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Abstract  

This paper considers the estimation methods for dynamic panel data (DPD) 

models with fixed effects which suggested in econometric literature, such as least 

squares (LS) and generalized method of moments (GMM). These methods obtain biased 

estimators for DPD models. The LS estimator is inconsistent when the time dimension 

( ) is short regardless of the cross sectional dimension ( ). Although consistent 

estimates can be obtained by GMM procedures, the inconsistent LS estimator has a 

relatively low variance and hence can lead to an estimator with lower root mean square 

error after the bias is removed. Therefore, we discuss in this paper the different methods 

to correct the bias of LS and GMM estimations. The analytical expressions for the 

asymptotic biases of the LS and GMM estimators have been presented for large N and 

finite T. Finally, we display new estimators that presented by Youssef and Abonazel 

(2015) as more efficient estimators than the conventional estimators. 

Keywords: Bias-corrected estimators; First-order autoregressive panel model; Generalized 

method of moments estimators; Kantorovich inequality; Least squares dummy variable 

estimators. 

1. Introduction 

In econometrics literature, the panel data refers to the pooling of observations on a 

cross-section of households, countries, firms, etc. over several time periods. Panel data 

is now widely used to estimate dynamic econometric models.
1
 Its advantage over cross-

                                                           
1
 See, e.g., Bond (2002), Baltagi (2013), and Hsiao (2014). 
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section data in this context is obvious: we cannot estimate dynamic models from 

observations at a single point in time, and it is rare for single cross section surveys to 

provide sufficient information about earlier time periods for dynamic relationships to be 

investigated. Its advantages over aggregate time series data include the possibility that 

underlying microeconomic dynamics may be obscured by aggregation biases, and the 

scope that panel data offers to investigate heterogeneity in adjustment dynamics 

between different types of individuals, household, or firms.  

In time series regression models it is common practice to deal with these by 

including in the specification lagged values of the covariates, the dependent variable, or 

both. The inclusion of lags of the dependent variable seems to provide an adequate 

characterization of many economic dynamic adjustment processes. However, in panel 

data analysis with a small number of time periods there often appear to be inference 

problems, such as small sample bias in coefficient estimation and hypothesis testing. 

Therefore, there were many estimation methods for DPD models.  

In DPD models, the least squares methods lead to inconsistent estimates for the 

parameters when   is short regardless of  . This inconsistency stems from the fact that 

the disturbance terms are correlated with the lagged endogenous variable. Moreover, 

under large   fixed   asymptotic, Nickell (1981) showed that the standard maximum 

likelihood (ML) estimator suffers from an incidental parameter problem leading to 

inconsistency. In order to avoid this problem, the literature has focused on GMM 

estimation applied to first differences, such as Anderson and Hsiao (1982) and Arellano 

and Bond (1991). However, the standard GMM estimator obtained after first 

differencing has been found to suffer from substantial finite sample bias, especially 

when the instruments are weak and the number of moments is large relative to the cross 

section sample size. See Alonso-Borrego and Arellano (1999). 

This low precision of GMM is also evident in more general contexts. To improve 

the finite sample properties of GMM estimators, a number of alternative estimators have 

been suggested, such as level and system GMM estimators which presented by Arellano 

and Bover (1995). These estimators based on use many instruments variables to 

improve the efficiency of GMM estimator. However, these estimators still biased and 

need to further improvement. Recently, Youssef and Abonazel (2015) proposed a new 
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approach to improve the efficiency of GMM estimators. Also, they presented new 

GMM estimators. These estimators are more efficient than the conventional GMM 

estimators. 

From above review, we can conclude that all the estimators for DPD models are 

biased and need to improvement. Therefore, the main objective of this paper is 

discussing the different methods to correct the bias, and also displaying other methods 

that improve the efficiency of the estimation in DPD models.  

This paper is organized as follows. Section 2 provides the model and reviews the 

LS estimators. Section 3 presents the asymptotic bias of the LS estimator which has 

been examined by Nickell (1981). In Section 4, we will review the papers proposing the 

bias-corrected LS estimators, such as Kiviet (1995), Hansen (2001), and Bun and Carree 

(2005). While in Section 5, we will display the bias of GMM estimators which has been 

examined by Hayakawa (2007). Section 6 provides bias-corrected GMM estimators. In 

Section 7, we will present the new efficient GMM estimators which have introduced by 

Youssef and Abonazel (2015). Finally, Section 8 offers the concluding remarks. 

2. The model and the least squares estimation 

 Anderson and Hsiao (1981) presented the first contribution to estimate the DPD 

models. They used LS method as an initial estimation for these models. They 

considered the first-order autoregressive, AR(1), panel data model with P additional 

time-varying regressors  

where     and     denote the (scalar) dependent variable and the 1 × P vector of 

exogenous variables corresponding to cross sectional unit i in period t,   is scalar, 

where | |   , and   represent corresponding P × 1 parameters, and     denotes the 

overall disturbance term consisting of individual effects    and an innovation    , i.e.           . Stacking the observations over time, we get           

where  

 

 
                                             , (1)

 

 
                        ,  
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Under the following assumptions:  

A1: The error terms are distributed as                 . 

A2: The error terms are orthogonal to the exogenous variables, i.e.                . 

A3: The exogenous variables might be correlated with the individual effect, i.e.              . 

A4: The error terms are uncorrelated with the lagged endogenous variable, i.e.   (          )   . 

Stacking the observations once again across individuals, we get 

where             ,             ,             , and    is identity matrix 

with dimension  . While 

The within group estimator of  , which is called the covariance estimator by 

Anderson and Hsiao (1981), can simply be expressed as 

where the       within group transformation matrix   is defined as 

Anderson and Hsiao (1981) showed that this estimator is inconsistent for fixed T 

due to presence of individual effects in both the disturbances   and the regressors    .  

  

 
                      (            )                                              } (2)

 

 
                                                    

 

 
                         (             )                 (3)

 

 
 ̂     ( ̂     ̂    )                   , (4)

 

 
     (          )  (5)
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3. The asymptotic bias for LSDV estimator 

Nickell (1981) derived the asymptotic bias of least squares dummy 

variable  (LSDV) estimator of this model in (1) under the assumptions A1: A4. He 

focused on the case of random start-up (no conditioning on    ). For the DPD model 

with no exogenous regressor variables he obtained: 

where  ̂     is the LSDV estimator as given in (4), this formula clearly  showed  that  

the  inconsistency  is          and  negative  for  positive   (if     );  moreover,  it  

does  not  depend  on     .  Even  for  small     it  has  been found  to  approximate  the  

true  bias,  as assessed  from  Monte  Carlo  studies,  pretty close,  except  for  large  

values  of   . Similar results have been found by Sevestre and Trognon (1985).  They  

considered  the  situation  where  the  individual  effects  were random  and  examined  

the  consequences  of  various  assumptions  regarding  the initial  observations.  They  

did  not  consider  just  the  LSDV  estimator,  but  the  class of   -type  estimators, see  

Maddala (1971),  which  included  LSDV  and  OLS  as special  cases.  

For the DPD model with exogenous regressor variables, Nickell (1981) used 

partitioned regression techniques to express the LSDV estimation errors of   and   in 

(1) and he obtained: 

where  ̂      and  ̂     are the LSDV estimators as given in (4), while  ̃    ,  ̃       ,  ̃    ,  ̃      , and        ̃( ̃   ̃)   ̃ , where   is defined in (5),  

Hence, the inconsistency reads 

 

       ( ̂      )         (              ) *              (              )+     

 

(6)
 

 
 ̂            ̃       ̃      ̃      ̃ , 

  ̂         ( ̃   ̃)   ̃  ̃  ( ̂      )   ( ̃   ̃)   ̃  ̃ , 

 
       ( ̂      )  (             ̃       ̃  *               ̃       ̃   (7)

 

        ( ̂      )           ( ̃   ̃)   ̃  ̃         ( ̂      )  (8) 
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from which it is seen that the inconsistency critically depends on              ̃       ̃ . 
Because of the assumed strict exogeneity of   this term can be written as              ̃       ̃               ̃     ̃ . Nickell (1981) calculated this term as 

Substituting (9) into (7), we have 

Formulas  (8)  and (10) are  not  very  helpful  in  providing  a clearcut  insight  

into the  asymptotic  bias,  and may  even  be  very  inaccurate  as  far  as  the  actual 

magnitude  of  the  bias  of  the  LSDV  estimator  in  small  samples  is  concerned. He 

gives an  indication  on  how  a  more  accurate  approximation  might  be  obtained.  A  

comparable  suggestion  to  approximate  the  bias  to            is  put  forward  by  

Beggs  and  Nerlove  (1988),  but  they  did  not pursue  this  line  of  approach.  

Moreover,  their  suggestion  seems  only  applicable for  the  approximation  of  the  

bias  in   ̂    ,  and  not  for  the  complete  coefficient  vector  ̂    .   

4. Bias-corrected LSDV estimators  

Although consistent estimates can be obtained by IV or GMM procedures, the 

inconsistent LSDV estimator has a relatively low variance and hence can lead to an 

estimator with lower root mean square error after the bias is removed. So, we interested 

in correcting the bias for LSDV estimator to take advantage of this low variance. In this 

section, the articles which proposed the bias-corrected estimators of LSDV will be 

reviewed, such as Kiviet (1995), Hansen (2001), and Bun and Carree (2005). 

4.1. Kiviet estimator  

Kiviet (1995) proposed a direct bias correction method, by deriving  an  

approximating  formula for  the  bias  of  the  full  vector  of  LSDV  coefficient  

 
             ̃     ̃            (              )  (9)

 

 

       ( ̂      )  (             ̃       ̃  *              (              )   
 

 

(10)
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estimates  in  the DPD model in (1) with exogenous  regressors.  As  he  showed  its  

magnitude  can  be  evaluated  and exploited  easily.  

The basic idea, of Kiviet’s procedure to correction the bias, is the approximation 

of the unknown bias by a two-step procedure. In  the  first  step  empirical  estimates  

are  derived,  while in  the second  step  the  bias is derived which leads to a correction 

of the biased estimator. The motivation for the direct correction lies in the well-known 

fact, that the LSDV estimator is biased but has a variance much smaller compared to IV 

estimators, like the Anderson-Hsiao (1982) estimator.
2
 Kiviet (1995) derived the 

expected bias approximation for the LSDV estimator   ̂      of (4): 

where  ̅   ̅   ̅        {     }   , and   ̅       , where  ,  , and    are given 

in (3), (5), and (2) respectively, and    [           ⁄  ], and   is  the          

unit  vector:              , and   is      matrix: 

  
( 
   

                                                     ) 
     

where    is  the estimate  of   which obtained from the  first  step of  Kiviet’s 

procedure. Kiviet suggested use of Anderson-Hsiao estimator as a consistent first step 

estimator. 

                                                           
2
 Anderson and Hsiao (1982) suggested two IV estimators, first estimator based on lagged levels as 

instruments. While the second estimator uses the lagged differences as instruments.  

 ( ̂      )        ̅   (          [    ̅   ̅  ̅    ]   { ̅            ̅  ̅   }   ̅            ̅  ̅             ̅     [   ]           {     }     {        } *             
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4.2. Hansen estimator  

Hansen (2001) suggested an alternative bias correction method, for the model in 

(1), based on the estimator which proposed by Kiviet (1995).  The basic idea is to 

approximate the unknown bias by making use of the first step biased estimator. As the 

starting point the biased estimators  ̂     and   ̂     are obtained. The asymptotic bias 

expression is then approximated by making use of first round regression results. 

He simplified the asymptotic bias formulas of  ̂     and  ̂     which are given in 

(10) and (8) respectively. By inserting        ̃( ̃   ̃)   ̃  into (10), and by using   ̃   ̃     ̃  ̂    , and  ̂     ( ̃   ̃)   ̃  ̃  , he obtained: 

Also, he proved that the term 

(             ̃      ̃  *    
is approximated by   

and            (              )  
is approximated by   

       ( ̂      )  (             ̃    (     ̃( ̃   ̃)   ̃ )  ̃  *  
 

           (              ) 

        (             ̃    ( ̃    ̃ ̂    )*            (              ) 

        (             ̃     ̃  *            (              )  

 

(11)
 

 

   ̃      ̃    (12)
 

 

  ̂       ̂     (      ̂           ̂     )  (13)
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By using (12) and (13) in (11), he gets on the approximated bias on the basis: 

Hansen (2001) suggested a bias-corrected estimator,  ̂     (where the subscript    

means “bias-corrected” and subscript   refers to Hansen), by minimizing the quadratic 

difference between the unknown bias ( ̂      ) and the approximated bias on the 

basis of the first step estimation   ̂ :  
 ̂          (   ̂)      *( ̂      )     ̃      ̃      ̂       ̂     (      ̂           ̂     )+  

The problem has to be solved iteratively. Because the unknown parameter   is 

expected to be in a rather narrow interval,       , a grid-search is applied.  

While the asymptotic bias of the vector  ̂     of the remaining explanatory 

variables is given by: 

       ( ̂      )           ( ̃   ̃)   ̃  ̃         ( ̂      )           ̂            ( ̂      )  
By  making  use  of  the  bias-corrected  parameter  of  the  lagged  endogenous  

variable  ̂     the bias-corrected  estimator  for  the  exogenous  variables  ̂     is  

estimated  making  again  use  of the first step regression results: 

 ̂      ̂      ̂    ( ̂      ̂    )  
Behr (2003) studied the behavior of several DPD estimators (LSDV, GMM) and 

compared between Kiviet and Hansen bias-corrected estimators by using Monte Carlo 

simulation. He showed that the bias of bias-corrected estimator which proposed by 

Hansen (2001) less than bias-corrected estimator which proposed by Kiviet (1995). But 

the superiority of Hansen estimator decreases with growing numbers of individuals. 

  

 
 ̂     ̃      ̃      ̂       ̂     (      ̂           ̂     )   
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4.3. Bun-Carree estimator  

As is well-known, the LSDV estimator is not consistent for large N and finite T in 

DPD models. Bun and Kiviet (2003) and Bruno (2005) derived the infeasible bias 

approximations of this estimator. The bias approximations can be estimated using an 

initial consistent estimator such as Anderson-Hsiao or GMM estimator. All their bias 

correction methods depend on initial consistent estimates. While Bun and Carree (2005) 

proposed an alternative bias correction method to the bias that directly uses LSDV 

estimator, obviating the need to resort to initial consistent estimates. 

Bun and Carree (2005) considered the model in (1), and they formulated the 

expressions for the case of a balanced panel to correct the bias of the inconsistent LSDV 

estimator. They reintroduced the LSDV estimator in (4) as follows: 

where   and   are defined in (3) and (5) respectively, while  ̂  ,  ̂  ,  ̂      , and  ̂     

are the sample analogs of: 

The inconsistency of the LSDV estimator as  

Bun and Carree (2005) introduced the (asymptotic) squared multiple correlation 

coefficient of the regression of  ̃      on  ̃    through  ̃    as 

  ̂     ( ̂     ̂    )                    (  ̂     ̂      ̂     ̂  )  ( ̂       ̂  )  (14)
 

 
                                                

 

 
                                                          

 

          ( ̂      )  
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as the corresponding vector of regression coefficients. The inconsistency              is now conveniently expressed as 

where 

Note that the denominator (        )      in the first expression of (15) is the 

conditional variance of  ̃   given  ̃. 

From the first expression in (15), it is clear that the LSDV estimator  ̂     is 

downward-biased. The extent of the (asymptotic) bias depends on five parameters:  ,  ,    ,      , and       . The bias of the LSDV estimator will be especially severe when (a) 

the value of   is close to 1; (b) the number of time periods, T, is low; (c) the ratio of 

variances,          , is high; or (d) the lagged endogenous variable and the exogenous 

variable are highly correlated, either positively or negatively. The second expression in 

(15) shows that the inconsistency of  ̂     is proportional to that of  ̂    . The bias of 

the LSDV estimator  ̂     can be either positive or negative, depending on the sign of 

the (asymptotic) covariances between  ̃   and  ̃. 

The principle of correction the bias can be explained straightforwardly using (15). 

First, assume that the values for    ,             , and   are known.  Then use as a bias-

corrected estimator,  ̂   (where the subscript    means “bias-corrected”; the fact that    also are the initials of the authors’ surnames), that value of   for which 

This estimator can then be inserted into the second expression in (15) to find the 

bias-corrected estimator  

 ̂    ̂        ̂      ̂     

 
             (        )                                     

 
(15)

 

 
                               

 
(16)

 

 
 ̂                (        )      

 
(17)
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The function        as defined in (16) plays an important role in this nonlinear 

bias correction procedure. This function is always positive and monotonically 

increasing for     , a condition that usually can be safely assumed to hold in 

applications. 

In practice, the values for    ,             , and   are unknown.. The values of the 

latter three variables can be estimated consistently using their sample analogs (14), as 

follows:  ̂       ̂      ̂      ̂     ̂    ⁄ ,  ̂    , and  ̂  ( ̂     ̂ )   ̂      ̂    . 

However, the LSDV estimator of     is inconsistent, and the variance of the error term 

can be consistently estimated only when the LSDV estimators for   and   have been 

bias-corrected. Bun and Carree (2005) proposed three solutions to this problem that lead 

to the same bias-corrected estimates and all these solutions depend on the iterative 

procedure. In this paper, we display a one of these solutions.  This solution based on use 

of an iterative procedure for (17): substitute the LSDV estimate for     in (17) to 

achieve one-step estimates for   and  . These estimates are used to compute the one-

step estimate for    . This one-step estimate is again substituted in (17) to achieve two-

step estimates for   and   and so on until convergence.  

Bun and Carree (2005) used Monte Carlo simulation to compare the performance 

of their bias-corrected estimator (17) with the original LSDV estimator (4), the bias-

corrected estimator which introduced by Kiviet (1995), and the GMM estimator of 

Arellano and Bond (1991). Their simulation results on various designs showed that, 

based on root mean squared error criterion, their bias-corrected estimator performs well 

when   is small and   is large. Also they showed that bias-corrected LSDV estimators 

(Kiviet and Bun-Carree estimators) perform well against GMM estimators. In cases 

where both T and N are small, the limiting distributions for the estimators may have 

little to say about the actual distribution (especially when   is close to unity). However, 

given the strong (relative) performance of Bun-Carree estimator in the Monte Carlo 

exercises in cases where   is as small as 2 or 3, this estimator appears suitable for 

research efforts with samples with large numbers of individuals/firms and a (very) small 

number of time periods.  
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Bun and Carree (2006) studied the extended case on bias-corrected estimator for 

the fixed-effects dynamic panel data model which has been presented by them in 

(2005). They derived the inconsistency of the LSDV estimator for finite T and N large 

in case of both time-series and cross section heteroscedasticity and they showed how to 

implement it in bias correction procedures. 

Lokshin (2008) compared the performance of three proposed estimators for DPD 

models (bias-corrected LSDV which introduced by Bun and Carree, ML, and MD) 

along with GMM by using Monte Carlo. He showed that ML and Bun-Carree 

estimators have the smallest bias and are good alternatives for the GMM especially 

when   is small (   ). 

5. The bias in GMM estimators 

Since the work of Arellano and Bond (1991), the GMM technique has been 

widely used in the estimation of dynamic panel data models. However, subsequent 

examinations of the finite sample performance of the GMM estimator showed that it is 

substantially biased. One source of the bias, first discovered by Nelson and Startz 

(1990a, b), is weak instruments. Staiger and Stock (1997) showed that the instrumental 

variables estimator would be inconsistent under weak instrument asymptotics. We call 

this the “weak instruments problem”. The other source of bias is the relative number of 

instruments to sample size. Especially, in linear simultaneous equation models, 

Kunitomo (1980), Morimune (1983), and Bekker (1994) showed that the two stage least 

squares (2SLS) estimator is inconsistent as the number of the instruments tends to 

infinity. Hahn and Hausman (2002) showed that the finite sample bias of 2SLS 

estimator is monotonically increasing in the number of instruments. One important 

finding of the papers listed above is that the magnitude of the bias is proportional to the 

relative size of the number of instruments to the sample size. We label this the “many 

instruments problem”.  

These considerations are still binding in the estimation of DPD models.  It is well 

known that in the first differencing models the bias is sizable when the parameter 

concerning the lagged dependent variable is close to unity (Alonso-Borrego and 

Arellano 1999). Blundell and Bond (1998) showed that this is due to weak instruments, 
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and to overcome the “weak instruments problem” they proposed the system GMM 

estimator. They first showed that the level GMM estimators by Arellano and Bover 

(1995) are free from weak instruments when the parameter concerning the lagged 

variable is close to unity and then combined the moment conditions which are used in 

the first differencing (by Arellano and Bond 1991) and the level GMM estimators to 

improve the efficiency of the estimator. The system GMM estimator is becoming 

widely used in empirical analyses. Empirical applications include the estimation of 

production functions (Blundell and Bond, 2000) and empirical growth models (Bond et 

al., 2001), among others. 

In this section, we will display the finite sample properties of the GMM 

estimators. Specifically, we focus in our study on three GMM estimators that were 

provided by Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and 

Bond (1998). 

5.1. The AR(1) panel model and GMM estimators  

The AR(1) panel data model without exogenous variables can be written as 

                   ,                 ;        ,
 

(18)
 

under the assumptions: 

(i)     are i.i.d across time and individuals and independent of    and     with          ,             . 

(ii)    are i.i.d across individuals with         ,            . 

(iii) The initial observations satisfy               for        , where     ∑              and independent of   . 
Assumptions (i) and (ii) are the same as in Blundell and Bond (1998), while 

assumption (iii) has been developed by Alvarez and Arellano (2003). Stacking equation 

(25) over time, we obtain 

               ,     
 

(19) 

where   
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   (         ,        (             ,     (         ,               
Given these assumptions, we get three types of GMM estimators. These include 

first-difference GMM (DIF) estimator, level GMM (LEV) estimator, and system GMM 

(SYS) estimator.  

I. First-difference GMM estimator 

The individual effect (  ) in (19) causes a severe correlation between the lagged 

endogenous variable (     ) and the error term (  ). In order to eliminate the individual 

effect, Arellano and Bond (1991) used the first differences of the model in (19):                   
where 

    (                    , ,        (                       ,,      (                     ,, 

and then they showed that 

             ,     
 

(20)
 

where  

    (                                             ,.    
 

(21)
 

Using (20) as the orthogonal conditions in the GMM, Arellano and Bond (1991) 

constructed the one-step DIF (DIF1) estimator for  , which is given by: 

 
 ̂                                         ,

 
(22) 

 

where   
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and they used the following matrix as an initial weighting matrix: 

   (  ∑         
   +   

 

 
 

where   is a (T – 2)×( T – 2) first-difference operator matrix 

  
( 
   

                                         ) 
   .

 

 
 

To get the two-step DIF (DIF2) estimator, the moment conditions are weighted by  

      (  ∑      ̂   ̂      
   +      

where   ̂  are the fitted residuals from DIF1 in (22). 

Blundell and Bond (1998) showed that when   is close to unity and/or         

increases the instruments matrix (21) becomes invalid. This means that the DIF 

estimator has the weak instruments problem. 

II. Level GMM estimator 

Arellano and Bover (1995) suggested use of the instrumental variables to 

eliminate the individual effect from the DPD model, while, as mentioned above, 

Arellano and Bond (1991) used the first differences of the DPD model to eliminate it. 

Explicitly, Arellano and Bover (1995) considered the level model of (19) and then they 

used the following matrix as instrumental variables: 

     (              , ,    (        ,,     (         
,,   
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    (  
                             )  

 
,     

 

 
 

which not contains individual effect and satisfies the orthogonal conditions 

 
           .

 
(23)

 

Using (23), Arellano and Bover’s (1995) one-step LEV (LEV1) estimator is 

calculated as follows: 

 
 ̂                                      .

 
(24)

 

where  

and they used the following matrix as an initial weighting matrix: 

   (  ∑        
   +    

To get the two-step LEV (LEV2) estimator, similarly as in DIF2 estimator, the 

moment conditions are weighted by  

      (  ∑     ̂  ̂      
   +    

where  ̂  are the fitted residuals from LEV1 estimator in (24).  

III. System GMM estimator 

Arellano and Bover (1995) and Blundell and Bond (1998) proposed a system 

GMM estimator in which the moment conditions of DIF and LEV are used jointly to 

avoid weak instruments and improve the efficiency of the estimator. The moment 

conditions used in constructing the system GMM estimator are given by 

 
    (            ,,   (      ,,     (         

,, (25) 
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 (       )   .

 
(26)

 

where                 and     is a                     block diagonal 

matrix given by 

    (        )  
Using (26), the one-step SYS (SYS1) estimator is calculated as follows: 

 
 ̂                                            ,

 
(27)

 

where  

     
( 
   

                        ) 
   ,    

( 
   

            ) 
   ,     (         ,, 

and they used the following matrix as an initial weighting matrix: 

 
    (  ∑          

   +      (       *  (28)
 

To get the two-step SYS (SYS2) estimator, the moment conditions are weighted 

by: 

       (  ∑     ̂   ̂       
   +    

where  ̂   are the fitted residuals from SYS1 estimator in (27). Also, they used the 

identity matrix         instead of   in (28), in this case the weighting matrix is: 

    (  ∑        
   +    

in their first step of two-step system GMM estimator, which yields the simple system 

GMM estimator. This is certainly not optimal either, but is easy and could perhaps suit 
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well as first step in a two-step procedure. To get the two-step SYS estimator, the 

moment conditions are weighted by 

       (  ∑     ̂   ̂       
   +    

where  ̂   are the fitted residuals from one-step SYS estimator with use     as the initial 

weighting matrix. 

Note that  ̂  in (27) can be expressed as: 

 ̂   ̂ ̂      ̂  ̂   
where  

 ̂         (     )                (     )                (     )          
It is worth mentioning that Abonazel (2015a) provided R-code to calculate DIF, 

LEV, and SYS estimates. Moreover, this code has been designed to enable the 

researcher to make a simulation study in DPD models, such as the simulation study in 

Youssef et al. (2014b).
3
 

5.2. Small sample bias properties of GMM estimators 

Hayakawa (2007) considered the model in (18) under the assumptions (i) to (iii), 

and he derived the second order bias for DIF, LEV, and SYS estimators. He considered 

the general one-step GMM estimator based on the moment condition  [         ]   [       ]   . An inefficient one-step GMM estimator is defined as 

 ̂         [  ∑      
   ]   [  ∑      

   ]  
                                                           
3
 For information about a Monte Carlo simulation study, see Abonazel (2015b). He provided the main 

steps (a simple guide) for making the Monte Carlo simulation study using R language. Moreover, He also 

provided some empirical examples in econometrics. 
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where    is a positive semidefinite weighting matrix which satisfies            , and          are symmetric and positive definite matrices which do not depend 

on parameter  . 

Generally, an estimator of  ,  ̂, based on a sample of size   allows for an 

expansion of the form:  

√ ( ̂   )        √       (  *  
where      and      are     . Typically,      has a zero mean and converges in 

distribution to a normal distribution. By taking an expectation and ignoring the  (  ) 

term, then the approximate mean of √ ( ̂   ) is 
 √  (    ). Therefore, the second 

order bias of  ̂ is  
 √  (    ). 

To display the formulas of the second order bias for DIF, LEV, and SYS 

estimators, Hayakawa (2007) defined the following notations:  

    *                                       [        ]      +  
 [            ]  

    [    ]  [        ]  
where                                           

  *       + *         +  
And                                            
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The second order biases of  ̂ ,  ̂ , and  ̂ are given by 

where  

     ,           *                 +  
           [   {                            }            {               }                ]  
            [                               ]  
                        
           *                       +  
                       

      
[  
   
                                                                                                                                                                                                  ]  

   
 
     

      ( ̂ )                 ,   

       ( ̂ )                 ,   

      ( ̂ )                                                          
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[  
   
                                                                                                                                                                                    ]  

   
 
     

He confirmed how well the second order biases explain the actual biases by 

comparing theoretical values with simulation values. Since the biases of all estimators 

are characterized by  ,   and        , he calculated the theoretical values of the biases 

for the cases          0.25, 1, 4 with    0.1,…, 0.9 and    50. He found that the 

theoretical and simulation values are close when    0.5.  

Also, he found that the bias of the SYS estimator is a weighted sum of the biases 

in opposite directions of the DIF and LEV estimators. In addition, he found that the role 

of the weight is also important since it adjusts the difference of the magnitudes of the 

biases. And he provided theoretical evidence why the SYS estimator has smaller bias. 

When the     and     are of almost the same value is an important reason why the 

system estimator has small bias. In the case when          4, the biases of the entire 

GMM estimator are sizable. 

6. Bias-corrected GMM estimators 

Chigira and Yamamoto (2006) proposed a bias-corrected estimator based on 

reduce the bias in GMM estimator. Let   be an even integer, they defined the bias-

corrected estimator ( ̂    ) as follows: 

 
 ̂       ̃    ( ̃   ̃  ) 

 
(29)

 

where  ̃ is a GMM estimator for the whole period, while  ̃  and  ̃   are GMM 

estimators based on a sample of the first period (           ) and of the second 

period (           ), respectively. Next, we define the asymptotic bias of  ̃,        ̃ , as    ̃    , ignoring the terms whose orders are lower than  (    )  
They showed that the bias-corrected estimator in (29) has no asymptotic bias, i.e. 
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     ( ̂    )   (    *  
if satisfies the following condition:  

 
      ( ̃)       (    *  (30)

 

where   is a finite-valued constant independent of   and  . Note that, when   is odd 

integer, say       , the bias-corrected estimator defined as: 

 ̂       ̃        ̃          ̃   
 

 
 

where  ̃ is a GMM estimator for the whole period, while  ̃  and  ̃   are GMM 

estimators based on a sample of the first period (         ) and of the second 

period (         ), respectively.  

The  ̂     estimator in (29) has no asymptotic bias as long as (30) holds. 

Unfortunately, the asymptotic biases of DIF, LEV, and SYS GMM estimators that were 

displayed in above are not given by (30). Explicitly, these estimators have, as shown by 

Bun and Kiviet (2005), a bias of the order     and do not satisfy (30). Chigira and 

Yamamoto (2006) solved this problem by providing a GMM estimator whose bias is 

given by (30). 

7. Alternative GMM estimators 

In this section, we review the new GMM estimators which presented by Youssef 

and Abonazel (2015) as alternative estimators for the conventional GMM estimators. 

They proposed a new approach to improve the efficiency of the conventional GMM 

estimators. Their approach (Youssef-Abonazel’s approach) is based on the optimal (or 

at least suboptimal) weighting matrix
4
 of GMM estimation, then use of these matrices 

as new weighting matrices in GMM estimation, and then we get new GMM estimators. 

The new GMM estimators are more efficient than the conventional GMM estimators.  

                                                           
4
 Youssef et al. (2014a) studied the conventional GMM weighting matrices that using in LEV and SYS 

GMM estimators, and also they proposed other more efficient weighting matrices. 
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In level GMM estimation, Youssef et al. (2014a) showed that    is an optimal 

weighting matrix only in the case of      , i.e., no individual effects case, and they 

presented an optimal weighting matrix for LEV estimator, in the general case, as: 

    (  ∑             
   +                          

where           and      is a         vector of ones. 

Note that the use of the weighting matrix     can be described as inducing cross-

sectional heterogeneity through  , and also can be explained as partially adopting a 

procedure of generalized least squares to the level estimation. So, using    , instead of   , certainly improve the efficiency of LEV estimator. So, using    , we can obtain 

the optimal level GMM (OLEV) estimator:
5
 

 ̂                                          
In system GMM estimation, Youssef and Abonazel (2015) used      in the 

weighting matrix to improve the efficiency for SYS estimator as follows: 

    (  ∑           
   +        (        *  

So, they presented the suboptimal system GMM (SSYS) estimator
6
 depending on 

the suboptimal weighting matrix (   ): 

 ̂                                             

Since an asymptotically efficient estimator can be obtained through the two-step 

procedure in the standard GMM estimation. In the first step, an initial positive 

semidefinite weighting matrix is used to obtain consistent estimates of the parameters. 

Given these, a weighting matrix can be constructed and used for asymptotically efficient 

two-step estimates. It is well known
7
 that the two-step estimated standard errors have a 

                                                           
5
 The optimal level GMM estimator is presented by Abonazel (2014) and Youssef et al. (2014b).  

6
 Kiviet (2007) proposed a similar estimator using an optimal weighting matrix based on the particular 

values of  ,    , and      
7
 See, e.g., Arellano and Bond (1991) and Windmeijer (2005). 
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small-sample downward bias in dynamic panel data setting, and one-step estimates with 

robust standard errors are often preferred. Therefrom Youssef and Abonazel (2015) 

suggested using the three-step procedure in GMM estimation; this can obtain by 

replacing the residuals from the two-step estimation into new weighting matrix to 

achieve more efficiency for all GMM estimators.
8
 

Note that if    , we get           then        and        . 

Therefrom Youssef and Abonazel’s estimators (OLEV and SSYS) are equivalent to the 

conventional GMM (LEV and SYS) estimators.  

Youssef and Abonazel (2015) used the Kantorovich inequality (KI)
9
 to study the 

efficiency gain for the new estimators against using the conventional weighting matrix.  

They find that the new estimators are more efficient than the conventional estimators. 

Moreover, the potential efficiency gain for the new estimators becomes large when the 

variance of individual effects (   ) increases compared with the variance of the errors 

(   ). In other words, the advantages from OLEV and SSYS estimators are increasing 

when   is increasing. Moreover, They make Mote Carlo simulation study to illustrate 

the moderate and large samples performance of LEV, SYS, OLEV, and SSYS 

estimators in different situations of      and  . The simulation study confirms the KI 

conclusion, i.e., the simulation study indicates that the OLEV and SSYS estimators are 

more efficient than LEV and SYS estimators, respectively.
10

 Since, the bias and RMSE 

of SSYS are smaller, in most situations, than the bias and RMSE of OLEV especially 

when    . Consequently, they concluded that the SSYS estimator will provide useful 

parameter estimates for the practitioner.  

For further clarification, the important simulation results for Youssef and 

Abonazel (2015) were summarized in this paper in two Figures. Figure 1 presents the 

bias values of LEV, SYS, OLEV, and SSYS estimators when            and      . While Figure 2 presents RMSE values of the same estimators in the same 

values of      and  . Figures 1 and 2 show that Youssef-Abonazel’s approach 

                                                           
8
 For more details about the three-step procedure in GMM estimation, See Youssef and Abonazel 

(2015). 
9
 Youssef and Abonazel (2015) calculated the IK upper bounds of SYS and SSYS estimators. These bounds 

have been derived by Liu and Neudecker (1997). 
10

 See Tables 1 to 5 in Youssef and Abonazel (2015). 
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improves the bias and RMSE of GMM estimators together, not only RMSE. Moreover, 

SSYS estimator is better than other GMM estimators, especially when   is increasing       even if   is small and   close to one. 

 
Figure 1: Bias of the conventional and new GMM estimators when   =.85, T = 8, and N = 600 

 

 
Figure 2: RMSE of the conventional and new GMM estimators when   =.85, T = 8, and N = 600 
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8. Conclusions  

In this paper, we discuss the estimation methods for DPD models with FE which 

suggested in econometric literature, and we focus on LS and GMM methods. All these 

methods obtain biased estimators for DPD models. Therefore, we discuss the different 

methods to correct the bias of LS and GMM estimations. And we present the analytical 

expressions for the asymptotic biases of the LS and GMM estimators for large N and 

finite T. Finally, we discuss the properties of Youssef and Abonazel’s (2015) estimators.  

From this review, we can divide all improving methods of the estimation in DPD 

models into two approaches. The first approach includes all the bias correction methods 

(all methods above except Youssef-Abonazel’s approach). In this approach, we improve 

the estimation by remove (or at least reduce) the bias from the estimates, without any 

improvement in the efficiency of it. While the second approach includes the methods 

that improve the efficiency of the estimation, without any direct improvement in bias, as 

in Youssef-Abonazel’s approach. However, the bias of estimates from the second 

approach is also very small. Therefrom, we conclude that use of the second approach is 

more efficient than the first approach.  
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