 0 to λ∗. Thus 1−2λ
3−3λn ≥ 1−2λ∗

3−3λ∗n > 3. Thus p ≥
⌊
3 + 1+λ

3 n
⌋
− q = 3 and p is a

positive integer. Consider the following profiles:

Type Initial profile RN Strategic profiles TN

a b c a b b

Preferences b a b b a c

c c a c c a

Number of voters n+ 1− p− q p− 1 q n+ 1− p− q p− 1 q

Assume that the sincere profile RN is described by the initial profile above. Then S
(
a, λ,RN

)
−

S
(
b, λ,RN

)
= n+ 1− p− q+ λ (p− 1)− p+ 1− λ (n+ 1− p) = (1− λ)n− (2− 2λ) p− q+ 2− 2λ.

Since 1 − λ > 0 and p ≤ 1−2λ
3−3λn +

1+λ
3 n − q, we have S

(
a, λ,RN

)
− S

(
b, λ,RN

)
≥ (1− λ)n −

(2− 2λ)
(
1−2λ
3−3λn+

1+λ
3 n− q

)
− q+2− 2λ =

(
2
3λ
2 + 1

3λ− 1
3

)
n+(1− 2λ) q+(2− 2λ). Moreover q >

1+λ
3 n−1 and 1−2λ > 0. Thus S

(
a, λ,RN

)
−S

(
b, λ,RN

)
>
(
2
3λ
2 + 1

3λ− 1
3

)
n+(1− 2λ)

(
1+λ
3 n− 1

)
+

(2− 2λ) = 1. Similarly S
(
a, λ,RN

)
−S

(
c, λ,RN

)
= n+1−p−q+λ (p− 1)−q = n−(1− λ) p−2q−

λ+1 ≥ n− (1− λ)
(
1−2λ
3−3λn+

1+λ
3 n− q

)
−2q+1−λ =

(
1
3λ
2 + 2

3λ+
1
3

)
n− (1 + λ) q+(1− λ). Hence

S
(
a, λ,RN

)
− S

(
c, λ,RN

)
≥
(
1
3λ
2 + 2

3λ+
1
3

)
n− (1 + λ)

(
1+λ
3 n

)
+ (1− λ) = 1− λ > 0. Therefore a

wins at RN .

Now suppose that all cba voters strategically submit bca. The new profile is described by

the strategic profile TN above. At TN , c is Pareto dominated by b. Moreover, S
(
b, λ, TN

)
−

S
(
a, λ, TN

)
= p+ q − 1 + λ (n+ 1− p− q)− (n+ 1− p− q)− λ (p− 1) = (λ− 1)n+ (2− 2λ) p+

(2− λ) q+2λ− 2. By definition of p and q, p =
⌊
1−2λ
3−3λn+

1+λ
3 n

⌋
− q > 1−2λ

3−3λn+
1+λ
3 n− 1− q. Thus

S
(
b, λ, TN

)
− S

(
a, λ, TN

)
> (λ− 1)n + (2− 2λ)

(
1−2λ
3−3λn+

1+λ
3 n− 1− q

)
+ (2− λ) q + 2λ − 2 =

(
1
3 − 1

3λ− 2
3λ
2
)
n+λq+(4λ− 4) ≥

(
1
3 − 1

3λ− 2
3λ
2
)
n+λ

(
1+λ
3 n− 1

)
+4λ−4 =

(
1
3 − 1

3λ
2
)
n+3λ−4 ≥

20
(
1
3 − 1

3λ
2
)
+ 3λ− 4

= 8+9λ−20λ2
3 ≥ 8

3 for 0 ≤ λ ≤ λ∗. It follows that S
(
b, λ, TN

)
− S

(
a, λ, TN

)
> 0. Therefore b

wins at the new profile TN .

Finally let us prove that TN is an equilibrium. Note that strategic voting from abc voters may

occur only in favor of a while all cba voters would like to favor the election of c. We first assume

that from TN , all abc voters deviate by submitting acb. At the new profile QN , S
(
b, λ,QN

)
−

S
(
a, λ,QN

)
= p + q − 1 − (n + 1 − p − q) − λ (p− 1) = −n + (2− λ) p + 2q + λ − 2 > −n +

(2− λ)
(
1−2λ
3−3λn+

1+λ
3 n− 1− q

)
+2q+λ−2 = 1−3λ+λ3

3−3λ n+λq+2 (λ− 2) ≥ 1−3λ+λ3
3−3λ n+λ

(
1+λ
3 n− 1

)
+

2 (λ− 2) = 1−2λ
3−3λn + λ − 4 ≥ 21

(
1−2λ
3−3λ

)
+ λ − 4 = 3−9λ−λ2

1−λ > 0 for 0 ≤ λ ≤ λ∗. We deduce that

S
(
b, λ,QN

)
−S

(
a, λ,QN

)
> 0. Thus b still collects more points than a at QN . Now we assume that
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some cba voters act strategically. Note that at the new profile HN , preferences of abc voters and bac

voters are as in the initial profile RN . Since at RN , c initially collects less points than a while cba

voters were contributing the maximum for c, then c can not be elected by unilateral actions from

cba voters. Therefore, there is no opportunity for a profitable deviation at TN by any coalition. In

other words, TN is an equilibrium.

Since from RN to QN , both bac voters and cba voters benefit from the manipulation, we conclude

that M∗ (n, λ) ≥ p+q−1
n

> 1
n

⌊
1−2λ
3−3λn+

1+λ
3 n

⌋
− 2

n
= 1

n

⌊
2−2λ−λ2
3−3λ n

⌋
− 2

n
.

Step 2. We show that M∗ (n, λ) > 1
n

⌊
1
2
2λ+1
λ+1 n

⌋
for λ∗ ≤ λ ≤ 1

2 and n ≥ 36. Assume that

λ∗ ≤ λ ≤ 1
2 and n ≥ 36. Let n = 2k+ r with r ∈ {0, 1}, p = n−r

2 +1 and q =
⌊
2λ+1
2+2λn

⌋
−p. Note that

p+q =
⌊
2λ+1
2+2λn

⌋
≤ 1

2
2λ+1
λ+1 n < n and q ≥ 1

2
2λ+1
λ+1 n−1− n−r

2 −1 = λ
2λ+2n−2+ λ+1

2λ+2r ≥ λ∗

2+2λ∗n−2 > 0.
Therefore n+ 1− p− q and q − 1 are non negative integers. Consider the following profiles:

Type Initial profile RN Strategic profiles TN

a b c a b b

Preferences c a b c a c

b c a b c a

Number of voters n+ 1− p− q p q − 1 n+ 1− p− q p− 2 q + 1

Assume that the sincere profile RN is described by the initial profile above. Then S
(
a, λ,RN

)
−

S
(
b, λ,RN

)
= n−(p+ q)−(1− λ) p−λq+λ+1. Since q =

⌊
2λ+1
2+2λn

⌋
−p, it follows that S

(
a, λ,RN

)
−

S
(
b, λ,RN

)
= n− (1 + λ)

⌊
2λ+1
2+2λn

⌋
− (1− 2λ) p+ λ+1. Taking into account that

⌊
2λ+1
2+2λn

⌋
≤ 2λ+1

2+2λn

and p = n−r
2 + 1, we obtain S

(
a, λ,RN

)
− S

(
b, λ,RN

)
≥ 1

2r + (3− r)λ > 0. In the same way,

S
(
a, λ,RN

)
−S

(
c, λ,RN

)
= n−(1− λ) (p+ q)−q−λ−nλ+pλ+2. Thus S

(
a, λ,RN

)
−S

(
c, λ,RN

)
=

n − (2− λ)
⌊
2λ+1
2+2λn

⌋
− nλ + (1 + λ) p + 2 − λ. We deduce that S

(
a, λ,RN

)
− S

(
c, λ,RN

)
≥ n −

(2− λ) 2λ+12+2λn−nλ+(1 + λ)
(
n−r
2 + 1

)
+2−λ = λ2−λ+1

2λ+2 n+3−
r(λ+1)
2 > 0. Therefore a wins at RN .

Now suppose that all cba voters and exactly two bac voters strategically submit bca. The new

profile is described by the strategic profile TN above. At TN , S
(
b, λ, TN

)
−S

(
a, λ, TN

)
= 2 (p+ q)−

n+2λ−pλ−2. Since
⌊
2λ+1
2+2λn

⌋
> 2λ+1

2+2λn−1 and p = n−r
2 +1, S

(
b, λ, TN

)
−S

(
a, λ, TN

)
> −1

2λ
λ−1
λ+1n+

λ+ 1
2rλ−4. Then for λ

∗ ≤ λ ≤ 1
2 , S

(
b, λ, TN

)
−S

(
a, λ, TN

)
> −1

2
λ∗(λ∗−1)
λ∗+1 n+

(
1 + 1

2r
)
λ∗−4 = F (n).

Noting that −1
2
λ∗(λ∗−1)
λ∗+1 > 0, we deduce that F (n) is increasing as n increases for both even values

or odd values of n. Moreover, F (36) > 0 and F (37) > 0. Therefore, S
(
b, λ, TN

)
− S

(
a, λ, TN

)
> 0

for n ≥ 36. Similarly, S
(
b, λ, TN

)
− S

(
c, λ, TN

)
= p + q − 2λ − nλ + pλ − 1. Thus S

(
b, λ, TN

)
−

S
(
c, λ, TN

)
> 2λ+1

2+2λn− 1− 2λ− nλ+
(
n−r
2 + 1

)
λ− 1 = 1

2
λ−λ2+1
λ+1 n− 1

2λr− (λ+ 2). For λ
∗ ≤ λ ≤ 1

2 ,
1
2
λ−λ2+1
λ+1 decreases as λ increases. Thus S

(
b, λ, TN

)
− S

(
c, λ, TN

)
≥ 5

12n − 1
2λr − (λ+ 2) > 0 for

n ≥ 36. Therefore b wins at the new profile TN .

Finally let us prove that TN is an equilibrium. Strategic voting in favor of a by only acb voters

is not achievable since those voters are already contributing the maximum for a and nothing for

b. In order to advantage c against b, assume that acb voters and cba voters now submit cab. At

the new profile, say QN obtained from TN , p − 2 voters report bac, 2 voters report bca and n − p
voters report cab. It follows that S

(
b, λ,QN

)
− S

(
c, λ,QN

)
= p− (n− p+ 2λ). Since p = n−r

2 + 1,
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S
(
b, λ,QN

)
− S

(
c, λ,QN

)
= 2 − 2λ − r ≥ 0. By assumption, r ∈ {0, 1} and λ ≤ 1

2 . Thus

S
(
b, λ,QN

)
− S

(
c, λ,QN

)
≥ 0. Therefore c does not win at QN . We conclude that TN is an

equilibrium.

Since from RN to TN , both bac voters and cba voters benefit from the manipulation, we conclude

that M∗ (n, λ) ≥ p+q
n
= 1

n

⌊
1
2
2λ+1
λ+1 n

⌋
.

Step 3. The proof is completed by taking into consideration Proposition 1.

7.3 Proof of Proposition 3

Proof. Assume that n ≥ 15 and 1
2
< λ ≤ 1. For λ = 1, suppose that individuals unanimously rank

b first, a second, and c third. Then under F1, a wins but b wins if an individual strategically submits

bca instead of bac. Since b is unanimously preferred to a, no profitable deviation is possible. The

new profile is an equilibrium and M∗(1, n) ≥ 1. Hence M∗ (1, n) = 1.

Now suppose that
1

2
< λ < 1.

1. We first prove that M∗ (λ, n) ≥ 1− 1
n

⌈
n
1− λ
2− λ

⌉
. For this purpose, pose k =

⌈
n
1− λ
2− λ

⌉
. Since

1

2
< λ < 1, it follows that 0 <

1− λ
2− λ <

1

3
and that 1 ≤ k ≤

⌈n
3

⌉
. Moreover 0 ≤ k−1 < n1− λ

2− λ .
Consida profile RN and TN described as follows:

Initial profile RN strategic profile TN

a b a b b

Preferences c a c a c

b c b c a

Number of voters k n− k k n− k − 3 3

With sincere votes, S
(
a, λ,RN

)
−S

(
b, λ,RN

)
= (2− λ)

(
k − n1− λ

2− λ

)
≥ 0 and S

(
a, λ,RN

)
−

S
(
c, λ,RN

)
= nλ−(2λ− 1) k ≥ nλ−(2λ− 1)

(
n
1− λ
2− λ + 1

)
= nλ−λ

2−1
λ−2 +(1− 2λ) ≥ n

2−1 > 0

for
1

2
< λ < 1 and n ≥ 15. Then a is elected at RN .

Note that n − k ≥ n −
⌈n
3

⌉
> 3. Suppose that three bac voters now strategically submit

bca (instead of bac). We obtain a new profile TN at which S
(
b, λ, TN

)
− S

(
a, λ, TN

)
=

3λ− (2− λ)
(
k − n1− λ

2− λ

)
and S

(
b, λ, TN

)
−S

(
c, λ, TN

)
= n− (1 + λ) k− 3λ. Since k− 1 <

n
1− λ
2− λ , we deduce that S

(
b, λ, TN

)
− S

(
a, λ, TN

)
> 4λ − 2 > 0 for

1

2
< λ < 1. Moreover,

k − 1 < n1− λ
2− λ implies that n − (1 + λ) k − 3λ > n − 2

(n
3
+ 1
)
− 3 = n− 15

3
≥ 0. That is

S
(
b, λ, TN

)
−S

(
c, λ, TN

)
. Therefore b is elected at TN in favor of n−k voters. We claim that

TN is an equilibrium.

In fact, b is elected at TN . Thus any deviation should be in favor of a or c by only acb

voters. But those voters are already contributing the maximum for a and nothing for b. Thus
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any strategic voting occurs in favor of c by submitting cab instead of acb. Even when we

assume that all acb voters carry such a strategic action, we obtain a new profile QN at which

S
(
b, λ, TN

)
− S

(
c, λ, TN

)
= n − 2k − 3λ ≥ n− 15

3
≥ 0. Thus b is still elected at QN . This

proves that TN is an equilibrium. Therefore M∗ (1, n) ≥ x3+x4+x6
n

= 1− 1

n

⌈
n
1− λ
2− λ

⌉
.

2. Now we prove that M∗ (1, n) ≤ 1

2− λ . To see this, we solve (E0 : E4) with respect to

e2, e3, e4, x2 and x3 to obtain

x3 + x4 + x6 =
1

2− λ −
λ

2− λx1 −
λ

2− λx4 −
1− λ
2− λx5 −

2λ− 1
2− λ x6 −

1

2− λe1

Since for 12 < λ < 1, each coefficient that appears is non negative, we deduce that M
∗ (1, n) ≤

1

2− λ .

7.4 Proof of Theorem 1

Proof. Let 0 ≤ λ ≤ λ∗. From Proposition 2, we know that 1
n

⌊
2−2λ−λ2
3−3λ n

⌋
− 2
n
< M∗ (λ, n) ≤ 2−2λ−λ2

3−3λ

for n ≥ 21. When n tends to infinity, the lower bound of M∗ (λ, n), 1
n

⌊
2−2λ−λ2
3−3λ n

⌋
− 2

n
, tends to

2−2λ−λ2
3−3λ , which is an upper bound of M∗ (λ, n). It follows that, when n tends to infinity, M∗ (λ, n)

tends to M∗(λ) = 2−2λ−λ2
3−3λ .

Let λ∗ ≤ λ ≤ 1
2 . From Proposition 2, we know that 1

n

⌊
1+2λ
2+2λn

⌋
≤ M∗ (λ, n) ≤ 1+2λ

2+2λ for n ≥ 25.

When n tends to infinity, 1
n

⌊
1+2λ
2+2λn

⌋
tends to 1+2λ

2+2λ , and it follows that M
∗ (λ, n) tends to M∗ (λ) =

1+2λ
2+2λ .

Let
1

2
< λ ≤ 1. We know from Proposition 3 that 1 − 1

n

⌈
1− λ
2− λn

⌉
≤ M∗(λ, n) ≤ 1

2− λ for

n ≥ 15. Then when n tends to infinity, 1− 1
n

⌈
1− λ
2− λn

⌉
tends to

1

2− λ , and thereforeM
∗(λ, n) tends

to M∗(λ) =
1

2− λ .

7.5 Proof of Proposition 4

Proof. Assume that 0 ≤ λ ≤ 1
2 . It follows from Lemmas 2, 3 and 4 that

m∗ (λ, n) ≥ min
7≤i≤9,10≤j≤12

m∗ (Di,j) =
1

2
.

7.6 Proof of Proposition 5

Proof. Assume that 0 ≤ λ ≤ 1
2 . We show thatm

∗ (λ, n) ≤ 1
2+

1
n
for 0 ≤ λ ≤ λ∗ and n ≥ 37. Assume

that 0 ≤ λ ≤ λ∗ and n ≥ 37. Let p =
⌊
1+λ
6 n

⌋
and q = n−ε

2 −p where
⌊
n
2

⌋
= n−ε

2 . Note that ε = 0 if n is
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even and ε = 1 if n is odd. Moreover p ≤
⌊
1
4n
⌋
, and q =

⌊
n
2

⌋
−p ≥

⌊
n
2

⌋
−
⌊
1
4n
⌋
≥ n−ε

2 − 1
4n =

n−2ε
4 ≥ 7.

Consider the following profiles

Type Initial profile RN Strategic profiles TN

a a b b c a a b

Preferences b c a c b b c c

c b c a a c b a

Number of voters q + ε p− 1 q p− 3 4 q + ε p− 1 p+ q + 1

Assume that the sincere profile RN is described by the initial profile above. Then:

S
(
a, λ,RN

)
− S

(
b, λ,RN

)
= (1− λ) ε+ (2− 4λ) ≥ 0

and

S
(
a, λ,RN

)
− S

(
c, λ,RN

)
= (1− 2λ) p+ (q − 5) + λ (4 + q) + ε > 0.

Therefore a wins at RN .

Now suppose that all cba voters and all bac voters strategically submit bca. The new profile is

described by the strategic profile TN above. At TN ,

S
(
b, λ, TN

)
− S

(
a, λ, TN

)
= (p+ q + 1 + (q + ε)λ)− (q + ε+ p− 1) = 2− (1− λ) ε+ qλ > 0

and

S
(
b, λ, TN

)
−S

(
c, λ, TN

)
= (p+ q + 1 + (q + ε)λ)−λ (p− 1 + p+ q + 1) = (1− 2λ) p+q+λε+1 > 0.

Thus b wins at the new profile TN .

Let us prove that TN is an equilibrium. In fact, given any collective deviation by abc voters

together with acb voters, b scores at least p+ q + 1 points while a scores at most p+ q points. Thus

those voters can not profitably deviate from TN in favor of a. In the same way, when acb voters and

cba voters contribute the maximum for c and nothing for b, c scores at most p + 3 + λ (p+ q − 3)
and b scores at least p+ q − 3 + λ (q + ε). And

p+ q − 3 + λ (q + ε)− (p+ 3 + λ (p+ q − 3)) = q − (p− 3− ε)λ− 6 ≥ q − (p− ε− 3) 1
2
− 6

≥ n− ε
8

− 9
2
+
ε

2
> 0 for n ≥ 37.

Therefore there is no possible profitable deviation from TN in favor of c. We then conclude that TN

is an equilibrium and that m∗ (n, λ) ≤ q+p+1
n

= n−ε
2n + 1

n
≤ 1

2 +
1
n
.

The proof is completed by considering Proposition 4.

7.7 Proof of Proposition 6

In order to prove Proposition 6, we need to prove three preliminary results which identify an upper

bound and a lower bound of x3 + x4 + x6 for each of the domains defined in Section 5.1. The first
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lemma below concerns the sudomians D7,j for j = 10, 11, 12.

Lemma 5 Assume that 12 < λ ≤ 1. For each of the three subdomains D7,j for j = 10, 11, 12, the

minimum value m∗ (D7,j) of x3 + x4 + x6 is such that :

D7,10 D7,11 D7,12

m∗ (D7,j) ≥
{
not feasible for 1

2 < λ < 1
1
3 for λ = 1

λ2−λ−1
λ2−3λ−1

1
3
−6λ+λ2+6
3−2λ

Proof. Subdomain D7,10: We show that D7,10 is not feasible for 1
2 < λ < 1. First assume that

1
2 < λ ≤ 3

5 . By combining (C1), (C7), (C10) and (C5) as

(C1) +
2 + λ

4− 4λ (C7) +
3λ

4− 4λ (C10) +
3− 3λ
2

(C5)

and by setting x6 = 1− x1 − x2 − x3 − x4 − x5, it appears, that

3 (1− λ)
2

x4 + (1− λ)x5 +
3− 5λ
2

y3 +
2 + λ

4
y6 + λ−

1

2
≤ 0.

This is a contradiction since each variable has a positive coefficient for 1
2 < λ ≤ 3

5 and λ − 1
2 > 0.

Now assume that 35 < λ < 1. By combining (C1), (C7), (C10) and (C5) as

(C1) +
3λ2 − 5λ+ 4
2− 2λ2

(C7) +
3λ− λ2
2− 2λ2

(C10) +
4λ− 4λ2
1 + λ

(C5)

it appears that

λx4 + (1− λ)x5 +
5λ− 3
1 + λ

x6 +
3λ2 + 4− 5λ
2 + 2λ

y6 +
(λ− 1)2
λ+ 1

≤ 0.

This is a contradiction since variables in the left hand side all have positive coefficients and (λ−1)2
λ+1 > 0

for 35 < λ < 1. For λ = 1, by solving (E0 : E6), (E7) and (E10) with respect to e1, e6, e2, e3, e10, x1,

x2, x3 and x4, we obtain:

x3 + x4 + x6 =
1

3
e4 + e5 +

2

3
e7 +

1

3
.

Therefore m∗ (D7,10) ≥ 1
3 .

Subdomain D7,11: By solving (E0 : E6), (E7) and (E11) with respect to e1, e6, e2, e3, e4, x1,

x2, x3 and x4, we obtain:

x3 + x4 + x6 =
λ2 − λ− 1
λ2 − 3λ− 1

+
(2λ− 1)x6 +

(
1− λ2

)
y6 + λ (λ+ 2) e5

3λ+ 1− λ2

+
(λ+ 1) e7 + λe11

3λ+ 1− λ2
.

All variables have non-negative coefficients for 12 < λ ≤ 1. Thus m∗ (D7,11) ≥ λ2−λ−1
λ2−3λ−1 .
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Subdomain D7,12: By solving (E0 : E6), (E7) and (E12) with respect to e6, e2, e3, e4, x1, x2,

x3, x6 and y3, we obtain:

x3 + x4 + x6 =
1

3

−6λ+ λ2 + 6
3− 2λ +

λ (λ− 1)2 x4 + (1− λ)3 x5 + (1− λ)
(
3λ− λ2 − 1

)
y6

(2λ− 1) (3− 2λ)

+
(λ− 1)2 e1 + λ

(
6λ− 3λ2 − 2

)
e5 +

(
3λ− λ2 − 1

)
e7 +

1
3λ
2e12

(2λ− 1) (3− 2λ) .

All variables have non-negative coefficients for 12 < λ ≤ 1. Thus m∗ (D7,11) ≥ 1
3
−6λ+λ2+6
3−2λ .

The next lemma concerns the subdomains D8,j for j = 10, 11, 12.

Lemma 6 Assume that 1
2 < λ ≤ 1. For each of the three subdomains D8,j for j = 10, 11, 12,

m∗ (D8,j) ≥ 1
2 .

Proof. Subdomain D8,10: By solving (E0 : E6), (E8) and (E10) with respect to e1, e2, e3, e4, e10,

x1, x3, x4 and x6, we obtain:

x3 + x4 + x6 =
1

2
+
1

2
λe5 +

1− λ
2

e6 +
1

2
e8.

This proves that m∗ (D7,11) ≥ 1
2 .

Subdomain D8,11: By solving (E0 : E6), (E8) and (E11) with respect to e1, e2, e3, e4, e11, x1,

x3, x4 and x6, we obtain:

x3 + x4 + x6 =
1

2
+
1

2
e8 +

1− λ
2

e6 +
1

2
λe5.

Thus m∗ (D7,11) ≥ 1
2 .

Subdomain D8,12: By solving (E0 : E6), (E8) and (E12) with respect to e1, e12, e2, e3, e4, x1,

x3, x4 and x6, we obtain:

x3 + x4 + x6 =
1

2
+
1− λ
2

e6 +
1

2
e8 +

λ

2
e5.

which proves that m∗ (D8,12) ≥ 1
2 .

Lemma 7 below concerns the subdomains D9,j for j = 10, 11, 12.

Lemma 7 Assume that 1
2 < λ ≤ 1. For each of the three subdomains D9,j for j = 10, 11, 12,

m∗ (D9,j) ≥ 2−λ
3 .

Proof. Subdomain D9,10: By solving (E0 : E6), (E9) and (E10) with respect to e1, e6, e2, e3, e4,

e10, x1, x3 and x4, we obtain:

x3 + x4 + x6 =
2− λ
3

+
1

3
e9 + λe5.

This proves that m∗ (D7,11) ≥ 2−λ
3 .
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Subdomain D9,11: By solving (E0 : E6), (E9) and (E11) with respect to e1, e6, e2, e3, e4, e11,

x1, x3 and x4, we obtain:

x3 + x4 + x6 =
2− λ
3

+ λe5 +
1

3
e9.

Thus m∗ (D9,11) ≥ 2−λ
3 .

Subdomain D9,12: By solving (E0 : E6), (E9) and (E12) with respect to e1, e6, e2, e3, e4, e12,

x1, x3 and x4, we obtain:

x3 + x4 + x6 =
2− λ
3

+ λe5 +
1

3
e9.

which proves that m∗ (D9,12) ≥ 2−λ
3 .

We are now ready to prove Proposition 6.

Proof. (Proposition 6) Assume that 12 < λ < 1 and that n > max
(
6(λ+1)(2−λ)
λ(4λ−λ2−1)

, 3λ(2λ−1)
(1−λ)(4λ−λ2−1)

)
=

n∗. Let p1 =
⌊
4λ−λ2−1
3λ+3λ2

n
⌋
, p2 =

⌊
1+λ
3 n

⌋
−p1−1, p3 = n−p1−p2. Note that p1+p2 =

⌊
1+λ
3 n

⌋
−1 < n

for 12 < λ < 1. Thus p3 is a positive integer. Since
⌊
1+λ
3 n

⌋
> 1+λ

3 n− 1 and p1 ≤ 4λ−λ2−1
3λ+3λ2

n, it follows

that p2 > 1+λ
3 n − 1 − 4λ−λ2−1

3λ+3λ2
n − 1 = 1

3n
−3λ+3λ2+λ3+1

λ(λ+1) − 2. By assumption, n > 6(λ+1)(2−λ)
λ(4λ−λ2−1)

. Thus

p2 >
1
3
6(λ+1)(2−λ)
λ(4λ−λ2−1)

−3λ+3λ2+λ3+1
λ(λ+1) − 2 = 2 (1− λ) 2−5λ+5λ2

λ2(4λ−λ2−1)
> 0 for 1

2 < λ < 1. Therefore, p2 is a

positive integer. Consider the following profiles

Type Initial profile RN Strategic profile TN

a a b a a b

Preferences b c a b c c

c b c c b a

Number of voters p1 p2 p3 p1 p2 p3

Assume that the sincere profile RN is described by the initial profile above. Then

S
(
a, λ,RN

)
− S

(
b, λ,RN

)
= (p1 + p2)− p3 + λp3 − λp1

= (2− λ)
⌊
1 + λ

3
n

⌋
− (1− λ)n− λ

⌊
4λ− λ2 − 1
3λ+ 3λ2

n

⌋
+ λ− 2

> (2− λ)
(
1 + λ

3
n− 1

)
− (1− λ)n− λ

(
4λ− λ2 − 1
3λ+ 3λ2

n

)
+ λ− 2

=
1

3

λ
(
4λ− λ2 − 1

)

λ+ 1

(

n− 6 (λ+ 1) (2− λ)
λ
(
4λ− λ2 − 1

)

)
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and

S
(
a, λ,RN

)
− S

(
c, λ,RN

)
= (p1 + p2) + λp3 − λp2

= (1− 2λ)
⌊
1 + λ

3
n

⌋
+ λn+ λ

⌊
4λ− λ2 − 1
3λ+ 3λ2

n

⌋
+ 2λ− 1

> (1− 2λ)
(
1 + λ

3
n

)
+ λn+ λ

(
4λ− λ2 − 1
3λ+ 3λ2

n− 1
)
+ 2λ− 1

=
1

3

λ
(
7− λ− 2λ2

)

λ+ 1

(

n− 3 (1− λ) (λ+ 1)
λ
(
7− λ− 2λ2

)

)

.

For 12 < λ < 1 and n > n
∗, S

(
a, λ,RN

)
− S

(
b, λ,RN

)
> 0 and S

(
a, λ,RN

)
− S

(
c, λ,RN

)
> 0.

Therefore a wins at RN .

Now suppose that all bac voters strategically submit bca. The new profile is described by the

strategic profile TN above. At TN ,

S
(
b, λ, TN

)
− S

(
a, λ, TN

)
= p3 + λp1 − (p1 + p2)

= n− 2
⌊
1 + λ

3
n

⌋
+ λ

⌊
4λ− λ2 − 1
3λ+ 3λ2

n

⌋
+ 2

> n− 2
(
1 + λ

3
n

)
+ λ

(
4λ− λ2 − 1
3λ+ 3λ2

n− 1
)
+ 2

=
λ− λ2
λ+ 1

n+ 2− λ

and

S
(
b, λ, TN

)
− S

(
c, λ, TN

)
= p3 + λp1 − λ (n− p1)

= (1− λ)n−
⌊
1 + λ

3
n

⌋
+ 2λ

⌊
4λ− λ2 − 1
3λ+ 3λ2

n

⌋
+ 1

> (1− λ)n− 1 + λ
3

n+ 2λ

(
4λ− λ2 − 1
3λ+ 3λ2

n− 1
)
+ 1

=
2λ (1− λ)
λ+ 1

(
n− 1

2

(λ+ 1) (2λ− 1)
λ (1− λ)

)
.

For 12 < λ < 1 and n > n
∗, S

(
b, λ, TN

)
− S

(
a, λ, TN

)
> 0 and S

(
b, λ, TN

)
− S

(
c, λ, TN

)
> 0.

Thus b wins at the new profile TN .

Let us prove that TN is an equilibrium. In fact, suppose that among abc voters, s voters deviate

and now submit acb. Suppose that at the new profile, say HN , the score of a is greater or equal to

the score of b. That is

S
(
a, λ,HN

)
− S

(
b, λ,HN

)
= p1 + p2 − p3 − λ (p1 − s) ≥ 0

or equivalently,

λs ≥ p3 + λp1 −
⌊
1 + λ

3
n

⌋
+ 1 = n+ λp1 − 2

⌊
1 + λ

3
n

⌋
+ 2.
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Between a and c, we have:

S
(
c, λ,HN

)
− S

(
a, λ,HN

)
= λ (p2 + s+ p3)− p1 − p2

= λn− λp1 + λs−
⌊
1 + λ

3
n

⌋
+ 1

≥ (1 + λ)n− 3
⌊
1

3
n (λ+ 1)

⌋
+ 3

≥ 3

This proves that a can not win at TN . Therefore there is no profitable deviation in favor of a from

TN . Moreover even if all acb voters decide to submit cab, we obtain a new profile, say SN , at which:

S
(
b, λ, SN

)
− S

(
c, λ, SN

)
= p3 + λp1 − p2 − λp3

= (1− λ)n− (2− λ)
⌊
λ+ 1

3
n

⌋
+ (1 + λ)

⌊
4λ− λ2 − 1
3λ+ 3λ2

n

⌋
+ 2− λ

> (1− λ)n− (2− λ) (λ+ 1)
3

n+ (1 + λ)

(
4λ− λ2 − 1
3λ+ 3λ2

n− 1
)
+ 2− λ

=
1

3

(1− λ)
(
4λ− λ2 − 1

)

λ

(

n− 3λ (2λ− 1)
(1− λ)

(
4λ− λ2 − 1

)

)

.

For 1
2 < λ < 1 and n > n∗, S

(
b, λ, SN

)
− S

(
c, λ, SN

)
> 0. Therefore c can not win at SN .

Thus there is no profitable deviation in favor of c from TN . In conclusion, TN is an equilibrium. By

definition, m∗ (λ, n) ≤ p3
n
= 1− 1

n

⌊
λ+1
3 n

⌋
+ 1

n
.

The proof is completed by taking into consideration Lemmas 5, 6 and 7, which prove that

m∗ (λ, n) ≥ 2−λ
3 over all the subdomains Di,j above.

7.8 Proof of Proposition 7

Proof. Assume that n ≥ 6 and let n = 3p+ ε with ε ∈ {0, 1, 2}. Consider the following profiles

Type Initial profile RN Strategic profile TN

a a b a a b

Preferences b c a b c c

c b c c b a

Number of voters p+ ε p− 2 p+ 2 p+ ε p− 2 p+ 2

Assume that the sincere profile RN is described by the initial profile above. Then

S
(
a, 1, RN

)
− S

(
b, 1, RN

)
= p− 2 and S

(
a, 1, RN

)
− S

(
c, 1, RN

)
= 2p+ 2 + ε.

Therefore a wins at RN .

Now suppose that all bac voters strategically submit bca. The new profile is described by the

strategic profile TN above. At TN ,

S
(
b, 1, TN

)
− S

(
a, 1, TN

)
= 4 and S

(
b, 1, TN

)
− S

(
a, 1, TN

)
= 2 + ε.
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Thus b wins at the new profile TN .

Let us prove that TN is an equilibrium. In fact, at TN , S
(
a, λ, TN

)
≤ S

(
c, λ, TN

)
< S

(
b, λ, TN

)

and any deterioration of the score of b by abc voters contributes to increasing the score of c. Thus

there is no profitable deviation in favor of a from TN . Moreover acb voters have no way to favor

the election of c since they are already giving c the maximum and nothing for b. Clearly, there is

no profitable deviation at TN and TN is therefore an equilibrium. By definition m∗ (λ, n) ≤ p+2
3p+ε ≤

p
3p+ε +

2
3p+ε ≤ 1

3 +
2
n
.

The proof is completed by taking into consideration Lemmas 5, 6 and 7, which prove that

m∗ (1, n) ≥ 1
3 over all the subdomains Di,j above.

7.9 Proof of Theorem 2

Proof. By Proposition 6, 2−λ3 ≤ m (λ, n) ≤ 1− 1
n

⌊
1+λ
3 n

⌋
+ 1

n
for 12 < λ < 1 and

n > max

(
6(λ+1)(2−λ)
λ(4λ−λ2−1)

, 3λ(2λ−1)
(1−λ)(4λ−λ2−1)

)
. Since

⌊
1+λ
3 n

⌋
≤ 1+λ

3 n, if follows that
2−λ
3 ≤ m (λ, n) ≤

2−λ
3 + 1

n
. As n tends to infinity, we deduce that m∗ (λ) = 2−λ

3 . For λ = 1, Proposition 7 shows that
1
3 ≤ m∗ (1, n) ≤ 1

3 +
2
n
. As n tends to infinity, it follows that m∗ (1) = 1

3 . Therefore m
∗ (λ) = 2−λ

3

for 12 < λ ≤ 1.

7.10 Proof of Proposition 8

Proof. Let RN ∈ LN .
{
E
(
a,RN

)
, a ∈ A

}
is a partition of N . Consequently,

∣∣E
(
a1, R

N
)∣∣ +

... +
∣∣E
(
am, R

N
)∣∣ = n. Pl

(
RN
)
= aj implies that

∣∣E
(
aj , R

N
)∣∣ ≥

∣∣E
(
al, R

N
)∣∣ for all l = 1, ..,m.

Therefore m×
∣∣E
(
aj , R

N
)∣∣ ≥ n. That is

∣∣E
(
aj , R

N
)∣∣ ≥

⌈
n
m

⌉
.

7.11 Proof of Proposition 9

Proof. The proof is left to the reader.

7.12 Proof of Proposition 10

Proof. Part 1. Let us prove thatM∗ (Pl, n,m) ≤ 1− 1
n

⌈
n
m

⌉
. Take RN ∈ P (Pl) and TN ∈ SN(Pl |

RN ). Pose x = Pl
(
RN
)
and y = Pl

(
TN
)
. We have E(Pl,RN , TN ) = E(x, y,RN ) ⊆ N\E(x,RN ).

In addition,
∣∣E
(
x,RN

)∣∣ ≥
⌈
n
m

⌉
by Proposition 8. This implies that

∣∣E(Pl,RN , TN )
∣∣ ≤ n −

⌈
n
m

⌉
.

Consequently, M∗ (Pl, n,m) ≤ 1− 1
n

⌈
n
m

⌉
.

Part 2. Now we show that M∗ (Pl, n,m) ≥ 1 − 1
n

⌈
n
m

⌉
. We construct two profiles RN and TN

such that RN ∈ P (Pl), TN ∈ SN(Pl | RN ) and
∣∣E(Pl,RN , TN )

∣∣ = n−
⌈
n
m

⌉
. Pose n = qm+ r with

r ∈ {0, 1, ...,m− 1}.

Case 1 : r = 0. Consider a partition {N1, N2, ..., Nm} of N in m subsets such that voter 2

belongs to N2 and for all k ∈ {1, 2, ...,m}, |Nk| = q. Let RN be a profile such that

∀i ∈ N3, Ri = a3... and ∀i ∈ Nk, Ri = aka3.... for k 6= 3

We have
∣∣E
(
a,RN

)∣∣ = q for all a ∈ A. So Pl(RN ) = a1. E(a1, a3, RN ) = N\N1. Now pose Q2 =
a3a2... and TN = (Q2, R−2). We have TN is an effective manipulation of RN since Pl(TN ) = a3 and
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a3R
2a1. Moreover

∣∣E(a3, aj , RN )
∣∣ ≤ q,∀aj ∈ A and

∣∣E(a3, TN )
∣∣ = q + 1. Therefore by Proposition

9, TN is an equilibrium. Note that E(Pl,RN , TN ) = N\N1. So
∣∣E(Pl,RN , TN )

∣∣ = n−
⌈
n
m

⌉
.

Case 2 : q = 0. Then n < m. Let R be the lexicographic order on A and define the profile RN

as follows:

R1 = R[a2] and R
i = R[ai+1a1] for all i 6= 1.

We have
∣∣E(aj , RN )

∣∣ = 1 for all j = 2, ..., n + 1 and
∣∣E(a1, RN )

∣∣ = 0. Furthermore Pl(RN ) = a2

and E(a2, a1, RN ) = N\{1}. Now pose Q2 = R[a1] and TN = (Q2, R−2). The new profile TN is an

effective manipulation of RN since Pl(TN ) = a1 and a1R2a2. Moreover
∣∣E(a1, aj , RN )

∣∣ ≤ 1 for all
aj 6= a1 and

∣∣E(a1, TN )
∣∣ = 1. Thus TN is an equilibrium by Proposition 9. Since E(Pl,RN , TN ) =

N\{1}, then
∣∣E(Pl,RN , TN )

∣∣ = n− 1 = n−
⌈
n
m

⌉
.

Case 3 : r ≥ 1 and q ≥ 1. Consider a partition {N1, N2, ..., Nm} of N in m subsets such that

voter 3 belongs to N3, |Nk| = q + 1 if k ∈ {2, 3, ..., r + 1} and |Nk| = q otherwise. Let RN be the

profile defined by

∀i ∈ N1, Ri = R[a1] and ∀i ∈ Nk, Ri = R[aka1] for all k 6= 1.

We have
∣∣E(a1, RN )

∣∣ = q,
∣∣E(a2, RN )

∣∣ = q + 1 and
∣∣E(aj , RN )

∣∣ ≤ q + 1 for all j ≥ 3. Moreover

Pl(RN ) = a2 and E(a2, a1, RN ) = N\N2. Now pose Q3 = R[a1] and TN = (Q3, R−3). We have TN
is an effective manipulation of RN . In fact, Pl(TN ) = a1 and a1R3a2. Since

∣∣E(a1, aj , RN )
∣∣ ≤ q + 1

for all aj 6= a1 and
∣∣E(a1, RN )

∣∣ = q + 1, it follows from Proposition 9 that TN is an equilibrium

given RN . Thus TN ∈ SN(Pl | RN ). Note that E(Pl,RN , TN ) = E(a2, a1, R
N ) = N\N2. So∣∣E(Pl,RN , TN )

∣∣ = n−
⌈
n
m

⌉
.

7.13 Proof of Proposition 11

Proof. Pose n = 2k + r with r ∈ {0, 1}. Take RN ∈ P (Pl) and TN ∈ SN(Pl | RN ). Pose x =
Pl
(
RN
)
and y = Pl

(
TN
)
. We have E(Pl,RN , TN ) = E(x, y,RN ). Suppose that

∣∣E(x, y,RN )
∣∣ <

⌈
n
2

⌉
= n+r

2 ; that is
∣∣E(x, y,RN )

∣∣ ≤ n+r
2 − 1. Pose S = E(x, y,RN ) and Zi = R[xy] for all i ∈ N\S.

Pose ZN = (Z−S , TS). Since |N\S| = n − |S| ≥ n −
(
n+r
2 − 1

)
= n+2−r

2 . Thus |N\S| > n
2 and we

have Pl(ZN ) = x and xRiy for all i ∈ N\S. Therefore TN is not an equilibrium given RN . We

conclude that
∣∣E(x, y,RN )

∣∣ ≥
⌈
n
2

⌉
. That is m∗ (Pl, n,m) ≥ 1

n

⌈
n
2

⌉
.

To prove that m∗ (Pl, n,m) ≤ 1
n

⌈
n
2

⌉
, we construct RN ∈ P (Pl) and TN ∈ SN(Pl | RN ) such

that
∣∣E(Pl,RN , TN )

∣∣ =
⌈
n
2

⌉
. We consider 2 cases:

Case 1 : r = 0. That is n = 2k. Consider a profile RN such that

Ri = a1a2a3...am for all i < k; Rk = a3a1a2... and Ri = a2a1a3...amfor all i > k.

We have Pl(RN ) = a2 and E(a2, a1, RN ) = {1, ..., k}. Pose T k = a1am...a2 and TN = (T k, R−k).

We have Pl(TN ) = a1 and a1Rka2. That is TN is an effective manipulation of RN . In addition,
∣∣E(a1, TN )

∣∣ = k ≥
∣∣E(al, a1, RN )

∣∣ for all l > 1. By Proposition 9, we conclude that TN is an

equilibrium given RN . We have
∣∣E(Pl,RN , TN )

∣∣ =
∣∣E(a2, a1, RN )

∣∣ =
⌈
n
2

⌉
.
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Case 2 : r = 1. That is n = 2k + 1. Let {{1}, N1, N2} be a partition of N such that

|N2| = |N2| = k. Consider a profile RN such that

R1 = a3a2a1...; ∀i ∈ N1, Ri = a2a1a3... and ∀i ∈ N2, Ri = a1a2a3...

Obviously, Pl(RN ) = a1 and E(a1, a2, RN ) = N1 ∪ {1}. Pose T 1 = a2a3a1... and TN = (T 1, R−1).

Then Pl(TN ) = a2 and a2R1a1. Thus TN is an effective manipulation ofRN . Moreover
∣∣E(a2, TN )

∣∣ =
k+1 >

∣∣E(al, a2, RN )
∣∣ for all l 6= 2. By Proposition 9, TN is an equilibrium. We have

∣∣E(Pl,RN , TN )
∣∣ =

∣∣E(a1, a2, RN )
∣∣ =

⌈
n
2

⌉
.

7.14 Proof of Proposition 12

Proof. Assume that there exist RN ∈ LN and {x, y} ⊆ A such that Borda
(
RN
)
= x and

∣∣E
(
y, x,RN

)∣∣ <
⌈
n
m

⌉
. Pose S = E

(
y, x,RN

)
. Note that |S| ≥ n−

(⌈
n
m

⌉
− 1
)
. We have S(x,RN ) =

S(x,RS)+S(x,RN\S) ≤
⌈
n
m

⌉
−1+S(x,RE(x,y,RN )). Moreover S(y,RN ) ≥ S(y,RN\S) and by Remark

1, S(y,RN ) ≥ S(x,RN\S) + |N\S|
m−1 . We deduce that S(y,R

N )− S(x,RN ) ≥ n−(d nme−1)
m−1 −

(⌈
n
m

⌉
− 1
)
.

Since n
m
≤
⌈
n
m

⌉
≤ n

m
+ m−1

m
, we have 1 ≤ n −

(⌈
n
m

⌉
− 1
)
− (m − 1)

(⌈
n
m

⌉
− 1
)
≤ m. Therefore

S(y,RN )− S(x,RN ) > 0. This contradicts the fact that Borda
(
RN
)
= x.

7.15 Proof of Proposition 13

Proof. We first prove that M∗ (Borda, n,m) ≤ 1 − 1
n

⌈
n
m

⌉
. Consider RN ∈ P (Borda) and

TN ∈ SN(Borda | RN ). Pose a = Borda(RN ) and b = Borda(TN ). By Proposition 12, we

have
∣∣E(b, a,RN )

∣∣ ≥
⌈
n
m

⌉
. That is

∣∣E(Borda,RN , TN )
∣∣ =

∣∣E(a, b, RN )
∣∣ ≤ n −

⌈
n
m

⌉
. It follows that

M∗ (Borda, n,m) ≤ 1− 1
n

⌈
n
m

⌉
.

Conversely, to prove that M∗ (Borda, n,m) ≥ 1− 1
n

⌈
n
m

⌉
, we construct two profiles RN and TN

such that RN ∈ P (Borda), TN ∈ SN(Borda | RN ) and
∣∣E(Borda,RN , TN )

∣∣ = n −
⌈
n
m

⌉
. For this

purpose, pose n = km+ r with 0 ≤ r < m. We consider 3 cases.
Case 1 : k ≥ 1 and r 6= 1. Consider a partition Nj , j = 1, 2, ...,m of N such that |Nj | = k+1 if

j ≤ r and |Nj | = k if j > r. Note that |N1| = |N2| = k + t with t = min (r, 1). Let RN be a profile

such that
∀i ∈ N1, Ri = a1...a2,
∀i ∈ N2, Ri = a2a1...,
∀i ∈ Nj , Ri = a2a1...aj+1aj if 3 ≤ j ≤ m− 1,
∀i ∈ Nm, Ri = a2a1...am.

We prove that Borda(RN ) = a1. Note that E
(
a1, aj , R

N
)
= N for each j ≥ 3. Moreover

S
(
a1, R

N1
)
− S

(
a2, R

N1
)
= k + t and S

(
a1, R

Nj
)
− S

(
a2, R

Nj
)
≥ − k+t

m−1 if j = 2, 3, ...,m. Thus

S
(
a1, R

N
)
− S

(
a2, R

N
)
≥ (k + t) − (k + t) = 0. Since E

(
a1, aj , R

N
)
= N for each aj with j ≥ 3

and S
(
a1, R

N
)
≥ S

(
a2, R

N
)
, it follows that Borda

(
RN
)
= a1. Pose T i = a2...a3a1 for all i ∈ N2

and TN =
(
R−N2 , TN2

)
.

To prove that TN is an effective manipulation of RN , we simply show that Bord
(
TN
)
= a2 since

a2R
ia1 for all i ∈ N2. We have S

(
a2, T

N1
)
−S

(
a1, T

N1
)
= − (k + t), S

(
a2, T

N2
)
−S

(
a1, T

N2
)
= k+t

and S
(
a2, T

Nj
)
−S

(
a1, T

Nj
)
≥ k

m−1 if j = 3, ...,m. Thus S
(
a2, T

N
)
−S

(
a1, T

N
)
≥ k(m−2)

m−1 > 0. In
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the same way, for each l ∈ {3, 4, ...,m}, we have S
(
a2, T

N1
)
−S

(
al, T

N1
)
≥ −(k+t)(m−2)

m−1 , S
(
a2, T

Nl
)
−

S
(
al, T

Nl
)
≥ k and S

(
a2, T

Nj
)
− S

(
al, T

Nj
)
≥ k

m−1 if j 6= 1, l. Thus S
(
a2, T

N
)
− S

(
al, T

N
)
≥

k − t+ t
m−1 ≥ 0. Therefore Bord

(
TN
)
= a2.

We now prove that TN is an equilibrium given RN . Since Bord
(
TN
)
= a2 and E

(
a2, R

N
)
=

N\N1; we only show that ∀S ⊆ N1, ∀QS ∈ LS , Borda(QS , T−S) = a2. Take S ⊆ N1, Q
S ∈ LS ,

and pose QN = (QS , T−S). We have S
(
a2, Q

N
)
− S

(
a1, Q

N
)
≥ S

(
a2, T

N
)
− S

(
a1, T

N
)
> 0

since S
(
a2, T

N1
)
= 0 and E

(
a1, T

N1
)
= N1. Moreover S

(
a2, Q

N1
)
− S

(
a3, Q

N1
)
≥ − (k + t);

S
(
a2, Q

N2
)
−S

(
a3, Q

N2
)
= (k+t)(m−2)

m−1 ; S
(
a2, Q

Nj
)
−S

(
a3, Q

Nj
)
≥ 2k

m−1 if j 6= 1, 2, 3 and S
(
a2, Q

N3
)
−

S
(
a3, Q

N3
)
≥ k. Thus S

(
a2, Q

N
)
− S

(
a3, Q

N
)
≥ k−t+3k(m−3)

m−1 ≥ 0. In the same way, for each

l ∈ {4, 5, ...,m}, that is only form ≥ 4, we have S
(
a2, Q

N1
)
−S

(
al, Q

N1
)
≥ − (k + t); S

(
a2, Q

Nl−1
)
−

S
(
al, Q

Nl−1
)
≥ k(m−2)

m−1 ; S
(
a2, Q

Nl
)
−S

(
al, Q

Nl
)
≥ k; S

(
a2, Q

N2
)
−S

(
al, Q

N2
)
≥ k+t

m−1 and S
(
a2, Q

Nj
)
−

S
(
al, Q

Tj
)
≥ 2k

m−1 for all j /∈ {1, 2, l − 1, l}. Thus S
(
a2, Q

N
)
− S

(
al, Q

N
)
≥ 3k−2t+(3k−t)(m−4)

m−1 ≥ 0.
This proves that Bord

(
QN
)
= a2. Clearly there is no profitable deviation from TN .

Since E(Borda,RN , TN ) = E(a1, a2, RN ) = N\N1, then
∣∣E(Borda,RN , TN )

∣∣ = n−k = n−
⌈
m
n

⌉
.

Case 2 : k ≥ 1 and r = 1. Consider a partition Nj , j = 1, 2, ...,m of N such that 1 ∈ N1,
2 ∈ N3, |N1| = k + 1 and |Nj | = k if j > 1. Let RN be a profile such that

R1 = a2a1...a3

∀i ∈ N1\ {1} , Ri = a2...a1
∀i ∈ N2, Ri = a1a2...
∀i ∈ Nj , Ri = a1a2...aj if 3 ≤ j ≤ m

Note that for each aj with j ≥ 3, E
(
aj , a2, R

N
)
= N . As above, S

(
a2, R

{1})− S
(
a1, R

{1}) = 1
m−1 ,

S
(
a2, R

N1\{1}
)
− S

(
a1, R

N1\{1}
)
= k and S

(
a2, R

Nj
)
− S

(
a1, R

Nj
)
= − k

m−1 if j = 2, 3, ...,m. Thus

S
(
a2, R

N
)
− S

(
a1, R

N
)
= 1

m−1 . Therefore Bord
(
RN
)
= a2.

For each voter i ∈ N2∪{2} , consider T i such that T i = a1...a2 and let TN =
(
R−(N2∪{2}), TN2∪{2}

)
.

We prove that TN is an effective manipulation of RN . In fact, S
(
a1, T

N1
)
−S

(
a2, T

N1
)
= −k− 1

m−1 ,

S
(
a1, T

N2
)
− S

(
a2, T

N2
)
= k, S

(
a1, T

Nj
)
− S

(
a2, T

Nj
)
≥ k

m−1 if 4 ≤ j ≤ m and by definition of

TN3 , S
(
a1, T

N3
)
− S

(
a2, T

N3
)
≥ (k−1)

m−1 + 1. Thus S
(
a1, T

N
)
− S

(
a2, T

N
)
≥ (k+1)(m−3)+k

m−1 > 0. For

each l ∈ {3, 4, ...,m}, S
(
a1, T

N1
)
− S

(
al, T

N1
)
≥ 1−k(m−2)

m−1 , S
(
a1, T

Nl
)
− S

(
al, T

Nl
)
≥ k − 1 and

S
(
a1, T

Nj
)
− S

(
al, T

Nj
)
≥ k

m−1 if j /∈ {1, l}. Thus S
(
a1, T

N
)
− S

(
al, T

N
)
≥ 1

m−1 + k − 1 > 0.

Therefore Bord
(
TN
)
= a1. Since N2 ∪ {2} ⊆ E(a1, a2, RN ), then TN is an effective manipulation

of RN .

We now prove that TN is an equilibrium given RN . Since E(a1, RN ) = N\N1; it is enough to show
that ∀S ⊆ N1, ∀QS ∈ LS , Borda(QS , T−S) = a1. Take S ⊆ N1, QS ∈ LS , and pose QN = (QS , T−S).
We have S

(
a1, Q

N
)
− S

(
a2, Q

N
)
≥ S

(
a1, T

N
)
− S

(
a2, T

N
)
− m−2

m−1 ≥
k(m−3)+k−1

m−1 ≥ 0 since Voter 1
can strategically decrease the score of a1 by at most m−2m−1 points and all voters of N1\{1} are already
contributing the maximum for a1 and nothing for a2. That is Borda(QN ) 6= a2. There is consequently
no lost of generality to assume that S ⊆ N1\{1}. For each l ∈ {3, 4, ...,m}, we have S

(
a1, Q

N1
)
−

S
(
al, Q

N1
)
≥ 1

m−1 − k, S
(
a1, Q

N2
)
− S

(
al, Q

N2
)
≥ k

m−1 , S
(
a1, Q

Nl
)
− S

(
al, Q

Nl
)
≥ k − 1 + 1

m−1
and S

(
a1, Q

Nj
)
− S

(
al, Q

Nj
)
≥ 2k−1

m−1 if j 6= 1, 2, l. Thus S
(
a1, Q

N
)
− S

(
al, Q

N
)
≥ (2m−5)(k−1)

m−1 ≥ 0.
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This proves that Bord
(
QN
)
6= al. Clearly, TN is an equilibrium given RN .

From RN to TN , a manipulation occurs in favor of
∣∣E(Borda,RN , TN )

∣∣ = n− (k+1) = n−
⌈
m
n

⌉

voters.

Case 3 : k = 0. That is 2 ≤ n < m. Consider a profile RN such that

R1 = a2a3...anan+1a1an+2...am, R2 = an+1a2a1... and Ri = an+1a2a1...ai if 3 ≤ i ≤ n

Note that voter 1 ranks aj at the (j − 1)th position for 2 ≤ j ≤ n + 1, a1 is (n+ 1)
th while aj is

jth for j > n + 1. Moreover for aj ∈ A\ {an+1, a2}, E
(
aj , a2, R

N
)
= N . Moreover S

(
a2, R

N
)
−

S
(
an+1, R

N
)
= n−1

m−1 − n−1
m−1 = 0. It is clear that Borda

(
RN
)
= a2. Consider the strategy profile

TN\{1} for members of N\ {1} such that T 2 = an+1a1...a2 and T i = an+1a1...ai for 3 ≤ i ≤ n. Pose
TN =

(
R1, TN\{1}

)
.

We prove that TN is an effective manipulation of RN . Now S
(
an+1, T

N
)
− S

(
a2, T

N
)
≥

− n−1
m−1 + 1 +

2(n−2)
m−1 > 0, S

(
an+1, T

N
)
− S

(
al, T

N
)
≥ − n−2

m−1 + 1 +
2(n−2)
m−1 > 0 for l = 3, ..., n and

E
(
aj , an+1, T

N
)
= N for all aj ∈ {aj : j = 1 or j > n+ 1}. This implies that Borda(TN ) = an+1.

Finally, remark that, E(a2, an+1, RN ) = N\{1}. Therefore , TN is an effective manipulation of RN .
We now prove that TN is an equilibrium given RN . Only player 1 has incentive to deviate

from TN , and only in favor of a candidate of {a2, a3, ..., an}. To see that this is not achievable,
consider a strategy Q1 for player 1 and pose QN =

(
Q1, TN\{1}

)
. Assume a1 is ranked at position

p by voter 1 at QN and that Borda
(
QN
)
= aj for some aj ∈ {a2, a3, ..., an}. Then S

(
aj , Q

N
)
−

S
(
a1, Q

N
)
≤ p−1

m−1 − m−2
m−1 − n−2

m−1 ≤
p+1−m
m−1 . Since Borda

(
QN
)
= aj with j > 1, we deduce that

S
(
aj , Q

N
)
− S

(
a1, Q

N
)
> 0 and that p + 1 > m. Therefore p = m. Thus an+1 is ranked qth by

voter 1 at QN with q < m. This implies that S
(
aj , Q

N
)
−S

(
an+1, Q

N
)
≤ q−1

m−1 − 1−
2(n−2)
m−1 < 0. A

contradiction holds since Borda
(
QN
)
= aj .

From RN to TN , a manipulation occurs in favor of
∣∣E(Borda,RN , TN )

∣∣ = n − 1 = n −
⌈
m
n

⌉

voters.

7.16 Proof of Proposition 14

Proof. Let RN ∈ P (Borda), TN ∈ SN(Borda | RN ) and S = E(Borda,RN , TN ). We claim that

|S| ≥
⌈
n
2

⌉
. On the contrary assume that |S| <

⌈
n
2

⌉
. Pose Borda(RN ) = a and Borda(TN ) = b.

Consider {N1, N2} a partition of N\S such that |N1| = |S| and |N2| = n− 2 |S|. We have |N2| > 0.
Let ϕ : S → N1 be a bijection. Define QN\S a profile of preferences of N\S voters as follows:

• Qϕ(i) = Zi for i ∈ S where Zi is defined as follows: for all i ∈ S, a, b ∈ A, aZib holds if and
only if bT ia.

• Qi = R[a] for all i ∈ N2 where R = a1a2... is the lexicographic order.

From the construction of QN =
(
QN\S , TS

)
, we have S(a,QN ) − S(x,QN ) = S(a,QN2) −

S(x,QN2) ≥ 1
m−1 for all x 6= a. Consequently, Borda(QN\S , TS) = a. In addition, aRib for all

i ∈ N\S. That is TN is not an equilibrium given RN , a contradiction. We conclude that |S| ≥
⌈
n
2

⌉
.

It follows that m∗ (Borda, n,m) ≥ 1
n

⌈
n
2

⌉
.

To prove that m∗ (Borda, n,m) ≤ 1
n

⌈
n
2

⌉
, we wish to construct RN ∈ P (Borda) and TN ∈

SN(Borda | RN ) such that
∣∣E(Borda,RN , TN )

∣∣ =
⌈
n
2

⌉
. We consider two cases.
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Case 1 : n = 2k. Take {N1, N2} a partition of N such that 2 ∈ N2, |N1| = |N2| = k and pose:

Ri = a1a2...am for all i ∈ N1
Ri = a2a1...am for all i ∈ N2\{2} and R2 = a2ama1...
T i = a1...ama2 for all i ∈ N1.

Clearly, we have Borda(RN ) = a2 and Borda(TN1 , RN2) = a1. Since a1Ria2 for all i ∈ N1,
we conclude that TN = (TN1 , R−N1) is an effective manipulation of RN . It is also an equilibrium

given RN . In fact, only voters of N2 wish to replace a1 by another candidate, candidate a2 specially.

This is not possible since S(a1, TN1)− S(a2, T
N1) = k ≥ |N2|. That is RN ∈ P (Borda) and

TN ∈ SN(Borda | RN ). In addition,
∣∣E(Borda,RN , TN )

∣∣ = |N1| =
⌈
n
2

⌉
.

Case 2 : n = 2k + 1. Take {{1, 2, 3} , N1, N2} a partition of N such that |N1| = |N2| = k − 1
and pose:

Ri = a1a2...am for all i ∈ N1, Ri = a2a1...am for all i ∈ N2,
R1 = a2a1a3..., R2 = a2a1a3... and R3 = a1a3a2...

S = N2 ∪ {1, 2} and T i = a2...a3a1 for all i ∈ S.

We have Borda(RN ) = a1 and Borda(TS , R−S) = a2. Since a2Ria1 for all i ∈ S, we conclude
that TN = (TS , R−S) is an effective manipulation of RN . It is also an equilibrium given RN . In fact

and as above, only voters of N1∪{3} wish to replace a2 by candidate a1 while a3 is also an option for
voter 3 and only him. This is not possible to realize since S(a2, TS)− S(a1, TS) = k+1 > |N1 ∪ {3}|.
Obviuosly, voter 3 could not make a3 be elected. That is RN ∈ P (Borda) and TN ∈ SN(Borda |
RN ). In addition,

∣∣E(Borda,RN , TN )
∣∣ = |N2 ∪ {1, 2}| =

⌈
n
2

⌉
.

7.17 Proof of Proposition 15

Proof. By definition, M∗ (APl, n,m) ≤ 1. Consider a profile RN such that Ri = a2a1...am for all

i ∈ N . Pose T 1 = a2...a1 and TN = (T 1, R−1). Obviously, APl
(
RN
)
= a1 and APl

(
TN
)
= a2.

Since a2Ria1 for all i ∈ N , we conclude that TN is an effective manipulation of RN and an equilibrium
given RN . Finally, E(APl,RN , TN ) = N . So M∗ (APl, n,m) ≥ 1.

7.18 Proof of Proposition 16

Proof. Case 1 : Assume that n ≤ m. By definition, m∗(APl, n,m) ≥ 1

n
. To prove that

m∗(APl, n,m) ≤ 1

n
, we construct two profiles RN and QN such that RN ∈ P (APl), TN ∈

SN(APl | RN ) and
∣∣E(APl,RN , TN )

∣∣ = 1. Let RN be a profile such that R1 = a3a2...a1 and

Ri = a2a3...a1 for all i = 2, ..., n. Pose T 1 = a3...a1a2 and TN = (Q1, R−1). We have APl(RN ) = a2,

E(a2, a3, R
N ) = {1}, APl(TN ) = a3 and a3R1a1. That is TN is an effective manipulation of RN .

TN is an equilibrium given RN . In fact, given a profile QN of the form (T 1, Q−1), for a2 to be

elected, it is necessary for every candidate aj , j = 1, ...,m to be ranked last by at least one voter in

Q−1 and for a1 to be ranked last by at least 2 voters. This is not possible since |N1\{1}| ≤ m− 1.
Since E(a2, a3, RN ) = {1}, we have m∗(APl, n,m) ≤ 1

n
. Moreover, n×m∗(APl, n,m) ≥ 1. We

then conclude that m∗(APl, n,m) =
1

n
.
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Case 2 : Assume that n > m.

We first prove thatm∗ (APl, n,m) ≥
⌊
n+1
m

⌋
. Take RN ∈ P (APl) and TN ∈ SN(APl | RN ). Pose

APl
(
RN
)
= al, APl

(
TN
)
= at, S = E

(
APl,RN , TN

)
and k = |S|. Assume k <

⌊
n+1
m

⌋
. Consider

two integers p and r such that n−k = (m−1)p+r with r ∈ {0, 1, ...,m− 2} .We claim that p ≥ k+1.
In fact, k <

⌊
n+1
m

⌋
. Then k ≤

⌊
n+1
m

⌋
−1 ≤ n+1

m
−1. Since n = k+(m−1)p+r ≤ k+(m−1)p+m−2,

we deduce that k ≤ k+(m−1)p+m−1
m

−1. That is p ≥ k+ 1
m−1 . Hence p ≥ k+1. Given l0 ∈ {1, 2, ...,m}

such that l0 6= l, let {Nj , 1 ≤ j ≤ m, j 6= l} be a partition of N\S such that |Nj | = p for all j 6= l0
and |Nl0 | = p + r. Consider a strategy QS of N\S voters such that all Nj voters rank aj last for
j ∈ {1, 2, ...,m} \ {l}. Since p ≥ k + 1 and |S| = k, we have APl(QS , T−S) = al. In addition, alRiat
for all i ∈ N\S. This is a contradiction since S = E

(
APl,RN , TN

)
and TN ∈ SN(APl | RN ). We

conclude that k ≥
⌊
n+1
m

⌋
.

We now prove that m∗ (APl, n,m) ≥
⌊
n+1
m

⌋
. To do this, we construct two profiles RN and TN

such that RN ∈ P (APl),
∣∣E(APl,RN , TN )

∣∣ =
⌊
n+1
m

⌋
and TN ∈ SN(APl | RN ). Pose n = mq + r

with 0 ≤ r < m. Consider a partition {N1, N2, ..., Nm} of N in m subsets such that voter 1 belongs

to Nm and |Nj | =
{
q + 1 if 2 ≤ j ≤ r + 1
q otherwise

if r < m− 1 and

if r = n− 1, |Nj | =
{
q + 1 if 1 ≤ j ≤ n− 1
q if j = n

if r = n− 1.

Observe that |N1| =
⌊
n+1
m

⌋
.

Let RN be a profile such that:

Ri = a1am...a2 for all i ∈ N1
Ri = ama1...aj for all i ∈ Nj with j ∈ {2, ...,m− 1}
Ri = ama1...a2 for all i ∈ Nm\{1} and R1 = ama2...a1.

Note that am is never ranked last while any other alternative is ranked last by some voter. Then

APlu(RN ) = am Define T i = a1...am for all i ∈ N1 and pose TN = (TN1 , R−N1). Obviously,

APl(TN ) = a1 and a1Riam for all i ∈ N1. That is, TN is an effective manipulation of RN .
Note that E(Apl,RN , TN ) = N1. To prove that TN is an equilibrium given RN , it is sufficient

to prove that APl
(
Q−N1 , TN1

)
6= am for all possible profiles Q−N1 of N\N1 voters. Assume that

APl
(
Q−N1 , TN1

)
= am for some Q−N1 . Since am is ranked last at

(
Q−N1 , QN1

)
by |N1| voters,

then by definition of APl, for all j ∈ {1, 2, ...,m− 1}, aj is ranked last by at least |N1| + 1 voters.
Therefore |N | ≥ (m − 1)(|N1| + 1) + |N1|. That leads to the contradiction n + 1 ≥ m

⌊
n+1
m

⌋
+m.

Thus APl
(
Q−N1 , TN1

)
6= am and TN is an equilibrium given RN .

In addition, we have,
∣∣E(APl,RN , TN )

∣∣ = |N1| =
⌊
n+1
m

⌋
.

7.19 Proof of Theorem 3

Proof. The proof is obtained by taking the limits of the functions m∗(F, n,m) and M∗(F, n,m) for

each F ∈ {Pl,Borda,AP l} obtained in Sections 4.1, 4.2, and 4.3 (see Propositions 10, 11, 13, 14, 15
and 16).
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