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1. Introduction Exploring a better specification to describe money demand behavior

at near-zero interest rates is important empirical work from both normative and positive

viewpoints. From a normative viewpoint, welfare costs of inflation substantially depend

on which specification we use when nominal interest rates are extremely low (e.g., Lucas

(2000), Ireland (2009)). From a positive viewpoint, a major issue when specifying money

demand functions involves how we should describe the phenomenon of the liquidity trap

in relation to the interest rate semielasticity of the demand for money (e.g., Miyao (2002),

Nakashima and Saito (2009)). 1

Using Japanese money market data, this paper investigates the empirical plausibility

of the log-log specification to characterize the money demand function observed during a

regime with extremely low interest rates. 2

The log-log specification has two major features. First, high semielasticity at near-zero

interest rates can be captured using a simple linear representation. In this framework, real

money balances can become arbitrarily large without reaching the finite satiation point, at

or above which the marginal utility of real money balances is zero. Second, semielasticity

with respect to interest rates is excessively sensitive to slight changes in interest rates in

the neighborhood of zero rates. By exploiting the first feature, many studies, including

those of Miyao (2002), Fujiki and Watanabe (2004), and Bae, Kakkar, and Ogaki (2006),

have employed the log-log specification to characterize Japanese money demand functions

for regimes with extremely low interest rates. 3

As an alternative, this paper explores whether the second feature of the log-log specifi-

cation is compatible with the shape of money demand functions. Even during the extremely

1 In the context of modern macroeconomic analysis with New Keynesian models, there is a controversy
regarding whether money demand relations matter or not (e.g., McCallum (2008), Nelson (2008), Woodford
(2008)). For the Japanese economy in the 1990s, Canova and Tobias (2010) pointed out that models without
money cannot sufficiently explain cyclical fluctuations in output and inflation.

2 From September 1995, the Bank of Japan (hereafter, BOJ) developed a low interest rate policy with
the overnight call rate (interbank rate) guided below 0.5%. In February 1999, the BOJ adopted its so-called
zero interest rate policy where the call rate was set close to zero. Following a temporary lifting of the zero
interest rate policy, the BOJ adopted a quantity-easing policy in March 2001. Within this framework, call
rates averaged less than 0.03%. The BOJ terminated the quantity-easing policy in April 2006, and the
zero interest rate policy in July 2006, and accordingly maintained the overnight call rate at around 0.5%.
Since December 2008, the BOJ has lowered the call rate below 0.1%.

3 Bae and de Jong (2007) employed the log-log specification to describe US money demand behavior for
the period of World War II, during which interest rates remained near zero.
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low interest rate regime, the call rate (interbank rate), as the principal policy instrument,

fluctuated in the neighborhood of zero. Casual observation also reveals that money demand

did not respond very sensitively to slight changes in interest rates during the low interest

rate regime. As shown in Figure 1, the money stock (M1) relative to nominal GDP has

expanded substantially since the mid-1990s, but was still quite stable despite small but

frequent changes in interest rates near zero during the 2000s.

To illuminate the second feature, we adopt as an alternative specification the semilog

specification with a onetime switch from moderate to relatively high semielasticity at near-

zero rates. Under this alternative, semielasticity is large, but constant over time during the

extremely low interest rate regime. Hereafter, we refer to the above specification as the

joined semilog specification in the sense that the money demand functions are characterized

by a combination of two linear functions with different degrees of semielasticity. 4 Unlike

the log-log specification, the joined semilog specification can define the finite satiation point

at the zero interest rate bound.

To estimate the joined semilog specification, we employ the econometric tests for a

structural break proposed by Hansen (1992) and Kuo (1998). Given that short-term nom-

inal interest rates declined almost monotonically from the early 1990s to the early 2000s,

tests for a structural break with respect to interest rate semielasticity allow us to iden-

tify the nominal interest rate below which more interest-elastic money demand emerges by

detecting the point of change in the interest rate semielasticity.

In this paper, we also deal carefully with the small-sample problems associated with

both the structural break tests and model selection. For the structural break test, Gregory,

Nason, and Watt (1996) point out that the asymptotic distribution constructed by Hansen

(1992) may be subject to serious small-sample bias. We avoid this problem by using the

sieve bootstrap procedure proposed by Chang et al. (2006); the parametric bootstrap

in Chang et al. (2006) provides a practical means of substantially reducing the small-

4 Using time-series data from developed countries, a number of empirical studies confirm that interest
rate semielasticity and income elasticity are stable over time using a semilog specification for money demand
(see Lucas (1988), Stock and Watson (1993), and Ball (2001) for references). Using Japanese money market
data before the mid-1990s, Miyao (1998) also found that the semielasticity of demand for M1 was quite
stable when the linear semilog specification was employed.
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sample biases in the cointegrating regression. Further, we base our model selection not on

a conventional measure, such as the sum of squared errors (hereafter SSE), but rather the

bootstrap probability. This is because, when using conventional measures, a model may

be designated as optimal by chance when the prediction period used for the performance

comparison is not sufficiently long. In contrast, the bootstrap probability measures the

proportion of time during which one model outperforms the other among the simulated

outcomes. In computing the bootstrap probability, we again employ the sieve bootstrap

procedure used in Chang et al. (2006) to avoid small-sample problems.

We find that the joined semilog specification outperforms the log-log specification in

terms of predictive ability for the regime with extremely low interest rates (or the period

in Japan between 1999 and 2006). That is, during this particular regime, the semielasticity

was not so sensitive to slight changes in interest rates, and while large, was constant. Our

findings imply that real money balances can reach the finite satiation point at the zero

interest rate bound.

The paper is organized as follows. Section 2 introduces the semilog and log-log models

for money demand in Japan and discusses the estimation and test results. Section 3 offers a

conclusion. The Appendix describes the bootstrap procedures for constructing the critical

values and conducting the forecast evaluation.

2. Estimation and Test Results In this section, we specify and estimate the money

demand functions using the semilog, log-log, and joined semilog specifications. In so doing,

we take into consideration the possibility that interest rate semielasticity became rather

large under the extremely low interest rate regime. We then empirically investigate which

model outperforms the others in terms of predictive ability.

2.1. Specification of Japanese money demand To model the money demand func-

tions, we consider the following specifications:

mt − pt = constant + αyt + βit + ǫt, (1)

mt − pt = constant + γyt + θ log it + ξt, (2)
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where ǫ and ξ designate stochastic shocks to money demand. Equation (1) represents the

semilog specification where α and β denote income elasticity and interest rate semielasticity,

respectively. The satiation point of real money balances implied by Equation (1) is equal

to exp(constant) when α is fixed at unity and thereby real money balances are expressed as

a fraction of real income. Equation (2) characterizes the log-log specification where γ and θ

denote income and the interest rate elasticity, respectively. The interest rate semielasticity

implied by Equation (2) is equal to θ/it.

In addition, we consider the joined semilog specification in which two semilog specifica-

tions are joined to each other once it is statistically confirmed that β increases significantly

for the period with extremely low interest rates. That is, if there is a onetime structural

break in the parameters, including β in Equation (1), then one semilog specification is

joined to another with a different set of parameters.

The test and estimation procedures are as follows. Employing a method proposed by

Gregory and Hansen (1996), we first test for the absence of a cointegrating relationship

in Equations (1) and (2) against the presence of cointegration with a possible structural

break. Unfortunately, and as emphasized in Gregory and Hansen (1996), while their test is

powerful for rejecting the absence of cointegration, it cannot test for parameter constancy

and is unable to identify the structural breakpoint. Hence, when we have rejected the

absence of cointegration for the two equations, we employ the tests proposed by Hansen

(1992) and Kuo (1998) to test for parameter constancy and to identify the structural

breakpoint.

To test for the presence of a structural break under cointegration, we choose the test

proposed by Hansen (1992) for a pure structural change, where constancy in the entire set

of parameters is tested against parameter instability. The test proposed by Kuo (1998) is

designed to test for a partial structural change, where constancy in subsets of parameters

is examined. In both tests for structural change, the null hypothesis of cointegration

with parameter stability is tested against the alternative hypothesis of cointegration with

parameter instability.

However, as pointed out by Gregory, Nason, and Watt (1996), Hansen’s (1992) test,

which is based on the asymptotic distribution, may be subject to serious small-sample bias.
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5 Taking due consideration of this potential problem, we conduct hypothesis tests using

not only the asymptotic critical value reported by Hansen (1992) and Kuo (1998), but also

the critical value constructed from the sieve bootstrap proposed by Chang et al. (2006).

Because the test statistics in Hansen (1992) and Kuo (1998) are asymptotically pivotal,

a proper bootstrap procedure for the cointegrating regressions would provide asymptotic

refinement. The sieve bootstrap procedure in Chang et al. (2006) thereby allows us to deal

with the small-sample biases in the structural break tests. 6

In sum, we test structural breaks using not only the critical values based on the asymp-

totic distribution, but also those constructed from the sieve bootstrap procedure. This

means we can improve the statistical inferences for a structural break.

2.2. Data For our estimation, the sample period is August 1985 to March 1999. The

principal reason for excluding the period before 1985 is that Japanese money markets were

strictly regulated until the mid-1980s, and it is only since then that commercial banks

and securities companies have been permitted to issue various types of money market

instruments at market rates. Therefore, the money market rates were unlikely to have

properly reflected market conditions before 1985. Our sample period thus starts in August

1985 when the uncollateralized call market was established. For the sample period before

April 1999, nominal interest rates stayed at low levels, but were still well above zero rates

during this time (see Figure 1).

As discussed extensively in Section 2.6, we specify the period between April 1999 and

November 2008 as the out-of-sample period. The out-of-sample period starts in April

1999, not February when the zero interest rate policy was implemented. The reason for

this is that the BOJ publicly announced a firm commitment to the zero interest rate

policy in April 1999. The out-of-sample period ends in November 2008 because the BOJ

5 The Monte Carlo experiment conducted by Gregory, Nason, and Watt (1996) is used to conclude that
the power of Hansen’s (1992) structural break test is particularly poor when the cointegrating error is
nearly integrated, and that the size distortion (the tendency to reject the null too frequently) is substantial
as the number of regressors becomes large and the amount of serial correlation in the cointegrating error
increases.

6 One major advantage of the sieve bootstrap procedure proposed by Chang et al. (2006) is that the
construction of the data-generating processes can consider the contemporaneous and intertemporal corre-
lation between the innovation in explanatory variables and the disturbance in the cointegrating regression.
This consideration is essential for efficient cointegrating estimation and hypothesis testing.
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implemented quite different monetary operations in response to the ongoing financial crisis

after December 2008.

We construct the set of monthly data as follows. We select M1, compiled and seasonally

adjusted by the BOJ, as the nominal monetary aggregate because M1 reflects to a great

extent the transaction demand for money. It is also common in previous empirical studies

of the Japanese money demand function. 7

The 2005-base consumer price index (General) constructed by the Statistics Bureau

provides nominal prices, and the industrial production index documented by the Ministry

of International Trade and Industry specifies real aggregate output. The overnight call

rates, reported by the BOJ, are used as the nominal interest rates. All data are monthly

averages. As for both the nominal monetary aggregates and industrial production, our

data set is based on variables that are officially seasonally adjusted by the above agencies.

The consumer price index is seasonally adjusted by the X11 method over the sample period

1970–2008.

We conduct unit root tests for each of the variables, namely, the log of real money

balances for M1, the log of real output, the level of nominal interest rates (call rates), and

the log of nominal interest rates, using the augmented Dickey–Fuller test (abbreviated as

ADF) (Dickey and Fuller (1979)) and the Phillips–Perron test (abbreviated as Z) (Phillips

and Perron (1988)). In the null hypothesis, the log of real money balances and the log of

real output are specified as an I(1) with drift, while nominal interest rates, and the log of

nominal interest rates are specified as an I(1) without drift. The unit root tests for the four

variables fail to reject unit roots for the levels and reject unit roots for the first differences.

The ADF and Z tests could be biased toward accepting the null of unit roots for the

log of real money balances and the log of real output because the two tests do not allow

for a change in the drift term in the alternative hypothesis. Taking due consideration of

the potential loss of power in the two unit root tests, we additionally conduct five unit

7 As alternative monetary aggregates, we employ currency and M2+CD. We find that the estimation
and test results for currency do not differ much from those later reported for M1. However, in the case
of M2+CD, the Gregory and Hansen (1996) test statistics fail to reject no cointegration. The estimation
and test results for the specifications including currency and M2+CD are available from the authors upon
request.
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root tests: the Zivot and Andrews (1992) test, the recursive, rolling and sequential tests

of Banerjee, Lumsdaine and Stock (1992), and Perron’s (1997) test. For the five unit root

tests, the null hypothesis is an I(1) with drift, and the relevant alternative hypothesis is a

trend-stationary process with a onetime break in the trend at an unknown point in time.

Table 1 shows the test results for unit roots against trend-stationary with breaks. The four

unit root tests other than the recursive test of Banerjee et al. (1992) fail to reject unit

roots at the 5% level of significance for the log of real money balances and the log of real

output. Overall, our test results indicate that the variables are first-order integrated.

2.3. Cointegration tests This subsection reports the Gregory and Hansen (1996) test

results. Table 2 shows the test results for no cointegration against cointegration with

breaks. The critical value based on the asymptotic distribution is available from Gregory

and Hansen (1996). The construction of the critical values using the bootstrap procedure

is described in the Appendix. We base our statistical inference below on the critical value

computed using the bootstrap procedure.

For the semilog model (1), the Inf-ADF, Inf-Zt, and Inf-Zα test statistics strongly reject

the null hypothesis (no cointegration) at the 1% level of significance based on the critical

values of the bootstrap distribution. For the log-log model (2), the Inf-Zt and Inf-Zα test

statistics reject no cointegration at the 10% level of significance based on the critical values

of the bootstrap distribution, although Inf-ADF test statistic does not significantly reject

the null hypothesis.

The Gregory and Hansen test succeeds in rejecting no cointegration for both the semilog

and log-log models. As a cross-check of the cointegrating relationships in these models, we

determine cointegration rank in the cointegrating vector autoregression (VAR) methodology

using the Bartlett-corrected trace test for small samples proposed by Johansen (2002). The

cointegration rank test is conducted based on a three-variable VAR model: for the semilog

model, it is composed of the log of real money balances, the log of real output, and the

level of nominal interest rates. For the log-log model, the log of real money balances, the

log of real output, and the log of nominal interest rates are included in the VAR model.

We find evidence in favor of one cointegrating relationship for both the semilog and log-log
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models. 8

In the following subsection, we assume that the two money demand models have cointe-

grating relationships with possible breaks, and conduct the structural break tests proposed

by Hansen (1992) and Kuo (1998).

2.4. Structural break tests We employ the Lagrange multiplier (LM) test using the

fully modified OLS estimation proposed by Phillips and Hansen (1990) for tests of cointe-

gration with parameter stability against pure or partial structural changes. 9

The first step in the test procedure for a pure structural change is to choose a breakpoint

T ∗. For the semilog specification (1), for example, we construct a set of time-varying

parameters (αt, βt, constantt) as follows:

if t < T ∗, then (αt, βt, constantt) = (α1, β1, constant1),

and

if t ≥ T ∗, then (αt, βt, constantt) = (α2, β2, constant2).

Next, we compute the LM statistics to test whether (α1, β1, constant1) = (α2, β2, constant2).

The resulting LM statistics are conventionally referred to as F-statistics. The above F-

statistics are then computed for all data points of the sample period. Following Andrews

(1993), we choose a breakpoint (T ∗ in our context) in the middle-70 percent of the full

sample.

There are two types of tests based on these computed F-statistics. When the timing of

a structural break is treated as unknown, it is possible to adopt the Sup-F test based on

the largest F-statistic. On the other hand, when the parameters (αt, βt, constantt) follow a

martingale process under the alternative hypothesis, it is possible to use the Mean-F test

8 The Bartlett-corrected trace statistics are obtained from the restricted-constant VAR models with
three lags for the semilog models and seven lags for the log-log models. For both money demand models, a
lag order was picked by the Hannan–Quinn information criterion. The computations of the trace statistics
are performed using Anders Warne’s program Structural VAR 0.24. The test results are available from the
authors upon request.

9 We also use the dynamic OLS estimation proposed by Saikkonen (1991) and Stock and Watson (1993)
to conduct the pure and partial structural change tests. We confirm that the test results based on the
dynamic OLS do not qualitatively differ from those obtained based on the fully modified OLS. The test
results based on the dynamic OLS are available from the authors upon request.
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based on the average F-statistic. For a partial structural change, the above procedure is

applied to a subset of (αt, βt, constantt). We consider a partial structural change to be

constancy of either the intercept, income elasticity, or the interest rate semielasticity.

The above testing procedure for the pure and partial structural changes of the semilog

model is wholly applicable to the log-log specification (2). For a pure structural change,

we can conduct the Sup-F and Mean-F tests to determine whether a set of the parameters

(γ, θ, constant) is constant over time. For a partial structural change, we apply the Sup-F

and the Mean-F tests to a subset of the parameters.

Critical values based on the limiting distribution are available from Hansen (1992) for

a pure structural change and Kuo (1998) for a partial structural change. For statistical

inference, however, we adopt critical values constructed from the sieve bootstrap procedure

in Chang et al. (2006). The construction of the critical values using the sieve bootstrap

procedure is described in the Appendix.

Table 3 reports the stability test results for the semilog and log-log models. As shown

in the two rows denoted (1), both the Sup-F and Mean-F tests for the semilog model

indicate that there were significant pure structural changes in August 1995 with reference

to the bootstrap critical values. However, for the log-log specification, neither the Sup-F

nor Mean-F tests detect a significant pure structural change using the bootstrap critical

values.

According to the partial structural change test based on the bootstrap critical values,

the instability of the semilog model is detected only for interest rate semielasticity (β) at

the 1% level of significance, while that of the log-log model is not detected for any of the

three parameters.

The above test results indicate that the pure structural change around 1995 in the

semilog model could be attributed to the partial structural change of interest rate semielas-

ticity in 1995. In contrast, the log-log model is time invariant, a finding consistent with

Miyao (2002) and Nakashima (2009). 10

10 Miyao (2002) provides evidence that the log-log model is stable over time using Hansen’s (1992) pure
structural change test. Nakashima (2009) finds no evidence that income and interest rate elasticity are state
dependent using Choi and Saikkonen’s (2004) linearity test. As an alternative approach, Hondroyiannis,
Swamy, and Tavlas (2000) employ a random coefficient model, and find that the absolute value of interest
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Figure 2 plots the F-statistic for each data point, together with the 5% critical values

based on both the asymptotic and bootstrap distributions for the case of the constancy

of β in the semilog model. As clearly shown, the highest F-statistic at June 1995 far

exceeds the 5% critical value of the asymptotic distribution, and is above that using the

bootstrap procedure. Therefore, this result implies that the constancy of the interest rate

semielasticity in the semilog model is strongly rejected given an unknown breakpoint.

To additionally check parameter constancy of the semilog and log-log models in the

cointegrated VAR methodology, we also conduct the fluctuation and Nyblom tests proposed

by Hansen and Johansen (1999). The fluctuation test is a supremum test for the constancy

of the nonzero eigenvalues of the reduced-rank matrix, while the Nyblom test provides

supremum and mean test statistics for checking the constancy of cointegrating vectors.

Therefore, as long as the cointegration rank is one, the Nyblom test can be regarded as

a test of a pure structural change in the cointegrated VAR methodology. Table 4 reports

test results for parameter constancy obtained by imposing the cointegration rank of one

on the three-variable VAR models. For the semilog model, the fluctuation and Nyblom

tests indicate that there were significant structural changes around 1995 according to the

bootstrap critical values. 11 For the log-log model, on the other hand, neither of the two

tests rejects the null of parameter constancy using the bootstrap critical values. The test

results for parameter constancy in the cointegrated VAR methodology are quite consistent

with those for a pure structural change.

In sum, the above test results imply that the change in interest rate semielasticity

contributes to the structural break in the semilog model around 1995. Therefore, the

joined semilog specification is plausible in our context. On the other hand, we can regard

the functional form based on the log-log specification as time invariant. 12

rate elasticity declined continuously during the low interest rate regime. Their finding, however, may be
called into question because it is not clear that the random coefficient model applies when dealing with
the coefficients of integrated variables.

11 Asymptotic and bootstrap critical values are from 5,000 simulations using Anders Warne’s program
Structural VAR 0.24. In bootstrapping, the block bootstrap procedure is performed with a block size of
twelve.

12 For the second subsample period from 1995:8 to 1999:3, we conducted Hansen’s (1992) test for a pure
structural change using both the asymptotic and bootstrap critical values, although the reliability of the
test results is not entirely assured because the number of observations available for conducting Hansen’s
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2.5. Estimation results The structural break test for the semilog specification implies

that two cointegrating regimes with two different degrees of interest rate semielasticity

emerged around 1995. Accordingly, in estimating the joined semilog model, we assume

that there are two cointegrating regimes separated by the data point with the largest F-

statistic for Hansen’s (1992) pure structural change test: this breakpoint corresponds to

August 1995. 13 For the log-log specification (2), on the other hand, the structural break

test indicates that the functional form is time invariant. Hence, we estimate the model

without any sample splitting.

Using the fully modified OLS, Table 5 reports the parameter estimates obtained from

the linear semilog model, the joined semilog model, and the log-log model, and their 95%

confidence intervals. 14 For confidence intervals, we calculate not only the asymptotic but

also the bootstrap values to deal with any small-sample problems. The construction of the

bootstrap confidence intervals is described in the Appendix.

We can point out some observations about these estimated parameters. First, as ex-

pected, the joined semilog model is estimated to be much more elastic with respect to

interest rates for the second period than the first period. The estimated interest rate

semielasticity (β) changes from −0.037 to −1.016. The finding that the estimated interest

rate semielasticity becomes higher around 1995 is compatible with previous studies, includ-

ing Miyao (1998) and Nakashima (2009), where the estimated interest rate semielasticity

test is only 28, and hence extremely small. For the joined semilog model in the second subsample, we have
confirmed that the test for a pure structural change rejects the null of parameter constancy at the 10%
level of significance using the asymptotic critical values, but it does not reject the null at the 1% level of
significance using the bootstrap values. For the log-log model in the second subsample, we have confirmed
that the test does not reject the null of parameter constancy at the 5% level of significance using both the
asymptotic and bootstrap critical values.

13 As Hansen (1992) argues, it would be inappropriate to conclude, based only on the rejection of the Sup-
F test, that there are two cointegrating regimes separated by a data point with the largest F-statistic. This
is particularly true when there is no prior knowledge of the breakpoints. Before conducting the empirical
investigation, however, we have legitimate expectations that a structural break would occur around 1995
when the BOJ guided overnight call rates below 0.5%, and thus implemented the low interest rate policy.
Given this expectation, one of the most natural possibilities would be that a break occurred at the data
point with the largest F-statistic. We pursue this possibility with the semilog specification.

14 In addition to conventional linear cointegration techniques, such as the fully modified OLS or the
dynamic OLS, Bae, Kakkar, and Ogaki (2006) use the nonlinear cointegration technique to estimate the log-
log model for Japanese money demand, thereby dealing carefully with the statistical issue of the nonlinear
transformation of interest rates as the I(1) variable. Their estimation results, however, do not depend very
much on the techniques used for their estimation.
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ranges from about −0.03 to about −0.1 for sample periods prior to 1995 and from about

−0.5 to about −1.1 for sample periods after 1995.

Second, the interest rate elasticity of the log-log model (θ), accompanied by a large

confidence interval, is estimated to be about −0.17. The absolute value of the estimated

interest rate elasticity is then compatible with that reported by Miyao (2004) and Bae,

Kakkar, and Ogaki (2006), where the estimated interest rate elasticities range from about

−0.08 to about −0.18.

Third, the income elasticity of the semilog model (α) is estimated to be close to unity

with a small confidence interval for the first period, while its point estimate in the second

period is close to unity, but is imprecise given the large confidence interval. The income

elasticity of the log-log model (γ), accompanied by a large confidence interval, is also

estimated to be close to unity.

Given imprecise estimates of the coefficients on logarithmic income, Table 6 reports the

parameter estimates for the semilog and log-log models in which the income elasticity is

fixed at unity. The estimated interest rate semielasticity (β) and elasticity (θ) are quite

similar to those obtained without any restrictions on income elasticity. In addition, the

constant term is fairly precisely estimated to be about 5.0. 15

As discussed in Section 2.1, the semilog model can provide the information about the

finite satiation point, that is, the minimum point of real balances at the zero interest rate

bound. We estimate the satiation point in terms of Marshallian k defined as the ratio of

M1 to Nominal GDP. First, we obtain the logarithmic values of Marshallian k (mt −pt −yt

in Equation (1)) for the sample period from the third quarter 1995 to the first quarter 1999,

which corresponds to the second period of the subsample estimation after 1995. Next, we

calculate the constant term in Equation (1), or the sample average of mt − pt − yt − βit,

using the estimated interest rate semielasticity for the second period reported in Table 6.

The average is calculated to be −0.573, and thus the satiation point is estimated to be

0.564 through exp(−0.573). The estimated satiation point exists around 2002, which is

15 We also use other methods proposed by Johansen (1991), Park (1992), and Stock and Watson (1993) to
estimate the semilog and log-log models. We confirm that the estimation results based on these alternative
methods are quite similar to those based on the fully modified OLS. The estimation results obtained using
these alternative methods are available from the authors upon request.
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about one year after the BOJ adopted the quantity-easing policy in 2001. 16

In sum, a single linear equation can approximate the Japanese money demand func-

tion under the log-log specification. However, under the semilog specification, two linear

equations or the joined semilog can express the specification, in which the interest rate

semielasticity switches from moderate to large in 1995.

2.6. Performance comparison In this subsection, we conduct a performance compar-

ison in terms of predictive ability between the linear semilog, the joined semilog, and the

log-log models. We base our model selection not on any conventional measure, such as

the SSE, but rather on the bootstrap probability. This is because when using conventional

measures, a model may be designated as optimal by chance when the prediction period is

not sufficiently long.

The bootstrap probability measures the proportion of time during which one model

outperforms the other two using the simulated outcomes. More specifically, the bootstrap

probability is defined for each of the three models as follows:

Pk = ♯{ min
k=1,2,3

êb
k : b = 1, . . . , B}/B,

where B denotes the number of bootstrap replications, êb
k is the SSE computed for model

k in replication b, and ♯{} is a counter operator. By construction, Σ3

k=1
Pk = 1 holds. 17

The decision rule based on bootstrap probability, which has been widely used since

Felsenstein (1985) applied it to phylogenetic tree selection, is that when the bootstrap

probability of a certain model approaches one, the model concerned outperforms the other

models in terms of predictive superiority. On the other hand, if the bootstrap probability

of a certain model is close to zero, then either of the other models is predictively superior.

16 Ireland (2009) demonstrated that the semilog specification is superior to the log-log specification in
describing US money demand behavior during the period of very low interest rates from 2002 to 2004.
We find that the satiation point of US real balances implied by Ireland’s (2009) estimates of the semilog
specification is calculated to be about 0.17. The calculated satiation point of US real balances is much
lower than that of Japanese real balances.

17 This bootstrap-based model evaluation measure (Pk in our context) is referred to differently in other
studies. For example, Liu and Singh (1997), Efron and Tibshirani (1998), and Shimodaira (2004) term this
measure the empirical strength probability, the confidence value, and the bootstrap probability, respectively.
We follow the terminology in Shimodaira (2004).
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In addition, when the bootstrap probability is far from either one or zero, we cannot

make any strong assertion about model selection. 18 We employ such a decision rule for

model selection, although the statistical property of bootstrap probability in a cointegrating

regression model has not yet been established. 19

To calculate the bootstrap probability, we again employ the bootstrap procedure in

Chang et al. (2006) with 5,000 bootstrap replications. We additionally set the number

of bootstrap replications at 500, 1,000, 3,000 and 7,000, but respective simulations do not

yield quantitatively different results reported in this subsection. The construction of the

bootstrap probability is described in the Appendix.

For model selection purposes, we employ the estimation results reported in Table 6 in

which the income elasticity is fixed at unity, partly because our focus is on the response

of money demand to interest rates, and partly because income elasticity is estimated to be

quite imprecise for all of the models.

As mentioned earlier, the in-sample period is between July 1985 and March 1999, while

the out-of-sample period is between April 1999 and November 2008. For the out-of-sample

period, it is noteworthy that monthly averages of the uncollateralized overnight call rates

are officially reported at 0% at three data points: January 2004, April 2004 and July

2004. Consequently, the implied interest rate semielasticity (θ/it) for the log-log model

takes an infinite value at the three data points. Given that the implied semielasticity

becomes infinitely excessive to slight changes in nominal interest rates around a zero-value

data point, the log-log model is obviously not appropriate for describing Japanese money

demand behavior for the out-of-sample period because Japanese real balances were not

18 Using bootstrap methods, White (2000), Hansen (2005), and Romano and Wolf (2005) test whether
a particular benchmark model is significantly outperformed by alternative models. However, their tests
may not be suitable for our purpose of examining relative model superiority because the rejection of the
benchmark or its nonrejection may not allow us to identify the best model among competing models:
known as “multiple comparisons with control.” In contrast, the bootstrap probability allows us to directly
evaluate the relative superiority and inferiority of competing models. We therefore employ a decision rule
based on the bootstrap probability.

19 The bootstrap probability Pk corresponds to the P-value in testing whether model k has predictive
superiority over its competitors. In the multivariate normal model, the bootstrap probability approaches
the exact P-value with the order O(T−j/2) (j ≥ 1), where the order of accuracy j depends on bootstrap
methods for computing the bootstrap probability (see Efron and Tibshirani (1998) and Shimodaira (2004)).
To our knowledge, the statistical properties of bootstrap probability have not yet been established in
cointegrating regression.
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volatile around the three data points (see Figure 1). We evaluate out-of-sample predictive

ability below more carefully and formally using the bootstrap probability. To this end, for

the three months of January 2004, April 2004 and July 2004, we utilize month-end values

of the uncollateralized overnight call rates in place of monthly average values. Month-end

values officially reported for the three months are 0.001% and are the same as the monthly

average values before and after these months. Therefore, the replacement of data can

conservatively evaluate the out-of-sample predictability of the log-log model because the

implied semielasticity is not volatile around these three months. 20

Tables 7 and 8 present the in-sample (Table 7) and out-of-sample (Table 8) performance

comparison results. In these tables, the SSE itself is reported for the joined semilog model.

For the linear semilog and log-log models, on the other hand, the difference in the SSE

between the joined semilog and either of the two other models is reported. A plus sign

indicates that the SSE of the linear semilog model (the log-log model) is larger than that of

the joined semilog model, while a minus sign indicates the opposite. In addition, these tables

report the average interest rate semielasticity, namely, the sample average of the estimated

interest rate semielasticity (β) for the joined semilog model, and that of the implied interest

rate semielasticity (θ/it) for the log-log model. 21 The bootstrap probabilities are in

parentheses. For an evaluation of in-sample predictive ability, we also employ the leave-

one-out cross-validation proposed by Stone (1974) to estimate the SSE.

We point out the following observations about the performance comparison. First, the

linear semilog model carries both large positive SSEs and a small bootstrap probability,

and is clearly inferior to both the joined semilog model and the log-log model for both

the in-sample and out-of-sample periods. This result is compatible with Bae, Kakkar, and

Ogaki (2006) who also conclude that the log-log model is superior to the linear semilog

20 Month-end values of the uncollateralized overnight call rates officially reported for the months of
January 2004, April 2004 and July 2004 are 0.001%, but somehow monthly averages are officially reported
to be 0% for these months. We confirmed that the exclusion of the three data points does not qualitatively
change the empirical results of the out-of-sample performance comparison reported in this subsection.

21 For example, for the full in-sample period from 1985 to 1999, the average interest rate semielasticity
is defined as T−1 (T1 · β1 + T2 · β2) for the joined semilog model, and as T−1

∑
1999:3

t=1985:7
θ/it for the log-log

model. T , T1, and T2 denote the number of observations in the full sample, the first subsample, and the
second subsample, respectively. β1 and β2 indicate estimated interest semielasticities of the first and second
subsamples.
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model in terms of out-of-sample predictive ability.

Second, as demonstrated in Table 7, there is no superiority in in-sample predictive

ability between the joined semilog and log-log models because the bootstrap probability

computed for both the full in-sample period and the two in-subsample periods takes a value

close to 0.5. As shown in Figure 3, the estimated interest rate semielasticity does not differ

significantly between the two models for any in-sample period except March 1999.

Third, as shown in Table 8, the joined semilog model is predictively superior to the

log-log model for the full out-of-sample period from 1999 to 2008. Table 8 also reports the

comparison results for the two subsamples: the period from April 1999 to June 2006 when

the BOJ adopted its zero interest rate policy (the quantity-easing policy), and the period

between July 2006 and November 2008 when the BOJ lifted the zero interest rate policy.

Based on the subsample results, the overall superiority of the joined semilog model can be

attributed to the inferiority of the log-log model for the first subsample. 22

Fourth, as shown in Figure 4, the semielasticity implied by the log-log specification

differs substantially from the estimated semielasticity based on the joined semilog speci-

fication for the first subsample of the out-of-sample period. Given the superiority of the

joined semilog specification, this suggests that the semielasticity does not respond to small

changes in interest rates as much as the log-log specification predicts, and that the log-log

specification yields excess sensitivity of money demand to interest rates for near-zero rates.

In other words, during the extremely low interest rate regime, interest rate semielasticity

was not as volatile as implied by the log-log specification and had been relatively stable,

but at a high level, since mid-1995. 23

22 The average interest-rate semielasticity obtained by excluding the zero-value data points (January
2004, April 2004 and July 2004) is calculated to be −63.32 for the full out-of-sample period, and −85.04
for the first out-of-subsample period.

23 The sensitivity of the level of nominal M1 stock (Mt) to nominal interest rates, ∂Mt/∂it, can be
estimated from the estimated interest rate semielasticities (β) and elasticities (θ); specifically, it is expressed
as βYtPt exp(constant+βit+ǫt) in the semilog model with unitary income elasticity, and as θ exp(constant+
ξt)YtPti

θ−1

t in the log-log model with unitary income elasticity, where Yt and Pt denote the levels of real
output (industrial production index) and nominal price (consumer price index). We confirmed that the
behavior of estimated sensitivities of the joined semilog and log-log models is substantially the same as
that of estimated semielasticities of the two models reported in this subsection. The estimated sensitivities
are available from the authors upon request.
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3. Conclusion Using a predictive ability comparison between the log-log specification

and the joined semilog specification, we conclude that the estimated interest rate semielas-

ticity became extremely large when call rates (interbank rates) were below 0.5% in the

mid-1990s, and that it has been stable, but at a rather high level, since this time. We

find that the log-log specification successfully captures the former dimension, but fails to

fit the latter because the implied semielasticity is too sensitive to small changes in interest

rates that are near-zero rates. On the other hand, the joined semilog specification with a

onetime switch from moderate to relatively high semielasticity at interest rates below 0.5%

succeeds in simultaneously accommodating these two aspects. Our findings suggest that

when nominal interest rates are near zero, real money balances are not as volatile as the

log-log specification predicts, but are instead stable around the finite satiation point, albeit

at a rather high level.

Our conclusions involve only positive analysis of the money demand function. As dis-

cussed in the Introduction, the welfare cost of inflation would be the most important nor-

mative implication. Exploring the normative implications of money demand specifications

in the context of each theoretical background remains a critical task for our future research.

24

Appendix: Bootstrap Procedures This Appendix describes the bootstrap procedures

for constructing the critical values in Tables 2 and 3, the confidence intervals in Tables 5

and 6, and the forecast evaluation in Tables 7 and 8.

Our bootstrap procedures described in this Appendix and the results reported in the

main text are based on 5,000 bootstrap replications. We additionally set the number of

bootstrap replications at 500, 1,000, 3,000 and 7,000, but these simulations do not yield

quantitatively different results from those reported in the main text.

A1. Bootstrap procedures for the cointegration test We compute the bootstrap

distributions and the corresponding critical values of the test statistics Inf-ADF, Inf-Zt,

and Inf-Zα for the cointegration test in Gregory and Hansen (1996) in the following way.

24 As of the time of writing, we have found that the welfare costs of inflation estimated with the joined
semilog specification would be substantially lower than those with the log-log specification.
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1. Estimate the semilog money demand function (1) using a full sample of size n = 163

by OLS to obtain the fitted residuals {ǫ1, ǫ2, . . . , ǫn}.

2. Define {u1, u2, . . . , un}, where uj = ∆ǫj , assuming that the stochastic disturbance

ǫt follows a random work process under the null hypothesis of no cointegration, and

sample {û1, û2, . . . , ûn} randomly with replacement from the centered residuals {uj −

ū : j = 1, . . . , n}, where ū = n−1
∑n

j=1
uj.

3. Obtain a bootstrap sample {ǫ̂1, ǫ̂2, . . . , ǫ̂n} for the stochastic disturbance ǫt by inte-

grating {ûj}, that is, ǫ̂j = ǫ0 +
∑j

k=1
ûk, where ǫ0 indicates the initial value of the

residuals {ǫj}.

4. Generate a bootstrap sample {m̂j − p̂j : j = 1, . . . , n} of a real money balance by

substituting the bootstrap residuals {ǫ̂j} as well as the observed explanatory variables

{yj, ij : j = 1, . . . , n} into the OLS-estimated money demand function.

5. Apply Gregory and Hansen’s (1996) test to each bootstrap sample {m̂j − p̂j, yj, ij :

j = 1, . . . , n}, and repeat this procedure 5,000 times to compute the bootstrap dis-

tributions of the Inf-ADF, Inf-Zt, and Inf-Zα statistics. Set the bootstrap α-level

critical values equal to the 1 − α quantiles of the bootstrap distributions.

6. These bootstrap procedures are thoroughly applicable to the log-log money demand

function (2).

A2. Bootstrap procedures for the structural change tests For efficient estimation

and hypothesis testing, Chang et al. (2006) developed a sieve bootstrap method. The

sieve bootstrap method suggests the use of a finite-order vector autoregression (VAR) for

specifying the structure of the contemporaneous and intertemporal correlation between the

innovation in explanatory variables and the disturbance in a cointegrating regression. Em-

ploying the VAR-based sieve bootstrap method, we compute both bootstrap distributions

and critical values of Sup-F and Mean-F in the following way.

1. Estimate the semilog money demand function (1) using a full sample of size n = 163

by fully modified OLS to obtain the fitted residuals {ǫ1, ǫ2, . . . , ǫn}.
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2. Let {yj, ij : j = 1, . . . , n} denote the observed explanatory variables, and define

{ωj = (ǫj , vy
j , vi

j)
′

: j = 1, . . . , n}, where vy
j = ∆yj and vi

j = ∆ij .

3. Suppose that the DGP of {ωj} is given by the q-th order VAR ωt =
∑q

k=1
Φkωt−k +ηt,

and estimate the VAR using {ωj} by OLS to obtain the estimates {Φ1, Φ2, . . . , Φq}

and the fitted residuals {η1, η2, . . . , ηn}. The order q is chosen using the Schwartz

information criterion.

4. Sample {η̂1, η̂2, . . . , η̂n} randomly with replacement from the centered VAR residuals

{ηj − η̄ : j = 1, . . . , n}, where η̄ = n−1
∑n

j=1
ηj, and construct a bootstrap sample

{ω̂j = (ǫ̂j , v̂y
j , v̂i

j)
′

: j = 1, . . . , n} recursively using ω̂j =
∑q

k=1
Φkω̂j−k + η̂j given the

initial values {ω̂j = ωj : j = 0, . . . , 1 − q}. Steps 3 and 4 above correspond to the

VAR-based sieve bootstrap method proposed by Chang et al. (2006).

5. Obtain a bootstrap sample {ŷj, ı̂j : j = 1, . . . , n} of the explanatory variables by

integrating {v̂y
j , v̂i

j}, that is, ŷj = j ·µy +y0 +
∑j

k=1
v̂y

k and ı̂j = i0 +
∑j

k=1
v̂i

k, where µy

indicates the drift term of yt estimated from µy = n−1
∑n

j=1
∆yj , and a pair (y0, i0)

indicates the initial value of {yj, ij}.

6. Generate a bootstrap sample {m̂j − p̂j : j = 1, . . . , n} of a real money balance

by substituting the bootstrap residuals {ǫ̂j} as well as the bootstrap explanatory

variables {ŷj, ı̂j} into the money demand function estimated by fully modified OLS.

7. Apply Hansen’s (1992) test for pure structural changes and Kuo’s (1998) test for

partial structural changes to each set of the bootstrap sample {m̂j − p̂j , ŷj, ı̂j}, and

repeat this procedure 5,000 times to compute the bootstrap distributions of the Sup-

F and Mean-F statistics. Set the bootstrap α-level critical values equal to the 1 − α

quantiles of the bootstrap distributions.

8. These bootstrap procedures are thoroughly applicable to the log-log money demand

function (2).

A3. Bootstrap confidence intervals To obtain bootstrap confidence intervals, we

merely alter Step 7 in the bootstrap procedure for the structural change tests: we calculate
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the confidence intervals by not applying the structural change tests but, instead, the fully

modified OLS to the bootstrap sample. According to Tables 5 and 6, while the estimated

confidence intervals are somewhat larger than those based on the asymptotic distribution,

the sign and significance of the estimated parameters do not change substantially.

A4. Bootstrap procedures for comparison of predictive ability To conduct a

predictive ability comparison, we alter the bootstrap procedure for the structural break

tests as follows. First, we define the sum of squared errors (SSE) as {ek : k = 1, 2, 3},

where ek indicates the SSE for the joined semilog, linear semilog, and log-log models.

Tables 7 and 8 report the SSE of each model as a statistic.

Next, in Step 7, we obtain parameter estimates by applying the fully modified OLS

to the bootstrap sample. Using the estimated parameter, we generate fitted residuals in

a prediction period, and then calculate the bootstrap SSE {êb
k : b = 1, . . . , B} for the

three models. In each replication b, the bootstrap SSE for the best model is defined

as { min
k=1,2,3

êb
k : b = 1, . . . , B}. We repeat this procedure B = 5, 000 times to obtain

the bootstrap probability Pk, that is, the proportion of time during which one model

outperforms the other two models.
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Table 1: Unit Root Tests with a One-time Break in the Drift of mt − pt and yt

Zivot-Andrews Test
Banergee-Lumsdaine-Stock Test

Perron Test
Recursive Rolling Sequential

mt − pt

-2.791 −7.626** -0.113 -2.573 -2.963

(1995:7) (1990:1) (1999:3) (1995:3) (1995:5)

yt

-2.273 −10.69** 3.448 -3.375 -3.917

(1987:11) (1998:8) (1999:3) (1988:10) (1987:4)

5% c.v. -4.800 -4.330 -5.010 -4.800 -4.800

1. For each test, the null hypothesis is an integrated process with drift, and the relevant alternative
hypothesis is a trend-stationary process with a one-time break in the trend at an unknown point
in time.

2. Zivot and Andrew’s (1992) test is conducted using Model (A), which allows for a one-time change
in the level of the series.

3. For the recursive, rolling, and sequential tests of Banergee, Lumsdaine and Stock (1992), the
mimimal Dicky-Fuller statistics is computed. The mimimal Dicky-Fuller statistics of the sequential
test is computed from the mean-shift regressions.

4. Perron’s (1997) test is conducted using the “crash” model, in which there is a shift in intercept.

5. Detected data points of shift are in parentheses. For the rolling test, a detected point of shift in
parenthesis indicates the end of a rolling window.

6. ** indicate the 5% level of significance.
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Table 2: Residual-based Tests for Cointegration with Regime Shifts

Test Statistics
5% c.v.

Asymptotic Bootstrap

Semilog Log-log Semilog Log-log

Inf-ADF -6.18*** -4.40 -5.50 -5.60 -5.60

Inf-Zt -6.12***
−5.06* -5.50 -5.46 -5.40

Inf-Zα -58.71***
−47.39* -58.33 -50.89 -50.69

1. Tests are based on the regime shift model proposed by Gregory and Hansen (1996).

2. Asymptotic critical values are from Gregory and Hansen (1996).

3. Bootstrap critical values are computed from 5,000 replications under the null hypothesis of no cointegra-
tion.

4. For Inf-ADF, the lag length is selected using the t-test in Gregory and Hansen (1996).

5. * and *** indicate the 10% and 1% levels of significance for the bootstrap tests, respectively.
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Table 3: Tests for Parameter Instability of Money Demand Equations

Test Statistics
5% c.v.

Asymptotic Bootstrap

Semilog Log-log Semilog Log-log

Sup F

(1) 71.67** 18.75 17.3 48.95 37.91
(1995:8) (1995:3)

(2) 20.75 16.08 10.75 23.19 34.72
(1990:9) (1995:3)

(3) 21.12 16.57 10.71 25.19 35.23
(1990:9) (1995:3)

(4) 48.37*** 3.66 9.98 33.25 33.72
(1995:6) (1997:4)

Mean F
(1) 15.16 10.25 7.69 21.07 18.10
(2) 4.55 2.05 2.22 6.810 7.00
(3) 4.65 2.15 2.14 6.810 7.15
(4) 12.58 0.75 2.47 16.94 9.04

1. Tests are based on the fully modified OLS proposed by Hansen (1992).

2. Asymptotic critical values from Kuo (1998) for a partial structural change and Hansen (1992) for a pure
structural change.

3. Bootstrap critical values are from 5,000 replications under the null hypotheses of parameter constancy
using the sieve bootstrap proposed by Chang et al. (2006).

4. In each panel, the first row, denoted (1), comprises tests of the entire cointegrating vector, the second
row (2) gives tests of the intercept, the third row (3) gives tests of the coefficient on yt, and the fourth
row (4) gives tests of the coefficient on it.

5. Data points with the largest F-statistics are in parentheses.

6. ** and *** indicate the 5% and 1% levels of significance for the bootstrap tests, respectively.

27



Table 4: The Fluctuation and Nyblom Tests for Parameter Constancy of

Long-run Money Demand Equations

Tests
Test Statistics

5% c.v.
Asymptotic Bootstrap

Semilog Log-log Semilog Log-log

Fluctuation Test
0.777** 0.497 1.357 0.766 0.692

(1994:12) (1994:5)

Nyblom Test

Sup Test
16.95*** 4.946 2.400 12.44 7.756

(1995:2) (1995:3)

Mean Test 7.642** 2.227 0.681 7.444 4.542

1. The fluctuation test statistics are computed based on the largest eigenvalue λ and the transformation
ξ = log (λ/(1− λ)), as proposed by Hansen and Johansen (1999).

2. The Nyblom tests statistics are computed based on a frst-order Taylor expansion of the score function as
proposed by Hansen and Johansen (1999).

3. All test statistics are computed from the restricted-constant VAR models with three lags for the semilog
model and seven lags for the log-log model. In compuatation of test statistics, cointegration rank of one
is imposed on the restricted-constant VAR models.

4. The first-15 percent of the full sample are used as the base period.

5. Asymptotic and bootstrap critical values are from 5,000 simulations using Anders Warne’s program Struc-
tural VAR 0.24. In bootstrapping, the block bootstrap procedure is performed with a block size of twelve.

6. Data points with the largest statistics are in parentheses for the fluctuation and Nyblom tests.

7. ** and *** indicate the 5% and 1% levels of significance for the bootstrap tests, respectively.
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Table 5: Parameter Estimates of Money Demand Equations

Model Period 95% C.I. Constant yt it

Linear Semilog 1985:7–1999:3
3.281 1.416 -0.058

Asymptotic (-2.367, 8.819) (0.192, 2.657) (-0.094, -0.020)
Bootstrap (-22.73, 16.75) (-1.487, 7.502) (-0.249, 0.030)

Joined Semilog

1985:7–1995:7
4.122 1.202 -0.037

Asymptotic (3.709, 4.535) (1.109, 1.295) (-0.041, -0.033)
Bootstrap (3.301, 4.632) (1.089, 1.390) (-0.044, -0.032)

1995:8–1999:3
4.138 1.325 -1.016

Asymptotic (0.311, 7.965) (0.472, 2.177) (-1.293, -0.740)
Bootstrap (-20.24, 5.607) (1.106, 6.722) (-2.120, -0.516)

Log-log 1985:7-1999:3
5.832 0.839 -0.174

Asymptotic (4.716, 6.928) (0.594, 1.081) (-0.190, -0.158)
Bootstrap (3.998, 9.338) (0.072, 1.243) (-0.239, -0.153)

1. The estimation method employs the fully modified OLS proposed by Phillips and Hansen (1990).

2. 95% C.I. is the 95% confidence interval.

3. Asymptotic and bootstrap are the asymptotic and bootstrap confidence intervals, respectively. The
bootstrap confidence intervals employ the sieve bootstrap proposed by Chang et al. (2006).

Table 6: Parameter Estimates of Money Demand Equations

with Unitary Income Elasticity

Model Period 95% C.I. Constant yt it

Linear Semilog 1985:7–1999:3
5.187 -0.068

Asymptotic (4.989, 5.385) 1.000 (-0.114, -0.022)
Bootstrap (4.441, 6.409) (-0.353, -0.001)

Joined Semilog

1985:7–1995:7
5.023 -0.035

Asymptotic (5.000, 5.047) 1.000 (-0.040, -0.030)
Bootstrap (4.958, 5.075) (-0.046, -0.026)

1995:8–1999:3
5.653 -1.092

Asymptotic (5.461, 5.846) 1.000 (-1.531, -0.653)
Bootstrap (4.849, 5.995) (-1.765, -0.403)

Log-log 1985:7–1999:3
5.078 -0.161

Asymptotic (5.053, 5.103) 1.000 (-0.179, -0.143)
Bootstrap (5.016, 5.136) (-0.210, -0.140)

1. See notes in Table 5.
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Table 7: Performance Comparison of In-sample Predictability

Period Method

Sum of Squared Errors
Average Interest Semielasticity

(Bootstrap Probability) Average
Joined Linear

Log-log
it

Joined Semilog Log-log
Semilog Semilog

1985:7–1999:3
In-sample

0.407 +0.576 -0.028

3.524
(0.429) (0.092) (0.479) -0.317 -0.158

C.V.
0.402 +0.609 -0.031 (-0.558, -0.127) (-0.206, -0.137)

(0.458) (0.007) (0.536)

1985:7–1995:7
In-sample

0.079 +0.519 +0.015

4.647
(0.560) (0.002) (0.438) -0.035 -0.043

C.V.
0.082 +0.538 +0.014 (-0.040, -0.030) (-0.056, -0.037)

(0.556) (0.001) (0.443)

1995:8–1999:3
In-sample

0.328 +0.057 -0.043

0.437
(0.437) (0.014) (0.549) -1.092 -0.474

C.V.
0.321 +0.071 -0.045 (-1.765, -0.403) (-0.617, -0.411)

(0.439) (0.015) (0.546)

1. For the joined semilog model, the sum of squared errors (SSE) is reported. For the linear semilog
and log-log models, the SSE difference with the joined semilog model is reported.

2. + indicates that the SSE of the linear semilog and log-log models is larger than that of the joined
semilog model; − indicates the opposite.

3. The bootstrap probability is in parenthesis. The bootstrap probability is calculated using the sieve
bootstrap method proposed by Chang et al. (2006) with 5,000 resamples.

4. C.V. indicates the leave-one-out cross-validation method proposed by Stone (1974).

5. Average it indicates the sample average of overnight call rates.

6. Average interest semielasticity indicates the sample average of the estimated interest-rate semielas-
ticity for the joined semilog model and the implied semielasticity for the log-log model.

7. The sample average of the bootstrap confidence interval for interest rate semielasticity is in paren-
thesis. The bootstrap confidence interval for the log-log model is obtained using the estimated
interest-rate elasticity reported in Table 6 for the log-log model.

Table 8: Performance Comparison of Out-of-sample Predictability

Period

Sum of Squared Errors
Average Interest Semielasticity

(Bootstrap Probability) Average
Jointed Linear

Log-log
it

Jointed Semilog Log-log
Semilog Semilog

1999:4–2008:11
14.82 +27.43 +1.448

0.128
-1.092 -65.85

(0.795) (0.006) (0.199) (-1.765, -0.403) (-85.89, -57.26)

1999:4–2006:6
4.128 +26.46 +1.561

0.027
-1.092 -87.66

(0.873) (0.000) (0.127) (-1.765, -0.403) (-114.3, -76.22)

2006:7–2008:11
10.69 +0.962 -0.113

0.429
-1.092 -0.420

(0.373) (0.077) (0.550) (-1.765, -0.403) (-0.548, -0.365)

1. See notes in Table 7.
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Figure 1. Overnight Call Rates and Nominal M1 Stock
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