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Multivariate Stochastic Dominance for Risk Averters

and Risk Seekers

Abstract:

This paper first extends some well-known univariate stochastic dominance results to multivari-

ate stochastic dominances (MSD) for both risk averters and risk seekers, respectively, to n order

for any n ≥ 1 when the attributes are assumed to be independent and the utility is assumed

to be additively and separable. Under these assumptions, we develop some properties for MSD

for both risk averters and risk seekers. For example, we prove that MSD are equivalent to the

expected-utility maximization for both risk averters and risk seekers, respectively. We show

that the hierarchical relationship exists for MSD. We establish some dual relationships between

the MSD for risk averters and risk seekers. We develop some properties for non-negative com-

binations and convex combinations random variables of MSD and develop the theory of MSD

for the preferences of both risk averters and risk seekers on diversification. At last, we discuss

some MSD relationships when attributes are dependent and discuss the importance and the

use of the results developed in this paper.

JEL classification: D81, G11

Keywords: Multivariate Stochastic Dominance, Risk Averters, Risk Seekers, Ascending stochas-

tic dominance, descending stochastic dominance, utility function.
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1 Introduction

There are two major types of persons: risk averters and risk seekers. Their corresponding

utility functions are concave and convex; both are increasing. Many authors have studied

their selection rules. For example, Markowitz (1952a) and others propose the mean-variance

selection rules for risk averters and risk seekers. Quirk and Saposnik (1962) and many others

develop some univariate stochastic dominance (SD) rules for risk averters. On the other hand,

Hammond (1974) and many others develop the univariate SD rules for risk seekers.

Decisions are often drawn from multidimensional attributes and, in this situation, decision

makers will rely on multidimensional utility. Some, if not all, of the outcomes in the decisions

with multidimensional consequences could be risky, see, for example, Eisner and Strotz (1961).

Consider a problem of decision-making with risky outcomes described by n (n > 1) attributes

and under the expected-utility framework, if the distribution of the outcomes is known, the main

practical difficulty is to define an appropriate n-variate utility function u for the assessment

of the expected utility of the outcomes. A simple way for the assessment is to assume that

the utility function u possesses separability property for its attributes and the attributes of the

outcomes are independent (Keeney and Raiffa, 1976). Our paper follows this approach.

Some work has been done in the literature to extend the SD concept from a single variable to

the multivariate case. For example, Levy (1973) assumes stochastically independent attributes

whereas Levy and Paroush (1974a) adopt additively separable utilities. In addition, Hazen

(1986) investigates multivariate SD when simple forms of utility independence can be assumed.

Readers may refer to Denuit and Eeckhoudt (2010) and the references therein for other studies

in the multivariate SD. In this paper we call SD for risk averters ascending SD (ASD) and SD

for risk seekers descending SD (DSD).

In this paper, we extend some well-known univariate ASD and DSD results to multivariate

ASD and DSD for risk averters and risk seekers, respectively, to n order for any n ≥ 1 when
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attribute is assumed to be independent and the utility is assumed to be additively and separa-

ble. Under these assumptions, we develop some properties for ASD and DSD, respectively. For

example, we prove that ASD and DSD are equivalent to the expected-utility maximization for

risk averters and risk seekers, respectively. We show that the hierarchical relationship exists

and establish the relationships between multivariate ASD and DSD. We establish some dual

relationships between the MSD for risk averters and risk seekers. We develop some properties of

non-negative combinations and convex combinations random variables for multivariate stochas-

tic dominance and develop the theory of multivariate SD for the preferences of risk averters

and risk seekers on diversification. At last, we discuss some multivariate SD relationships when

attributes are dependent.

We begin by introducing notations and definitions in Section 2. In Section 3, we develop

the theory of multivariate stochastic dominance for risk averters and risk seekers. We discuss

in Section 4 the importance and the use of the results developed in this paper. Section 5

concludes.

2 Definitions and Notations

We let X and Y be random variables defined on Ω = [a, b] with distribution functions F and

G, and probability density functions f and g, respectively, satisfying

HA
j (x) =

∫ x

a

HA
j−1(y) dy , HD

j (x) =

∫ b

x

HD
j−1(y) dy for H = F or G.

in which HA
0 (x) = HD

0 (x) = h(x) with h = f or g and H = F or G. In addition, we let

µF = µX = E(X) =
∫ b

a
t d F (t) and µG = µY = E(Y ) =

∫ b

a
t dG(t)
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2.1 Univariate Stochastic Dominance

We next define the N -order ascending (descending) stochastic dominance which is applied

to risk averters (seekers).1 We first modify the definition used in Jean (1980) to obtain the

following definition for the N -order ascending stochastic dominance (ASD):

Definition 2.1 Given two random variables X and Y with F and G as their respective

distribution functions, X is at least as large as Y in the sense of:

1. FASD(SASD), denoted by X ≽1 Y (X ≽2 Y ) if and only if FA
1 (x) ≤ GA

1 (x) (FA
2 (x) ≤

GA
2 (x)) for each x in [a, b],

2. NASD, denoted by X ≽N Y if and only if FA
N (x) ≤ GA

N(x) for each x in [a, b] and

FA
k (b) ≤ GA

k (b) for k = 2, · · · , N − 1 for N ≥ 3,

where FASD, SASD and NASD stand for first-, second-, and N-order ascending SD, respectively.

We then define the first, second and N -order descending stochastic dominance (DSD) as follows:

Definition 2.2 Given two random variables X and Y with F and G as their respective

distribution functions, X is at least as large as Y in the sense of:

1. FDSD(SDSD), denoted by X ≽1 Y (X ≽2 Y ) if and only if FD
1 (x) ≥ GD

1 (x) (FD
2 (x) ≥

GD
2 (x)) for each x in [a, b],

2. NDSD, denoted by X ≽N Y if and only if FD
N (x) ≥ GD

N(x) for each x in [a, b], and

FD
k (a) ≥ GD

k (a) for k = 2, · · · , N − 1 for N ≥ 3,

1We call stochastic dominance for risk averters ascending stochastic dominance because its integrals count

from the leftmost point in the domain ascending to the rightmost point in the domain. Similarly, we call stochas-

tic dominance for risk seekers descending stochastic dominance because its integrals count from the rightmost

point in the domain descending to the leftmost point in the domain. Readers may refer to Sriboonchitta, et al.

(2009) and the references therein for more information.
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where FDSD, SDSD, and NDSD stand for first-, second-, and N-order descending stochastic

dominance, respectively.

In Definition 2.1, if, in addition, there exists x in [a, b] such that the inequality is strictly,

then we say that X is large than Y and F is large than G in the sense of SFASD, SSASD,

and SNASD, denoted by X ≻1 Y or F ≻1 G, X ≻2 Y or F ≻2 G, and X ≻N Y or F ≻N G,

respectively, where SFASD, SSASD, and SNASD stand for strictly first-, second-, and N -order

ASD, respectively. The strictly first, second, and N -order DSD, denoted by SFDSD, SSDSD,

and SNDSD can be defined similarly.

2.2 Majorization and Dalton Transfer

In this paper we also study the single period portfolio selection for investors to allocate their

wealth to the n (n > 1) risks without short selling in order to maximize their expected utilities

from the resulting final wealth (Markowitz, 1952b; Bai, et al., 2009). Let random variable

X ∈ X be an (excess) return of an asset or prospect. If there are n assets X⃗n = (X1, · · · , Xn)
′,

a portfolio of X⃗n without short selling is defined by a convex combination,
−→
λn

′
−→
X n, of the n

assets X⃗n for any
−→
λn ∈ S0

n (Sn) where

S0
n =

{

(s1, s2, · · · , sn)
′ ∈ R

n : 0 ≤ si ≤ 1 for any i ,
n

∑

i=1

si = 1

}

,

Sn =

{

(s1, s2, · · · , sn)
′ ∈ R

n : 1 ≥ s1 ≥ s2 ≥ · · · ≥ sn ≥ 0,
n

∑

i=1

si = 1

}

, (2.1)

in which R is the set of real numbers and the ith element of
−→
λn is the weight of the portfolio

allocation on the ith asset of return Xi. A portfolio will be equivalent to return on asset i, which

we call a specialized portfolio, or simply a specialized asset, if si = 1 and sj = 0 for all j ̸= i.

It is a partially diversified portfolio if there exists i such that 0 < si < 1 and is the completely

diversified portfolio if si =
1
n
for all i = 1, 2, · · · , n. We note that we include the condition of

∑n

i=1 si = 1 is only for convenience. All the results developed in this paper work well without
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this condition. We then follow Hardy, et al. (1934) to state the following definition to order

the elements in Sn:

Definition 2.3 Let α⃗n, β⃗n ∈ Sn in which Sn is defined in (2.1). β⃗n is said to majorize α⃗n,

denoted by β⃗n ≽M α⃗n, if
k
∑

i=1

βi ≥
k
∑

i=1

αi, for all k = 1, 2, · · · , n.

Possessing the Dalton Pigou transfer is an important feature for the theory of majorization.

We state the definition as follows:

Definition 2.4 2 For any α⃗n, β⃗n ∈ Sn, α⃗n is said to be obtained from β⃗n by applying a single

Dalton (Pigou) transfer, denoted by β⃗n
D
→ α⃗n, if there exist h and k (1 ≤ h < k ≤ n) such that

αi = βi for any i ̸= h, k; αh = βh − ϵ; and αk = βk + ϵ with ϵ > 0.

2.3 Multivariate Stochastic Dominance

Now, we are ready to define multivariate stochastic dominance for risk averters and risk seekers

for independent assets. If there are two vectors of n assets, X⃗n = (X1, · · · , Xn)
′ and Y⃗n =

(Y1, · · · , Yn)
′, in which {Xi} are independent and {Yi} are independent. We have the following

definitions:

Definition 2.5 For any integer N , we say X⃗n ≽N Y⃗n if and only if Xi ≽N Yi for any

i = 1, 2, · · · , n.

Definition 2.6 For any integer N , we say X⃗n ≽N Y⃗n if and only if Xi ≽N Yi for any

i = 1, 2, · · · , n.

We note that readers may modify the work by Levy (1973) and others to set some conditions and

establish the statements in Definitions 2.5 and 2.6 as theorems instead of definitions. However,

our paper prefer to keep them as definitions.

2Some scholars suggest the reverse direction for the definition of a Dalton Pigou transfer. In this paper, we

follow Ok and Kranich (1998) for the definition.
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Before we discuss the theory further, we state the definitions of the sets of utility functions

for risk averters and risk seekers, UA
j and UD

j , for the MSD as follows:

Definition 2.7 For J = 1, 2,· · · , N , u ∈ UA
J or UD

J is an utility function for X⃗n = (X1, · · · , Xn)
′

satisfying

u(X⃗) = u1(X1) + · · ·+ un(Xn) (2.2)

such that:

UA
J = {u : (−1)k∂ku/∂Xi1 · · · ∂Xin ≤ 0 ,

∑

ij = k , ij ≤ J ∀j = 1 · · · , n} , and

UD
J = {u : ∂ku/∂Xi1 · · · ∂Xin ≥ 0 ,

∑

ij = k , ij ≤ J ∀j = 1 · · · , n} ,

where ui is the utility on Xi satisfying (−1)ju(j) ≤ 0 for any integer j if u ∈ UA
J and satisfying

u(j) ≥ 0 for any integer j if u ∈ UD
J .

Readers may refer to Keeney and Raiffa (1976) and others for the definition of u in Definition

2.7. We note that u in (2.2) is quasiconcave (quasiconvex) if each argument is concave (convex),

see for example, Cox (1973). We also note that the theory developed in this paper fit well for

the following additive and separable utility:

u(X⃗) = α +
n

∑

i=1

βiui(Xi) , βi ≥ 0 ∀i .

However, for simplicity, in this paper we only use u in (2.2).

At last, we assume investors will choose between F and G (which could be univariate or

multivariate) in accordance with a consistent set of preferences satisfying the von Neumann-

Morgenstern (1944) consistency properties such that F is (strictly) preferred to G, or equiva-

lently, X is (strictly) preferred to Y if

∆Eu ≡ E
[

u(X)
]

− E
[

u(Y )
]

≥ 0(> 0), (2.3)

where E
[

u(X)
]

≡
∫ b

a
u(x)dF (x) and E

[

u(Y )
]

≡
∫ b

a
u(x)dG(x).
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3 The Theory

We first develop some new results for n-dimensional multivariate stochastic dominance (MSD)

under the assumptions that the attributes are independent and the utility is additive and

separable and thereafter release the assumption of independence.

3.1 Stochastic Dominance for Independent Random Variables

Quirk and Saposnik (1962) and others have developed some properties of univariate SD for

the preferences of risk averters while Hammond (1974) and others have extended the work to

include properties of univariate SD for the preferences of risk seekers. We extend their work to

establish the following important theorem in SD theory:

Theorem 3.1 Let X⃗n and Y⃗n be two vectors of n independent random variables. Suppose

u is a utility function defined in Definition 2.7. For any integer N , we have

1. X⃗n ≽N Y⃗n if and only if E
[

u(X⃗n)
]

≥ E
[

u(Y⃗n)
]

for any u in UA
N , and

2. X⃗n ≽N Y⃗n if and only if E
[

u(X⃗n)
]

≥ E
[

u(Y⃗n)
]

for any u in UD
N .

Readers may refer to Guo and Wong (2016) for the proof.

It is well-known that the hierarchical relationship exists in SD, see, for example, Levy

(1992). We extend their results to obtain the hierarchical relationship for MSD as stated in the

following theorem:

Theorem 3.2 For any integer N , we have

1. if X⃗n ≽N Y⃗n, then X⃗n ≽N+1 Y⃗n, and

2. if X⃗n ≽N Y⃗n, then X⃗n ≽N+1 Y⃗n.
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Theorem 3.2 can be obtained by applying Theorem 3.1, the fact that the hierarchical relation-

ship holds for univariate SD, and Definition 2.5.

It is well-known that if µF = µG, F ≽2 G (F ≻2 G) and if their variances exist, then

σ2
F ≤ σ2

G (σ2
F < σ2

G). If µF = µG, F ≽2 G (F ≻2 G) and if their variances exist, then σ2
F ≥ σ2

G

(σ2
F > σ2

G). These reflect the fact that risk averters prefer to invest in prospects or portfolios

with smaller variances while risk seekers prefer larger variances. Li and Wong (1999), Wong

and Li (1999), and others establish a similar relation between the first three orders of ASD

and DSD for univariate SD. We extend their results by establishing some relationships between

multivariate ASD and DSD for any order as shown in the following theorem:

Theorem 3.3

1. X⃗n ≽1 Y⃗n if and only if X⃗n ≽1 Y⃗n.

2. X⃗n ≽i Y⃗n if and only if −Y⃗n ≽i −X⃗n.

3. If X⃗n and Y⃗n have the same mean which is finite, then X⃗n ≽2 Y⃗n if and only if Y⃗n ≽2 X⃗n.

4. If µX = µY and FA
3 (b) = GA

3 (b), then X⃗n ≽3 Y⃗n if and only if X⃗n ≽3 Y⃗n.

5. if FA
k (b) = GA

k (b), k = 2, · · · , N , then

(a) for any even N , X⃗n ≽N Y⃗n if and only if Y⃗n ≽N X⃗n;

(b) for any odd N , X⃗n ≽N Y⃗n if and only if X⃗n ≽N Y⃗n.

Readers may refer to Guo and Wong (2016) for the proof.

We note that Theorem 3.3 tell us that the preference of risk averters and risk seekers could

be of the same directions sometimes while in other situations, it could be opposite. Moreover,

one could also easily obtain the “transitivity” property for MSD as shown in the following

theorem:
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Theorem 3.4

1. If X⃗ ≽i Y⃗ and Y⃗ ≽j Z⃗, then X⃗ ≽k Z⃗, and

2. if X⃗ ≽i Y⃗ and Y⃗ ≽j Z⃗, then X⃗ ≽k Z⃗,

where k = max(i, j).

Readers may refer to Guo and Wong (2016) for the proof.

Now, we turn to study the properties for convex combinations of random variables. If

X, Y, · · · is the returns of individual assets, convex combinations of X, Y, · · · are the returns

of the portfolios of different assets. Note that for any pair of random variables X and Y ,

X ≽m Y , and F ≽m G are the same for any integer m. However, for n > 1, the convex

combinations of random variables, say,
∑n

i=1 αiXi ≽m

∑n

i=1 αiYi are different from the convex

combinations of distribution functions, say,
∑n

i=1 αiFi ≽m

∑n

i=1 αiGi. Readers may refer to

the convex stochastic dominance theorems (Wong and Li, 1999) for the convex combinations

of distribution functions while this paper studies the convex combinations of random variables.

Hadar and Russell (1971) and others have developed some results of the univariate SD of

random variables that are in the same location and scale family (Wong and Ma, 2008). In this

paper we extend their work by developing the following theorem for MSD:

Theorem 3.5 Let X⃗ be a random vector with mean µX⃗ = (µX1
, · · · , µXn

)′ and elements

{Xi}, each defined in [a, b]. Suppose the random variable Y⃗ = p + qX⃗ with mean µY⃗ =

(µY1
, · · · , µYn

)′.

1. If p+ qy ≥ y for all y ∈ [a, b], then Y⃗ ≽1 X⃗, equivalently Y⃗ ≽1 X⃗.

2. If 0 ≤ q < 1 such that p/(1− q) ≥ µXi
; that is, µYi

≥ µXi
, for each i, then Y⃗ ≽2 X⃗.

3. If 0 ≤ q < 1 such that p/(1− q) ≤ µXi
; that is, µYi

≤ µXi
, for each i, then X⃗ ≽2 Y⃗ .
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Readers could apply Theorem 3.1 and Theorem 8 of Li and Wong (1999) to obtain the proof

of Theorem 3.5. Hadar and Russell (1971) and others have developed some relationships for

linear combinations of random variables for univariate SD. In this paper, we extend their work

to obtain the following theorem for linear combinations of random vectors in MSD:

Theorem 3.6 Let {X⃗n,1, · · · , X⃗n,m} and {Y⃗n,1, · · · , Y⃗n,m} be two sets of independent vectors

for random variables. For j = 1, 2, · · · , N , we have:

1. X⃗n,i ≽j Y⃗n,i for i = 1, · · · ,m if and only if
∑m

i=1 αiX⃗n,i ≽j

∑m

i=1 αiY⃗n,i for any

αi ≥ 0, i = 1, · · · ,m; and

2. X⃗n,i ≽j Y⃗n,i for i = 1, · · · ,m if and only if
∑m

i=1 αiX⃗n,i ≽j
∑m

i=1 αiY⃗n,i for any

αi ≥ 0, i = 1, · · · ,m.

Readers may refer to Guo and Wong (2016) for the proof.

On the other hand, Hadar and Russell (1971) and others have developed some results for

risk averters to compare their preference on the individual assets with partial and completed

diversified portfolios for univariate SD while Li and Wong (1999) extend the result to the

preference of risk seekers. In this paper, we extend their results for the convex combinations of

random variables for MSD as shown in the following theorem:

Theorem 3.7 Let m ≥ 2. If X⃗n,1, · · · , X⃗n,m are i.i.d., then

a.
1

m

m
∑

i=1

X⃗n,i ≽2

m
∑

i=1

λiX⃗n,i ≽2 X⃗n,i for any (λ1, · · · , λm) ∈ S0
m , and

b. X⃗n,i ≽
2

m
∑

i=1

λiX⃗n,i ≽
2 1

m

m
∑

i=1

X⃗n,i for any (λ1, · · · , λm) ∈ S0
m ,

where S0
m is defined in (2.1).

Readers could apply Theorem 12 of Li and Wong (1999) and Theorem 3.1 to prove Theorem

3.7.

11



3.2 Stochastic Dominance and Majorization

Now, we turn to develop the MSD results by applying the theory of majorization and Dalton

transfer. To do so, we first state the following proposition (Egozcue and Wong, 2010) that

could be used to develop some stochastic dominance relationships:

Proposition 3.1 Let α⃗n, β⃗n ∈ Sn, β⃗n ≽M α⃗n if and only if α⃗n can be obtained from β⃗n by

applying a finite number of Dalton transfers, denoted by β⃗n
D
→ α⃗n.

Theorem 3.7 enables investors to compare the preferences among any specialized asset, any

partially diversified portfolio, with the completely diversified portfolio. However, it cannot be

used to compare any two different partially diversified portfolios. We now generalize Theorem 7

in Egozcue and Wong (2010) to obtain the following theorem to make such comparison become

possible:

Theorem 3.8 For n > 1, let α⃗n, β⃗n ∈ Sn
3 and X⃗n = (X1, · · · , Xn)

′ where X1, · · · , Xn are

i.i.d. If β⃗n ≽M α⃗n, then α⃗′

nX⃗n ≽2 β⃗
′

nX⃗n and β⃗′

nX⃗n ≽2 α⃗′

nX⃗n.

In addition, one could easily applying Proposition 3.1 and Theorem 3.8 to obtain the fol-

lowing corollary:

Corollary 3.1 For n > 1, let α⃗n, β⃗n ∈ Sn and X⃗n = (X1, · · · , Xn) where X1, · · · , Xn are

i.i.d. If
−→
β n

D
→ −→α n, then α⃗′

nX⃗n ≽2 β⃗
′

nX⃗n and β⃗′

nX⃗n ≽2 α⃗′

nX⃗n.

Between any pair of two partially diversified portfolios α⃗′

nX⃗n and β⃗′

nX⃗n, if the conditions

in Theorem 3.8 or Corollary 3.1 are satistified, Theorem 3.8 and Corollary 3.1 tell us that risk

averters will prefer α⃗′

nX⃗n whereas risk seekers will prefer β⃗′

nX⃗n.

Can the i.i.d. assumption be dropped in the diversification problem and the completely di-

versified portfolio still be optimal? Samuelson (1967) tells us that the answer is no in general.

3We keep the condition
∑

n

i=1
si = 1 in Sn for convenience. One could exclude this condition and relax it to

be 1⃗′
n
α⃗n = 1⃗′

n
β⃗n.
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He further establishes some results to relax the i.i.d. assumption. In this paper, we comple-

ment Samuelson’s work by applying Proposition 3.1 and Theorem 3.8 to obtain the following

corollaries:

Corollary 3.2 For n > 1, let X⃗n = (X1, · · · , Xn)
′ be a series of random variables that

could be dependent. For any α⃗n and β⃗n, if there exist Y⃗n and Ann with Y⃗n = (Y1, · · · , Yn)
′ in

which {Y1, · · · , Yn} are i.i.d., X⃗n = AnnY⃗n such that

β⃗′

nAnn ≽M α⃗′

nAnn or β⃗′

nAnn
D
→ α⃗′

nAnn ,

with α⃗′

nAnn, β⃗
′

nAnn ∈ Sn, then

α⃗′

nX⃗n ≽2 β⃗
′

nX⃗n and β⃗′

nX⃗n ≽2 α⃗′

nX⃗n

Corollary 3.3 For n > 1, let X⃗n = (X1, · · · , Xn)
′ and Y⃗n = (Y1, · · · , Yn)

′ be two series of

random variables that could be dependent. For any α⃗n and β⃗n, if there exist U⃗n = (U1, · · · , Un)
′,

V⃗n = (V1, · · · , Vn)
′, Ann, and Bnn in which {U1, · · · , Un} and {V1, · · · , Vn} are two series of

i.i.d. random variables with X⃗n = AnnU⃗n, Y⃗n = BnnV⃗n, Ui ≽2 Vi for all i = 1, 2, ..., n such that

β⃗′

nBnn ≽M α⃗′

nAnn or β⃗′

nBnn
D
→ α⃗′

nAnn ,

where α⃗′

nAnn, β⃗
′

nBnn ∈ Sn, then

α⃗′

nX⃗n ≽2 β⃗
′

nY⃗n and β⃗′

nY⃗n ≽2 α⃗′

nX⃗n

4 Discussions

In this section we will discuss briefly the importance and the use of the results developed in

this paper. Theorem 3.1 states that ranking multivariate prospects in the sense of multivariate

ascending and descending MSD is equivalent to the expected-utility maximization for risk

averters and risk seekers, respectively. With this establishment, if one would like to compare
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the preferences on different prospects for different types of investors, it is not necessary to

measure the utilities for different types of investors and analyze their expected utilities. One

only needs to find out the orders and the types of SD for different prospects. This information

could then enable us to draw conclusion on the preferences for different types of investors

on the prospects. This is the basic principle academics apply the SD theory to many areas

like economics and finance. For example, Qiao, et al. (2012) find that stocks SASD dominates

futures and futures SDSD dominates stocks and conclude that risk averters prefer to buy stocks,

whereas risk seekers prefer long index futures. Recently, Davidson and Duclos (2000) and others

develop test statistics for ASD while Bai, et al. (2015) extend their work by developing test

statistics for both ASD and DSD. The tests could be used to apply the theory of ASD and

DSD to empirical issues.

Theorem 3.2 establishes the hierarchical relationship in ASD and DSD. This relationship is

important because, with the establishment of this theorem, only the lowest dominance order of

SD is needed to be reported in practice. On the other hand, Theorem 3.3 is important because

it enables one to realize the DSD preferences of prospects if their ASD preferences are known

and vice versa. On the other hand, Theorem 3.4 tells us that the “transitivity” property holds

for MSD, and thus, investors only need to evaluate the set of the most efficient ones and ignore

the inefficient assets.

We call a person a ASD risk averter if his/her utility function belongs to UA
2 , and a SDSD

risk seeker if his/her utility function belongs to UD
2 . The other orders of ASD risk averter and

DSD risk seeker can be defined similarly. Applying Theorem 3.5 to Corollary 3.3, we could

obtain several interesting properties. We state the following two properties in this paper:

Property 4.1 For the portfolio of n vectors of i.i.d. prospects with n ≥ 2,

1. SASD risk averters will prefer to invest in the completely diversified portfolio than any

partially diversified portfolio, which, in turn, is preferred to any specialized asset; and
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2. SDSD risk seekers will prefer to invest in any specialized asset than any partially diversified

portfolio, which, in turn, is preferred to the completely diversified portfolio.

Property 4.2 Between the two partially diversified portfolios α⃗′

nX⃗n and β⃗′

nY⃗n, if β⃗n ma-

jorizes α⃗n, or if the conditions in Corollaries 3.2 and 3.3 are satisfied, then SASD risk averters

prefer to invest in α⃗′

nX⃗n while SDSD risk seekers prefer to invest in β⃗′

nY⃗n.

5 Concluding Remarks

This paper develops some properties of the multivariate ASD and DSD for risk averters and risk

seekers, respectively, and discuss how to apply the results to investment decision-making. We

remark that though we have developed some MSD relationships when attributes are dependent

but the dependent situations are restricted to some special situations. Further research could

extend the results to include more general situations. In addition, it would be interesting to

extend the theory developed in this paper for utility that is not additively or separable. Further

study could extend univariate SD theory to multivariate SD theory for other types of investors,

for example, S-shaped and reverse S-shaped investors. Readers may refer to, for example, Wong

and Chan (2008), Egozcue, et al. (2011), Clark, et al. (2015), and the references therein for

more information on S-shaped and reverse S-shaped investors.

At last, we note that the SD theory could be used to explain many financial anomalies. For

example, Jegadeesh and Titman (1993) document a financial anomaly on momentum profit

in stock markets that extreme movements in stock prices will be followed by subsequent price

movements in the same direction. In another words, former winners are still winners and former

losers are still losers. If investors know that past winners are still be winners and past losers are

still be losers, they would buy winners and sell losers. This will drive up the price of winners

relative to losers until the market price of winners relative to losers is high enough to make the

momentum profit disappear. However, after many years, many studies still find momentum
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profits empirically. We note that the SD theory could explain this financial anomaly well. For

example, extending the work of Fong, et al. (2005), Sriboonchita, et al. (2009) conclude that

winners dominate losers in the sense of the second order ASD while losers dominate winners in

the sense of the second order DSD, inferring that risk averters will prefer to invest in winners

whereas risk seekers will prefer to invest in losers. This finding could explain why the momentum

profit could still exist after discovery. If the market do consists of both risk averters and risk

seekers, risk averters prefer to invest in winners while risk seekers prefer to invest in losers.

Thus, both risk averters and risk seekers would get what they want in the market and will not

drive up the price of winners or drive down the price of losers and thus the momentum profit

could still exist after discovery.

Dentcheva and Ruszczynski (2009) consider stochastic optimization problem with multivari-

ate stochastic dominance constraints. They introduce the concept of positive linear multivariate

stochastic dominance. They consider linear scalarization with positive coefficients and apply a

univariate SSD constraint to all nonnegative weighted combinations of random outcomes. To

be precise, two random vectors, X is said to dominate Y in positive linear second order, written

X ≽Plin
(2) Y , if cτX ≽(2) c

τY for all c ∈ Rm
+ . Following this linear scalarization idea, Homem-de-

Mello and Mehrotra(2009) further propose the polyhedral second order dominance by allowing

the set of scalarization coefficients to be an arbitrary polyhedron. Hu, et al. (2012) develop

an even more general concept of dominance by allowing arbitrary convex scalarization sets.

These several interesting papers all focus on optimization problem with multivariate stochastic

dominance constraints, refining and extending earlier results for optimization under univariate

stochastic dominance constraints, see, for example, Dentcheva and Ruszczynski (2003,2004) for

more information.
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