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Abstract 

Neoclassical models disregard the role of energy in production, equating a factor's output 

elasticity with its cost share, but failing to explain growth without a residual term. In contrast, 

ecological economics acknowledges energy's importance in production, regardless of its cost 

share. The aggregate production function (APF) concept, central to neoclassical theory, is also 

disputed.  

We apply cointegration analysis to test for APFs between output, capital, and labor. We 

investigate the inclusion of energy inputs, measuring energy's capacity to generate productive 

work (useful exergy). Plausible APFs must verify cointegration and Granger-causality between 

output and inputs; and non-negative output elasticities. This method recognizes cases where: a) 

plausible APFs don't exist; b) energy impacts growth directly; c) energy impacts growth 

indirectly, through other inputs. We apply the method to Portugal (1960-2009), considering 

standard and quality-corrected capital and labor measures. 

Plausible APFs are rarely obtained for capital-labor models. When they are, the residual 

growth component is large, and output elasticities disagree with historical cost shares. However, 

the residual is virtually eliminated for capital-labor-energy models with two cointegration 

relationships: a) a capital-labor APF, with output elasticities matching historical cost shares; b) a 

function estimating capital from useful exergy. These models reconcile energy's significance in 

production with cost-share neoclassical assumptions. 
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Highlights:  

• We apply a cointegration-based method to test for aggregate production functions; 

• Plausible production functions are subject to empirically-defined criteria; 

• We test for the inclusion of energy inputs, measured through a useful exergy metric; 

• Cointegration reveals indirect impact of useful exergy on growth, through capital; 

• In this way, cost share theorem and energy's importance to production are reconciled; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

The true nature of the relationship between economic growth and energy use has sparked an 

ongoing debate between two seemingly contradictory approaches in the literature: neoclassical 

and ecological economics.  

On the one hand, neoclassical theory acknowledges two (freely substitutable) factors of 

production – capital and labor – while ignoring the role of energy inputs. On the other hand, 

ecological economics argues that energy is essential to economic production, and real-world 

economic processes cannot be fully understood without accounting for energy use. In the next 

sections we will review some of the major contrasting features regarding energy inputs from 

both these approaches, and propose an econometric methodology to conciliate the two.  

 

1.1. Neoclassical growth theory 

The absence of energy from neoclassical growth models can be traced to (Ayres et al., 2013): a) 

an accounting identity; b) a historically observed stylized fact; c) an equilibrium condition arising 

from a simplifying income allocation theorem (i.e. cost share theorem).  

The identity, commonly adopted in national accounts, equates GDP to the sum of payments 

to capital (interests, rents, dividends, royalties) and labor (wages, salaries). Historically, a stylized 

fact observed across countries verifies stable (average) cost shares for these factors, with labor 

receiving 70% of payments, and capital the remaining 30%1. Then, for a state of market 

equilibrium – maximizing profits without technological constraints on factor combinations – and 

for a simple economy consisting of small price-taking firms, a factor’s productive power (i.e. 

output elasticity) can be equated with its respective cost share in total income (Gans et al., 

2012).  

Unlike capital and labor, payments to energy are generally not explicitly represented in 

national accounts. Even when these payments are roughly equated with revenues from energy 

industries (e.g. coal mining, electricity generation and distribution), they correspond to no more 

than 10% of total income (Denison, 1979; US EIA, 2011; Platchkov & Pollitt, 2011).  Hence, by 

the cost share theorem, energy’s productive power will be correspondingly small, thus justifying 

its exclusion from the principal neoclassical growth models, in which energy is neither a 

constraint nor an enabler of growth (Aghion & Howitt, 2009). 

Ironically, while acknowledging only capital and labor as independent factors of production, 

neoclassical theory is open to a major criticism: its inability to account for the majority of 



economic growth with just these two factors. The pioneering work of Solow (1957) found that, 

after acknowledging the contributions from capital and labor in a growth accounting framework, 

an exogenous residual term is necessary in order to explain most (>85%) of economic growth in 

the US (1909-1949). This residual term (a.k.a. Solow residual, or total factor productivity – TFP), 

corresponding by definition to growth not explicable by measurable changes in either capital 

nor labor, is often found to be the major driver of growth within most industrialized economies 

(Easterly & Levine, 2001). And, while commonly regarded as a place holder for disembodied 

exogenous technological progress, there is no established theory regarding the factors that 

influence TFP. Hence, neoclassical theory rests on a tautological explanation of economic growth 

that, paradoxically, leaves most of growth unaccounted by measurable factors. 

Since Solow’s original results, attempts have been made to reduce the exogenous residual, 

by breaking it down into its components.  

Jorgenson & Griliches (1967) proposed to eliminate TFP by carefully measuring capital and 

labor inputs according to their actual contribution to production, thereby avoiding inflation in 

the residual term from absorption of measurement errors in these inputs. Based on a strict 

application of neoclassical theory, the authors replace, in turn, traditional measures for capital 

and labor inputs by quality-adjusted measures that take into account not only the quantitative 

magnitude of these inputs, but also qualitative differences from each inputs in their contribution 

to production. Hence, the authors introduce capital measures based on utilization, rather than 

stocks2; and intensity-corrected labor measures3.  

The seminal work of Jorgenson & Griliches (1967)4 forms the basis for current growth 

accounting exercises undertaken, among others, by the EU KLEMS database (Timmer et al., 

2010). The importance of acknowledging the heterogeneity of capital and labor inputs in order 

to accurately account for economic growth is nowadays widely recognized. Labor measured in 

total hours worked is adjusted for the “skill” level of different workers, through a human capital 

index5 (Whalley & Zhao, 2013; Manuelli & Seshadri, 2014), while differences in capital 

productivity are accounted by estimating the services provided by different capital assets, rather 

than their stocks (Schreyer et al., 2003; Wallis, 2009).  

Since quality-adjusted measures for traditional factors of production generally grow at a 

faster rate than their unadjusted counterparts, adoption of these measures has a significant 

effect in reducing TFP in growth accounting (Groth et al. 2004). However, it’s important to note 

that a considerable portion of TFP that cannot be “explained away” even when accounting for 

quality-adjusted inputs (van Ark, 2014). 



 

1.2. Aggregate production function critique 

Besides the need for an exogenous residual to account for economic growth, the very concept 

of an aggregate production function, which sits at the heart of neoclassical theory, has also been 

the subject of critique, mostly due to the “aggregation problem”: the conditions under which 

different heterogeneous outputs and factors of production can be aggregated and summed 

across different micro-production functions to give an aggregate production function are so 

stringent that it is hard to believe in the existence of such a function (Felipe & McCombie, 2005; 

Felipe & McCombie, 2013).The most famous of the debates surrounding the aggregation 

problem – the Cambridge “capital controversy”, sparked by the work of Pierro Sraffa and Joan 

Robinson (Sraffa, 1975 ;Robinson, 1953) – pointed out that the aggregate measurement of the 

amount of capital inputs involves adding up incomparable heterogeneous physical assets. 

The arguments concerning this aggregation issue state that the aggregate production 

function is merely capturing an underlying accounting identity, which accounts for the good 

statistical fits commonly obtained, despite the “capital controversy”. However, this means that 

no reliance should be placed on estimates for elasticity of substitution as reflecting technological 

parameters (Felipe & McCombie, 2005).  

Despite the damaging implications for neoclassical macroeconomic theory, these 

fundamental issues surrounding the aggregate production function concept have been 

overlooked by neoclassical economists. Growth accounting exercises presume the existence of 

an aggregate homogeneous of degree one production function between factors of production 

and output. Most neoclassical models simply assume that such a relationship can always be 

written between the variables.  

Because studies have shown that an aggregate Cobb-Douglas production function (or other, 

more flexible formulation) can have a good fit to a given dataset – even though the aggregation 

conditions are violated, or there is no neoclassical production function – results of regressions 

purporting to estimate such functions should be treated with caution (Felipe & McCombie, 2005; 

Felipe & McCombie, 2013). Hence, any approach to the estimation of aggregate production 

functions between time series for output and factors of production should take into account 

that such an aggregate relationship may not exist. In our work we take this into consideration.  

 



1.3. Energy’s role in economic production 

Ecological economics distinguishes itself from neoclassical economics by arguing that the 

economic system is embedded within a larger, environmental system with which it performs 

energy/matter transactions. The proponents of ecological economics argue that economic 

thinking should therefore be grounded in physical reality, namely the laws of thermodynamics. 

The ecological economics literature generally posits a central role for energy in driving 

growth, going as far as to construct biophysical models that consider energy the only primary 

factor of production, while capital and labor are intermediates created and maintained by 

energy (Cleveland, 1991).  

However, it can also be argued that an active use of energy is only possible through 

information and accumulated knowledge (Stern, 2011), which must be incorporated into 

machines/workers to be made productive, thus justifying the treatment of capital and labor as 

factors of production in their own right. These factors are also easier to measure than either 

information of knowledge, though their measurement is still very imperfect when compared to 

that of energy inputs (Stern, 2011). 

In the field of ecological economics there have been several attempts to endogenize and 

better account for economic growth by treating energy as an independent factor of production, 

incorporating it alongside capital and labor in standard production function approaches (Tintner 

et al., 1977; Kümmel et al., 2000; Lindenberger & Kummel, 2002). By computing output 

elasticities through statistical fitting methods, the implications of the cost share theorem are 

generally invalidated, since the estimated economic weight associated with each factor may be 

higher/lower than suggested by its cost share.  

Furthermore, most energy-augmented growth models do not include realistic constraints 

on substitution possibilities between energy, capital, and labor. In fact, thermodynamic 

considerations would suggest that production of a given level of output has minimum energy 

requirements (Stern, 1997), and energy scarcity will be a limiting factor to future economic 

growth (d’Arge & Kogiku, 1973; Gross & Veendorp, 1990; van den Bergh & Nijkamp, 1994; 

Lindenberger & Kümmel, 2011).  

Besides being a constraint on economic production and growth, recent evidence (Giraud & 

Kahraman, 2014) suggests that tremendous increases in energy consumption – and efficiency – 

that accompanied the post WWII years in fact account for a large fraction of growth (generally 

ascribed to technological change) in the Western countries during the 30 Glorious Years6.  



Among studies that tested the inclusion of energy as an independent factor in aggregate 

production functions, the work of Ayres & Warr (2005) stands out in the ecological economics 

literature. The authors focus on 100 years of US economic growth, and find that by including 

primary energy in either a Cobb-Douglas or a more complex function (i.e. linear exponential, or 

LINEX7), alongside capital and labor, growth cannot be fully explained without a time-dependent 

residual (TFP).  

However, Ayres & Warr (2005) defend that appropriate measuring and aggregation of 

energy inputs affect estimated TFP, and proceed to quantify energy not in terms of primary 

energy8, but in terms of useful exergy (i.e. useful work)9.  

In thermodynamics, exergy is an energy flow’s capacity to produce work. By the 2nd law of 

thermodynamics, work can be completely converted into heat, but the converse is not true 

(entropy). Accounting for exergy instead of energy takes this into consideration, changing the 

way heat and work are added up, by giving work a mark of quality. Useful exergy measures 

exergy flows at their useful stage, i.e. after all transformation and conversion losses, just before 

becoming energy services in the economy. Useful exergy accounts, for example, for heat 

delivered by an electric heater to provide thermal comfort, or mechanical work delivered by a 

car engine, through the driveshaft to the tires, to provide transport. It is a quality-adjusted 

measure for the energy used productively.  

When useful exergy is included in a LINEX production function, Ayres & Warr (2005) obtain 

a remarkable result, successfully accounting for US economic growth without resorting to an 

exogenous residual.  

Still, for all its importance in ecological economics literature, a twofold criticism falls on the 

work of Ayres & Warr (2005): 1) they adopt a non-standard production function (LINEX), which 

has found little acceptance within the economics community – Saunders (2008) states that the 

LINEX’s thermodynamic considerations come at the price of not satisfying standard production 

function concavity conditions; 2) while quality-adjusting energy inputs through useful exergy 

measures, the authors fail to recognize the need to account for quality-adjusted measures for 

capital and labor.  

 



1.4. Reconciling the neoclassical and ecological approaches? 

Can the neoclassical and ecological strands of economic growth theory be reconciled? Namely, 

can an essential role for energy in production be compatible with neoclassical assumptions, such 

as the cost share theorem? 

A pair of recent papers – Stern & Kander (2010),  Kander & Stern (2014) – attempt to answer 

question. The authors link the omission of energy from mainstream growth models to the 

relative abundance of energy inputs in recent decades, compared with past constraints on 

growth imposed by energy availability. They show that expansion in the supply of energy 

services10 over the last 200 years in Sweden has reduced the apparent importance of energy in 

economic growth, despite energy being essential to production11.  

Furthermore, while for recent decades the cost share for energy is small when compared 

with that of capital or labor – and mainstream growth models can yield good results while 

disregarding energy’s contribution – Kander et al. (2014) show there is evidence for a declining 

cost share of energy in the very long-run, for Sweden12 and other countries13. Such a decline is 

incompatible with a (Cobb-Douglas) unitary elasticity of substitution, since as the price of one 

factor rises, a movement along the isoquant implies that less of that factor is used, as to keep 

its cost share constant. 

 This led Stern & Kander (2010), Kander & Stern (2014) and Kander et al. (2014) to expand 

from the Cobb-Douglas formulation, allowing for restrictions to the substitution between 

energy, capital, and labor. By considering a capital-labor Cobb-Douglas function, embedded 

within a nested Constant Elasticity of Substitution (CES) production function with energy 

inputs14, the authors successfully include energy as an additional factor of production to capital 

and labor, while still preserving, within the nested CES, the capital-labor neoclassical Cobb-

Douglas production function15. Under this approach, energy can be shown to be essential to 

production, while the cost share theorem is preserved. 

Sharing the motivation behind Stern & Kander (2010) and Kander & Stern (2014), we 

propose an alternative approach: to identify long-run economic relationships through joint 

statistical properties of economic data. Namely, we apply cointegration analysis to the 

estimation of aggregate Cobb-Douglas production functions and corresponding output 

elasticities for capital, labor, and energy inputs. Similar approaches can be found in Schröer & 

Stahlecker (1996) – that discussed whether the aggregate Cobb-Douglas production function 

represents a cointegration relationship between time series for output, capital, and labor – and 

Stern (2000) and Cleveland et al. (2000), which also included energy inputs. 



Besides Stern (2000) and Cleveland et al. (2000), Ghali & El-Sakka (2004), Stresing et al. 

(2008), and Warr & Ayres (2010) are among the most recent studies testing multivariate 

cointegration between output, capital, labor, and energy. We also adopt a multivariate approach 

to test for cointegration, which reduces potentially omitted-variable biases16. Of the selected 

studies, only Stern (2000) and Warr & Ayres (2010) adopt a quality-adjusted measure for energy 

(a Divisia index in the former; useful exergy in the latter), and none adopts quality-adjusted 

measures for either capital or labor. In our work we will consider quality-adjusted energy inputs 

– i.e. useful exergy, as in Warr & Ayres (2010) –, and both unadjusted and quality-adjusted 

measures for capital and labor. 

Stern (2000) presents evidence of cointegration between GDP, capital, labor, and energy for 

the US (1947-94), showing that energy cannot be excluded from the cointegration space17. 

Similar results are obtained for Canada by Cleveland et al. (2000) and Ghali & El-Sakka (2004). 

Stern (2000) also interprets observed cointegration relationships as production functions, and 

possibly as labor supply and/or capital acceleration functions. However, when restricting the 

analysis to Cobb-Douglas production functions without a time trend, and imposing that output 

elasticities for capital and labor must sum to unity, cointegration is no longer observed.  

More recently, Stresing et al. (2008) tested for cointegration between output, capital, labor, 

and energy in Germany, Japan, and the US (1960-2008). The authors make a direct 

correspondence between cointegration coefficients and output elasticities of aggregate, energy-

dependent, Cobb-Douglas production functions. These coefficients are required to meet certain 

restrictions (non-negativity, summing to unity) in order to be economically meaningful. Stresing 

et al. (2008) find that the hypothesis of cointegration cannot be rejected for any country, and 

that estimated output elasticities for labor (energy) are much smaller (larger) than 

corresponding historical cost shares. 

Similarly to Stresing et al. (2008), in our analysis we will work within a sub-space of 

economically meaningful cointegration vectors, which we will interpret as aggregate Cobb-

Douglas production functions if certain criteria are met. We define these criteria to be: 1) 

existence of cointegration relationships; 2) non-negative and distinguishable from zero 

normalized cointegration coefficients, corresponding to output elasticities for capital, labor, and 

energy; 3) long-run Granger causality between factor inputs and economic output. Estimated 

models are also compared with historical data in terms of goodness-of-fit and magnitude of the 

growth accounting residual.  



The remainder of this paper is organized as follows: Section 2 presents the methodology in 

detail, including cointegration analysis, Granger causality, criteria for economically meaningful 

neoclassical aggregate production functions, and an application to past economic growth in 

Portugal. Results are presented and discussed in Section 3. Section 4 concludes and provides 

suggestions for future work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Methodology 

In this section we propose a detailed methodology to test for production functions through 

cointegration analysis on a selected dataset, comprised of time series for economic output, 

unadjusted and quality-adjusted capital and labor, and quality-adjusted energy (i.e. useful 

exergy).  

Our methodology is built around a set of criteria, corresponding to conditions that must be 

met by our econometric models, in order to allow for their interpretation as economically 

meaningful neoclassical aggregate Cobb-Douglas production functions. The criteria – listed 

below and detailed throughout this section – are divided between those focused specifically on 

the econometric analysis, and those that focus on comparison with historical data.  

The first set of criteria correspond to conditions imposed on the cointegration subspace and 

causal dynamics between variables.  Each of these three criteria constitutes a stage of 

acceptance or rejection of empirically tested models. The first two criteria are related to the 

outcome of cointegration tests on each of the econometric models. The third criterion concerns 

the causal dynamics between variables.  

• There must be at least one estimated cointegration vector between output 

and inputs, in order for a statistically significant relationship between the 

variables to be inferred. To test for cointegration, time series corresponding to 

each variable must be non-stationary and integrated of the same order18. 

Hence, we begin by testing each time series individually for the presence of unit 

roots. Working variables are grouped in vector autoregressive models (VAR), 

and tested for cointegration relationships following the Johansen procedure.  

• Estimated values for multiplicative coefficients in cointegration vectors 

observed between economic output and factor inputs – after normalizing to 

output – must be non-negative and distinguishable from zero. When 

interpreting the cointegration relationships as aggregate Cobb-Douglas 

production functions, these normalized coefficients will correspond to output 

elasticities.  

•  “Strong” long-run Granger causality must be observed between factor inputs 

and economic output. By formulating a corresponding vector error-correction 

model (VECM) for combinations of variables for which cointegration is 

observed, tests for short-run and long-run causal dynamics between 

endogenous variables can be conducted. 



Besides the econometric-driven criteria described above, comparative criteria, regarding 

the empirical application of accepted models to a case-study, are also defined: 

• Lowest discrepancy between estimated level of output and historical 

observations, evaluated through goodness-of-fit statistics; 

• Lowest portion of growth attributed to an unexplained residual, evaluated 

through growth accounting; 

• Closest correspondence between estimated output elasticities for capital and 

labor, and respective historical cost shares for these factors; 

The motivation for these criteria is to select among estimated production functions those 

that are better able to account for past economic growth in a case-study country – for this work 

Portugal, for the period 1960-2009.  

The following sections describe the methodology adopted concerning each of the defined 

production function criteria.  

 

2.1. Cointegration analysis 

Testing for the existence of a cointegrated combination of two or more series is a way of testing 

the hypothesis that there is a statistically significant connection between them. For our models, 

a cointegration relationship must be established between output and input variables, or else we 

cannot interpret the resulting cointegration vector as a Cobb-Douglas production function. 

Failure to detect any cointegration vectors in a given VAR model results in the immediate 

rejection of that model from the remaining analysis. 

 

2.1.1. Non-stationary tests and definition of working variables 

The non-stationarity of time series quantifying each of the selected variables is tested through 

the Augmented Dickey-Fuller (ADF) and Philips-Perron (PP) tests for the presence of unit roots. 

These tests use different approaches to cope with serial correlation in the data. For time series 

in levels, a time trend and a constant term are included. First-differenced series represent 

growth rates, so there is no need to include a time trend. The number of lags is chosen according 

to the minimum observed value of the Schwarz Information Criteria (SIC)19.  

While output, labor, and energy variables are generally integrated of order one – I(1), capital 

measures are constructed so that the first difference of these measures – investment – is an I(1) 



series. Hence, capital measures tend to have a double unit root, i.e. they are integrated of 

second order – I(2). One way to deal with this situation is to define a set of working variables for 

our cointegration analysis. These will correspond to time series for the ratios of output, capital, 

and useful exergy per labor inputs (i.e. �/�,�/�,�/�). We take the logarithms of these ratios, 

so that parameters may be interpreted as output elasticities (i.e. � = ���(�/�),	 =���(�/�),
 = ���(�/�)). These will be our working variables for the rest of the analysis. 

 

2.1.2. VAR models and testing for cointegration 

Working variables are grouped in VAR models in the following way: the output variable (�) is 

included in all VAR models, alongside one or two input variables (	 and/or 
)20.  

Diagnostic tests are applied on the VAR models to assess if they are well-specified 

statistically. We observe available information criteria21 and determine the adequate lag length 

(�) according to a majority rule. The choice is confirmed through serial correlation and normality 

tests on the VAR model residuals. If the lag length chosen is inadequate, the number of lags is 

increased until all tests are statistically sound.   

Tests for cointegration are conducted on well-specified VAR models following the Johansen 

procedure (Johansen, 1988), a multivariate approach preferable over bivariate settings (e.g. the 

Engle-Granger two-step method), which do not account for additional channels of direct and 

indirect causality. This feature is especially relevant in our analysis, in order to assess not only 

the effect of useful exergy consumption on output directly, but also its effect in combination 

with capital and labor. The Johansen test is applied here under the assumption of an unrestricted 

constant term in the VAR model but no linear trend in the cointegration vector. This is the 

empirically most common specification, and corresponds to case 3 in Juselius (2006).  

The Johansen procedure is composed of two separate tests: trace and eigenvalue – see 

Appendix B.2. For VAR models with at most three endogenous variables, there are three possible 

outcomes from cointegration analysis: a) no cointegration; b) at most one cointegration vector 

between all variables – which can be interpreted as a three-factor Cobb-Douglas production 

function, if it satisfies the necessary criteria (defined in Section 2.3); c) at most two cointegration 

vectors between combinations of variables – which can be simultaneously interpreted (again, if 

the necessary criteria are satisfied) as a two-factor Cobb-Douglas production function (output 

as a dependent variable), and a Cobb-Douglas type function (but not a production function) 

linking all variable inputs. For models with at most two endogenous variables, at most one 

cointegration vector (interpretable as a production function) can be observed.  



Occasionally, the two separate tests in the Johansen procedure may provide contradictory 

information on the number of cointegration vectors observed for a given VAR model. In this 

case, we adopt the following criterion: as long as at least one of the Johansen tests rejects the 

null hypothesis (of no cointegration or at most one cointegration vector), we proceed by actively 

rejecting that hypothesis. It may also occur that the number of cointegration vectors suggested 

by tests is identical to the number of variables (�) included in a given VAR model. This suggests 

that the model can be specified as a VAR in levels of stationary time series. Since we only 

perform tests for cointegration with integrated variables, these situations contradict our 

univariate unit root tests. This may be due to low power of the cointegration tests, small sample 

size, or indication of a specification error. In our analysis, we deal with such cases by giving more 

weight to the unit root tests than to cointegration tests, and assuming for each model at most � − 1 cointegration vectors.  

 

2.2. Vector error-correction models and cointegration coefficients 

Multiplicative coefficients obtained through cointegration analysis are unconstrained, i.e. they 

can assume positive or negative values. However, after normalizing to output , these coefficients 

will correspond to output elasticities in our interpretation of cointegration vectors as Cobb-

Douglas aggregate production functions (e.g. �/� in Equation 3 below). Therefore, the 

estimated coefficients must assume non-negative, bounded between 0 and 1, values. The sum 

of all entrepreneurial decisions will always lead to a state of the economy where the increase of 

an input never results in a decrease of output. The estimated values for the output elasticities 

must also be statistically significant. If any model fails to satisfy these conditions, it is 

immediately rejected from the remaining analysis. 

If the � time series included in any given VAR model are found to be cointegrated, the 

corresponding VECM is given by: 

∆�� = � + ������ + �� + ∑ Г�∆���� + ���
���   (1) 

Where �� is a (� × 1) vector of each model’s time series, � is a vector of constant terms, Г� 

represents matrices of short-run dynamics coefficients (lags), and �� is a vector of random 

disturbances. The term in parentheses in Equation 1 is the error-correction term (ECT), with  a 

(� × �) matrix of cointegration vectors (� being the number of cointegration vectors) and � a 

vector of coefficients representing a constant in the cointegration space; � is a (� × �) matrix 

of adjustment coefficients.  



The ECT represents a statistically significant long-term relationship between the variables in ��, which under certain conditions can be interpreted as economically meaningful neoclassical 

Cobb-Douglas production functions. For a two-variable model (�,	) with at most one 

cointegration vector between its variables, the corresponding VECM is 

∆�� = �� + �������� + ∑ ���∆�����
��� + ∑ ���∆	����

���

∆	� = �� + �������� + ∑ ���∆�����
��� + ∑ ���∆	����

���

 (2) 

Where the cointegration vector ������  normalized to output is 

������ = ���� + ���

��

�	��� + �� (3) 

Setting Equation 3 equal to zero, moving the normalized variable to the l.h.s., and 

multiplying both sides by the labor inputs yields (time subscripts are removed in the next step): 

� = �	��
��
� (4) 

With �� = (−�/�) and �� = 1 + (�/�) necessarily summing to one: �� + �� = 1.  

If no cointegration is observed between the variables in ��, Equation 1 is written as a VAR, 

without the ECT, and depending only on a constant term and lagged terms. 

For models where at most two simultaneous cointegration vectors are observed between 

pairs of endogenous variables, we opt to algebraically manipulate both vectors to form a single 

long-term relationship between output, capital, and labor (i.e. a two-factor Cobb-Douglas 

production function), and a second long-term relationship linking all factors of production. The 

normalized ECT, for these models, are written as 

 ����,��� = ���� + ���

��

� 	��� + ��
����,��� = 	��� + ���

��

�
��� + �� (5) 

Where the first ECT is normalized with respect to �, and the second ECT normalized to 	. 

Setting both ECT in Equation 5 equal to zero, and reformulating as in Equation 3, yields 

!� = �	��
��
�� = �	����  (6) 

The first equation in Equation 6 is similar to Equation 4. In the second equation in Equation 

6, the coefficients correspond to " = (−�/�) and # = 1 + (�/�). These coefficients sum 

to unity, but they are not interpreted as output elasticities or subjected to our production 

function criteria defined below since, although Cobb-Douglas in form, the second equation in 

Equation 6 is not a production function22.  



Our reasoning for estimating capital (and not labor or useful exergy) from other inputs using 

the second cointegration vector is as follows: when compared with both labor and energy 

inputs, which are measured in physical units of hours worked and Joules, respectively; adopted 

monetary measures for capital inputs are less accurate in representing actual productive uses 

of these inputs in the economy. Even approaches to the measurement of service flows of capital 

assets such as the ones adopted in our analysis (see Section 2.5 and Appendix A.2) rely on 

numerous assumptions on rates of return, depreciation of assets (in value and efficiency), initial 

benchmarks of stocks of assets, and price variations. By estimating capital inputs as a function 

of useful exergy and labor inputs, we hope to obtain a better estimate of the utilization of capital 

in the economy, depending uniquely on physical measures. 

 

2.3. Granger causality 

Economically meaningful neoclassical Cobb-Douglas production functions should exhibit long-

term Granger causality between factor inputs and economic output, in any direction23. In effect, 

this means that for any model we should observe long-run (unidirectional or bidirectional) 

causality running from 	 (and/or 
) to the output variable �, thus indicating that the considered 

inputs to economic production are having a long term causal influence on production output. 

Models that fail to exhibit such a map of causality relationships will be discarded from analysis. 

In order to test for causal dynamics between variables in the VAR models, we adopt the 

Engle and Granger (1987) approach. Cointegration analysis precedes testing for Granger 

causality since the presence of cointegration vectors between variables has implications for the 

way in which short and long-run causality is carried out. 

There are two sources of causation in Equation 2: coefficients associated with the ECT – 

translating an error-correction mechanism driving the variables towards a long-run relationship; 

and coefficients on lagged terms, indicating short-run dynamics. Analogously, we can write 

Equation 2 for a three-variable VAR and interpret the results in the same way.  

Granger non-causality tests are applied by testing the statistical significance of coefficients. 

Short-run Granger non-causality tests are applied to lagged coefficients (e.g. testing the null 

hypothesis $�:��� = 0, ∀% in Equation 2 using a Wald test), while long-run tests are applied to 

the ECT adjustment coefficients. “Strong” long-run Granger non-causality is tested by examining 

whether the two sources of causation are jointly significant (e.g. testing the null hypothesis $�:�� = ��� = 0, ∀% in Equation 2). In our analysis we consider only short-run and “strong” 

long-run causality relationships between variables. 



 

2.4. Goodness-of-fit and Solow residual 

Econometric models that satisfy all econometric criteria defined above can be further compared 

in terms of their adjustment to historical values for real output in a given country, as to infer 

which estimated production function is better suited to account for past trends. The comparison 

is made through: 1) goodness-of-fit to historical output; 2) magnitude of unexplained residual in 

growth accounting. 

Goodness-of-fit is evaluated through computation and comparison of the root mean 

squared error (RMSE) in both levels and growth rates, and coefficient of determination &�. The 

RMSE is a good measure of accuracy for the estimated production functions, regarding past 

output trends, while &� is a widely used statistic to indicate how well data fits a particular model. 

In order to account for the phenomenon by which &� automatically increases when extra 

explanatory variables are added to the model, a modification of this statistic (the adjusted &�) 

is used.  

In order to weigh, for each estimated production function, the contribution from each factor 

of production – and indirectly estimate the residual component, TFP – to historical output 

growth, we conduct growth accounting exercises. The fundamental equation for growth 

accounting, valid for any production function homogeneous of degree one satisfying constant 

returns to scale (such as the Cobb-Douglas), can be expressed for two factors of production 

(capital and labor) as: 

�� = ���� + ���� + ���� (7) 

In Equation 7 ��, ��, �� stand, respectively, for the growth rates of output, capital, and 

labor. The coefficients �� and �� represent the marginal productivities of capital and labor, 

respectively, and correspond to observed annual shares of payments to these factors (obtained 

from national accounts). The growth rate of total factor productivity, ����, is computed as a 

residual, by subtracting the capital and labor contributions to growth from total observed output 

growth. Functions with smaller average growth of TFP are better suited to account for economic 

growth only with the contributions from inputs to production. 

For two-variable models with at most one cointegration vector, goodness-of-fit statistics 

and growth accounting is conducted on the estimated Cobb-Douglas production function – 

Equation 4.  



For three-variable models with at most two cointegration vectors – normalized as in 

Equation 6 – are tested for goodness-of-fit and growth accounting considering two alternatives. 

First, using observed time series for capital and labor inputs as dependent variables on the first 

equation in Equation 6. Second, estimating, using the second equation in Equation 6, a time 

series for capital inputs as a function of observed series for useful exergy and labor. This 

estimated series for capital is then substituted in the two-factor Cobb-Douglas production 

function given by the first equation in Equation 6, alongside observed labor inputs. Hence, we 

compare between capital inputs measures by estimating alternative fits to real output and 

growth accounting for three-variable models with at most two cointegration vectors: 1) using 

observed capital inputs; 2) using estimated capital inputs. 

 

2.5. Case-study: Portugal 1960-2009 

We apply our proposed methodology to a single-country case-study: economic output in 

Portugal in recent decades.  

Annual data is collected for 50 years, starting in 1960 and ending in 2009. We measure 

economic output (�) as gross value added (GVA), corresponding to the sum of payments to the 

traditional inputs to production: capital (�) and labor (�). We will consider both unadjusted and 

quality-adjusted measures for both these factors. By performing econometric analysis with both 

unadjusted and quality-adjusted capital and labor measures, we will be able to observe the 

effects of quality-adjusting for these inputs in our statistical estimates. We also consider quality-

adjusted energy inputs to production, measured as aggregate consumption of useful exergy (�). 

We will be working with two measures for labor inputs, so we will produce two sets of 

working variables, depending on whether these are defined by the ratio of output, capital, and 

useful exergy per unadjusted labor inputs (indicated by a label �), or per quality-adjusted labor 

inputs (label ℎ�). All models are then defined in terms of both unadjusted and quality-adjusted 

labor inputs24.  

Overall, our empirical analysis begins by considering two separate sets of 5 models each: 

three two-variable models and 2 three-variable models. Table 1 specifies the models, as well as 

the measure, units, and source of data concerning each input to production. Figure 1 shows 

collected data for each variable, normalized to base year (1960).  

In the next section we present and discuss results obtained from our analysis. 

 



Table 1 - List of models used in statistical analysis. For all models, the output variable q corresponds to GVA in Mrd 

2006 €, obtained from Pinheiro (1997) and INE database. The 5 models presented are defined for both unadjusted 

(subscript L) and quality-adjusted (ℎ�) labor inputs, obtained from Amaral (2009) (�) and PWT8.1 (ℎ). 

 

 

 

 

 



 

Figure 1 - Normalized collected data for output and inputs to production. Top left: output, measured as 

gross value added. Top right: capital inputs, measured as stocks of assets (light red) and service flows (dark 

red). Bottom left: labor inputs, measured as unadjusted total number of hours worked (light blue) and 

total hours worked adjusted using a human capital index (dark blue). 

 

 

 

 

 

 

 



3. Results and discussion 

3.1. Cointegration analysis 

3.1.1. Non-stationarity tests 

Explicit results for the ADF and PP tests are presented in Appendix C.1 and summarized here. 

We find, for both tests, that the time series quantifying the variables for output (�), capital 

(stock, �����������, and services, ��� !"��#�&� ), labor (� and ℎ�), and useful exergy (�) all fail to reject 

the hypothesis of non-stationarity, i.e. they all have unit roots.  

However, while level variables �, �, ℎ�, and � are found to be integrated of order one (first 

differences are stationary), both capital measures are integrated of order two (only second 

differences are stationary). Hence, we cannot conduct tests for cointegration between these 

variables, following the Johansen procedure.  

Defining the variables per labor inputs, as proposed in our methods section, produces time 

series corresponding to the variables �, 	, and 
. The ADF and PP unit root tests fail to reject 

the hypothesis of non-stationarity for all these time series in levels (considering both unadjusted 

and quality-adjusted labor).  

Concerning the first differences of the time series defined per labor inputs, the non-

stationarity hypothesis is always rejected by both tests at the 1% significance level. We therefore 

conclude that all time series defined per labor inputs are integrated of first order, and hence we 

can conduct tests for cointegration between these variables.  

 

3.1.2. Cointegration and Granger causality 

Results corresponding to the cointegration and Granger causality tests conducted in our analysis 

are presented in Table 2. These results concern the above-defined econometric criteria for 

economically meaningful neoclassical Cobb-Douglas production functions. Explicit numerical 

results for each of these models, and additional results concerning models that include 

alternative measures for capital stock are presented in Appendices C.2 and C.3.  

For each model we indicate the number and normalized formulation (to output) of 

estimated cointegration vectors, the direction of short and long-run Granger causality between 

variables, and which of the defined econometric criteria are satisfied: 1) existence of 

cointegration; 2) economically meaningful normalized coefficients in cointegration vectors 

linking inputs to output; 3) long-run causality between factor inputs and output.  



Of the 10 models considered at the beginning of our analysis, 7 satisfy all econometric 

criteria. These are highlighted in Table 2. Of the original 10, one model – (�,	�� !"��#�&� )� – is 

rejected due to no cointegration vectors being detected using the Johansen procedure. Of the 

remaining 9 models, for which at least one cointegration vector is observed, 2 more models – 

(�,	�� !"��#�&� )$� and (�,	����������,
)$� – are rejected due to the normalized estimated 

coefficients falling outside the defined boundaries for economically meaningful neoclassical 

output elasticities in a Cobb-Douglas production function (i.e. they assume negative values). 

We observe that none of the considered models is rejected based solely on the econometric 

criteria of long-run Granger causality between inputs and output. All models show capital and 

useful exergy inputs (per labor) having a significant long-run causal effect on output (per labor). 

The one exception – (�,	�� !"��#�&� )$� –, for which no significant Granger causality relations are 

observed, also fails to satisfy the criterion of economically meaningful neoclassical normalized 

cointegration coefficients.  

Granger causality relationships concerning causal effects of inputs or output variables on 

themselves (e.g. � → �) are not represented in Table 2, since these results are not directly linked 

with the production function criteria defined in our analysis. They can, however, be consulted 

in Appendix C.3, as well as all numerical results concerning Granger causality tests.  

For three or our models – (�,	����������,
)�, (�,	�� !"��#�&� ,
)� and (�,	�� !"��#�&� ,
)$� – at most 

two cointegration vectors are observed between endogenous variables. In this cases, as 

suggested in Section 2.2, we normalize the first cointegration vector to output, and the second 

cointegration vector to capital inputs. Then, manipulating both vectors algebraically, we obtain: 

1) a Cobb-Douglas production function formulation with output (�) depending on capital (�) 

and labor (�, or ℎ�) inputs; 2) a Cobb-Douglas function where capital (�) is estimated from 

independent variables useful exergy (�) and labor (� or ℎ�) inputs. For each of these models, 

both formulations are represented in Table 2. 

The models presented in Table 2 that satisfy all econometric production function criteria are 

further tested according to our defined comparative criteria concerning how well estimated 

production functions are adjusted to the Portuguese economy in the past 50 years.  

 

3.2. Goodness-of-fit and Solow residual 

Estimated aggregate Cobb-Douglas production functions obtained from the 7 models in Table 2 

that satisfy all econometric production function criteria are compared in terms of goodness-of-



fit to real output (GVA) for the Portuguese economy in the past 50 years, as well as in terms of 

the magnitude of the estimated TFP component in long-run output growth. In the former case, 

models are evaluated in terms of RMSE and (adjusted) &� statistics, while for the latter 

comparison is made through growth accounting. 

All relevant results are shown in Table 3. For each model we show the estimated production 

function formulation, and whether (or not) capital inputs correspond to observed historical time 

series or are instead estimated as a function of both useful exergy and labor inputs. The 

remaining columns in Table 3 compare RMSE and (adjusted) &� statistics, as well as the 

components of average output growth, for all models. Graphical representations of fits to 

output levels, obtained with each of the 7 models in Table 3 are shown in Figure 2 (two variables) 

and Figure 3 (three variables).  

In terms of fits to historical levels and growth rates of output for the Portuguese economy, 

the lowest RMSE (and correspondingly highest adjusted &�) are obtained with estimated 

production functions that either: 1) have a useful exergy-labor form (no capital inputs); 2) have 

a capital-labor form, but capital is estimated as a function of both useful exergy and labor, 

through a second cointegration vector. These results are not unexpected, given that useful 

exergy by itself tracks Portuguese economic output very closely (see Figure 2).  

 



 

Table 2 – Production function criteria – results from cointegration analysis and Granger causality tests. Top half models with variables defined per unadjusted labor 

inputs (�). Bottom half models with variables defined per quality-adjusted labor inputs (ℎ�). Column (1) specifies the model; columns (2) and (3) present the number and 

normalized formulation of observed cointegration vectors; columns (4) and (5) present short and long-run Granger causality (arrows represent direction of causality); 

columns (6-8) indicate whether the model satisfies the econometric production function criteria of: existence of cointegration vector (column 6), plausible output 

elasticities (column 7), and causal effects between inputs and output (column 8). Models that satisfy every econometric criteria are highlighted. 



The TFP components in long-run output growth for the (�,	�� !"��#�&� ,
)� and 

(�,	�� !"��#�&� ,
)$� models, when capital is estimated through the second cointegration vector, 

are the smallest among all estimated production functions. However, the residual term obtained 

with the (�,	�� !"��#�&� ,
)$� model is particularly striking – corresponding approximately to only 

1% of overall output growth for the period 1960-2009, and approximately 4% of the value for 

the next smallest residual i.e. model  (�,	�� !"��#�&� ,
)�. In comparison, the largest obtained TFP 

component – model (�,	����������)�, accounts for more than 60% of overall output growth.  

Within models with at most two cointegration vectors, there is a significant difference in 

terms of goodness-of-fit between the case where the capital-labor production function is 

computed with historical capital series, and when capital series are estimated as a function of 

useful exergy and labor (i.e. a 70-80% smaller RMSE in levels and a 2-10% higher adjusted &�). 

In comparison, adoption of quality-adjusted measures for labor inputs (in the models where it 

is comparable25) has a positive but less significant effect on goodness-of-fit (a 5-10% smaller 

RMSE in levels and at most a 1% higher adjusted &�). The effect of estimating actual utilization 

of capital in production as a function of useful exergy and labor inputs, instead of using historical 

observed values, seems to have a much more significant impact on goodness-of-fit than 

introducing quality-adjusted measures for either of the traditional factors of production.  

While it can be argued that introducing additional variables will per se result in better fits to 

historical data, it should be noted that two-factor useful exergy-labor production functions 

already produce very good fits26. The inclusion of a capital variable in the models then serves 

the purpose of having a production function formulation with the traditional factors of 

production, as used in the neoclassical approach, and hence obtain information on payments to 

these factors, assuming that the cost-share theorem holds.  

The results in Table 3 suggest that, for those models satisfying all econometric production 

function criteria and for which useful exergy is included in the estimated production function 

(either directly, or indirectly through estimation of capital inputs), output growth can be mostly 

accounted for only with the inputs to production, through the ECT in Equation 1 (i.e. observed 

cointegration vectors). In contrast, models with worse fits rely more on the constant and lagged 

terms than the ECT in their respective VECM formulation to account for economic growth. 

Moreover, models for which no cointegration vector is observed (but for which growth 

accounting can still be performed – see Table 3) are not written in VECM but VAR form, and all 

of their explanatory power lies in the constant and lagged terms.  



Table 3 – Fits to historical output for the Portuguese economy – results from Root Mean Squared Error, adjusted �� and growth accounting. Only models that satisfy 

the econometric production function criteria defined earlier are represented. Top half shows models with variables defined per unadjusted labor inputs (�). Bottom half 

shows models with variables defined per quality-adjusted labor inputs (ℎ�). Column (1) specifies the model; columns (2) and (3) present the production function 

formulation and whether any of the factor inputs is estimated from the other inputs (i.e. � as a function of � and �); columns (4) and (5) show values for RMSE and 

adjusted ��, respectively; columns (6-9) refer to growth accounting, subtracting from average output growth (column 6) the contributions from capital (column 7) and 

labor (column 8), to obtain a residual component (column 9).  



  

 

Figure 2 – Fits to historical output for estimated production functions obtained from two-variable 

models satisfying all econometric production function criteria. Left: Estimated production functions with 

unadjusted labor inputs (�). Right: Estimated production functions with quality-adjusted labor inputs (ℎ�). 

a)-b) Estimated production functions for models (�,�)� and (�,�)��, respectively. c)-d) Estimated 

production functions for models (�, �������	
��)� and (�, �������	
��)��, respectively.  

 

The most interesting results are those obtained with model (�,	�� !"��#�&� ,
)$�, when capital 

is estimated through the second cointegration vector. This is the only model that combines: 1) 

inclusion of capital services and useful exergy in the cointegration space; b) working variables 

defined per quality-adjusted labor inputs; 3) actual utilization of capital in production estimated 

as a function of both useful exergy and labor. The estimated cointegration coefficients for this 

model, corresponding to output elasticities (�'� = 30.80% and �'� = 69.20%) can be compared 

to average historical cost shares associated with capital and labor inputs in national accounts – 

Figure 4. In this graph it can be seen that, while the first decades are marked by strong variation 

of cost shares, overall they assume average values of �(� ≅ 29.54% for capital and �(� ≅

70.46% for labor.  

a) b) 

c) d) 



 

 

Figure 3 - Fits to historical output for estimated production functions obtained from three-variable 

models satisfying all econometric production function criteria. Left: Estimated production functions with 

unadjusted labor inputs (�). Right: Estimated production functions with quality-adjusted labor inputs (ℎ�). 

e) Estimated production function for model (�, �������	
�� ,�)�. f)-g) Estimated production functions for 

models (�, ��������&� ,�)� and (�, ��������&� ,�)��, respectively. Estimated production functions are 

represented assuming historically observed capital inputs (red) and estimated series for capital inputs 

(blue). 

e) g) 

f) 



 

Figure 4 – Historical cost shares of traditional factors of production (capital and labor) for the 

Portuguese economy. Shares are adjusted for payments to self-employed individuals. Average values 

(straight dashed lines): for capital (��� ≅ 29.54%); for labor (��� ≅ 70.46%). Estimated values with model 

(�, ��������&� ,�)��  (straight full lines): for capital (��� ≅ 30.80%); for labor (��� ≅ 69.20%). 

The output elasticities for the estimated production function obtained with model 

(�,	�� !"��#�&� ,
)$� are remarkably similar to average historical cost shares for capital and labor 

in the Portuguese economy. Hence, one additional advantage of this model is that the estimated 

production function has the form of a mainstream two-factor Cobb-Douglas function with 

output elasticities corresponding to average historical cost shares, thus resembling in almost 

every way the traditional production functions used in the neoclassical approach to account for 

economic output. The difference, of course, is in the fact that for our model there is a second 

function, through which a more accurate measure for the real utilization of capital in production 

can be estimated from useful exergy and labor inputs – �[�, �]. Within the estimated 

(�,	�� !"��#�&� ,
)$� model, we can observe both the essentiality of energy inputs to production, 

through the estimation of real utilization of capital; and neoclassical assumptions, through a 

correspondence with the cost-share theorem. 

 

 

 



4. Conclusions 

We have examined the cointegration relationships between combinations of output, capital, 

labor, and energy for Portugal, in the past 50 years. Our methodology suggests that, under the 

appropriate criteria, these relationships can be interpreted as economically meaningful 

neoclassical Cobb-Douglas production functions.  

The main conclusion is that, for our case-study, and in contrast with the literature, the 

argument of energy essentiality in production from ecological economics is not a priori 

incompatible with the neoclassical assumptions of the cost share theorem.  

Overall, the best fits to past Portuguese economic output are obtained when capital inputs 

are either excluded from the cointegration space – (�,
); or are estimated as a function of both 

historically observed useful exergy and labor inputs. In contrast, the worst fits obtained in our 

analysis all refer to production functions estimated from models where energy is absent from 

the cointegration space – (�,	). These functions are the ones which most resemble the 

neoclassical Cobb-Douglas approach.  

Specifically, we find that the best estimated fits to past economic trends (and lowest TFP 

component in growth accounting) for Portugal are obtained with econometric models for which 

two simultaneous cointegration vectors are predicted by the econometric approach. These are: 

1) one cointegration vector linking all factor inputs, through which the actual utilization of capital 

in production can be estimated as a function of historically observed time series of useful exergy 

and labor inputs; 2) one cointegration vector linking output, capital, and labor inputs, forming a 

two-factor Cobb-Douglas production function in which labor inputs are observed but capital 

inputs are estimated from the first cointegration vector.  

By estimating such a model with quality-adjusted capital (services), labor (human-capital 

adjusted), and energy (useful exergy) inputs in the cointegration space, alongside output, we 

are able to obtain, from the first cointegration vector, an estimate for the actual utilization of 

capital in production which is better than the stocks of assets or the flow of services provided 

by capital. The second cointegration vector provides estimated values of (constant) output 

elasticities for capital and labor, which are very similar to the average values for historically 

observed cost shares associated to these factors, in our case-study. This function fits historical 

output very well, while reporting a remarkably small TFP component in growth accounting (less 

than 1% of overall output growth). 



In this model, useful exergy inputs do not appear explicitly in the estimated production 

function, but they assume a major role in explaining economic output growth: they form an 

accurate proxy for the utilization of capital in production, supported by the fact that capital 

assets are useless without being activated by useful exergy (and labor). Payments to useful 

exergy inputs must therefore be implicit in the share of payments to capital.  

Comparing between econometric models, results show that adjusting for qualitative 

differences in capital and labor, ceteris paribus, has a marginal effect on the goodness-of-fit to 

past economic growth for estimated production functions, and some positive effect in reducing 

TFP. However, when capital inputs are estimated as a function of historically observed useful 

exergy and labor inputs, goodness-of-fit increases significantly. This suggests that despite 

adjusting for the quality of capital inputs by accounting for the services provided by the stocks 

of assets, it is only by accounting for the exergy consumed in devices and machines – and used 

productively in the economy – that one can accurately estimate the real utilization of capital in 

production. 

Since energy inputs do not appear explicitly in the estimated Cobb-Douglas function, their 

cost-share is zero, as in the neoclassical two-factor approach. However, as argued in the field of 

ecological economics, energy is an essential input to the production of economic output. This 

can be seen as an ecological economics growth model that does not reject the cost share 

assumptions associated with neoclassical theory; or, alternatively, a neoclassical model of 

economic growth that acknowledges the importance of energy to economic production.  

Future work should focus on expanding this analysis to: 1) other individual countries, and 

groups of countries; 2) more complex production functions, such as the generalized formulation 

of the Cobb-Douglas – the Constant Elasticity of Substitution (CES) production function. 

 

Acknowledgements 

The authors wish to thank Matthew Heun, Paul Brockway, and Marco Sakai for their useful 

comments and references for this paper.  

João Santos’ work was supported by ACAE/DEM, through the research fellowship contract 

BL/367/2013, under the project “Consultoria (715)”; and Instituto Superior de Economia e 

Gestão (ISEG), through the research fellowship contract 32/2013/IST/NCA/SM, under the 

project “Energy Wars”. 



References 

Aghion, P. & Howitt, P. (2009). The economics of growth. Cambridge, MA: MIT Press. 

Amaral, L. (2009). New series for GDP per capita, per worker, and per worker-hour in 

Portugal, 1950-2007. Working Paper Series. Faculty of Economics. New University of Lisbon.  

AMECO. European Commission’s annual macro-economic database. Available online at: 

http://ec.europa.eu/economy_finance/db_indicators/ameco/index_en.htm. Accessed: 2015-

01-10. 

Ayres, R. U., & Warr, B. (2005). Accounting for growth: the role of physical work. Structural 

Change and Economic Dynamics, 16(2), 181-209. 

Ayres, R. U., Van den Bergh, J. C., Lindenberger, D., & Warr, B. (2013). The underestimated 

contribution of energy to economic growth. Structural Change and Economic Dynamics, 27, 79-

88. 

Barro, R. J., & Lee, J. W. Educational attainment dataset. Available online at: 

http://www.barrolee.com. Accessed: 2015-06-10. 

Caselli, F. (2005). Accounting for cross-country income differences. Handbook of economic 

growth, 1, 679-741. 

Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). The economic theory of index 

numbers and the measurement of input, output, and productivity. Econometrica: Journal of 

the Econometric Society, 50, 1393-1414. 

Christensen, L. R., Cummings, D., & Jorgenson, D. (1980). Economic growth, 1947–73: an 

international comparison. In: J. W. Kendrick and B. N. Vaccara (eds.) New Developments in 

Productivity Measurement and Analysis (pp. 595-698). The University of Chicago Press, 

Chicago. 

Cleveland, C. J. (1991). Natural resource scarcity and economic growth revisited: Economic 

and biophysical perspectives. In: Costanza, R. (Ed.), Ecological Economics: the science and 

management of sustainability, (pp. 289-317). Columbia University Press, New York. 

Cleveland, C. J., Kaufmann, R. K., & Stern, D. I. (2000). Aggregation and the role of energy 

in the economy. Ecological Economics, 32(2), 301-317. 

da Silva, E. G. (2010). Capital services estimates in Portuguese industries, 1977–2003. 

Portuguese Economic Journal, 9(1), 35-74. 



da Silva, E. G. and Lains, P. (2013). Capital formation and long-run growth: Evidence from 

Portuguese data, 1910-2011. Presented at IBEROMETRICS VI, May 16-17, Facultad de 

Economia y Empresa, Zaragoza, Spain. Available online at: 

http://estructuraehistoria.unizar.es/personal/vpinilla/documents/2013.04.04_Iberometrics_Sil

va.Lains.pdf. 

d'Arge, R. C., & Kogiku, K. C. (1973). Economic growth and the environment. The Review of 

Economic Studies, XL (1), 61-77. 

de la Escosura, L. P., & Rosés, J. R. (2009). The sources of long-run growth in Spain, 1850-

2000. The Journal of Economic History, 69(04), 1063-1091. 

Denison, E. F. (1974). Accounting for United States Economic Growth, 1929-1969. The 

Brookings Institution Press, Washington, D.C. 

Denison, E. F. (1979). Accounting for slower economic growth: the United States in the 

1970's. Brookings Institution Press, Washington, D.C. 

Diewert, W. E. (1976). Exact and superlative index numbers. Journal of econometrics, 4(2), 

114-145. 

Dougherty, C. (1991). A Comparison of Productivity and Economic Growth in the G-7 

Countries, Ph. D. Dissertation, Harvard University. 

Easterly, W., & Levine, R. (2001). What have we learned from a decade of empirical 

research on growth? It's Not Factor Accumulation: Stylized Facts and Growth Models. The 

World Bank Economic Review, 15(2), 177-219. 

Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: representation, 

estimation, and testing. Econometrica: journal of the Econometric Society, 55, 251-276. 

Feenstra, R. C., Inklaar, R., & Timmer, M. P. (2015). What is new in PWT 8.1?. University of 

Groningen (unpublished). Available online at: www.rug.nl/research/ggdc/data/pwt/v81/ 

Felipe, J., & McCombie, J. S. (2005). How sound are the foundations of the aggregate 

production function?. Eastern Economic Journal, 31(3), 467-488. 

Felipe, J., & McCombie, J. S. (2013). The Aggregate Production Function and the 

Measurement of Technical Change: Not Even Wrong. Edward Elgar Publishing, Cheltenham. 

Gans, J., King, S., Stonecash, R., & Mankiw, N. G. (2012). Principles of economics (5th ed.). 

Cengage Learning Australia, Melbourne, Australia. 



Ghali, K. H., & El-Sakka, M. I. (2004). Energy use and output growth in Canada: a 

multivariate cointegration analysis. Energy Economics, 26(2), 225-238. 

Giraud, G., & Kahraman, Z. (2014). How Dependent is Growth from Primary Energy? 

Output Energy Elasticity in 50 Countries (1970-2011). Documents de Travail du Centre 

d’Economie de la Sorbonne, 2014.97, 1-26. 

Gross, L. S., & Veendorp, E. C. H. (1990). Growth with exhaustible resources and a 

materials-balance production function. Natural Resource Modeling, 4(1), 77-94. 

Groth, C., Gutierrez-Domenech, M. & Srinivasan, S. (2004). Measuring total factor 

productivity for the United Kingdom, Quarterly Bulletin, Spring 2004, Bank of England. 

Hanushek, E. A., & Woessmann, L. (2012). Do better schools lead to more growth? 

Cognitive skills, economic outcomes, and causation. Journal of Economic Growth, 17(4), 267-

321. 

Henriques, S. (2011). Energy transitions, economic growth and structural change: Portugal 

in a long-run comparative perspective (Vol. 54). Lund University. 

Hulten, C. R., & Wykoff, F. C. (1996). Issues in the measurement of economic depreciation 

introductory remarks. Economic Inquiry, 34(1), 10-23. 

INE. Instituto Nacional de Estatística. Available online at: http://www.ine.pt. Accessed: 

2015-01-10. 

Inklaar, R., & Timmer, M. (2013). Capital, Labor and TFP in PWT8.0. University of Groningen 

(unpublished). Available online at: http://www.rug.nl/research/ggdc/data/pwt/v80/ 

Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of economic 

dynamics and control, 12(2), 231-254. 

Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian 

vector autoregressive models. Econometrica: Journal of the Econometric Society, 59, 1551-1580. 

Jones, C. I. (2002). Introduction to Economic Growth, 2nd ed., W. W. Norton & Company, 

New York. 

Jorgenson, D. W., & Griliches, Z. (1967). The explanation of productivity change. The 

Review of Economic Studies, 34(3), 249-283. 

Jorgenson, D. W., Gollop, F. M., & Fraumeni, B. M. (1987). Productivity and U.S. Economic 

Growth. Harvard Economic Studies, vol. 159, Harvard University Press, Cambridge, 

Massachusetts, U.S.. 



Juselius, K. (2006). The cointegrated VAR model: methodology and applications. Oxford 

University Press, Cambridge, United Kingdom. 

Kaldor, N. (1961). Capital Accumulation and Economic Growth. In: F. A. Lutz, D. C. Hague 

(eds.), The Theory of Capital: Proceedings of a Conference Held by the International Economic 

Association, 177–222, St. Martin’s Press, New York. 

Kamps, C. (2006). New estimates of government net capital stocks for 22 OECD countries, 

1960-2001. IMF staff papers, 120-150. 

Kander, A., & Stern, D. I. (2014). Economic growth and the transition from traditional to 

modern energy in Sweden. Energy Economics, 46, 56-65. 

Kander, A., Malanima, P., & Warde, P. (2014). Power to the people: energy in Europe over 

the last five centuries. Princeton University Press. 

Kemfert, C. (1998). Estimated substitution elasticities of a nested CES production function 

approach for Germany. Energy Economics, 20(3), 249-264. 

Kümmel, R., Lindenberger, D., & Eichhorn, W. (2000). The productive power of energy and 

economic evolution. Indian Journal of Applied Economics, 8(2), 1-26. 

Kümmel, R., Strassl, W., Gossner, A., & Eichhorn, W. (1985). Technical progress and energy 

dependent production functions. Journal of Economics, 45(3), 285-311. 

Lindenberger, D., & Kummel, R. (2002). Energy-dependent production functions and the 

optimization model “PRISE” of price-induced sectoral evolution. International Journal of 

Thermodynamics, 5(3), 101-107. 

Lindenberger, D., & Kümmel, R. (2011). Energy and the state of nations. Energy, 36(10), 

6010-6018. 

Manuelli, R. E., & Seshadri, A. (2014). Human Capital and the Wealth of Nations. American 

Economic Review, 104(9): 2736-62. 

Newey, W. K., & West, K. D. (1994). Automatic lag selection in covariance matrix estimation. 

The Review of Economic Studies, 61(4), 631-653. 

Ohanian, L. E., & Wright, M. L. (2010). Capital flows and macroeconomic performance: 

lessons from the golden era of international finance. The American Economic Review, 100(2), 

68-72. 

Pinheiro, M. (1997). Séries Longas para a Economia Portuguesa pós II Guerra Mundial, 

Volume I – Séries Estatísticas. Banco de Portugal, Lisboa, Portugal. 



Platchkov, L. M., & Pollitt, M. G. (2011). The Economics of Energy (and Electricity) Demand. 

Working Paper 1116. University of Cambridge Electricity Policy Research Group (EPRG). 

Psacharopoulos, G., & Patrinos, H. A. (2004). Returns to investment in education: a further 

update. Education economics, 12(2), 111-134. 

PWT8.1. Penn World Table – Version 8.1. Available online at: 

http://febwt.webhosting.rug.nl/. Accessed: 2015-04-15. 

Robinson, J. (1953). The production function and the theory of capital. The Review of 

Economic Studies, 21(2), 81-106. 

Saunders, H. D. (2008). Fuel conserving (and using) production functions. Energy 

Economics, 30(5), 2184-2235. 

Schreyer, P., Bignon, P. E., & Dupont, J. (2003). OECD Capital Services Estimates: 

Methodology and a First Set of Results (No. 2003/6). OECD Publishing. 

Schröer, G., & Stahlecker, P. (1996). Ist die gesamtwirtschaftliche Cobb-Douglas-

Produktionsfunktion eine Kointegrationsbeziehung? Empirische Analyse vor und nach der 

Wiedervereinigung/Is the Macroeconomic Cobb-Douglas Production Function a Cointegration 

Relationship? Empirical Analysis Before and After German Reunification. Jahrbücher für 

Nationalökonomie und Statistik, 513-525. 

Schwert, G. W. (2002). Tests for unit roots: A Monte Carlo investigation. Journal of 

Business & Economic Statistics, 20(1), 5-17. 

Serrenho, A. C., Warr, B., Sousa, T., Ayres, R. U., & Domingos, T. (2016). Structure and 

dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 

to 2009. Structural Change and Economic Dynamics, 36, 1-21. 

Smulders, S., & De Nooij, M. (2003). The impact of energy conservation on technology and 

economic growth. Resource and Energy Economics, 25(1), 59-79. 

Solow, R. M. (1957). Technical change and the aggregate production function. The Review 

of Economics and Statistics, 39, 312-320. 

Sraffa, P. (1975). Production of commodities by means of commodities: Prelude to a 

critique of economic theory. Cambridge University Press, Cambridge. 

Stern, D. I. & Kander, A. (2010). The Role of Energy in the Industrial Revolution and Modern 

Economic Growth, CAMA Working Paper Series, WP1/2-11.  



Stern, D. I. (1997). Limits to substitution and irreversibility in production and consumption: 

a neoclassical interpretation of ecological economics. Ecological Economics, 21(3), 197-215. 

Stern, D. I. (2000). A multivariate cointegration analysis of the role of energy in the US 

macroeconomy. Energy Economics, 22(2), 267-283. 

Stern, D. I. (2011). The role of energy in economic growth. Annals of the New York 

Academy of Sciences, 1219(1), 26-51. 

Stresing, R., Lindenberger, D., & Kümmel, R. (2008). Cointegration of output, capital, labor, 

and energy. The European Physical Journal B, 66(2), 279-287. 

Timmer, M. P., Inklaar, R., O'Mahony, M., & Van Ark, B. (2010). Economic growth in 

Europe: a comparative industry perspective. Cambridge University Press. Cambridge, United 

Kingdom.  

Tintner, G., Deutsch, E., Rieder, R., & Rosner, P. (1977). A production function for Austria 

emphasizing energy. De Economist, 125(1), 75-94. 

US Energy Information Administration (US EIA) (2011). Energy Consumption, Expenditures, 

and Emissions Indicators Estimates, Selected Years, 1949-2011. US Energy Information 

Administration: Annual Energy Review 2011. Available online at: 

http://www.eia.gov/totalenergy/data/annual/pdf/sec1_13.pdf 

Van Ark, B. (2014), Total factor productivity: Lessons from the past and directions for the 

future, National Bank of Belgium, Working Paper Research No 271, October.  

van den Bergh, J. C., & Nijkamp, P. (1994). Dynamic macro modelling and materials 

balance: Economic-environmental integration for sustainable development. Economic 

Modelling, 11(3), 283-307. 

Wallis, G. (2009). Capital Services Growth in the UK: 1950 to 2006. Oxford Bulletin of 

Economics and Statistics, 71(6), 799-819. 

Warr, B. S., & Ayres, R. U. (2010). Evidence of causality between the quantity and quality of 

energy consumption and economic growth. Energy, 35(4), 1688-1693. 

Warr, B., Ayres, R., Eisenmenger, N., Krausmann, F., & Schandl, H. (2010). Energy use and 

economic development: A comparative analysis of useful work supply in Austria, Japan, the 

United Kingdom and the US during 100years of economic growth. Ecological Economics, 69(10), 

1904-1917. 



Whalley, J., & Zhao, X. (2013). The contribution of human capital to China's economic 

growth. China Economic Policy Review, 2(01), 1350001. 

Young, A. (1995). The Tyranny of Numbers: Confronting the Statistical Reality of the East 

Asian Growth Experience, Quarterly Journal of Economics, 110, 641–680. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary information 

Appendix A. Measures for output and inputs to production 

This section details the adopted measures and sources of data concerning economic output and 

factors of production, namely capital, labor, and useful exergy.  

A.1. Output 

Both gross domestic product (GDP) and gross value added (GVA) are widespread measures for 

economic output. In this analysis, we opt for the latter. Our choice is based on the fact that GVA 

corresponds to GDP without components relating to taxes and subsidies on production and 

imports. It accounts just for the total of income, traditionally divided between payments to 

capital and labor. This is especially relevant for growth accounting exercises performed in our 

analysis.  

A.2. Capital 

As reported in the main paper, two distinct measures for capital inputs are adopted in the 

empirical analysis. The first corresponds to the stock of capital assets, as accounted by AMECO 

database (AMECO, 2015). The second corresponds to a measure of services provided by capital 

assets, as estimated by da Silva & Lains (2013). The differences between both these measures 

are highlighted in the main text, and detailed below in this Appendix.  

Besides the capital stock measure obtained from AMECO database and featured in the main 

paper, analysis was conducted with two other measures for capital stock, obtained from 

different sources. These correspond to capital stocks as accounted by the Penn World Tables 

(PWT8.1, 2015), and capital stocks as estimated in da Silva & Lains (2013). 

Details concerning capital stocks as accounted by the Penn World Tables can be found in 

Inklaar & Timmer (2013) and Feenstra, Inklaar & Timmer (2015).  

Details concerning the capital stock measures estimated by da Silva & Lains (2013) are 

synthesized below, along with the authors estimated of capital services.  

A.2.1. Capital stocks and services estimation (da Silva & Lains, 2013) 

Integrated time series for net capital stock and the volume index of capital services (VICS) for 

Portugal are obtained from da Silva & Lains (2013). The step-by-step methodology adopted by 

these authors begins with the crucial task of constructing a fully integrated investment (i.e. gross 

fixed capital formation, of GFCF) series from published GFCF and corresponding price indices in 



Pinheiro et al. (1997) (1953-1995), and INE (2015) (1977-2011). Both series are integrated by da 

Silva & Lains (2013), applying backwards the growth rates implicit in the earlier temporal series. 

After performing consistency checks on the GFCF time series, da Silva & Lains (2013) proceed 

to estimate net capital stocks following the Perpetual Inventory Method, which requires 

assumptions on the depreciation in value of each asset type, and an initial benchmark for the 

respective stocks of capital, besides GFCF and price indices series. 

Concerning depreciation rates, da Silva & Lains (2013) adopt the method of declining 

balances suggested in Hulten & Wykoff (1996), under which the depreciation rate (in value) of 

an asset ) is computed as #" = &/�( ", with & as an estimated declining balance rate27 and �( " the 

average service life of the asset28. 

Initial benchmarks for capital stocks at the beginning of the period (1910) are constructed 

by da Silva & Lains (2013) following the steady-state approach, widely used in the literature (e.g. 

Ohanian & Wright, 2010; de la Escosura & Rosés, 2009; Kamps, 2006).  

After computation of capital stocks for each asset type, the volume index of capital services 

(VICS) is derived. The method followed by da Silva & Lains (2013) is the one pioneered by the 

Bureau of Labor Statistics (BLS): capital stocks for each type of asset are aggregated to form 

overall measures of capital services, taking the user costs of capital as appropriate weights. The 

user costs reflect the marginal productivity of different assets under the usual assumptions of 

competitive markets.  

Specifically, the user costs (�",�) measure the cost of financing the asset as the sum of 

depreciation (*",�) plus the nominal cost of financial capital (�",�), minus the nominal capital gain 

(or loss) from holding the asset for each accounting period (�",� − �",���): 

�",� = �",� ∙ �",��� + *",� ∙ �",� − +�",� − �",���, (A.1) 

After user costs have been derived, da Silva & Lains (2013) combine the stocks of each asset 

type to obtain VICS, using a Törnqvist index: 

ln - ��

����

. = ∑ /̅" ln 1 �	,�

�	,���
2"  (A.2) 

Where 3",� represent the stocks of capital for each asset type ) at time 4, and /̅" =

0.5+/",� + /",���,, with: 

/",� =
		,��	,�

∑ 		,��	,�	

 (A.3) 



A.3. Labor 

The simplest way to account for labor inputs to production is to account for the number of 

workers, or persons engaged, in the economy. However, this measure weighs all workers 

equally, regardless of whether they work part-time or full-time.  

Alternatively, a standard measure for labor inputs is to account for total work hours, 

recognizing the fact that the number of hours worked differs from individual to individual. 

However, this measure does not account for differences in the productive capacity of different 

individuals. The aim of quality-adjusting labor inputs is thus to assess the impact of growth in 

labor services to economic growth (Jorgenson et al., 1987).  

Adjusting labor inputs for qualitative differences, by measuring the skill level (quality) of 

workers, is difficult, because “skill” is a loose term that cannot be directly observed: individual’s 

skill are inherently subjective, and embodied in a variety of forms29. To capture the quality of 

labor, it is necessary to resort to proxies.  

A production-oriented definition of “human capital” – defined as an amalgam of factors such 

as education, experience, training, etc. – can be approximated by a limited number of 

observable characteristics, primarily the amount of formal schooling30.  

In this work we use both unadjusted and quality-adjusted measures to account for labor 

inputs. Unadjusted labor is measured as average annual hours worked by engaged individuals, 

and it is obtained from the work of Amaral (2009).  

The Penn World Table database (PWT8.1) provides annual time series for a dimensionless 

human capital proxy (based on average returns to years of education), which we multiply by our 

unadjusted measures for labor inputs in order to obtain a quality-adjusted measure for labor 

inputs.  

This proxy is estimated assuming that perfect competition in factor and goods markets 

implies that the average wage of a worker with 5 years of education is proportional to his human 

capital ℎ. It also considers a log-linear relation between ℎ and 5, based on the wage-schooling 

relationships (Caselli, 2005):  

ℎ = �&(#) (A.4) 

Where 6(5) expresses average returns as function of the years of schooling 5. The specific 

form for this function is based on evidence that earlier years of education have a higher return 

than later years (Caselli, 2005; Psacharopoulos & Patrinos, 2004). This finding is based on 



Mincerian cross-country wage regressions. The function 6(5) is chosen to be piece-wise linear 

with slope defined according to a range of average years of schooling31.  

6�5� =  0,134 ∙ 5,   )7 5 ≤ 4,

0,134 ∙ 4 + 0,101 ∙ 5,   )7 4 ≤ 5 ≤ 8,

0,134 ∙ 4 + 0,101 ∙ 4 + 0,068 ∙ (5 − 8),   )7 5 ≥ 8
 (A.5) 

The rates of return are based on Psacharopoulos & Patrinos (2004). International data on 

education-wage profiles suggests that in Sub-Saharan Africa – which has the lowest levels of 

education – the returns to one extra year of schooling are in the order of 13,4%, while the World 

average is in the order of 10,1%, and the OECD average is in the order of 6,8%.  

 

A.4.  Useful exergy 

We obtain time series for useful exergy consumption in the Portuguese economy from Serrenho 

et al. (2016), whose useful exergy accounting study covers a 154-year period from 1856 to 2009, 

focusing on final-to-useful processes.  

The step-by-step methodology applied by Serrenho et al. (2016) for each year and energy 

carrier improves on the basic approach developed in Warr et al. (2010): 

1. Conversion of existing final energy data32 to final exergy values; 

2. Allocation of final exergy consumption from each final use sector to useful exergy 

categories; 

3. Estimation of second-law efficiencies for each final-to-useful transformation; 

4. Calculation of aggregate useful exergy values by summing total values obtained for each 

useful exergy category; 

Serrenho et al. (2016) consider the following categories for energy (exergy) end-uses: heat 

(high, medium, and low temperature); mechanical drive; light; electricity; and muscle work. As 

a refinement of the basic methodology by Warr et al. (2010), electricity is treated separately, 

since it can be used either for heating, lighting, mechanical drive, or other electrical uses, 

depending on the sector where it is used.  

Besides the typical energy carriers (coal & coal products, oil & oil products, natural gas, 

combustible renewables, electricity & CHP heat), Serrenho et al. (2016) also take into account 

energy (exergy) inputs that go beyond conventional energy accounting statistics: food for 

humans; feed for working animals; and non-conventional sources33. The dataset is compiled 

from different sources, for final energy consumption: IEA energy balances (for typical energy 

carriers, 1960 onwards); Henriques (2011) (for typical energy carriers and food/feed before 



1960, as well as corrected combustible renewables data prior to 1990 and non-conventional 

carriers for the entire period 1856-2009); FAO database (food/feed, 1960 onward). 

For each year 4 and each combination of energy carrier ), economic sector %, and energy 

end-uses category 	, useful exergy consumption is calculated as follows: 

��,"�� = ��,�6"�� �,"�� (A.6) 

The process requires a mapping for energy end-uses, estimation of thermodynamics second-

law efficiencies for each end-use category ��,�, and the definition of an exergy factor34 for each 

energy carrier 6" . The mapping depends on the level of disaggregation of th energy data for final 

energy consumption �� �,"��. For details on the estimation of second-law efficiencies and exergy 

factors in this study, consult Serrenho et al. (2016). 

Appendix B. Detailed statistical methods 

B.1. Non-stationary unit root tests 

The augmented Dickey-Fuller (ADF) and Philips-Perron (PP) tests are two alternative unit root 

tests used in statistics to determine if a given time series is non-stationary (i.e. if it has a unit 

root). The ADF test is an extension of the Dickey-Fuller test for larger sets of time series models. 

The procedure of the ADF test is applied to the model: 

∆8� = � + 4 + "8��� + #�∆8��� + ⋯ + #���∆8���'� + 9� (B.1) 

In Equation B.1 the relevant time series is represented by 8�, � is a constant,  is a coefficient 

in a time trend, and � is the lag order of the autoregressive process. The lag order � is chosen 

before applying the test, by examining relevant information criteria. The unit root test is then 

carried out under the null hypothesis " = 0 against the alternative hypothesis of " < 0. A value 

is determined for the test statistic: 

:;( = "'/3�("') (B.2) 

This value is compared with a critical value for the Dickey-Fuller test. If the test statistic is 

smaller35 than the critical value, the null hypothesis is rejected and no unit root is detected in 

the time series sample.  

The PP test builds on the Dickey-Fuller test of the null hypothesis # = 0 in a model: 

∆8� = #8��� + /� (B.3) 

Like the ADf test, the PP test addresses the issue that the process generating data for 8� 
might have a higher order of autocorrelation than what is admitted in the test equation. 



However, while the ADF test introduces lags of ∆8� as regressors in the test equation, the PP 

test makes a non-parametric correction to the t-test statistic.  

When the ADF or PP statistic is smaller than the tabulated critical value, the null non-

stationarity hypothesis is rejected, and the time series has a unit root. For the ADF tests, the 

final number of lags to be included was chosen according to the minimum observed value for 

the Schwarz Information Criteria (SIC) statistic. For the PP tests, the bandwidth parameter for 

the kernel-based estimator of the residual spectrum at frequency zero was obtained by the 

Newey-West method using Bartlett kernel (Newey & West, 1994).  

B.2. Cointegration 

For this analysis, the models defined in the paper are written as autoregressive models (VAR) 

and tested for cointegration, following the multivariate cointegration procedure developed in 

Johansen (1988; 1991). We test all defined models in this way. The procedure is as follows: 

Any given �� × 1� vector of time series �� is represented by a VAR model such as: 

�� = � + ∑ Г����� + <��
���  (B.4) 

Where � is a vector of constants, Г� represents matrices of short-run dynamics coefficients, 

and <� is a vector of random disturbances.  

If the time series in �� are all integrated of order one, I(1), the VAR in equation B.4 is non-

stationary. If there is no cointegration, statistical inference is not possible using the usual tests 

and p-values, as statistics will not have standard tabulated distributions. In this case, it is 

appropriate to first-difference the series in �� and to estimate the first-differences VAR of the 

form: 

∆�� = � + ∑ Г�∆���� + <��
���  (B.5) 

When cointegration is verified between the variables, there is at least one linear 

combination of �� (cointegration vector) that is stationary. In this case, we can write equation 

B.5 as a vector error-correction model (VECM): 

∆�� = � + ∑ Г�∆���� + Π���� + <��
���  (B.6) 

Where Π is a rank � matrix that can be decomposed as 

Π = αβ′ (B.7) 

With � being a � × � loading matrix and  a � × � matrix of cointegration vectors. The 

number of cointegration vectors (CV) in (B.4) is �, and it is tested following the procedure in 



Johansen (1988). If no cointegration vectors are estimated, the analysis proceeds by taking first-

differences VAR. If one or more cointegration vectors are found, these are estimated and a 

VECM formulation is considered, as in (B.6).  

For all models, the maximum number of lags admitted was 10, and the lag order was set to 

that suggested by the majority of all available information criteria (Likelihood Ratio, Final 

Prediction Error, Akaike, Schwarz, and Hannan-Quinn). In order to check whether the obtained 

VAR is well-defined, we have tested for serial independence in the residuals, applying a Lagrange 

Multiplier autocorrelation test. Autocorrelation issues have been resolved by increasing the lag 

order �.  

Carrying out the cointegration tests, a choice was also made regarding the underlying trend 

in the data. A linear deterministic trend was allowed in the level data, but the cointegration 

vector was chosen to have only intercepts, since it was assumed that all trends in the data are 

stochastic.  

There are two separate tests in the Johansen procedure: the trace test and the maximum 

eigenvalue test. Both are a test of the null hypothesis of no cointegration against the alternative 

of cointegration. They are based on eigenvalues of transformations of the data (=) and represent 

linear combinations of the data that have maximum correlation (canonical correlations). The 

tests differ in terms of alternative hypothesis.  

The trace test is a test of whether the rank of matrix Π is zero. The null hypothesis is that �>�	�?� = ��. The alternative hypothesis is that �� < �>�	�?� ≤ � − 1, where � − 1 is the 

maximum number of possible cointegration vectors. Succeding tests have the null hypothesis �>�	�?� = �� + 1 against the alternative �� + 1 < �>�	�?� ≤ � − 1. This test is a likelihood 

ratio test: 

�&���,� − 1� = −�∑ (1 − ="))��
"� 
'�

 (B.8) 

Where �&���,� − 1� is the likelihood ratio statistics for testing whether �>�	�?� = � 

versus the alternative hypothesis that �>�	�?� ≤ � − 1.  

The maximum eigenvalue test begins by testing whether the rank of matrix ? is zero against 

the alternative that �>�	�?� = 1. It then proceeds to test the null hypothesis that �>�	�?� =

1,2, … against the alternative hypothesis that �>�	�?� = 2,3, …. This test is also a likelihood 

ratio test: 

�&���, �� + 1� = −� ln(1 − = 
'�) (B.9) 



Where �&���, �� + 1� is the likelihood ratio test statistics for testing whether �>�	�?� = �� 

versus the alternative hypothesis that �>�	�?� = �� + 1. This likelihood ratio statistic does not 

have the usual asymptotic chi-square distribution.  

B.3. Granger non-causality tests 

The causality tests performed in this analysis are preceded by the cointegration tests, since the 

presence of cointegrated relationships between the variables has implications for the way in 

which short-run and long-run causality is carried out. If cointegration is detected among the 

variables in any of the models, then tests for causality are conducted by employing the 

methodology by Engle & Granger (1987).  

According to this approach, cointegrated variables must have an error correction 

representation in which an error correction term (ECT) is incorporated into the model. 

Therefore, a VECM is formulated in order to reintroduce the information lost in the differencing 

process – equation B.5 – thereby allowing for long-run equilibrium as well as short-run dynamics. 

For a three-variable model case (8� , @� , A�) with one cointegration relationship between the 

variables, the relevant VECM can be written as: 

∆8� = >� + ��������� + ∑ ���∆8��� +
���
���

∑ ���∆@��� +
���
���

∑ B��∆A������
���

∆@� = >� + ��������� + ∑ ���∆8��� +
���
���

∑ ���∆@��� +
���
���

∑ B��∆A������
���

∆A� = >� + ��������� + ∑ ���∆8��� +
���
���

∑ ���∆@��� +
���
���

∑ B��∆A������
���

 (B.10) 

Where ������ = 8��� + ���/���@��� + ���/���A��� + � is the normalized 

cointegration vector, with � representing the coefficients on lagged terms of the conditional 

VECm and � a constant term. There are two sources of causation: through the ECT (if � ≠ 0); 

and through the lagged dynamics terms. The ECT measures the long-run equilibrium relationship 

while the coefficients on lagged difference terms indicate the short-run dynamics. The statistical 

significance of the coefficients associated with ECT provides evidence of an error correction 

mechanism that drives the variables back to their long-run relationship. 

Given the two sources of causality, there are distinct causality tests that can be performed 

on such a model. Short-run Granger non-causality tests are applied to the lagged coefficients. 

Long-run causality is indicated by the significance of the one period lagged error-correction 

term. Lastly, “strong” Granger non-causality can be tested by examining whether the two 

sources of causation are jointly significant. For example, for the first equation in B.10, in order 

to test whether ∆@� Granger-causes ∆8� in the short-run, the significance of the lagged dynamic 



terms is examined by testing the null hypothesis $�:��� = 0, ∀% using the Wald test. Rejection 

of the null hypothesis implies that ∆@� Granger-causes ∆8� in the short-run. 

Testing the significance of the adjustment coefficient $�:��� = 0 allows for the 

investigation of how fast the dependent variable (in this case, ∆8�) responds to deviations from 

the long-run equilibrium.  

Finally, the “strong” long-run Granger non-causality can be tested by performing a joint 

significance F-test on both the ECT and the lagged dynamic terms. For example, in system (B.10), 

testing the null hypothesis $�:��� = ��� = 0 is equivalent to testing whether “strong” long-run 

non-causality runs from ∆@� to ∆8�. Rejection of the null hypothesis implies that ∆@� Granger-

causes ∆8� in the long-run. 

 

Appendix C. Additional econometric results 

In this section additional results from the analysis proposed and conducted in the main paper 

are disclosed. These results help clarify the statistical interpretation of the main paper’s results. 

All additional results are presented for analysis conducted using the output and input measures 

adopted in the main text, and also the alternative capital inputs measures discusses in Appendix 

A.  

C.1. Non-stationarity tests 

Unit root test results concerning the time series adopted for output, and capital, labor and useful 

exergy inputs are presented in Table C.1.1. Results are divided between non-stationarity tests 

for the variables in levels, first-differences, and second-differences. Values correspond to ADF 

and PP test statistics, which are compared with tabulated values (not shown).  

It can be observed that all time series corresponding to output, labor inputs, and useful 

exergy inputs have unit roots in levels, but are stationary in first-differences. Time series 

corresponding to measures for capital inputs (stocks or services), however, have unit roots in 

both levels and first-differences, and only become stationary when taking second differences. 

Tables C.1.2. and C.1.3. show the ADF and PP test results for the working variables defined 

in our analysis, per unadjusted and quality-adjusted labor inputs, respectively. Here, we test for 

the presence of unit roots in the logarithms of the ratio between time series for output, capital, 

and useful exergy; and time series for unadjusted and quality-adjusted labor inputs.  



It can be observed, in both cases (variables defined per unadjusted and quality-adjusted 

labor), that all time series in levels accuse the presence of unit roots, but are stationary in first-

differences. By defining our working variables in this way, we obtain time series that are all 

integrated of order one, and the Johansen procedure to test for cointegration can thus be 

applied.  

 

Table C.1.1 – Unit root tests. Historical annual time series for output, and capital, labor, and useful exergy inputs. * 

Rejection of the null hypothesis that the series has a unit root (i.e. is non-stationary), at the 1% level. 

 

 

 



Table C.1.2 - Unit root tests. Variables defined per unadjusted labor inputs (�). * Rejection of the null hypothesis that 

the series has a unit root (i.e. is non-stationary), at the 1% level. 

 

 



Table C.1.3 - Unit root tests. Variables defined per quality-adjusted labor inputs (��). * Rejection of the null 

hypothesis that the series has a unit root (i.e. is non-stationary), at the 1% level. 

 

 

C.2. Cointegration tests 

All results obtained for the trace and max eigenvalue tests constituting the Johansen procedure 

are presented in Tables C.2.1 and C.2.2, for models with variables defined per unadjusted (�) 

and quality-adjusted (ℎ�) labor inputs, respectively. The number of lags considered is indicated 

for each model.  

Models for which no cointegration relationships are observed between variables are the 

ones that fail to reject the null hypothesis of “None” cointegration vectors in Tables C.2.1 and 

C.2.2. Models with at least two cointegration vectors between variables are the ones that reject 

the null hypothesis of “At most 1” cointegration vectors.  

 

 

 



Table C.2.1 - Johansen cointegration test results for models with working variables defined per unadjusted labor 

inputs (�). Columns (1) and (2) indicate model and number of lags considered, respectively. Columns (3-8) indicate 

results for Johansen cointegration tests when the null hypothesis is that there is no cointegration relationship (3-4), at 

most 1 cointegration relationship (5-6), or at most 2 cointegration relationships (7-8). Variables in levels, assuming 

only an intercept (no trend) in the cointegration vector. Values represented correspond to p-values for the trace and 

max-eigenvalue tests. Critical values in parenthesis. *Rejection of the null hypothesis at 1% significance level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table C.2.2 - Johansen cointegration test results for models with working variables defined per quality-adjusted 

labor inputs (�). Columns (1) and (2) indicate model and number of lags considered, respectively. Columns (3-8) 

indicate results for Johansen cointegration tests when the null hypothesis is that there is no cointegration relationship 

(3-4), at most 1 cointegration relationship (5-6), or at most 2 cointegration relationships (7-8). Variables in levels, 

assuming only an intercept (no trend) in the cointegration vector. Values represented correspond to p-values for the 

trace and max-eigenvalue tests. Critical values in parenthesis. *Rejection of the null hypothesis at 1% significance 

level. 

 

  

Tables C.2.3 and C.2.4 represent the cointegration coefficients, normalized to the output 

variable, obtained for each of the 11 models for which at least one cointegration vectors were 

predicted by the Johansen procedure. Table C.2.3 refers to models with variables defined per 

unadjusted labor inputs (�), while Table C.2.4 refers to models with variables defined per 

quality-adjusted labor inputs (ℎ�).  

In each case, the normalized coefficients corresponding to capital and useful exergy inputs, 

retrieved directly from the software output, are represented. The normalized coefficient 

corresponding to labor inputs – estimated assuming constant returns to scale �� + �� = 1 

(�� + �� + �* = 1 for three-variable models) – is also represented. Both Table C.2.3 and C.2.4 

also show a constant term (written as the exponent of a natural exponential function ��#�) 
obtained for each model. 

 

 



Table C.2.3 - Normalized cointegration coefficients for models with cointegrated variables defined per unadjusted 

labor inputs (�). Columns (1) and (2) indicate model and number of cointegration vectors, respectively. Coefficients 

for capital (K) and useful exergy (U) obtained directly from EViews® output. Labor (L) coefficients estimated assuming 

constant returns to scale. Error terms are represented in parenthesis. Constants CST presented as exponentials. 

 

 

 

 

 

 

 

 

 

 



 

 

Table C.2.4 - Normalized cointegration coefficients for models with cointegrated variables defined per unadjusted 

labor inputs (�). Columns (1) and (2) indicate model and number of cointegration vectors, respectively. Coefficients 

for capital (K) and useful exergy (U) obtained directly from EViews® output. Labor (L) coefficients estimated assuming 

constant returns to scale. Error terms are represented in parenthesis. Constants CST presented as exponentials. 

 

 

 

For models with more than one cointegration vector, both vectors are represented 

(coefficients normalized to output and capital inputs, respectively), as well as the algebraicaly 

manipulated vector corresponding to a Cobb-Douglas type aggregate production function. 

C.3. Granger causality tests 

Tables C.3.1 and C.3.2 show the numerical results for the Granger non-causality tests performed 

on models that evidence at least one cointegration vector between its variables. Rejection of 

the null hypothesis of non-causality between two variables, at a 1% significance level, is 

indicated by an asterisk. Table C.3.1 refers to models with variables defined per unadjusted labor 

inputs (�), while Table C.3.2 refers to models with variables defined per quality-adjusted labor 

inputs (ℎ�).  



 

Table C.3.1 - Short-run and long-run Granger non-causality test results, for models with working variables defined 

per unadjusted labor inputs (�). Columns (1) and (2) indicate the model and independent variable, respectively. 

Columns (3-8) indicate dependent variables in short-run (3-5) and long-run (6-8). Statistics are chi-square. *Rejection 

of null hypothesis at 1% level. 

 

 

 

 

 

 

 

 

 



Table C.3.2 - Short-run and long-run Granger non-causality test results, for models with working variables defined 

per quality-adjusted labor inputs (��). Columns (1) and (2) indicate the model and independent variable, respectively. 

Columns (3-8) indicate dependent variables in short-run (3-5) and long-run (6-8). Statistics are chi-square. *Rejection 

of null hypothesis at 1% level. 

 

 

 

 

 

 

 

 

 

 

 



1 The stylized fact was originally proposed by Kaldor (1961) for the US, and other studies support the 

long-term stability of cost shares for this country (Denison, 1974; Jorgenson et al., 1987). Young (1995) 

reports reasonably stable cost shares for 4 East Asian countries – Hong Kong, Singapore, South Korea, and 

Taiwan – between 1960 and 1990. Studies for 7 developed countries – Canada, France, Germany, Italy, 

Japan, the Netherlands, and the United Kingdom – indicate cost shares similar to those in the US 

(Christensen et al., 1980; Dougherty, 1991). 

2 It should be noted that Solow (1957) also acknowledged the distinction between capital in use and 

capital in place, correcting the latter by the fraction of labor force unemployment, in lack of a more 

reliable measure.  

3 i.e. the relative proportion of labor used in a process. 

4 Along with Jorgenson et al. (1987), Diewert (1976), and Caves et al. (1982). 

5 Skill is difficult to measure objectively, so human capital indexes generally adopt the sum of years 

of education, or the returns to each additional year of education (or both), as proxies. 

6 For Portugal, technological change (or total factor productivity) accounts for approximately half of 

GDP growth during the period 1960-1974 (da Silva & Lains, 2013).  

7 The LINEX is a particular form for the production function, derived by Kümmel et al. (1985), obtained 

by choosing simple mathematical forms for the output elasticities (based on plausible assumptions on 

asymptotic behavior), and performing partial integrations. Unlike the Cobb-Douglas, the LINEX does not 

imply that factors of production are strict substitutes of each other, and hence provides a more complex 

and realistic substitution-complement relationship among its variables. 

8 i.e. the heat content of fuels, in Joule or BTU.  

9 Useful exergy and useful work are interchangeable terms defining the same concept. Throughout 

the rest of our work only the nomenclature “useful exergy” will be adopted. 

10 The authors define energy services as the product of the level of energy supply by energy quality 

(measured using Divisia indexation), and the level of (exogenous) energy-augmenting technology. 

11 Energy services expansion is the major factor explaining growth in Sweden, until the second half of 

the 20th century. After that, labor-augmenting technical change becomes the major explanatory factor. 

12 From 90% of GDP in 1800 to close to 10% of GDP today (Kander et al., 2014). 

13 See Jones (2002) for the US, and Smulders & De Nooij (2003) for Japan, France, UK, and West 

Germany. 

14 For three factors of production (capital, labor, and energy), it is common to write a capital-labor 

two-factor CES production function as a factor of production, alongside energy, within another CES two-

factor production function (i.e. nested CES functions).  For details, see for example Kemfert (1998). 

15 Economic output (GDP) is adjusted by adding the value of primary energy, thereby creating a gross 

output measures, as opposed to a value-added measure. 

                                                           



                                                                                                                                                                          
16 A multivariate approach makes sense in our analysis, since we are expecting to find statistically 

significant relationships between economic output and all relevant inputs factors, rather than between 

output and only some of the factors.  

17 His results show that capital, on the other hand, can be excluded from the cointegration space. 

18 For example, if all variables are quantified by time series which are non-stationary in levels but 

stationary when taking first differences, they are all integrated of order one – I(1). 

19 The maximum lag order is defined according to the formula proposed by Schwert (2002): ���� =

	12 
 �

���
��/��, where  is the number of observations. 

20 We want to be able to interpret observed cointegration vectors (CV) as production functions, so 

the output variable must be present in all models. 

21 i.e. Likelihood Ratio (LR), Final Prediction Error (FPE), Akaike (AIC), Schwarz (SIC), and Hannan-Quinn 

(HQ). 

22 i.e. output is not a dependent variable. 

23 Changes in factor inputs should have a causal effect on output in a production function formulation. 

However, it can also occur that variation of output, resulting from variation of demand, can have a causal 

effect on factor inputs, and the production function formulation would remain valid. 

24 e.g. a two-variable model grouping output and useful exergy defined per unadjusted labor inputs 

(�,�)�, or per quality-adjusted labor inputs (�,�)��. 

25 i.e. (�,�)� and (�,�)�, or (�, �������	
��)� and (�, �������	
��)��. 

26 Also, values for adjusted �2 only increase when the increase in �2 (due to the inclusion of a extra 

explanatory variable) is more than one would expect to see by chance alone.  

27 da Silva & Lains (2013) set a fixed declining balance rate of 1.65 for machinery & equipment 

(including the asset types of transport equipment, machinery & equipment, and other investment), and 

0.91 for structures (asset types of dwellings, and other buildings & structures). 

28 Service life assumptions are based on previous historical studies on capital formation, along with 

recent evidence on the Portuguese case (da Silva, 2010). Different service lives are assumed in different 

sub-periods, considering shorter assets’ lives in the more recent decades (1960 onwards).  

29 E.g. innovation and creativity, work experience, education, etc. 

30 Given its broad coverage of countries and years, the average years of schooling remains the most 

useful proxy for human capital. However, the quality of education, as reflected in internationally 

comparable test scores, is also increasingly flagged as an important dimension of human capital 

(Hanushek & Woessmann, 2012). 

31 Data on average years of schooling for population aged 15+ is obtained from Barro & Lee (2011). 

32 Serrenho et al. (2016) define final energy consumption as the total effective consumption, i.e. 

standard final energy consumption as commonly defined in official energy statistics plus energy sector 

own energy uses. 

33 E.g. wind and water streams for mechanical drive uses in boats, mills and wells. 



                                                                                                                                                                          
34 Defined as the ratio of exergy to energy. 

35 The test is non-symmetrical, so the absolute value is not considered. 


