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Abstract 

While car ownership forecasting has always been a lively area of research, traditionally 
it was dominated by static models. To utilize the rich and readily available repeated 
cross sectional data sources and avoid the need for scarce and expensive panel data, 
this study adopts pseudo panel methods. A pseudo panel dataset is constructed using 
the Family Expenditure Survey between 1982 and 2000 and a range of econometric 
models are estimated. The methodological issues associated with the properties of 
various pseudo panel estimators are also discussed.  
 
For linear pseudo panel models, the methodological issues include: the relationship 
between the pseudo panel estimator and instrumental variable estimator based on 
individual survey data; the problem of measurement errors (and when they can be 
ignored) and the consistent estimation of dynamic pseudo panel parameters under 
different asymptotics. Static and dynamic models of car ownership are estimated and a 
systematic specification search is carried out to determine the model with best fit. The 
robustness of the estimator is investigated using parametric bootstrap techniques. 
 
As an individual household’s car ownership choice is discrete, limiting the model to 
linear form is obvious insufficient. This study attempts to combine the pseudo panel 
approach with discrete choice model, which has the distinctive advantages of allowing 
both dynamics and saturation but without the need for expensive genuine panel data. 
This does not seem to have been done before. Under the framework of random utility 
model (RUM), it is shown that the utility function of the pseudo panel model is a direct 
transformation from that of cross-sectional model and both share similar probability 
model albeit with different scale. This study also explores the various forms of true 
state dependence in the dynamic models and tackles the difficult econometric issues 
caused by the inclusion of lagged dependent variables. The pseudo panel random utility 
model is then applied to car ownership modeling, which is subsequently extended to 
take saturation into account. The model with the best fit has a Dogit structure, which is 
consistent with the RUM theory and is able to estimate the level of saturation and test 
its statistical significance.  
 
Both linear and discrete choice models are applied to generate forecasts of car 
ownership in Great Britain to year 2021. While the forecasts based on discrete choice 
models closely match the observed car stock between 2001 and 2006, those based on 
linear models appear to be too high. Furthermore, the results from nonlinear models are 
comparable to the findings in other authoritative studies, while the long term forecasts 
from linear models are significantly higher. These results highlight the importance of 
saturation, and hence the choice of model functional form, in car ownership forecasts. 
In conclusion, we make some comments about the usefulness of pseudo panel models. 
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Chapter 1 Introduction 

 

The car market is an important sector of most modern economies and both the demand 

for ownership and the demand for new cars play an important role in economic 

decisions. The health of the car industry in general depends on consumers’ demand for 

new cars. Demand forecasting is one of the most important tools car manufacturers use 

in their financial planning and decision making about expansions and contractions of 

plant capacity. For various government and public bodies, understanding and 

forecasting demand for car ownership are equally important. As the most important 

user of petroleum fuel, the car market has a strong influence on non-replaceable energy. 

Projections of future fuel consumption, and the impacts on fuel consumption of various 

forms of government intervention, are routinely based on forecasts for car ownership 

demand. Furthermore, understanding the factors driving demand for cars is important 

in addressing a range of environmental issues including local air pollution and climate 

change. Since car emissions are a large component of pollution, air quality standards 

and policies are largely based upon projected car ownership and use. Finally, accurate 

car demand models are also an aid to planners who must anticipate infrastructure needs, 

address concern of congestion and provide public transport services. Government 

agencies and local passenger transport authorities utilize projections of car ownership 

levels as a key input to obtain accurate projections of infrastructure needs and public 

transport patronage.  

 

Car ownership forecasting plays a central role in the planning and decision making of 

numerous public agencies and private organizations. Given the important role of car 

demand forecasts in a wide variety of settings, it is not surprising that it has been a 

lively area of research and numerous models have been constructed to forecast car 

demand. It is important to recognize that the choices of model structure and functional 

form are heavily influenced by the objective and context of the study, and there is no 

single model that would offer best performance in all situations. For example, for short 

term forecast, a simple time series model based on aggregate data might perform better 

than the more complex disaggregate model. Also, while the consideration of saturation 

might not add much value for car forecasting in developing countries, it might be 
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highly significant in mature markets. It is easier to understand these points by looking 

at the car market in Great Britain as an example. Between 1950 and 2005, the total 

number of cars in the stock increased from 1.98 million to 26.21 million, implying an 

average growth rate of 4.7% per annum; for the same period, the real Gross National 

Income (GNI) increased from £243 billion to £987 billion (1995 prices), implying an 

average growth rate of 2.5% per annum (DfT, 2006c; ONS, 2007). If one uses certain 

time series models (for example, a simple Error Correction Model) for long term 

forecasts, it would substantially over-estimate the car stock in distant future. This is 

because the past growth trend will be inevitably curtailed by the approach of saturation: 

in 1951, only 14% of households had regular access to at least one car, while this 

proportion increased to 75% in 2004 (DfT, 2006c).  

 

In the current study, the car demand forecasting model is developed within the context 

of British car market. In the UK, the Department for Transport has commissioned a 

number of “official” forecasting models over the past few decades, which include those 

developed by the Transport and Road Research Laboratory, the Regional Highway 

Traffic Model (RHTM), the National Road Traffic Forecasts (NRTF) and the National 

Transport Model (NTM). Besides the Department for Transport, there are industrial 

organisation such as SMMT (The Society of Motor Manufacturers and Traders) and 

other commercial and academic organisations, which are also involved in this area of 

research. However, some of the research remains “in house”, i.e., the details of the 

model are not publicly available. Some of the studies available in the academic journals 

used methodology and data different to the NRTF/NTM, yet each study has its own 

limitations. Various types of car demand forecasting models developed in Great Britain 

and worldwide will be reviewed in Chapter 2.  

 

The literature review reveals that the static approach dominates car ownership 

forecasting in Britain. The motivation for this thesis is that the inclusion of dynamics 

will yield fruitful results and lead to more accurate forecasts. Traditionally, empirical 

models of individual travel choice behaviour have been built on the assumption of 

equilibrium and suffered from a lack of dynamics. In the past two decades, the 

importance of dynamics in transport is gradually gaining recognition. In various areas 

of transportation research, issues such as the temporal dependence of choices, the role 
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of habit, imperfect information regarding alternatives and prices, costs of adjustment 

and transaction costs, have been empirically assessed.  

 

Nevertheless, the use of dynamic approach in car demand forecasting is still limited 

due to heavy data requirements. Due to data constraint, there have been relatively few 

forecasting models that use the dynamic approach except those using aggregate time 

series methods. It is possible to forecast car demand using panel data models. However, 

there is only one panel survey in Britain containing limited transport related 

information: the British Household Panel Survey (BHPS), which is inadequate for the 

purpose of our study. Furthermore, due to the attrition problem, the size and 

representativeness of the samples decline over time, rendering the panel data inferior to 

other national cross-sectional data. For example, less than half of the respondents in 

Wave 1 of BHPS remained in the sample in Wave 13, and various population groups 

such as the old, the young, the unemployed, those with low income, etc. became 

significantly under-represented (ISER, 2006).  

 

One approach to circumvent the need for panel data is to construct pseudo panels from 

the cross sectional data. The pseudo-panel approach is a relatively new econometric 

approach to estimate dynamic demand models. A pseudo-panel is an artificial panel 

based on (cohort) averages of repeated cross-sections. The cohorts are defined based on 

time-invariant characteristics of the households and extra restrictions should be 

imposed on pseudo-panel data before one can treat it as genuine panel data. Using the 

cohort data over a number of periods, one could distinguish long run and short run 

effects while allowing for heterogeneity between the cohorts. In this way, one is able to 

overcome the deficiencies in both the static models and aggregate time series.  

 

The application of pseudo panel car ownership model raises many interesting questions. 

For example, how do we define the cohort so the econometric model is identified and 

the measurement errors in variables can be minimized (ignored)? There is a question 

about the treatment of the dependent variable. Whereas in the original data car 

ownership is a discrete variable (zero, one, two, ..) in pseudo panel data it is a 

continuous variable, e.g. average number of cars per household or the proportions of 

households that own cars. There is a question about the treatment of transformations of 

the variables. Should one use the average of the transformed micro data or transform 
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the pseudo panel cohort data? In many cases, e.g. logarithmic transformations, the 

average of the transformed data is not defined, since the micro data contain zeros1. Is it 

possible to apply the microeconomic theory of utility maximization for individual 

decision makers and combine the pseudo panel model with the random utility model? 

What are the pros and cons of discrete choice (nonlinear) pseudo panel model and 

what’s its relationship to standard random utility models? How can the nonlinear 

pseudo panel model be consistently estimated? And finally, what are the empirical 

appeals of the pseudo panel models and how well do they perform in car ownership 

forecasting? 

 

To facilitate readers’ understanding, we list the most common notations that are used 

throughout the thesis in Table 1-1. The following subscripts are consistently used: i 

denotes the individual household in the micro survey; c denotes the associated cohort 

of household i; and t denotes years. 

Table 1-1 Common Notations 

Notation Description 

Act Average number of cars (automobiles) per household in cohort c in year t 
P1+ Probability of household owning at least one car 

P2+|1+ Probability of household owning two or more cars conditional on owning 
at least one car 

nct Number of sample observations in cohort c in year t 
Nc Total population of cohort c (assumed to be constant in the theoretical 

model, i.e. no birth or death) 
C Total number of cohorts � Scalar: coefficient for the lagged dependent variable ✁
 K x 1 vector of coefficients for exogenous explanatory variables ✂
 Unobserved cohort heterogeneity (fixed effect or random effect) 

 

In the empirical work, the dependent variable is Act for all linear models. It is slightly 

more complicated for discrete choice models. We observed the proportion (not 

probability) of households owning at least one car in cohort c in year t, which is noted 

as +1

ctr . Among the car owning households in cohort c, we also observed the proportion 

of those owning two or more cars, which is noted as ++1|2

ctr . They are the dependent 

                                                 

1 There are also theoretical considerations on the treatment of variable transformations. Again, it remains 
a question whether the method proposed in the standard linear pseudo panel econometric literature 
should be applied to discrete car ownership choices. 
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variables in two separate discrete choice pseudo panel models. The first order condition 

of the maximum likelihood function implies that the predicted probability (P1+ and 

P2+|1+) equals the proportions ( +1

ctr  and ++1|2

ctr ) in the sample under certain conditions 

(e.g. probability model is a multinomial logit model with alternative specific constant). 

 

The thesis is organized as follows. Chapter 2 is the literature review of car ownership 

models. Chapter 3 describes the data used in the thesis including the construction of the 

pseudo panel dataset. Chapter 4 discusses the linear static fixed effect models, 

investigating the relationship between the pseudo panel estimator and the instrumental 

variable estimator based on individual survey data as well as the measurement error 

problems (and when they can be ignored). Chapter 5 discusses the consistent 

estimation of linear dynamic pseudo panel model under different asymptotics and the 

rank conditions for identification. For empirical models of car ownership, systematic 

specification search is carried out to investigate various issues such as appropriate 

explanatory variables, functional forms, problems of heteroskedasticity and 

autocorrelation, fixed or random effects and presence of heterogeneity.  

 

Chapter 6 extends the pseudo panel approach to discrete choice model. The pros and 

cons of nonlinear pseudo panel model are discussed and a pseudo panel model that is 

consistent with random utility theory is presented. Chapter 7 investigates dynamic 

discrete choice model of pseudo panel. Models with different forms of (true) state 

dependence are compared and consistent estimation methods are proposed for the 

preferred first order Markov model. For the car ownership model, saturation is an 

important concept so the theoretical model has been extended and a pseudo panel Dogit 

model is presented. Empirical models of households with at least one car and those 

with two or more cars conditional on owning the first car are estimated separately.  

 

Chapter 8 uses both the linear and nonlinear econometric models to generate car 

ownership forecasts for Great Britain between 2001 and 2021. The forecasting results 

are compared to the observed car stock between 2001 and 2006 as well as the forecasts 

in other authoritative studies. A number of scenario tests are carried out to examine the 

sensitivity of the forecasting models. Chapter 9 is a brief conclusion, where the 

usefulness of pseudo panel models is also considered. 
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Chapter 2 Review of Car Ownership Models 

 

In the chapter, the car ownership models are reviewed. In an early literature review by 

Train (1986), the methodology found in the literature was divided into two categories: 

disaggregate and aggregate. The disaggregate method comprises of compensatory and 

non-compensatory model. In the compensatory models, the household is assumed to 

trade off characteristics in the sense that a high value of one characteristic can 

compensate for a low value of another characteristic (for example, the household 

would choose a car that is smaller than it wants if the price is sufficiently low). The 

compensatory models can be based on either real choice situations (Revealed 

Preference Studies) or hypothetical choice situations (Stated Preference Studies). In the 

non-compensatory models, the consumer is assumed to have an importance ranking of 

characteristics of the alternatives, and, for each characteristic, have some minimum 

acceptable level, called a “threshold”. In the decision making process, the consumer 

eliminates from consideration all the alternatives that do not meet the minimum 

acceptable standard (threshold) for the characteristic which he considers most 

important. If more than one alternative remains after the initial elimination, then the 

consumer looks at his second ranked characteristic and eliminates any alternatives that 

are not above the threshold for this characteristic. This process continues until only one 

alternative remains; this is the alternative which the consumer chooses.  

 

According to Train (1986), the aggregate method comprises of approximate demand 

equations and consistent demand equations. The true aggregate demand function for an 

area is the sum of the demand functions for all the individuals in the area. It is called 

“consistent demand function” since it is consistent with underlying demand at the 

individual level. Due to the complexity of such functions, many aggregate models are 

derived by specifying an aggregate demand function that is not necessarily consistent 

with realistic individual demand equations and considering it an approximation to the 

true aggregate demand functions. In Train’s review, two studies (Cardell and Dunbar, 

1980; Boyd and Mellman, 1980) used consistent aggregate demand equations and 

estimated aggregate demand equations with explicit account taken of the fact that 

aggregate demand is the sums of individual demands. 
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Rand (2002) and De Jong et al (2004) classified the car ownership model into nine 

different types: Aggregate time series model, cohort model, aggregate market model, 

heuristic simulation model, indirect utility model, static disaggregate choice model, 

panel model, pseudo panel model and dynamic transaction model. These different 

model types are then compared based on a number of criteria: inclusion of demand and 

supply side of the car market, level of aggregation, dynamic or static model, long- or 

short-run forecasts, theoretical background, inclusion of car use, data requirements, 

treatment of business cars, car-type segmentation, inclusion of income, of fixed and/or 

variable car costs, of car quality aspects, of licence holding, of socio-demographic 

variables and of attitudinal variables, and treatment of scrappage. 

 

Train (1986) and Rand (2002) are both comprehensive surveys of car ownership 

models, while the literature review here is more focused. More specifically, we cover 

forecasting models in Great Britain, joint models of ownership and vehicle type/use 

and different classes of dynamic models. The literature review is organized in two 

broad categories: static models and dynamic models.  

 

2.1 Static Model 

In this section, we first review the “official” car ownership forecasting models in Great 

Britain, then move on to various advanced discrete choice models. The official 

forecasting models follow an evolution path of aggregate, partially-disaggregate to 

disaggregate models2. Beyond the simple disaggregate models (typically Multinomial 

Logit Models), advanced discrete choice models include joint models of car ownership 

and types (typically Nested Logit Models); models of car ownership and types allowing 

for heterogeneity (typically Mixed Logit models) and joint estimation of vehicle 

ownership, types and use (continuous/discrete model).  

 

2.1.1 Aggregate trend extrapolation model (GB: pre 1970s) 

In Britain, the very early car ownership forecasts were on the whole unconditional, i.e. 

they were single-valued estimate without considering the influences of economic and 

                                                 

2 For a detailed discussion on the history of car ownership forecasting in Great Britain please refer to 
Whelan (2003). 
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policy variables (Tanner, 1978). The first formal car ownership forecasting model for 

Britain is Tanner (1958), which is an aggregate model of trend extrapolation3.  

 

When applying the extrapolation techniques, it has been recognized that car ownership 

rates should not increase indefinitely in time due to saturation effects. For this reason, 

Tanner (1958) pioneered a logistic model that relates car ownership rate (cars per 

capita Ct) with a time trend t: 
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Where C0 is the average number of cars per capita in the base year; 

g0 is the marginal growth of average number of cars per capita in the base year 

(calculated by 
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 evaluated at t0); 

S is the saturation level. 

 

As a result, knowing C0 and g0 in the based year would enable one to extrapolate Ct in 

future years provided the saturation level S can be estimated (although the estimation 

of S turned out to be problematic and unreliable).  

 

In response to the criticism of Model (1) being too simplistic, Tanner (1978) extended 

the trend extrapolation model to include the impact of income and motoring costs: 
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where I is the real GDP per capita, P is the real motoring costs and I0 and P0 are the 

corresponding values in the based year. So, besides the saturation level S, parameters a, 

b, and c should also be estimated. 

 

                                                 

3 Strictly speaking, trend extrapolation models are statistical model rather than econometric model so the 
distinction between static and dynamic model is moot. 
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2.1.2 Partially disaggregate model (GB: 1970s and 80s) 

In the 1970s, the shortcomings of the aggregate trend extrapolation models were 

increasingly recognised. The response was to introduce a “partially disaggregate” 

cross-sectional models while handling the time trend separately using time series 

approach. Two prime examples are Regional Highway Traffic Model (RHTM, 

described in Bates, et al. 1978 and cited in Ortuzar and Willumsen, 2001) and 1989 

National Road Traffic Forecasts (NRTF). 

 

In RHTM, car ownership was defined as a function of real income deflated by a real 

car price index, and separate models have been estimated for percentage of households 

with one plus car (P1+) and percentage of households with two plus cars (P2+): 
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The model was calibrated on the basis of national, regional and zonal averages data in 

Britain for the period of 1979-1975 and hence was a “partially disaggregate” model. 

The model was found to be stable over time, although the same difficult task of 

estimating the saturation level remains.  

 

The NRTF (1989) maintained the structure of RHTM. It was supplemented by a 

“separate identification of time trend” (SIC) model, which use the 1985-1986 National 

Travel Survey data to establish the effect of income hence isolating the time trend 

effect.  

 

2.1.3 Fully disaggregate models (GB: 1990s and beyond) 

NRTF (1997) was the first fully disaggregate car ownership forecasting model for 

Great Britain. Car ownership forecasting in the National Transport Model (NTM), 

currently used by the Department for Transport, have similar structure but include 

various incremental improvements to NRTF (1997).  



 19 

 

•  National Road Traffic Forecasts, 1997 

NRTF (1997) considered five possible methods in car demand forecasting, which 

include aggregate time series models, joint models of car ownership and use, panel 

surveys, group cross-section models and individual cross-section models. The method 

chosen is the individual (household) cross-section model, in which the probability of 

car ownership at different household income levels is modelled by a logistic function.   

 

In NTRF (1997), two binary models were calibrated for each household type: a P1+ 

model to predict the probability of the household owning at least one car, and a P2+|1+ 

model, defining the conditional probability of the household owning two or more cars, 

given that they own at least one car: 
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The ownership models included saturation levels of maximum car ownership (S1 and S2 

for 1+ car and 2+|1+ cars respectively), and linear predictors (LP) which comprised a 

linear combination of explanatory variables. The model variables were licences per 

adult, household income and area type. 

 

•  National Transport Model (Previously known as NRTF 2001) 

Car ownership forecasting in the National Transport Model was described in Whelan 

(2001, 2003 and 2007) and included various incremental improvements of NRTF 

(1997). It accounted for the increase in multi-vehicle households by introducing an 

additional sub-model, which model the conditional probability of a household owning 

three or more vehicles (P3+|2+|1+). Unlike the 1997 NRTF, multiple car ownership by 

single person households was allowed. To account for the impact of company car 

ownership on total household car ownership, company car dummies were introduced 

into the ownership model. 
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Saturation levels have an important impact upon the results of ownership models. The 

1997 NTRF models had allowed variation by household type, but not area type. In the 

National Transport Model, saturation levels varied according to both household type 

and area type. Saturation levels were estimated from Family Expenditure Survey data 

(see Whelan et al. 2000). A general pattern of higher saturation levels in more sparsely 

populated areas was observed for each model type. Furthermore, a distinct “London” 

Effect was found, i.e. saturation levels in the Greater London area were lower than in 

other area types.  

 

2.1.4 Models of Car Ownership and Types 

While NRTF (1997) and NTM are fully disaggregate models, they are relatively simple 

modelling systems, which consist of two or three separate binary choice models (model 

of Car 1+, Car 2+|1+ and Car 3+|2+|1+). Beyond the simple Binary Logit and 

Multinomial Logit Models, a number of studies used more advanced discrete choice 

models to account for correlation between alternatives. In particular, if the household 

car types are considered in the model, the assumption of independently identically 

distributed error term in the multinomial logit models is likely to be violated. In this 

case, the Nested Logit Model, which allows more flexible error structures, becomes a 

natural candidate. A Nested Logit Model is appropriate when the set of alternatives 

faced by a decision maker can be partitioned into subsets, called nests, in such a way 

that: 1) The Independence from Irrelevant Alternative (IIA) property holds within each 

nest; 2) IIA does not hold in general for alternative in different nests (Train, 2003). 

 

Train (1986) is a modelling system that allows simultaneous estimation of vehicle 

numbers and types (the model also estimates car use defined as vehicle miles traveled). 

It has a Nested Logit Structure, where the choice set in the upper nest includes 0, 1 and 

2 cars. In the lower nest, the choice set for one vehicle households includes 

class/vintage of vehicle, while the choice set for two vehicle households includes 

class/vintage of pairs of vehicles. The household chooses the number of vehicles to 

own and the class/vintage of each vehicle so that the conditional indirect utility 

function is maximized. 

 

Hensher et al. (1989) is an empirical model of household car holdings in Australia 

considering both number of cars and types of car owned. It has a Nested Logit structure, 
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with the vehicle choice decision decomposed into three linked choices: type-mix, body-

mix and fleet size (0, 1, 2, 3 or more vehicles). The utility from holding a car bundle 

can be represented by a conditional indirect utility function, which includes the 

following variables: consumption prices, qualities, household wealth, expected 

annualized vehicle capital costs and socio-demographic factors. A particular bundle 

will be chosen if the utility flows from it exceed the utility obtained from any other car 

bundles. A car bundle is decomposed into holding of different fleet size, different body 

types and different models/vintages. The error terms are allowed to be correlated across 

bundles with different fleet size, body and model/vintage mixed, but are assumed to be 

IID for bundles with the same choice mixes.  

 

2.1.5 Models of Car Ownership and Types allowing for Heterogeneity 

The impacts of household heterogeneity and random taste variations on household car 

holdings are attracting more and more attention in recent literature. Because of the 

rapid development in computing technology in recent years, heterogeneous models can 

now be estimated using simulation without too much difficulty. Among them, Mixed 

Logit is a highly flexible model that can approximate any random utility model 

(McFadden and Train, 2000). It allows for random taste variation, unrestricted 

substitution patterns, and correlation in unobserved factors over time, which alleviated 

the three limitation of standard logit. This flexibility gives mixed logit model great 

advantage in terms of modeling vehicle number and types while allowing for random 

taste variations. It can also be a highly efficient model in combining revealed 

preference (RP) and stated preference (SP) data.  

 

In Brownstone et al. (2000), multinomial logit (MNL) and mixed logit models were 

compared based on data on Californian households’ revealed and stated preferences for 

cars. In the vehicle choice modeling context, they found RP data was critical for 

obtaining realistic body-type choices and scaling information. SP data was critical for 

obtaining information about attributes not available in the marketplace, but pure SP 

models gave implausible forecasts.  

 

Before estimating joint SP/RP models, separate SP and RP models were estimated. The 

SP models were estimated using both MNL and mixed logit model forms. To identify 

the presence of significant random error components in the MNL models, the Lagrange 
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multiplier test from McFadden and Train (1997) was used. Five random coefficients 

were identified, amongst which four were applied to the different vehicle fuel types 

modeled, demonstrating large heterogeneity in taste for alternative fuel vehicles. The 

RP models were also estimated separately. The model result showed that only terms for 

price and operating cost could be determined with any accuracy due to high co-

linearity between vehicle range, speed and acceleration. Joint SP/RP models were then 

estimated. A scale factor was used to scale the SP data relative to the RP data. While 

this scale factor is less than one for the MNL model, it is greater than one for the mixed 

logit model, where the preference heterogeneity is captured by fuel-type error 

components. 

 

The authors proceeded to make new vehicle forecast for California. The mixed logit 

models tend to result in higher market shares for the alternative fuel vehicles. A key 

point here is that the IIA properties of the MNL means a proportionate share of each 

new vehicle’s market share must come from all other vehicles, whereas the mixed logit 

specification results in the more plausible result that the market share for electric fuel 

vehicles comes disproportionately from other mini and subcompact vehicles. 

 

2.1.6 Joint Estimation of Car Ownership and Use 

While household’s car ownership decision is discrete, vehicle use is continuous. A 

special type of random utility model, joint continuous/discrete model, was developed 

for this situation (Dubin and McFadden, 1984; Train, 1986). Household’s decision on 

car ownership and use is jointly depicted by a “conditional indirect utility function” 

and a demand function, whose relationship is established by the so-called “Roy’s 

Identity”. The decision-maker chooses the quantities of the continuous goods (e.g. 

vehicle miles) that maximize his direct utility subject to budget constraint for the given 

price and income, conditional on choosing a certain discrete alternative (e.g. number of 

vehicles). A household will only choose for car ownership and drive a positive mileage 

if the maximum utility of car ownership exceeds the utility of not having a car. Two 

early examples of joint car ownership and use models are Train (1986) for California 

and De Jong (1989a, 1989b) for the Netherlands. 

 

Norwegian model system developed by HCG and TØI (1990) is another example. The 

indirect utility function has two arguments: car use A, measured as the annual driving 
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distance; and volume of all other goods and services X. The cost of usage is 

decomposed into fixed costs C and variable cost V. The problem was formulated as:  

Maximize {U=U(A,X)} 

subject to the budget constraint: 

Y≥X,     if no car 

Y≥V1A1+C1+X,    if one car 

Y≥ V1A1+C1+ V2A2+C2+X,  if two cars 

where Y represents net household income.  

 

If a household does not own a car then it can spend all income on other goods. If the 

household decides upon car ownership, then to overcome the disutility associated with 

the fixed costs it must drive a positive number of kilometers. Conditional indirect 

utility functions were defined for each positive car ownership outcome; for the zero car 

outcome a direct utility function could be defined. The indirect utility functions give 

the maximum utility on the budget line and represent the utility of owning a car and 

driving the optimal distance. The functional form for the demand function for vehicle 

distance was based upon statistical analysis. The linkage between the indirect utility 

functions and the demand functions was provided by Roy’s identify. 

 

For both cars, significant terms were estimated for the log of remaining household 

income, the variable cost of driving, the log of household size and percentage 

urbanization. For the first car only, significant terms were identified for a female head 

of household; the second car only, significant terms were estimated for age of head of 

household over 45, and age of head of household over 65.  

 

2.2 Dynamic Models 

While the static approach traditionally dominated the study of car ownership and all 

official forecasting models for Great Britain are static ones, the importance of 

dynamics is increasingly recognized and many classes of dynamic models have been 

developed in the last two decades.  
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2.2.1 Time series Models 

Time series model has a distinctive advantage of very light data requirement. Also, it 

can be quite accurate in terms of short term forecasts. However, these models have a 

significant drawback: they were unable to include the important influences such as 

demographic factors. As a result, there are much fewer car ownership models using 

time series approach. Romilly et al. (1998) and Romilly et al. (2001) are the most 

notable work in this direction. 

 

Romilly et al. (1998) used a general to specific approach to construct the car demand 

model, using cointegrating models to establish long term equilibrium conditions (and 

for long term forecasts) and error correction models to identify short term elasticity. 

Although the forecasting models appeared to provide plausible income, own-price and 

cross-price demand elasticities, the actual forecasts were simply unrealistic. Due to the 

effects of a negative time trend, the forecasted car stock peaked in 2000 and started to 

decline afterwards.  

 

Romilly et al. (2001) followed their previous research and used five alternative 

estimation methods to test for cointegrating relationships between per capita car 

ownership and real per capita personable disposable income, real motoring costs and 

real bus fares. They are the Engle-Granger two stage, the Phillips-Hansen fully 

modified, the Wickens-Breusch one-Stage, the auto-regressive distributed lag, and the 

Johansen maximum likelihood methods. In terms of ex-post forecasting performance 

the EG2S and ARDL methods gave the best results for car ownership and use 

respectively, and all four causal models out-perform the ARIMA models. However, in 

terms of ex-ante forecasts for some 35 years ahead, there was wide divergence in the 

results between the EG2S/PHFM and WB1S /ARDL methods.  

 

2.2.2 Equilibrium Market Models 

Unlike other models that only consider the demand of cars, equilibrium market models 

are based on the equilibrium mechanism of car demand and supply. There are relatively 

few equilibrium car ownership models; Cramer and Vos (1985; cited in Rand, 2002) is 

a good example. The model consisted of two blocks: 1) Car fleet at the end of year t; 2) 

The market process, with the number of cars purchased and second hand car price 

determined for each year. 
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The dynamics of the model laid in the determination of the equilibrium between the 

number of purchased cars and the supply in the car market. The former was determined 

by the number of people, the number of households, the average income and the 

distribution of income, and various prices; the latter was determined by the number of 

scrapped cars, aging, car bought before. The two unknown endogenous variables in the 

model were Qt, the number of purchased cars and P0,t, the price of a second hand car 

(in the supply and demand functions).  

 

The dynamics of the car market was expressed by the adjustments in the demand for 

the existing number of old cars, via the price of second hand cars, and through its effect 

on the demand for new cars. So if the price of a second hand car increased, the demand 

for new cars will increase. The model described the developments from year to year. 

 

The recent study of Meurs et al. (2006) described a dynamic automobile market model 

for the Netherlands (DYNAMO). The centre of this model was an equilibrium module, 

where the price mechanism was used to create balance between supply and demand. 

Unlike the aggregate model of Cramer and Vos (1985), DYNAMO was partially 

disaggregate, as the model was developed based on 71 types of households. The model 

also considered 120 separate car types, and the combination of household types and car 

types described the car ownership in a particular year and thus formed the core of the 

car ownership model. 

 

2.2.3 Panel Data Model (of car holdings) 

Panel data models are disaggregate dynamic models, which can be very efficient as 

they make the most use of the information embodied in the repeated cross section data. 

Unlike the time series methods and cross-sectional methods, the panel data method is 

able to analyse both the cross-sectional and temporal effects. The advantage of panel 

data over periodic cross section data using different people is that it is possible to 

control not only for factors which vary across groups of individual, but also for period, 

age and individual specific effects.  

 

The main restriction for the use of the panel method is the availability of data. In 

Britain, the only source of national panel data is the British Household Panel Survey 
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(BHPS), which contains limited transport-related information. Hanly and Dargay (2000) 

constructed a panel data model using four years (1993-1996) of BHPS data. The 

authors used the Heckman 2-stage technique to address the attrition problem. The main 

objective of the study was to examine whether owning a car in the previous year had a 

significant effect on the current state after controlling for unobserved heterogeneity 

(true state dependence vs spurious state dependence as in Heckman, 1981b). The 

results strongly supported state dependence but showed that heterogeneity was not 

significant. The econometric model was a random effect ordered probit model. 

However, there are two potential shortcomings with the model specification. Firstly, 

the ordered response choice mechanisms are not consistent with global utility 

maximization (De Jong et al. 2004), and as identified in Bhat and Pulugurta (1998), the 

unordered Multinomial Logit Model always has more superior performance. Secondly, 

the “initial condition problem” is not addressed and the random effect estimator is 

generally biased due to violation of the orthogonality assumption between the 

unobserved effects and the explanatory variables. The second point will be explored in 

greater details in Chapter 7.  

 

Both issues appear to have been addressed in a recent study of Leth-Petersen and 

Bjorner (2005). It used the panel dataset of 10,565 Danish households between 1992 

and 2001, which was created by merging different public administrative registers at 

individual levels. Their most general model was a mixed logit model, or more 

specifically, a random effect multinomial logit model that allowed correlation between 

alternatives. The error term had the structure of itiit C νξε += , where itν  was a J x 1 

vector of residual  with IID Gumbel distribution,  iξ  was a J x 1 vector of IID normal 

parameters and CC ′  was the J x J covariance matrix of iξ  (J is the number of 

alternatives). The initial condition problem was tackled using the approach proposed in 

Wooldridge (2005), i.e. modelling the distribution of the unobserved heterogeneity 

conditional on the initial value of the dependent variable yi0. The estimation results 

showed that the goodness of fit increased as the unobserved heterogeneity and state 

dependence were introduced in sequence. It also found that the parameters describing 

the covariance structure became much smaller when state dependence was introduced, 

suggesting (true) state dependence observed much of the persistence in the data. 
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However, the model generated very low elasticity, with the income elasticity in the 

most general model (random effect state dependent model) being merely 0.06. 

 

Nobile et al. (1996) estimated a random effect multinomial probit (MNP) model of car 

ownership level, using panel data collected in the Netherlands. The data source for the 

modelling was data drawn from Dutch National Mobility Panel. Ten waves were 

collected between March 1984 and March 1989. Data from waves 3, 4, 7 and 9, 

collected between 1985 and 1988, were analysed. In total, the four waves comprised 

2,731 households for a total of 6,882 observed choices. The approach used for model 

estimation was Bayesian: a prior distribution of parameters of longitudinal MNP model 

was specified and the “posterior” was examined using Markov Chain Monte Carlo 

methods. It should be noted that such non-parametric Bayesian models are not really 

suitable for forecasting purpose.  

 

Some other studies used the panel data methods in forecasting based on the 

international data. Dargay and Gately (1999) based their model on annual data for 26 

countries over the period of 1960-1992; Medlock and Soligo (2002) used a panel of 28 

countries. Although these studies are particularly useful to identify the similarities and 

differences among countries, they are aggregate models in essence. Consequently, they 

have shortcomings similar to aggregate time series models, especially when the 

emphasis is on individual countries. In an international study of disaggregate household 

data, Dargay and Hivert (2005) used the European Community Household Panel 

(ECHP) to investigate car ownership in a number of European countries. The first wave 

of ECHP included a sample of 60,500 households in 12 EU countries with some 

countries added or dropped out in later years. However, the effects of dynamics were 

not investigated in their econometric models. 

 

2.2.4 Pseudo Panel Models 

The pseudo panel model is a relatively new approach to car ownership modeling. 

Dargay and Vythoulkas (1999) was the first study to apply pseudo panel approach to 

estimate a dynamic model of car based on repeated cross-section survey data. Their 

econometric models used a pseudo panel dataset constructed from the repeated cross-

section data contained in the UK Family Expenditure Survey between 1982 and 1993. 

The individual households were grouped into cohorts, which were defined in terms of 
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the year of birth of the household head, and the averages within these cohorts were 

treated as observations in a panel. By grouping the individual observations into cohorts, 

one is assuming homogeneity within the cohorts and heterogeneity between the 

cohorts. Further issues of cohort definition will be discussed in Chapter 3 and 4. 

 

Similar to other empirical studies of pseudo panel models, the measurement error 

problem was ignored because the number of sample observations in each cohort was 

sufficiently large. All econometric models had a linear form, among which one fixed 

effect model (using the Within Estimator) was compared to three “generation models” 

(OLS, random effect and random effect with first order auto-regressive error). It should 

be noted that the generation models are in effect restrictive fixed effect models, which 

constrains the cohort fixed effects to be linear. The estimated coefficients were found 

to be similar across models and all of them had the expected sign. The generation 

model was found to have better fit than the fixed effect model. 

 

Being the first study of the kind, Dargay and Vythoulkas (1999) obviously has scope 

for improvement. For example, the household characteristic variables only included 

average number of adult and children, which ignored the number of people in work, a 

variable found to be highly significant in cross sectional studies. While the descriptive 

data revealed strong “life cycle effects” and “generation effects” of car ownership, only 

generation effects were considered in the econometric model. Furthermore, all models 

had a linear functional form, even though the semi-log model is generally found to be a 

better form for demand function (e.g. semi-log of the income variable implies declining 

income elasticity).  

 

Some of these issues were subsequently addressed in some follow-on studies. In 

Dargay (2002), the functional forms investigated included linear, semi-log, double log 

and log-inverse (another difference was that the cohorts were defined based on both the 

age of household head and household location). In Dargay (2001), the life cycle effects 

were captured by five dummy variables representing different age bands. The fixed 

effect models were found to have better goodness of fit in both studies. They also 

revealed that the importance of dynamics could be exaggerated in Dargay and 

Vythoulkas (1999), as the coefficient for the lagged dependent variable was much 



 29 

bigger in the original study. This finding is supported by the current study, which will 

be discussed in Chapter 5. 

 

This thesis presents various improvements to the pseudo panel models developed by 

Dargay and others. It uses a bigger and more recent dataset covering 1982 to 2000. 

More variables have been used to examine the impacts of household characteristics on 

car ownership. Two sets of variables have been tested: one including household size 

plus average number of children and working people per household; the other including 

the split of eight household types. In estimating the transformed linear models (semi-

log and double log), we explore two ways of transformation (average of log or log of 

cohort average) and their impacts on the modelling results. The life cycle effects are 

represented by the second polynomial of cohort age rather than dummy variables of 

cohort age bands. And finally, we have carried out systematic specification search and 

used the parametric bootstrap techniques to check the robustness of the estimation. 

 

As durable goods, the decision of car ownership for the individual household is clearly 

discrete. This would raise questions about the appropriateness of linear car ownership 

models. In any case, it would be beneficial to have a model that is consistent with the 

microeconomic theory of utility maximisation. For this reason, this study also applies 

an innovative method that combines pseudo panel with discrete choice model, which 

enables dynamics and saturation effects to be studies at the same time. 

 

2.2.5 Dynamic Transactions Models 

As identified by De Jong and Kitamura (1992), most discrete choice models of 

household vehicle ownership are vehicle holdings models that describe the likelihood 

that a household of given attributes will hold a particular set of vehicles. These models 

quantify the effects on vehicle demand of various vehicle attributes (e.g. price, running 

costs, make, type, etc.) and household socio-demographic attributes (e.g. income, 

household size, etc.). On the other hand, dynamic vehicle transactions models view the 

household vehicles ownership status as a result of a series of transaction decisions to 

acquire, replace and dispose of household vehicles. They represent changes in a 

household’s vehicle ownership status, such as buying and/or selling of a car. In this 

way, household car ownership is modeled as a dynamic behaviour process over time.  
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The transactions choice model for alternative-fuel vehicles in California (Bunch et al, 

1995; Brownstone et al 1996) used micro-simulation methods to model dynamics. The 

household simulation module updated (aged) household by simulating births, deaths, 

divorces, children leaving home, etc. The transaction timing module took the updated 

(aged) household and current vehicle holdings as inputs and decided whether or not a 

vehicle transaction took place during the simulation period, which was set to 6 month 

to limit the number of transaction to 1. The vehicle transaction was defined to include 

disposal, replacement and new purchase. If the transaction time module predicted that a 

vehicle transaction had taken place, the module of transaction type determined exactly 

what type of transaction took place. The transaction type module used a number of 

multinomial logit model after the test on the Independence of Irrelevant Alternatives 

confirmed its suitability. Finally, the household’s vehicle holdings were updated after 

the transactions, and they became the starting values for the next period’s simulation. 

 

A more common type of dynamic transactions models is duration models (e.g. Hensher 

and Mannering, 1994; Gilbert, 1992; De Jong, 1996; Ramjerdi et al. 2000). For 

example, De Jong (1996) described a disaggregate transactions model system 

developed and tested by Hague Consulting Group between 1993 and 1995 for the 

Netherlands. The core of the model system was a duration model which explained the 

time which elapsed between purchase of a vehicle and its replacement. The Duration 

decision can be influenced by a number of factors including attributes of the previous 

car, socio-economic attributes of persons and households, macro-economic 

development and attributes of the car market. In a duration model, exit from a state is a 

realization of a stochastic transition process. This process is characterized by a hazard 

function h(t), which gives the probability of exit from the state immediately after time t, 

given that the state is still occupied at t. Besides the core duration model, the model 

system also contained other modules including vehicle type choice models, regression 

equations for annul use of the present vehicle and module on fuel efficiency. 

 

The simple duration model considers the duration of ownership of vehicle(s) until its 

replacement (disposal). More recent models consider three types of vehicle transactions: 

replacing one of the vehicles in the household fleet (replacement), disposing one of the 

vehicles (disposal) and acquiring a vehicle to add to the fleet (new purchase). The 

model used is a competing-risks-duration model, where several “latent” hazard 
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functions describe different ways of exit from the state. The latent hazard that ends the 

state first will prevail, and other hazards will remain latent. The examples of 

competing-risks-duration model include De Jong and Pommer (1996), Yamamoto et al 

(1999) and Mohammadian and Rashidi (2007). 

 

The duration models rely on statistical hazard functions and are not consistent with the 

micro-economic theory of utility maximization. A small number of studies attempt to 

bridge this gap and have been developed based on utility maximization theory. A 

notable example is Golounov et al (2002) and Golounov et al (2004), which used 

revealed preference data and stated preference data respectively. Their models are 

based on the intertemporal utility theory (Deaton, 1992), where the decision maker 

maximizes the intertemporal utility function, which is represented by a discounted sum 

of utilities in every period. The latter study used the mixed logit model to model 

random discount rate across individuals, thus accounting for heterogeneity in 

intertemporal decisions. The major shortcoming of these studies, however, lies in their 

failure to model the impacts of current choice on future utilities so they can not be 

regarded as a genuine dynamic model.  

 

Dynamic random utility model explicitly accounts for state dependence. For example, 

Mohammadian and Miller (2003) used exponentially smoothed weighted average of 

past choices (Guadagni and Little, 1983) to capture the dependence of current utility 

evaluations on past transaction choices. This followed the idea that a vehicle 

transaction itself may have effects on household needs and motivations for automobile 

ownership level and each transaction can potentially affect the timing and type of the 

transaction that followed. Heterogeneity across decision makers, on the other hand, was 

handled by mixed logit formulation. Another truly dynamic theoretical model of car 

transactions is Adda and Cooper (2000), which used dynamic optimization to 

investigate the effect of government subsidy on vehicle scrapage. It will be discussed in 

Chapter 7 with other dynamic models of state dependence so no further details are 

given here. 
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2.3 Conclusion 

Given the vast number of studies on car ownership, we can not claim the literature 

review here to be comprehensive. Nevertheless, a few clear patterns still emerge from 

the review. Firstly, the car ownership models were traditionally dominated by static 

approach, and it is still the case for the forecasting models in Great Britain. Secondly, 

dynamic models of car ownership have become a thriving area of research in the past 

two decades, with many classes of models utilizing a diverge range of theories and 

methodologies. Thirdly, disaggregate models have become the dominant form of car 

ownership model, and this is the case for both static and dynamic models. 

 

The trend towards dynamic and disaggregate models puts much heavier requirements 

on data. Panel data is the preferred form of longitudinal data, but they are difficult and 

expensive to collect so there are very few high quality panel datasets available. 

Furthermore, panel data suffer from the problem of attrition, which can be very severe 

for long running surveys. One way to avoid the collection of expensive panel data is to 

use a retrospective survey, where the respondents provide information on their vehicle 

holding and transactions in the past years. This is a common approach used in many 

dynamic transaction models. However, retrospective survey has a major shortcoming 

that it can at best collect limited past information of household characteristics and other 

relevant variables, so most dynamic transaction models have no or very few time-

varying covariates (explanatory variables). Another approach to estimate dynamic 

disaggregate models without the need for panel data is to construct pseudo panels from 

the rich sources of repeated cross sectional surveys. This is the method adopted in few 

previous studies and is the main focus of the current project. 
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Chapter 3 Pseudo Panel Data 

 

The motivation to use the pseudo panel model is to take advantage of the high quality 

cross sectional survey data available in the UK. The long running Family Expenditure 

Survey4 appears to be the best source, which is described in Section One. To construct 

the pseudo panel, we have to identify which FES variables to be included. In the 

current study, the main selection criteria are their relevance to the car ownership 

decision, so we review the factors that influence car ownership levels in Section Two. 

Section Three discusses the definition of cohort and construction of the two pseudo 

panel datasets. In Section Four, we examine several pseudo panel variables and they 

reveal some desired feature of the pseudo panel data. Finally, we describe the 

aggregate data outside the pseudo panel, which are discussed in Section Five. 

 

3.1 Family Expenditure Survey 

In Britain, there are several national surveys containing transport related information. 

Among them, the longest running and most comprehensive one is the Family 

Expenditure Survey (FES), which contains a range of variables that are relevant to car 

ownership modelling. The FES is a voluntary survey of a random sample of private 

households in the United Kingdom carried out by the Office for National Statistics. It is 

primarily a survey of household expenditure on goods and services, and household 

income. The original purpose of the survey was to provide information on spending 

patterns for the Retail Price Index. Over the years the range of uses has grown and the 

survey is now multi-purpose. Many previous researches on car ownership modelling in 

the UK use the FES data as their primary source (e.g. NRTF, 1997; Whelan, 2001; 

Dargay and Vythoulkas, 1999). 

 

The Family Expenditure Survey is a continuous survey with an annual sample of 

around 6,500 households. It ran from 1957 to 2001, until it was merged with the 

National Food Survey to form a new Expenditure and Food Survey. Data is collected 

throughout the year to cover seasonal variations in expenditures. The FES contains rich 

                                                 

4 The Family Expenditure Survey is Crown Copy Right material and is obtained with permission from 
Data Archive.  
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data on expenditure and income, including vehicle purchasing and servicing costs data. 

The FES also collects information on socio-economic characteristics of the households, 

e.g. composition, size, social class, occupation and age of the head of household. Many 

of these variables have been identified as the important factors influencing car 

ownership. Table 3.1 shows the data coverage summary of FES. 

Table 3-1 Data Coverage Summary of FES 

Persons/entities covered: Households and Individuals 

Summary of coverage: Data Coverage is of household expenditure, income 
and socio-economic characteristics of households. 

Key census variables used: Age/Date of Birth 
Ethnic Group 
Marital status 
Sex 
Social Group 
Socio-Economic Group 

Harmonised questions used: Tenure 
Type of accommodation 
Personal characteristics 
Employment status 

(Source: ONS, 2002a) 

 

Regarding the data collection methodology, the fieldwork was carried out by different 

agencies in Great Britain and Northern Ireland using almost identical questionnaires. 

Each individual in the household visited aged 16 or over is asked to keep diary records 

of daily expenditure for two weeks. Information about regular expenditure, such as rent 

and mortgage payments, is obtained from a household interview along with 

retrospective information on certain large, infrequent expenditures such as those on 

vehicles. Regarding the sampling frame, The FES sample for Great Britain is drawn 

from the Postcode Address File - the Post Office's list of addresses. 672 postal sectors 

in Great Britain are randomly selected during the year after being arranged in strata 

defined by Government Office regions (sub-divided into metropolitan and non-

metropolitan areas). The Northern Ireland sample is drawn as a random sample of 

addresses from the Valuation and Lands Agency list.  

 

Besides the Family Expenditure Survey, another possible data source that is suitable 

for the purpose of the current study is the National Travel Survey (NTS). NTS is a 

series of household surveys designed to provide regular and up-to-date data on personal 
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travel and monitor changes in travel behaviour over time. The main advantage of the 

NTS data is that it includes much more details on vehicle information such as 

registration details, parking, vehicle subsidies, mileage and fuel. For studies that 

predict what types of new car might be purchased in the future, these data are essential 

so the NTS would be the preferable data sources (e.g. Page et al., 2000). However, the 

main disadvantage of the NTS data is that it has shorter history. It has been running on 

an ad hoc basis since 1965 and became a continuous survey only since 1988 (ONS, 

2001). Since the current study emphasizes a dynamic approach, it is believed that a 

survey with longer time period would be more appropriate.  

 

In the UK, there are other national databases containing transport related questions, 

most notably the Census and the General Household Survey. As none of them are 

adequate for the purpose of the current study, the Family Expenditure Survey has been 

used as the main data source.  

 

3.2 Factors Influencing Car Ownership 

Variables that influence car ownership decisions should be included in the pseudo 

panel dataset. First of all, it is widely recognized that income is the most significant 

factor influencing car ownership, and almost all car ownership models in the literature 

include the income variable in one form or another. The FES data contain information 

on total household income and disposable household income. Both variables were 

initially included in the pseudo panel, although only the latter is used in the 

econometric models since it is generally accepted as a more appropriate measure.  

 

Besides household income, household structure (socio-demographic characteristics) 

also directly influences car ownership. Average household size, average number of 

children and people in work per household are all variables found to be relevant to car 

ownership decisions. The household type influences car ownership level in a similar 

fashion. In NRTF (1997) and the National Transport Model (NTM), the households are 

split into eight types based on the number of adults, children and working person in the 

household. The definition has proved effective in segmentation based on household 

socio-demographic characteristics and will also be used in the current study. Table 3.2 

illustrates the criteria for the eight household types. 
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Table 3-2 Definition of eight household types 

HH type Description Defining parameters 

HH 1 One adult, in work Adult<2 Child=0 Worker>0 
HH 2 One adult, not in work Adult<2 Child=0 Worker=0 
HH 3 One adult, with children Adult<2 Child>0  
HH 4 Two adults, neither in work Adult=2  Worker=0 
HH 5 Two adults, no children Adult=2 Child=0 Worker>0 
HH 6 Two adults, with children Adult=2 Child>0 Worker>0 
HH 7 Three or more adults, no children Adult>2 Child=0  
HH 8 Three or more adults, with children Adult>2 Child>0  

 

Another factor identified by previous studies that influences household car ownership 

is household location. Accessibility (including the availability and quality of public 

transport) greatly influences the need for car, but they are very difficult to measure and 

incorporate in econometric models. Locations are commonly used as proxy for 

accessibility and have found to be significant explanatory variables in car ownership 

decisions. The Family Expenditure Survey records the household location as one of 

five location types, which should be sufficient for our modelling purpose (see Table 3-

3 in section 3.4 for the definition of location types). 

 

Finally, car ownership level can be influenced by motoring costs. In some early studies, 

the total costs of motoring were used as explanatory variables, although in most recent 

studies the purchase costs and running costs are separated. Some studies also include 

public transport fares in their econometric models. However, variables of public 

transports costs are generally found to be insignificant so they are not included in the 

current study. It should be noted that the available motoring costs data are in the form 

of aggregate time series. 

 

3.3 Constructing the Pseudo Panel Dataset  

The use of pseudo panel data was introduced by Deaton (1985) for the analysis of 

consumer demand systems. This approach is based on grouping individuals or 

households into cohorts and thus treating the averages within these cohorts as 

observations in a panel. In this way, a pseudo panel enables us to follow over time a 

representative sample of the same cohorts of individuals or households. The pseudo 

panel approach has been applied not only in microeconomics research, such as study of 

income and saving (see, for example, Beach and Finnie 2004; Bourguignon et al, 2004; 
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Baldini and Mazzaferro, 1999), but also in many areas of social science research, 

including health, education, employment, etc. (e.g. Garner et al., 2002; Glied, 2002; 

Lauer, 2003; Anderson and Hussey, 2000; Weir, 2003).  

 

To compile a pseudo panel dataset, the cohorts should be defined on the basis of 

commonly shared characteristics. Such characteristics should be time invariant, such as 

year of birth of the head of the household, education level, geographic region, etc 

(Dargay and Vythoulkas, 1999). In the current study, the cohort is defined based on the 

year of birth of the household head.  The choice of the width of the birth cohort is a 

trade off between the need to have a large number of observations per cohort and the 

desire to have as much as informative data as possible. The narrower the birth cohort 

the greater number of birth cohorts and hence the number of data points; on the other 

hand, this would imply the fewer number of observations per cohort, hence the greater 

the potential error in estimating the cohort mean (Propper et al. 2001).  

 

The birth cohort is defined in a five-year band in the current study. For example, all the 

households with its head born between 1901 and 1905 are grouped into a cohort. In 

1982, the mean age of household head within this cohort is 79; in 1983, this mean age 

is 80; in 1984, this mean age is 81, and so on. Likewise, for each sampling year, all the 

households with its head born between 1906 and 1910 are grouped into a cohort; and 

for those born between 1911 and 1915, and so on. The objective of such grouping is to 

track the notionally “same” group of people. Table A.1 in Appendix 1 shows the mean 

age of all the cohorts constructed in this study. It should be noted that only cohorts with 

sufficiently large number of observations (more than 100) are included in order to 

alleviate the measurement error problems. 

 

Furthermore, the FES survey year changed from calendar year to fiscal year since 1994. 

Since this change would have an impact on the age of the household head, adjustment 

has been made to allocate each observation into calendar year based on the data 

collection year. This final wave of the FES data is for year 2000/2001. However, only 

data for year 2000 are used as there are only a few hundred observations for 2001. In 

total, the pseudo panel covers 19 years from 1982 to 2000.  
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The actual construction of the pseudo panel involves importing the various FES data 

files into an Access database. Using the “Query” tool in Access, the separate data files 

are first joined up based on common household ID and then different households are 

aggregated into cohorts based on birth year of household head. Two separate pseudo 

panel datasets are constructed. The first one uses the entire sample in FES, which is the 

main dataset and has in total 254 observations from 16 cohorts. It will be used in linear 

models and nonlinear models predicting the probability of household owning at least 

one car. The second one uses a sub-sample of car owning households in the FES. It has 

only 220 observations from 14 cohorts, as more cohort units have to be discarded due 

to small sample size. It will be used in nonlinear models predicting the probability of 

household owning two or more cars conditional on ownership of the first car. 

 

3.4  Examining the Pseudo Panel Variables 

The constructed pseudo panel data set contains 28 primary variables, which were 

directly derived from the FES. They fall into five categories, which are summarized by 

Table 3.3. The variables refer to the average characteristics of all household samples 

within each cohort. It should be noted that car ownership in the current project is 

defined based on FES variable A160 “Cars Owned or Used”5, which includes both 

privately owned and company cars but excludes light goods vehicles such as vans.  

 

Some of the variables show strong trends across age of cohorts and time6. For example, 

the household size increases as the age of the household head increases up to around 40, 

and then starts its steady decline. The average household income reaches its peak when 

its head is in his late 40s. In the following section, three selected variables will be 

discussed in further detail to reveal the particular cohort age and time trend effects. On 

the other hand, residence area data are more or less random across cohorts. Regarding 

percentage of households living in Greater London (Area 1), it varies between 3% and 

20%; regarding percentage of households living in the least populated rural area (Area 

5), it varies between 10% and 34%.  

 

                                                 

5 Other FES variables (not used) include A149 “Cars owned in household” and A143 “Number of cars & 
vans currently owned”.  
6 All discussions in this section are based on the primary dataset based on full FES sample, although the 
results are similar for the second one of car owning households. 
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Table 3-3 Variables in the Pseudo Panel Dataset 

Category Variable Description 

Car Number of cars owned  or used by household 
R1+ Percentage of household owning at least one car 
R2+ Percentage of household owning two or more cars 

Transport data 

PTExp Average weekly public transport expenditure per person 
Inctoal Weekly household income 
Inc Weekly household disposable income 

Income and 
expenditure 
data Exp Weekly household expenditure 

HHSize Household size 
Child Average Number of Children  
Adult Average Number of adult 
Worker Average Number of working persons 
HH1 Percentage of household as type 17  
HH2 Percentage of household as type 2  
HH3 Percentage of household as type 3  
HH4 Percentage of household as type 4  
HH5 Percentage of household as type 5  
HH6 Percentage of household as type 6  
HH7 Percentage of household as type 7  

Household 
demographic 
data 

HH8 Percentage of household as type 8 
Area1 Percentage of household living in Greater London Area  
Area2  Percentage of HH living in metropolitan districts and 

central Clydeside conurbation  
Area3  Percentage of HH living in areas with a population 

density of 7.9 or more persons per hectare  
Area4  Percentage of HH living in areas with a population 

density of 2.2 to 7.9 persons per hectare  

Residence area 
data 

Area5  Percentage of HH living in areas with a population 
density of less than 2.2 persons per hectare 

Year Year 
Cohort Cohort ID (1 to 16) 
Age Average age of household head in a cohort 

General data 

Count Number of observations within cohort 

 

3.4.1 Number of Cars Owned or Used by the Household 

The pseudo panel data clearly show the difference of car ownership between cohorts 

(which have different ages) and between years. Figure 3.1 compares the number of cars 

owned or used by households for two cross sections of cohorts in 1982 and 2000. In a 

given year, the average car ownership is low for both the old and young cohorts and the 

car ownership is the highest for the mid-aged cohort (household head in late 40s). In 

1982, the cohort with the highest car ownership was the one with head of household 

                                                 

7 For the definition of household type see Table 3.2. 
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born between 1931 and 1935, i.e. aged between 47 and 51. In 2000, the cohort with the 

highest car ownership was the one with household head born between 1951 and 1955, 

i.e. those in a similar age band between 45 and 49. However, the maximum (average) 

car ownership was 1.38 in 2000, significantly higher than that of 1.11 cars in 1982. 

Figure 3-1 Average Number of Cars for two Cross Sections of Cohorts: 1982 and 2000 

Number of Cars per Household of 16 Cohorts:

'Snap Shot' in 1982 and 2000
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Figure 3.2 presents the car ownership of eight selected cohorts. As cohorts age over 

time, the mean age of the household head in these eight cohorts covers an entire range 

between 19 and 85 over the sample period (with overlaps between cohorts). By plotting 

the number of cars owned against the mean age of the household head, we are able to 

see the change of car ownership over time for each cohort and make comparison 

between different cohorts.  

 

There are two apparent trends. First, by combining all the eight cohorts, the trend 

shows that car ownership rises and falls according to the age of household head, with 

the peak of 1.42 cars per household when the head is 48 years old. Second, by 

comparing the car ownership figures of the adjacent cohorts, the trend shows that for 

any given age, the cohort with younger household head tends to have higher car 

ownership. These two trends were referred as “life cycle effect” and “generation 

effect” in Dargay and Vythoulkas (1999). They also found that the difference amongst 

generations appeared to be declining for the most recent generations. Using more 
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recent data, the current study found that this “diminishing generation effect” is more 

apparent.  

Figure 3-2 Average Number of Cars per Household, Profile by Age of Household Head from 

Eight Cohorts 

Number of Cars per Household:

Profile by Age of Household Head from 8 Cohorts
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3.4.2 Average Weekly Public Transport Expenditure per Person 

The average public transport (PT) expenditure per person within the household also 

varies according to the age of household head. Figure 3.3 shows the different PT 

expenditure per person for two cross sections of cohorts in 1982 and 2000.  

Figure 3-3 Average Weekly Public Transport Expenditure per Person, 1982 and 2000 

Weekly Public Transport Expenditure per Person of 16 Cohorts, 

'Snap Shot' in 1982 and 2000
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Both years’ data reveal a similar trend. It is clear that the PT expenditure per person is 

the highest in the youngest cohort. This is not surprising given the low car ownership 

within this cohort. There is a local maximum of PT expenditure per person for mid-

aged cohorts (in early 50s). This could be because households within this cohort are 

likely to have grown-up children, who are not yet car owners and have to pay higher 

(or full) fares for public transport. The average PT expenditure per person is low for 

old cohorts, since most old aged pensioners either travel free or pay concessionary 

fares on many public transport services.  

 

3.4.3 Weekly Household Disposable Income 

The weekly household disposable income also shows a strong trend across cohorts. 

Firstly, we present the profile of household income for two cross sections of cohorts in 

1982 and 2000 (Figure 3.4). It shows that the old and young cohorts have lower 

disposable income, while the mid-aged cohorts have the highest income level. This 

trend is very similar to that of car ownership, suggesting high correlation between car 

ownership and income. Since all the expenditure and income data in the pseudo panel 

dataset have been converted to 1995 prices based on Retail Price Index, Figure 3.4 also 

shows the real increase of income level for similar age group from 1982 to 2000.  

Figure 3-4 Household Weekly Disposable Income, 1982 and 2000 

Weekly Disposable Income (£ in 1995 price) of 16 Cohorts:

'Snap Shot' in 1982 and 2000
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It is revealing to track the change of household income level according to the age of 

household head for the eight selected cohorts. Figure 3.5 shows that weekly household 
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disposable income rises as the age of household head increases and reaches its peak 

when the household head is in late 40s. For the cohort whose household head is born 

between 1941 and 1945, the weekly disposable income is the highest of £490 when its 

household head is aged 47.  

Figure 3-5 Weekly Disposable Income: Age Profile from Eight Cohorts 

Weekly Disposable Income (£ in 1995 price): 

Profile by Age of Household Head from 8 Cohorts
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3.5 Aggregate Time Series Data 

Certain time series data from various sources are also used in this study. They include 

the motoring costs and demographic data. The motoring costs directly influence car 

ownership so they have to be included in the econometric model. Past aggregate 

demographic data are not directly used in model estimation, although they help to 

establish future trends, which will be useful for forecasting.  

 

3.5.1 Motoring Costs 

The motoring costs data include the index of real car purchase price and real car 

running costs, which were supplied by the Department for Transport and re-produced 

in Whelan (2003). For comparison, we also obtain the index of all (real) motoring costs 

from the Department for Transport publication “Transport Trends” (DfT, 2004). Figure 

3-6 shows the three indices of real car purchase price, running costs and total costs 

between 1980 and 2000, which covers the entire modelling period in the current study. 
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Figure 3-6 Index of Real Motoring Costs: 1980-2000 (1980=100) 

Index of Real Motoring Costs (1980=100)
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There is significant reduction of real purchase price over time and the index is reduced 

by about 37% in 20 years. On the other hand, there is only small fluctuation of real 

running costs index before 1995, and then the costs jump up by over 20% in 5 years. 

This rapid rise of real running costs happens at the same time as the significant increase 

of multiple car ownership, which results in a running cost coefficient with unexpected 

sign in some of the econometric models (detailed results will be presented in Chapter 7 

and 8). Overall, the total (real) motoring costs barely change over the 20 year period. 

 

3.5.2 Demographic Data 

Figure 3-7 presents the total number of households in Great Britain and average 

household size between 1980 and 2000. Over the period, the total number of 

households is increased by 23%, while the average household size is reduced by 14%. 

The population change over the same period is a more modest 6% increase. While 

these data are not used in the estimation of the econometric models, it is important that 

the trend in the change of demography is reflected at the forecasting stage. 
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Figure 3-7 Total Number of Households and Average Household Size: GB 1980-2000 

Total number of households in Britain and average household size
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(Sources: Derived from ONS, 2002b: “Population Trends”, 107, Spring 2002) 

 

3.6 Conclusion 

This Chapter describes the construction of the pseudo panel. The cross sectional data 

used are the Family Expenditure Surveys between 1982 and 2000. The pseudo panel 

includes variables that influence car ownership and hence are required for the 

econometric modelling. The cohorts are defined based on the year of birth of the 

household head, and two pseudo panel datasets have been constructed, one from the 

full FES sample while the other from a sub-sample of car owning households. Further 

examination of car ownership and income variables reveals a clear “hump” shape life 

cycle, which is similar to other pseudo panel studies. As will be shown in the next 

chapter, to minimize the measurement error problem, the cohort should be defined in a 

way such that the population cohort means of the variables concerned vary as much as 

possible over time. The life cycle profiles of these variables show that these conditions 

are likely to have been met. 
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Chapter 4 Measurement Error and Linear Static 

Fixed Effect Model 
 

After the construction of the pseudo panel data set, the next step is to estimate models 

with a linear functional form. We start by investigating the consistency of pseudo panel 

estimators. Although the primary interest of using the pseudo panel approach is to 

explore the dynamic effect, the issue of consistency can first be explored within the 

context of static model. The first section of this chapter explores the link between the 

estimators based on micro survey data and pseudo panel data. It shows that the 

Weighted Least Square Estimator based on cohort means is equivalent to the 

Instrumental Variable (IV) estimator based on individual data in the micro survey and 

using cohort dummy as instruments. The second part of this chapter discusses three 

pseudo panel estimators, which consider the observation in the pseudo panel dataset as 

an error-ridden cohort average. The third section presents the conditions required to 

ignore the measurement error problem. The fourth section reports the empirical results 

of linear static car ownership model, estimated using the constructed pseudo panel. 

Two sets of results are reported, one based on Weighted Least Square Estimator, while 

the other one treats the dataset as a real panel and investigates various panel estimators 

including fixed effect, random effect and heterogeneous models. Each includes 

systematic specification search and discussion of estimation results. The last section is 

a brief conclusion. 

 

4.1 Weighted Least Square Estimator 

The panel data models have the advantages of being able to consider fixed individual 

effects and dynamic effects. However, the limited availability of the panel data sets, 

together with the attrition problem for the existing few, constrains the practical 

application of such models. One alternative approach, as suggested by Browning et al 

(1985) and Deaton (1985) and adopted in this study, is to estimate fixed effect model 

based on cohorts rather than individuals. Using a continuous survey that generates 

random sample of the population in every year, the cohort means can be calculated 

from each sample and followed through time.   
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In this chapter, we will show that the Weighted OLS estimator using cohort means is 

equivalent to an Instrumental Variable estimator using individual data. It is easier to 

start from considering the individual economic relationship. Assuming such 

relationship is linear (in the parameters, though not necessarily in the data) 

 ttittitti xy )()()( ' εβ +=   (1) 

for individual i sampled in year t, noting that the individuals are different over the 

cross-sections; xi(t)t is a K by 1 vector that may contain the dummy variables indicating 

each cohort.  

 

Assuming that there exists a vector of time-invariant instrumental variables, zi(t), 

satisfying the standard Instrumental Variable condition including: 

 0}{ )()( =titti zE ε   (2) 

Writing (1) in matrix form and projecting the columns of X in the column space of Z, 

we have an exact-identified set of Instrumental Variables X
~

: 

 XZZZZX ′′= −1)(
~

  (3) 

This leads to the standard Instrumental Variables Estimator bIV: 

 yXXXbIV
′′= − ~

)
~

( 1   (4) 

By noting ZZZZM z
′′= −1)( , (4) can be written as: 

 )()( 1
yMXXMXb zzIV

′′= −   (5) 

 

By selecting appropriate instrumental variables zi(t), the link between the estimator 

based on micro survey data and that based on aggregate cohort data can be established. 

If the instrumental variables are the dummy variables indicating the mutually exclusive 

cohorts, i.e. zi(t)=zc, it follows: 
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 Here, Mc,t is an idempotent matrix for cohort c in cross section t, 



 48 

 tctc

tc

tc ii
n

M ,,

,

,

1 ′⋅=   (7) 

where nc,t is the number of sample observations and ic,t is the nc,t dimensional vector of 

ones.  

 

Similarly, write X and y in (5) (pooled cross sections) as: 
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And substituting (6) and (7) into (5), it is straightforward to show that 

 )()( ,,,
1

,,, tctc

TC

tctctc

TC

tcIV yxnxxnb ∑∑ −′=  (8) 

where tcx ,  is a K by 1 vector representing the average of xi(t)t for cohort c in year t; 

while tcy ,  is a scalar representing the average of yi(t)t for the corresponding cohort. TC 

is the total number of cohorts over all the sample years, i.e. TCTC ⋅= . 

 

Note that the Ordinary Least Square (OLS) estimator based on the cohort average can 

be expressed in a standard form as (9) (assuming a pseudo panel dataset has been 

compiled, this means directly applying OLS to the pseudo panel: 

 yXXXbOLS
′′= −1)(    (9) 

 If each of the observations in (9) is weighted by the square root of nc,t, it can be re-

written in the form of (8). This result show that the Weighted OLS estimator based on 

cohort average is equivalent to the IV estimator based on micro survey data. 

 

The above analysis has two important implications for the pseudo panel estimation, if 

we assume the economic relationship between the dependent variable and explanatory 

variables is linear and holds for individuals. The first is that any linear transformation 

needs to be done on the micro survey data, and the variables in cohort model would be 

the average of the transformed data, e.g. using average of log income rather than log of 

average income. The second is that each observation in the pseudo panel needs to be 

weighted by the square root of the sample size of the cohort. 
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4.2 Consistent Estimation of FEM with Measurement Error 

In a pseudo panel, each of the observations represents the sample average of a 

particular cohort in one year. The deviation of sample means from the true cohort 

means in the population is the measurement error, which would result in biased OLS 

estimation. Such a problem is likely to be acute if the sample size is too small or the 

mean is skewed by any extreme numbers. Since the micro data from surveys are used 

to construct the sample cohort means, they can also be used to construct estimates of 

the variances and covariances of the sample means (Deaton, 1985). Consequently, a 

number of Error-in-Variable Estimators have been proposed in the literature to 

consistently estimate the population relationships.  

 

Assuming the economic relationship for the observed sample means for cohort c in 

year t is: 

ctctctct xy ελβ ++′=   c = 1, …, C; t = 1, …, T (10) 

As ctλ  is the average of fixed effect for members of cohort c that are sampled in year t, 

it is not constant over time. Moreover, ctλ  is unobservable and generally correlated 

with ctx . As a result, the within estimator based on (10) will generally be biased. In this 

case, we need to consider the economic relationship in the cohort population: 

    *** ' ctcctct xy ελβ ++=   c = 1, …, C; t = 1, …, T  (11) 

where *

cty  and *

ctx  are cohort population means, which are unobservable; cλ  is the 

cohort population fixed effect, and if we assume close cohort (no birth or death of 

cohort members), it will be constant over time. Note that (11) is an aggregated version 

of equation (1), with xi(t)t in (1) containing cohort identifying dummy variables. 

Comparing (10) and (11), it is clear that ctx and cty  are error-ridden estimate of *

cty  and 

*

ctx  (note that ctx and cty  have to be weighted by the square root of sample size in each 

cohort). It is common to assume the measurement errors follow independent identical 

distribution in the literature (e.g. Deaton, 1985; Verbeek and Nijman, 1993; Biorn, 

1992; Marshall, 1992; Devereux, 2003): 
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where 00,  and  can all be consistently estimated from the individual observations 

and are assumed to be known here.  

 

Write the pseudo panel within estimator of (10) as: 

 xyxxwithin mM
1−=β   (14) 

where: ))((
1

1 1

′−−= ∑∑
= =

cct

C

c

T

t

cctxx xxxx
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M   (15) 
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1 1
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t

cctxy yyxx
CT

m   (16) 

with cx and cy being the mean of cohort c over T years. Also, note the population 

counterpart of (15) as: 

 ))((
1 **

1 1

*** ′−−= ∑∑
= =

cct

C

c

T

t

cctxx xxxx
CT

M   (17) 

with probability limit of: Ω=
∞→

*plim xx
CT

M   (18) 

 

Based on assumption (13), Verbeek and Nijman (1993) showed that: 

 Σ−+Ω=
∞→ T

T
M xx

CT

1
plim    (19) 

and similarly: 

 σβ
T

T
mxy

CT

1
plim

−+Ω=
∞→

   (20) 

From (14), (19) and (20), it is clear that the pseudo panel within estimator 
✁

within is 

biased: 

 )
1

()
1

(plim 1 σββ
T

T

T

T
within

CT

−+ΩΣ−+Ω= −

∞→
  (21) 

 

This leads to two simple Error-in-Variable Estimators proposed in the literature. 

Deaton (1985) assumed ∞→T , and the resulting unbiased estimator (noted as EVE1) 

can be written as: 

 )()(
~ 1

1 σβ −Σ−= −
xyxxEVE mM   (22) 

While Verbeek and Nijman (1993) assumed ∞→C , leading to unbiased estimator 

(EVE2)  of: 
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1

()
1

(
~ 1

2 σβ
T

T
m

T

T
M xyxxEVE

−−Σ−−= −  (23) 

 

As suggested by Verbeek and Nijman (1993), (22) and (23) can be generalized to a 

class of Error-in-Variable Estimator (EVEa), with different weight a attached to the 

standard deviation of cohort measurement error  and : 

 )()(
~ 1 σβ amaM xyxxEVEa

−Σ−= −   (24) 

In this case, the Within estimator, EVE1 and EVE2 can all be seen as special case of 

EVEa, with a being 0, 1, and (T-1)/T respectively.  

 

Also in Verbeek and Nijman (1993), the authors proposed a Mean-Square-Error 

estimator that is optimal in finite samples. They argued that it may be advantageous to 

choose a that minimized MSE, even though the implied estimator will suffer from 

inconsistency. More specifically, if the fixed individual effects (
✂

c) are uncorrelated 

with the explanatory variables ( ctx ), minimum MSE is obtained for a = 0, the within 

estimator on the pseudo panel of cohort data. If there is correlation between the 

individual effects and the explanatory variables, the optimal a is a value between 0 and 

(T-1)/T, depending on many factors such as number of sample years, cohort sample 

sizes, correlation between 
✂

i and xi, extent of variation of cohort means over time, etc.  

 

In the more recent work by Devereux (2003), the author established the exact 

equivalence between Error-in-Variable Estimator and Jackknife Instrumental Variables 

Estimator (JIVE). Based on earlier work in the JIVE literature, Devereux showed that 

the approximate bias of JIVE, and hence EVE, is proportional to (-K-1), with K as the 

number of explanatory variables. Consequently, he introduced an “Unbiased EVE 

Estimator”, with weight a = (CT – K – 1)/(CT). Such estimator is approximately 

unbiased to order 1/(CT), which may be particularly useful in many practical 

applications when there are only a small number of cohorts and it is not appropriate to 

assume ∞→C . 

 

4.3 Conditions to Ignore Measurement Error Problem 

Although various Error-in-Variable Estimators have been proposed, the majority of 

empirical work uses standard within estimator. The main defense of such practice is 
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that the measurement error problem can be largely ignored if the number of sample 

observation in a cohort is sufficiently large. It has been shown that such defense is 

more or less justified if the number of observation in a cohort is greater than, say, 100, 

although it is equally important that the true cohort means vary over cohorts and/or 

over time (Verbeek and Nijman, 1992).  

 

Assuming the data generating process for each individual in the population is as 

follows: 

 itiitit xy ελβ ++= ,  t = 1, …, T  (25) 

where xit is a scalar in this simplified case. 
✂

i is the individual effect (fixed over time), 

and it may be correlated with xit. Verbeek and Nijman (1992) have shown that the 

asymptotic bias of the pseudo panel within estimator is related to how the cohorts are 

defined. In particular, the authors assumed that cohorts are defined on the basis of a 

continuous variable z, which satisfies: 

a) z is distributed independently across individuals with variance normalized to 

one;  

b) the support of the density of z is split into C intervals with equal probability 

mass, each intervals corresponding to a particular cohort; 

c) the correlation between explanatory variable xit and zi is as:  

itititit zx υγµ ++=   (26) 

where 0}|{ =iit zE υ  and (for mathematical convenience) equicorrelation of �it 

over time, i.e. 2},cov{ υρσυυ =isit . 

 

Following Mundlank (1978) and Chamberlain (1984), Verbeek and Njiman further 

assumed the individual effects 
✂

i are correlated with the x’s in the following way: 

 iii x ξκλ +=    (27) 

where 0}|{ =iti xE ξ  for all t = 1, …, T  and )...)(1( 1 iTii xxTx ++= . 

 

After some fairly involved mathematical manipulation, the authors have shown that 

under the above assumptions the asymptotic bias of the pseudo panel within estimator 

withinβ~  is: 
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where � = ( T - 1) / T; ✁2 is the measurement error variance in ctx ; ✁1 is the true within 

cohort variance in the population. More specifically: 
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with nc the number of individuals in cohort c; and 
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=
T

t

ctc x
T

x
1

** 1
.  

 

When neither ✂ t nor ✄t varies with t, the true within cohort variances ✁1 is zero, so the 

bias in the within estimator is maximal; in another word, the increase of cohort size 

will not reduce the bias, which is always max. When ✁1 > 0, the choice of larger 

cohorts will lead to smaller ✁2, thus reduce the asymptotic bias. For example, if 

5.0/ 2

1 =υσω , increase the cohort size from 50 to 100 will reduce the bias from 3.8% to 

2% of max; if 05.0/ 2

1 =υσω , similar increase of cohort size will reduce the bias from 

29% to 17% of max. On the other hand, the cohort sizes may be chosen smaller if the 

cohort identifying variable is chosen in such a way that true within cohorts variance 

(✁1) is large relative to 2

υσ . 

 

The above discussion shows that how the cohorts are constructed has direct implication 

on the bias of the within estimator if the pseudo panel is to be treated as genuine panel. 

Cohort identifying variables should be chosen in a way that maximizes true within 

cohort variance; in another word, the population cohort means should vary as much as 

possible over time. As the true population cohort means are not directly observable, the 

variation of sample cohort means might give some useful indications. The discussion in 

Chapter 3 shows clear “life cycle effect” and “generation effect” in the explanatory 

variables, which indicates variation of cohort means across time and cohorts. 
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Nevertheless, it also requires the sample number in each cohort to be sufficiently large, 

otherwise the observed variation of sample cohort means could be purely due to 

sampling errors. During the construction of the pseudo panel, only cohorts with 100 or 

more observations are included, thus alleviating the problem of sampling errors. It 

should be stressed that the bigger the cohort sample size, nct, the smaller the bias of the 

pseudo panel within estimator. All these discussions suggest that it might be 

appropriate to ignore the measurement error problem and avoid using Error-in-Variable 

estimators. 

 

4.4 Empirical Results from Static Car Ownership Model 

The estimation of car ownership model is based on the pseudo panel dataset 

constructed from the Family Expenditure data, which contains 254 observations, 

covering 16 cohorts for the period of 1982-2000. The dependent variable is average 

number of cars per household in cohort c in year t (Ac,t). The explanatory variables are 

those that influence household car ownership level, as identified in the literature: 

income (Ic,t), household structure or demographic characteristics (Sc,t), age of 

household head (Gc,t), household locations (Lc,t) and motoring costs (Mt). Equation 31 

represents the empirical models to be investigated: 

 tcttctctctctc MLGSIfA ,,,,,, ),,,,( ε+=      (31) 

 

The following are detailed descriptions of the explanatory variables. The income 

variable is noted as “Inc”, which refers to the average household disposable income 

within each cohort, deflated by RPI.  

 

Regarding the household structure variables, the “Child” variable refers to the average 

number of children per household within each cohort, with others defined similarly. As 

described in the previous chapter, there is an eight way categorization of the household 

type based on the number of children, adults and working persons in the household. 

The variables showing proportion of household within each category will also be 

included in some of the models as alternative representation of household demography. 

To control for the “generation effect” and household characteristics not captured by the 

household structure variables, second polynomial of the average age of household head 

in each cohorts (variable “Age” and “AgSq”) are included in the regression. 
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The “Area” variables refer to percentage of household living in Greater London, 

Metropolitan districts/Central Clydeside Conurbation and other areas with various 

population densities. In some models, Area1 and Area2 are combined to form a new 

variables, “Met”, which refers to the proportion of household living in all metropolitan 

areas. To correspond with the “Met” variable, Area5 is also called “Rural” in some 

models, referring to the least populated rural areas8.  

 

Regarding motoring costs, the index of car purchasing costs and car running costs have 

been deflated by RPI to obtain the real purchasing costs (variable “Price”) and real 

running costs (variable “RunCst”). Note that these two variables do not vary between 

cohorts for any specific year.  

 

Finally, the prefix of “Ln” represents the logarithmic transformation of a variable. For 

example, variable “LnInc” would represent the log of average disposable income of a 

cohort. As discussed in the previous section, the Weighted Least Square estimator of 

the pseudo panel requires the linear transformation to be carried out at the individual 

data before averaging. To differentiate this, the prefix of “ALn” is used to identify the 

average of logarithmic instead of logarithmic of cohort average. For example, variable 

“ALnInc” would represent the average of the log transformed household disposable 

income in a cohort. 

 

Table 4.1 summarizes the key descriptive statistics of the dependent and selected 

independent variables. The average number of car owned or used by household is 0.86, 

while the maximum and minimum is 1.42 and 0.19 respectively. The average size of 

household is 2.40, and the average number of employed people in the household is 1.05. 

The real household disposable income (in 1995 prices) varies between £147 and £490 

per week. 

 

A systematic specification search has been carried out to determine the model with best 

fit. As discussed in the previous section, the measurement error problem can be ignored 

 

                                                 

8 For detailed description of the household structure and location variables refer to the previous chapter.  
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Table 4-1 Descriptive statistics of the variables 

 Car Inc Child Adult Worker HHSize Area1 Area2 Area3 Area4 Area5 

Median 0.91 302.49 0.37 1.81 1.27 2.27 0.10 0.22 0.22 0.22 0.24 
Mean 0.86 298.04 0.55 1.84 1.05 2.40 0.10 0.22 0.22 0.21 0.24 
Stdev 0.31 96.52 0.57 0.26 0.65 0.69 0.03 0.03 0.03 0.03 0.04 
Max 1.42 489.56 1.85 2.50 2.16 3.87 0.20 0.32 0.37 0.28 0.34 
Min 0.19 147.09 0.00 1.22 0.03 1.22 0.03 0.15 0.16 0.11 0.10 

 

if the number of observations in each cohort is sufficiently large ( ∞→ctn ). The 

current dataset is deemed to satisfy this requirement so no error-in-variable estimators 

are considered.  

 

4.4.1 Models based on Weighted Least Square Estimator 

Initially, we estimate the model using the Weighted Least Square Estimator (WLSE) 

discussed in the previous section. Models based on other panel data estimators will 

then be investigated, for various reasons to be discussed subsequently. In the WLSE 

model, all the variables are weighted by the square root of the number of the 

observations in the cohort. As the log linear transformation is done on the individual 

household data, variables with value of zero can not be transformed. As a result, it is 

not possible to estimate double log model (many households have zero cars) and only 

linear and semi-log models are considered. The dependent variable is always the 

average number of car owned or used by the household, while the explanatory 

variables in the semi-log model include the cohort average of log-transformed income 

and motoring costs. 

 

The first set of models considered is Pooled Weighted Least Square. Four models of 

linear form have been considered, whose difference lies in the representation of 

household structure and location. More specifically, Model 1 includes proportion of 

households in different household types (variable ‘HH2’ to ‘HH8’) and area types 

(variable ‘Area2’ to ‘Area5’) in each cohort9; Model 2 includes average number of 

children, working persons and household size (variable ‘Child’, ‘Worker’ and 

‘HHSize’), and rather than using five-way categorization of locations, it includes 

proportions of those living in metropolitan areas and least populated rural areas 

                                                 

9 HH1 and Area1 are omitted, so the model evaluates the difference against the household in those 
categories. 
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(variable ‘Met’ and ‘Rural’); Model 3 includes the proportion of household types and 

the proportion of household living in “Met” and “Rural”; Model 4 includes average 

number of children, working persons and household size as well as proportion of four 

area types. Besides the household structure and location variable, a constant term, 

average real disposable income (‘Inc’), real car purchase price index (‘Price’), real car 

running cost index (‘RunCst’), average age of household head and its square (‘Age’ 

and ‘AgSq’) are all included in these models.  

 

Similarly, twelve models of semi-log form have been investigated. These twelve 

models can be divided into three “blocks”. Each block has the same household 

structure and location variables as the linear models, but has different logarithmic 

transformed variables. The first four models include the average of log disposable 

income (variable ‘ALnInc’) and all other variables remain in linear form; the second 

four models include the average of log disposable income, as well as log of car 

purchasing price and running costs (‘ALnInc’, ‘LnPrice’ and ‘LnRunCst’); the third 

four models include not only the log transformed income and price variables, but also 

log of ‘Age’ and ‘AgSq’. 

 

Durbin-Watson autocorrelation test, White Heteroskedasticity test, and RESET 

specification test have been conducted for each model to identify model mis-

specification. Adjusted R Square is used as an indicator to determine the model fit, 

while the sign and significance of the regression coefficients are also taken into 

account. Based on these criteria, the model with best fit is the semi-log model 

(dependent variable ctAy = ) with the following explanatory variables: 

•  Proportion of households as each of the seven household types10; 

•  Proportion of households living in Metropolitan area including Greater London 

and the least populated rural area; 

•  Average of log household income and log car price and running costs; 

•  Second polynomial of average age of household head. 

 

                                                 

10 Models based on alternative specification consistently produce a negative and significant coefficient 
for the number of children in the household, which is opposite to expectation. This is likely to be caused 
by high correlation between the number of children and household size.  
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The same search procedure is subsequently applied to the Fixed Effect Model. Among 

the sixteen models tested, the semi-log model with the same specification as above has 

the best fit. Table 4.2 reports the results of the Pooled WLS model and the Fixed Effect 

model.  

Table 4-2 Regression results of Pooled WLS model and Fixed Effect Model 

 Pooled WLS Fixed Effect 
  Coeff t-ratio Coeff t-ratio 

Constant 0.0902 0.16   
ALNINC 0.3175 26.03 0.3050 24.99 
HH2 -0.5031 -3.04 0.0242 0.14 
HH3 -0.8278 -4.05 -0.1652 -0.79 
HH4 0.1169 0.79 0.3795 2.90 
HH5 0.0250 0.14 0.3035 1.86 
HH6 0.2297 1.60 0.3090 2.22 
HH7 0.6940 3.83 0.9693 5.87 
HH8 0.4019 2.44 0.5440 3.52 
MET -0.3401 -3.22 -0.1687 -1.80 
RURAL 0.2208 1.95 0.1415 1.49 
LNPRICE -0.1675 -5.57 -0.2098 -7.35 
LNRUNCST -0.0654 -2.16 -0.0676 -2.57 
AGE 0.0170 4.95 0.0243 6.95 
AGSQ -0.0002 -4.92 -0.0003 -6.39 
C1   0.8745 0.90 
C2   0.7840 0.80 
C3   -0.0015 0.00 
C4   -0.6476 -0.66 
C5   -1.5043 -1.50 
C6   -1.8171 -2.09 
C7   -1.3516 -1.77 
C8   -1.0400 -1.47 
C9   -0.2813 -0.43 
C10   -0.3390 -0.53 
C11   -1.0366 -1.83 
C12   -1.6896 -2.87 
C13   -2.1355 -3.31 
C14   -2.3198 -3.19 
C15   -2.9859 -3.95 
C16   -4.2379 -4.83 

Adjusted R2 0.992 0.995 
SSE  166.33 104.92 
Log Likelihood -306.62 -248.12 
DW stat  1.39 1.98 
F-stat of White Test 2.86 3.06 
t-stat of RESET Test 2.58 0.41 

Note: ctAy =  

 

Both models have high adjusted R square of over 0.99, suggesting most of the car 

ownership difference across cohorts can be captured by the explanatory variables. 
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While there is evidence of misspecification for the Pooled WLS model suggested by 

the RESET test, it seems that the Fixed Effect model is the appropriate specification. 

The Likelihood Ratio Test produces a Chi-square statistic of 117.0, which rejects the 

hypothesis of no cohort fixed effect at 1% level. For the Fixed Effect model Durbin-

Watson Statistics does not reject the hypothesis of no auto-correlation; the F-Statistic 

of White Test is significant at 5% level, suggesting the possibility of heteroscedasticity 

or some form of mis-specification. Figure 4.1 shows the regression residual plot of the 

Fixed Effect model as produced by Limdep. Note that X axis shows the ID of cohort 

observations arranged by year for each cohort. The two middle horizontal bars mark 

zero plus and minus two times the estimated standard deviation of the residuals. 

Figure 4-1 Regression Residual Plot of the Fixed Effect Model  

Residuals.  Bars mark mean res. and +/- 2s(e)
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Note: X-axis is ordered by year for each cohort 

 

Based on the Fixed Effect model, the average log income variable is highly significant, 

and the coefficient of 0.305 suggests that a 1% increase in household income would 

lead to an increase of 0.003 cars per household. Note that the semi-log functional form 

implies that the impacts of income increase on car ownership gets smaller as the 

income level gets higher. The implied income elasticity at median car ownership level 

is 0.33. The log car purchasing price and log running costs variables are also significant 

at 1% level, and their coefficients imply that a 1% decrease of purchasing price and 

running costs would lead to increased ownership level of 0.002 and 0.0007 cars per 

household respectively. The implied purchase price and running cost elasticities are -

0.23 and -0.07 respectively. 
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The household structure also has significant impacts on car ownership, as four out of 

seven “proportion of household type” variables are significant at 5% level. Not 

surprisingly, the biggest effects lie in proportion of “large” household, i.e. household 

with three or more adults (variable HH7 and HH8). A 1% increase of household type 7 

(three or more adults, no children) within a cohort would imply an increase of 0.01 cars 

per household in that cohort. Similarly, a 1% increase of household type 8 (three or 

more adults, with children) would imply an increase of 0.005 cars per household11.  

 

Regarding the household location, while the coefficient of the RURAL variable 

(proportion of household living in least populated rural areas) is not significant, the 

proportion of household living in metropolitan areas has a significant impact on the car 

ownership of a cohort (at 10% level). The regression coefficient implies that when the 

proportion of household living in metropolitan area increases by 1%, the average 

number of cars per household decreases by 0.0017 for that cohort12.  

 

Both the average age of household head and its square are highly significant. Their 

coefficients are positive and negative respectively, suggesting the car ownership 

increases with the age of household head but at a decreasing rate. The “turning point” 

(marginal impacts turn from positive to negative) implied by the regression coefficient 

is 40 year of age, which is lower than the maximum car ownership age of 48 as 

identified in the data chapter (Chapter 3, Section 3.4.1). The cohort fixed effects 

fluctuate with a general downward trend for younger cohorts, which is opposite to the 

fact that younger cohorts tend to have higher car ownership level when other things 

being equal. More worryingly, this result is consistently obtained in all estimated semi-

log models including those not reported here. It is a first hint that the empirical data do 

not support the assumption of a linear economic relationship between car ownership 

and other explanatory variables at household level (note that this assumption underlies 

                                                 

11  As the proportion of household type 1 (single working person household) is dropped from the 
regression, a 1% increase of household type 8 (or any other types) means the proportion of household 
type 1 is reduced by 1%. 
12 A 1% increase of households living in metropolitan areas implies a 1% drop of those living in other  
rural areas with population density more than 2.2 persons per hectare (base case). 
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the Weighted Least Square Estimator use here). This point will become more apparent 

in the next Chapter on dynamic models. 

 

4.4.2 Models Based on Genuine Panel Data Estimators 

The Weighted Least Square estimator reported in the previous section is the 

Instrumental Variable estimator of individual household data. Such interpretation has 

two problems in the current study, both for analytical purpose and forecasting purpose. 

For analytical purpose, it treats the number of cars owned or used by each household as 

linear, i.e. the cause of car number increasing from zero to one is the same as that of 

any other unit increase. This is problematic as car ownership is in essence discrete 

choices made by household, with the decision to own the first car significantly different 

from the subsequent ones. For forecasting purpose, using a model based on individual 

household data will add difficult complications. It is only possible to predict the 

explanatory variables at aggregate cohort level, and linear transformation (log, square, 

etc.) can only be done for that average prediction (e.g. log of average household 

income). When the model is estimated based on the average of linear transformed data 

(e.g. average of log household income), aggregation bias would arise.  

 

Given these problems, it is important to interpret the pseudo panel model from a 

different perspective. Recall that we only include cohorts with sufficiently large 

number of observations, and we believe the measurement error can be ignored in this 

case. This implied that the sample averages of each cohort are unbiased estimates of 

true cohort means, and as a result, the pseudo panel can be estimated as a genuine panel 

with each cohort being the unit of observation. In this case, any linear transformation of 

the data will be done at the cohort level and the panel data fixed effect and random 

effect models can be estimated using standard technique. 

 

Systematic specification search procedure similar to the WLS estimator models has 

been carried out. Three functional forms have been tested for the Fixed Effect Model: 

linear, semi-log linear (of various explanatory variables) and double log linear form. 

The double log form implies a constant income and price elasticity (note that it can not 

be estimated using the WLS estimator due to zero car ownership for some households). 

For each functional form, the explanatory variables include average real household 

disposable income (or its log); household structure variables (number of children and 
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working person and household size; alternatively, proportion of household types); 

household location variables (proportion of household living in four areas; alternatively, 

proportion of household living in metropolitan and least populated rural area); index of 

real car purchasing price and real car running costs; and finally, second polynomial of 

average age of household head.  

Figure 4-2 Fixed effects in the linear model 

Fixed Cohort Effect in Linear Model
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There is a prevalent feature across most fixed effect models examined here: linear trend 

in the fixed cohort effect. Figure 4.2 shows the fixed effect in the linear model with 

household structure variables being the proportion of seven household types and 

location variable being “Met” and “Rural”. It shows the linear trend in the fixed effects 

of most cohorts except for the youngest one. It should be noted that there are high 

correlations between the fixed effects and some of them are not statistically significant.  

 

Consequently, the restricted Fixed Effect Models have been estimated, with the sixteen 

cohort dummy variables replaced by a variable of cohort number (ID) and a dummy for 

the youngest cohort (cohort 16). It implies that the fixed effects across cohorts are 

linear except for the youngest cohort, which is similar to the “Generation Model” of 

Dargay and Vythoulkas (1999). For each of the unrestricted and restricted FE models, 

standard set of RESET misspecification test, Durbin-Watson autocorrelation test and 

White heteroscedasticity test has been conducted. The RESET test does not indicate 
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Table 4-3 Linear Model: Unrestricted and restricted Fixed Effect Model  

Linear Model Semi Log Linear Model 

Unrestricted Restricted Unrestricted Restricted   

Coeff t-ratio Coeff t-ratio Coeff t-ratio Coeff t-ratio 

Constant   -1.0872 -4.12   -1.7978 -2.41 
INC 0.0006 3.80 0.0009 6.64     
LNINC     0.2163 4.82 0.2732 6.26 
HH2 -0.1553 -0.95 -0.4209 -2.92 -0.1478 -0.91 -0.4569 -3.13 
HH3 -0.7297 -3.47 -0.5625 -2.98 -0.6830 -3.28 -0.5814 -3.04 
HH4 0.4722 3.54 0.1230 0.97 0.4321 3.29 0.0595 0.47 
HH5 0.5961 3.76 0.2067 1.42 0.4827 3.00 0.0867 0.58 
HH6 0.7194 5.20 0.3540 2.83 0.6187 4.37 0.2976 2.29 
HH7 1.0214 5.59 0.5644 3.27 0.9863 5.44 0.5747 3.29 
HH8 0.9223 5.30 0.4725 2.82 0.8430 4.86 0.4872 2.87 
MET -0.2434 -2.37 -0.2537 -2.72 -0.2116 -2.08 -0.2496 -2.63 
RURAL 0.1494 1.34 0.1548 1.53 0.1201 1.10 0.1699 1.66 
PRICE -0.0020 -2.39 -0.0008 -0.91     
RUNCST -0.0023 -4.34 -0.0012 -1.99     
LNPRICE     -0.1256 -1.53 -0.0417 -0.46 
LNRUNCST     -0.1910 -3.46 -0.1202 -1.89 
AGE 0.0455 13.43 0.0381 12.28 0.0439 12.91 0.0375 11.74 
AGSQ -0.0003 -9.06 -0.0002 -8.31 -0.0003 -8.66 -0.0002 -7.64 
COHORT   0.0706 7.53   0.0736 8.01 
C1 -1.2248 -5.06   -1.1537 -1.67   
C2 -1.1449 -4.87   -1.0729 -1.57   
C3 -1.1175 -4.85   -1.0443 -1.53   
C4 -1.0498 -4.65   -0.9810 -1.44   
C5 -0.9947 -4.49   -0.9290 -1.37   
C6 -0.9192 -4.25   -0.8563 -1.27   
C7 -0.8102 -3.83   -0.7479 -1.11   
C8 -0.7164 -3.47   -0.6525 -0.97   
C9 -0.5999 -3.00   -0.5312 -0.79   
C10 -0.5089 -2.61   -0.4390 -0.65   
C11 -0.4315 -2.28   -0.3654 -0.54   
C12 -0.3352 -1.83   -0.2733 -0.41   
C13 -0.2375 -1.34   -0.1813 -0.27   
C14 -0.1305 -0.76   -0.0806 -0.12   
C15 -0.0688 -0.41   -0.0183 -0.03   
C16 -0.0748 -0.46 -0.1341 -3.90 -0.0258 -0.04 -0.1354 -3.94 
RHO   0.3511 5.97  0.3307 5.57 
Adjusted R2  0.986 0.983 0.986 0.985 
SSE 0.31 0.340 0.30 0.26 
Log Likelihood 491.70 479.59 495.27 476.42 
RESET (t-Stat) -.066 0.74 -0.15 2.69 

Note: ctAy =  in both models 

 

misspecification for most of the un-restricted models. While the same test suggests 

misspecification for the all restricted semi-log and double-log models, it does not reject 

the null hypothesis of no misspecification for the linear models at any statistically 

significant level.  
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For the unrestricted FE models, the Durbin-Watson Test and White Test do not clearly 

reject the hypothesis of no autocorrelation and homoscedasticity. For the restricted 

models, these hypotheses are evidently rejected by the same tests, so they have been re-

estimated using Feasible Generalized Least Square with AR1. Table 4.3 compares the 

results of unrestricted and restricted fixed effect models of best fit, both with linear and 

semi-log linear functional form.  

 

The regression coefficients are quite similar for all models (Except for those with log 

linear transformation). The adjusted R Square varies between 0.983 and 0.986, which 

indicate good level of fit. In terms of model selection, the first step is to compare the 

unrestricted and restricted models. The likelihood ratio test based on the linear models 

produces a Chi Square statistic of 24.2, and with 14 degree of freedom, the hypothesis 

of no loss of fit is rejected at 5% level. The same test based on semi-log model 

produced a Chi Square statistic of 37.7, which rejects the hypothesis at 1% level. In 

both cases, the unrestricted fixed effect models are chosen as favoured.  

 

The differences between the linear and semi-log models are more subtle. For the linear 

model, the coefficients of “Price” and “RunCst” are higher (in absolute term) than the 

coefficient of “Inc”. Based on median income and car ownership level, the implied 

income elasticity is 0.20, the implied price elasticity is -0.21 and the implied running 

costs elasticity is -0.25. As previous research suggests that income elasticity is higher 

than price/running costs elasticity, such results are troublesome. Consequently, the 

(unrestricted) semi-log model is chosen as the preferred model, whose residual plot in 

Figure 4.3 does not show any apparent misspecification. 

 

Based on the preferred model, the log income coefficient suggests that a 1% increase of 

real household disposable income will increase the car ownership by 0.0021 cars per 

household. On the other hand, a 1% decrease in car purchase price will increase the 

average car ownership level by 0.0013 cars13; a similar decrease in running costs will 

lead to a rise in car ownership level by 0.0019 cars. Table 4.4 shows the income and 

                                                 

13 Note that the coefficients for purchasing price are not significant, so there should be caution in 
interpretation of this result. 
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price elasticities at the low (10 percentile), median and high (90 percentile) car 

ownership level.  

Figure 4-3 Residual Plot of unrestricted Fixed Effect Model 
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Table 4-4 Income and Price Elasticity (based on Semi log, unrestricted FE model) 

Car Ownership Level Income Elasticity 
Purchase Price 

Elasticity 
Running Cost 

Elasticity 

Low (0.42 cars/HH) 0.52 -0.30 -0.45 
Median (0.92 cars/HH) 0.24 -0.14 -0.21 
High (1.25 cars/HH) 0.17 -0.10 -0.15 

 

Regarding the household structure, the higher is the proportion of “large” household 

(household with two or three adults) in a cohort, the higher is the car ownership level. 

The impacts of number of working person and children is best illustrated by the two 

adult household (type 4, 5 and 6). When the proportion of household type 4 (two adults, 

neither in work) increases by 1%14, the average number of car increases by 0.0043 per 

household in the cohort; when the proportion of household type 5 (two adults with 

working person but no children) increases by 1%, the average car number increases by 

0.0048; when the proportion of household type 6 (two adults with working person and 

children) increases by 1%, the average car number increases by 0.0062. Regarding the 

household location variables, only “Met” is significant, whose coefficient suggests that 

                                                 

14 It implied the proportion of household type 1 decreases by 1%; same for other household type changes. 
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a 1% increase of Metropolitan household in a cohort results in a decrease of 0.0021 

cars per household in that cohort. 

 

Besides the Fixed Effect model, a set of Random Effect Models has been estimated. 

Assuming that the cohort effects are strictly uncorrelated with the explanatory variables, 

Random Effect models treat the cohort specific constant terms as randomly distributed 

across cohorts (
✂
+vi rather than i). With fewer parameters to estimate, such 

specification increases the degree of freedom. However, in the context of pseudo panel, 

the assumption of no correlation between the cohort effects and the regressors is likely 

to be violated, and the RESET test reveals misspecification in most of the random 

effect models tested. The presence of correlations seems to have been confirmed by the 

Hausman’s Test, as the Chi Square statistics are large and statistically significant for all 

the models tested. For example, for the linear model reported in Table 4.3, its 

corresponding Random Effect model has a Hausman’s Test statistic of 70.9, which 

strongly favours the Fixed Effect model. 

 

Finally, we investigated the issue of heterogeneity by estimating cohort specific models. 

The oldest and two youngest cohorts have to be dropped due to small number of 

observations and the resulting dataset contains two cohorts with 14 observations (C2 

and C14) and eleven cohorts with 19 observations (C3 to C13). To save the regression 

degrees of freedom, average household characteristic variables (number of children, 

working person and household size) rather than proportion of household types are used. 

The initial modelling group tested contains eleven explanatory variables including the 

constant term in each model, separately estimated using OLS. Three variables that are 

not significant for almost all cohorts are subsequently dropped, which leaves 6 error 

degree of freedom for the models with 14 observations and 11 error degree of freedom 

for those with 19 observations. Different groups with linear and semi-log linear 

functional form have been estimated and the results are very similar (in terms of 

coefficients of the common variables and R square). Table 4.5 reports the results of the 

linear models for each of the 13 cohorts.  

 

For the ease of comprehension, only the coefficients that are significant at 10% level 

are reported; however, the descriptive statistics are calculated using all 13 coefficients. 

The last two column of Table 4.5 refer to the standard error of regression and R Square  
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Table 4-5 Cohort Specific Regression Results (Linear form; 13 cohorts) 

  Inc Child HHSize Met Price Age AgSq Const. SSE    R
2
     

C2 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.049 0.876 

C3 n.s. n.s. n.s. -0.7390 -0.0063 0.1961 -0.0014 -5.9712 0.032 0.961 

C4 0.0010 n.s. 0.3331 -0.4776 n.s. 0.1561 -0.0011 -5.1904 0.027 0.967 

C5 n.s. -1.4233 0.9822 n.s. n.s. 0.1657 -0.0011 -7.0443 0.020 0.984 

C6 0.0019 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.037 0.929 

C7 n.s. n.s. n.s. n.s. -0.0084 n.s. n.s. 6.8813 0.022 0.974 

C8 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.038 0.871 

C9 n.s. -0.6406 0.8139 n.s. n.s. n.s. n.s. n.s. 0.046 0.920 

C10 n.s. -0.4308 0.4989 1.1212 n.s. n.s. n.s. -1.5895 0.031 0.975 

C11 0.0012 n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.023 0.987 

C12 n.s. n.s. n.s. n.s. n.s. 0.1397 -0.0018 -3.1804 0.029 0.981 

C13 0.0014 -0.6733 0.6033 n.s. -0.0028 0.1353 -0.0019 -2.4892 0.014 0.998 

C14 n.s. n.s. n.s. n.s. -0.0065 0.2919 -0.0051 -2.7124 0.024 0.995 

Mean 0.0006 -0.3446 0.3864 -0.1598 -0.0029 0.1368 -0.0013 -3.6185 0.030 0.955 

St Dev 0.0006 0.5673 0.3443 0.4816 0.0030 0.1271 0.0014 4.9290 0.010 0.043 

Max 0.0019 0.5705 0.9822 1.1212 0.0006 0.3937 0.0005 6.8813 0.049 0.998 

Min 0.0000 -1.4233 -0.2079 -0.7390 -0.0084 -0.0968 -0.0051 -14.8316 0.014 0.871 

 

respectively. The R Square varies from 0.871 to 0.998 among the 13 models, which 

indicates the same model specification has different explanatory powers in describing 

the data for different cohorts. For the two cohort models with R Square lower than 0.9 

(Cohort 2 and Cohort 8), none of the explanatory variables are significant at 10% level. 

 

The pairwise tests on coefficients of the “Income” variable show no statistically 

significant difference between the 4 coefficients reported in Table 4.4. However, such 

tests show that some coefficient pairs are different at 5% level for other explanatory 

variables, which are indication of parameter heterogeneity. The hypothesis of 

homogeneity is also rejected by the Likelihood Ratio test of parameter homogeneity, 

which is based on a Random Parameter Model we subsequently estimated.  

 

The above discussion indicates that the assumption of parameter homogeneity for the 

earlier models might not be appropriate. However, it also highlights the practical 

constraints faced by the heterogeneous model in terms of degree of freedom lost. Table 

4.5 shows that a majority of the cohort specific regression coefficients are not 

significant at 10% level. Furthermore, several cohorts have too few observations to be 

included in the cohort specific regression in the first place. These constraints will limit 

the practical usefulness of the heterogeneous model. 
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4.5 Conclusion 

This chapter investigates the theoretical and empirical aspects of the linear static 

pseudo panel model. As the pseudo panel is a synthetic panel constructed from 

individual data, the first issue we address is the relationship between the estimator 

based on pseudo panel and that based on individual data. It has been shown that 

Weighted Least Square estimator using cohort means is equivalent to the Instrumental 

Variable estimator using individual data, using cohort dummy variables as instruments. 

However, this relationship is based on the assumption that there is a linear relationship 

between the dependant variables and the explanatory variables for the individual 

household. For car ownership model, this assumption is hard to defend theoretically 

and its appropriateness has to be tested with empirical models. If Weighted Least 

Square estimator is to be used, it requires any linear transformation of data to be 

performed on individuals before aggregation, and each observation in the pseudo panel 

to be weighted by the square root of the sample number in the cohort. 

 

A number of papers have addressed the problem of measurement error for the pseudo 

panel model. Section 2 of this chapter reviews the various Error-in-Variable Estimators 

(EVE) proposed in the literature, including that of Deaton (1985), which is unbiased 

when ∞→T ; that of Verbeek and Nijman (1993), which is unbiased when ∞→C ; 

and that of Devereux (2003), which is approximately unbiased to the order 1/(CT). The 

following section attempts to address the conditions required to ignore the 

measurement error problem. It has been shown that the way cohorts are constructed has 

direct implication on the bias of the within estimator if pseudo penal is to be estimated 

as genuine panel. The cohort should be defined in a way such that the population 

cohort means of the variables concerned vary as much as possible over time. 

Furthermore, the sample number in each cohort has to be sufficiently large to minimize 

sampling errors and measurement errors. These conditions appear to be met by our 

pseudo panel dataset constructed from the Family Expenditure Survey, which justify us 

to ignore the problem of measurement error in the following empirical work.   

 

We first estimate the car ownership model using Weighted Least Square Estimator of 

pseudo panel. Different formulations of household structure variables and household 

location variables have been systematically tested, and the results shows that they are 
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best represented by the split of 8 household types and aggregated location types 

respectively. Both the Likelihood Ratio Test and RESET test favour Fixed Effect 

model to Pooled OLS model. Judged by the statistic of adjusted R Square, it appears 

that the semi-log models (explanatory variables include the cohort average of log-

transformed income and price variables) have the best goodness of fit. However, all 

semi-log models have the wrong trend of fixed effects across cohorts, implying older 

cohorts have higher tendency of car ownership when other things being equal. This 

unsatisfactory result could be taken as the first hint that the empirical data do not 

support the use of Weighted Least Square Estimator here. 

 

From a theoretical point of view, the Weighted Least Square Estimator is based on the 

assumption of linear economic relationship at individual household level, which would 

be inappropriate for car ownership due to its discrete nature. Furthermore, the use of 

WLSE requires any linear transformation of variables to be done at individual level, 

which could not be replicated for the forecasted value. These concerns prompt us to 

consider models based on alternative estimators. If we believe the sample averages of 

each cohort are unbiased estimates of the true cohort means, the pseudo panel can be 

treated as genuine panel. In this case, various panel data estimators including fixed 

effect, random effect and heterogeneous models have been investigated.  

 

Hausman’s Test and RESET misspecification test both reject the Random effect model 

as the preferred model. Regarding the Fixed Effect model, there is a strong linear trend 

in the cohort specific constants; however, the likelihood ratio test reject restricted FE 

model as the preferred model due to significant loss of fit. Based on the semi-log 

unrestricted FE model, the implied income elasticity is 0.24, purchase price elasticity is 

-0.14 and running cost elasticity is -0.21. 

 

Despite a rather comprehensive investigation of the pseudo panel car ownership model 

from both theoretical and empirical perspectives, one important aspect is not covered in 

this chapter: the role of dynamics. The dynamic models will be considered in the 

following chapter.  
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Chapter 5 Linear Dynamic Model 

One of the key motivations of using pseudo panel rather than cross sectional data is to 

capture the dynamic relationships in individual data. After the discussion of consistent 

estimation of static model in the previous chapter, we focus our attention on the 

dynamic model. More specifically, we consider the first order autoregressive model 

with exogenous variables, which is prevalent in the literature. In this chapter, we 

outline a common set of assumptions and rank conditions, and then consider various 

estimators that are consistent under different asymptotics. We also consider their 

empirical implication including practical implementation, data requirement and 

complexity of computation. We present an estimator that is computationally attractive 

and consistent when the number of observations in each cohort is large. However, we 

will not cover topics such as estimation of asymptotic covariance matrices or efficiency 

of the proposed estimators, which are considered less important for the main purpose of 

this study—forecasting. After discussing consistent estimation of pseudo panel model, 

the second part of this chapter will present the empirical results of dynamic car 

ownership models using the preferred estimator. Systematic specification search has 

been carried out to determine the model with the best fit. Various statistical tests are 

used to aid model selection. 

 

5.1 Consistent estimator of dynamic pseudo panel model 

We first consider a dynamic model for each individual i sampled in year t, whose 

explanatory variables include a lagged dependent variable and a vector of exogenous 

variables. Note the time-varying exogenous variables as xi(t),t 
15 and the time-invariant 

exogenous variables as zi(t): 

 ttitittittitti zxyy ),()(),(1),(),( ελβα +′+′+= −  t = 2,…,T (1) 

with the following assumptions: 

 )(0, iid~ 2

),( εσε tti       (2) 

 0}{ )(),( =titti zE ε       (3) 

and 0}{ ),(),( =ttitti xE ε       (4) 

                                                 

15 The notation of xi(t),t reflects the fact that the ith individual sampled in year t is different from that 
sampled in other year, e.g. individual i(t) is different from individual  i(t+1).  
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The iid assumption of the error term is common in the pseudo panel literature, with 

Moffitt (1993), Collado (1997) and most of McKenzie (2004) all based on such 

assumptions 16 . Conditions (3) and (4) are standard exogeneity assumption of 

independent variables, which are easy to defend for individual observations in the 

repeated cross sections. Note that with repeated cross sections data, the lagged 

dependant variable yi(t),t-1 is not observable. As a result, model (1) can not be directly 

estimated.  

 

As identified in the literature, the dynamic pseudo panel models can be consistently 

estimated using two approaches: first by grouping individuals in the survey data into 

cohorts and treat the cohort averages as error-ridden estimation of the observation in 

the synthetic panel, which also provides an error-ridden estimation of the lagged 

dependent variable at cohort level; second is to directly estimate such model from cross 

sectional data using instrumental variable techniques, typically by replacing the lagged 

dependent variable by a predicted value from an auxiliary regression. As we have 

shown in the previous chapter, taking group averages is equivalent to using cohort 

dummy variables as instruments and applying the IV estimator on individual data. This 

suggests that there are no fundamental differences between the two approaches. 

Nevertheless, we present them separately in this chapter with emphasis on the first 

approach, i.e. cohort dummy IV estimator. 

 

5.1.1 Cohort Dummy IV estimator 

As zi(t) represent time-invariant characteristics, we would be able to divide the 

population into a number of mutually exclusive cohorts based on zi(t). In such case, zi(t) 

can be expressed as a vector of cohort dummy variables (zc). Instrumenting x i(t),t using 

zc would lead to estimators based on cohort average ctx (see previous chapter for 

details). Take average of nct individuals in cohort c and weight it by the square root of 

nct, equation (1) becomes: 

 ttccttcttcttc zxyy ),(),(1),1(),( ελβα +′+′+⋅= −−  c = 1,…,C; t = 2,…,T  (5) 

                                                 

16  However, we’ll show that when ∞→ctn  this assumption can be relaxed while the estimators 

concerned remain consistent.  
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where tti

n

ictttc xnx ct

),(1),( )1( ′=′ ∑ = , denoting the sample mean of x over the individuals in 

cohort c observed in year t. Note that 1),1( −− ttcy  denote the mean of y for individuals in 

cohort c sampled in year t-1, rather than the mean of lagged y for those sampled in year 

t, which is unobservable. As zc is a vector of cohort dummy variables, λ  represents the 

cohort fixed effects. 

 

Equation (5) corresponds to an unobserved version based on true population cohort 

mean: 

 ***

1,

* ' ctccttcct zxyy ελβα +′++= −   c = 1,…,C; t = 2,…,T  (6) 

Comparing (5) and (6), we can see that ttcx ),(
′  and ttcy ),(  are the sample estimate of '*

ctx  

and *

cty  but with measurement error. Similar to static model discussed in the previous 

chapter, we assume the measurement errors follow independent identical distribution: 
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where 2

ςσ , ςησ  and ηΣ  can be consistently estimated by individual data. Note that from 

(7) it follows that *

),( ctttc yy −  and *

1,1),1( −−− − tcttc yy  are independent and have the same 

distribution.  

 

Finally, for (5) to be identified, the following rank condition has to be satisfied: 

 ( )cc xXyYU ′−−= −− 1,1

~
 has full column rank K+1.   (8) 

Note U
~

 is the matrix of x and lagged y at cohort level deviating from overall cohort 

means. In particular:  

1−Y  is a 1  1)-(TC ×∗ vector whose element is 1),1( −− ttcy , c = 1,…,C; t = 2,…,T. 

 1),1(21,
1

1
−−=− ∑−

= ttc

T

tc y
T

y , c = 1,…,C. It denotes the average of sample cohort 

means of y over year 1 to T – 1.  

 X  is a K  1)-(TC ×∗  matrix with row ttcx ),(
′ , c = 1,…,C; t = 2,…,T. 

 cx ′  is a K  1×  vector: ttc

T

tc x
T

x ),(2
1

1 ′
−

=′ ∑ = , c = 1,…,C. It denotes the average of 

sample cohort means of x over year 2 to T. 
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Such rank condition is a standard identification condition. It requires that cohort means 

of y and x should not exhibit perfect collinearity and vary over time. It also implies that 

there should be at least three cross sections for the model to be identified. If (8) is not 

satisfied, the estimation of (5) will break down. 

 

With repeated cross sectional data, it is important to establish the properties for 

different estimators under alternative asymptotics. In the following sections, we present 

the various estimator identified in the literature as being consistent under the 

asymptotic of ∞→T , ∞→C  and ∞→ctn  respectively.  

 

5.1.1.1 Error Corrected Within-Group Estimator 

Following Nickell (1981) on consistent estimation of dynamic model based on true 

panel data, Collado (1997) proposed a within-group estimator taking into account 

measurement error variances, which is consistent when ∞→T . Note that the error 

term ttc ),(ε  in (5) contains the measurement error of *

ctx  and *

cty , and can be 

decomposed into: 

 βαεε )'()()( *

),(

*

1,1),1(

*

),(

*

),( ctttctcttcctttcctttc xxyyyy −′−−−−+= −−−  t = 2,…,T

           (9) 

Rewrite equation (5) in the form of deviation from cohort means to eliminate the cohort 

fixed effects: 

 ttcttcttcttc xyy ),(),(1),1(),(
~ˆ~~ˆ~ εβα +′+= −−       (10) 

Combing (7) and (9), Collado showed that under asymptotic of ∞→T , the 

explanatory variables in (10) are correlated with the error term only through the 

measurement error in the following way: 
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This leads to the measurement error corrected within-group estimator (WGC) of: 
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It is expected the error corrected within-group estimator would have limited use in the 

empirical work, as it is unlikely that a large number of repeated cross sections are 

available in reality so that the condition of ∞→T  is satisfied. Furthermore, the 

requirement to estimate the variance and covariance of measurement error significantly 

increases the computation complexity, thus further constrains its scope of application. 

 

5.1.1.2 Error Corrected GMM Estimator 

As ∞→T  can be an unlikely situation in applied work, Collado presents an alternative 

estimator that is consistent for finite T when the number of cohort C is large (Collado, 

1997).  

 

Following standard dynamic panel model IV procedures, the cohort fixed effects can 

be eliminated by first differencing. Rewrite equation (5) in the form of first differences: 

 ttcttcttcttc xyy ),(),(1),1(),(
ˆˆ εβα ∆+′∆+∆=∆ −−   c = 1,…,C; t = 3,…,T  (13) 

where 1),1(),(),( −−−=∆ ttcttcttc yyy , which is a sample estimate of *

1,

*

−− tcct yy  but with 

measure error; 1),1( −−∆ ttcy  and ttcx ),(
′∆  are defined similarly. Note that the explanatory 

variables in (13) are correlated with the error terms ttc ),(ε∆  through measurement errors.  

 

Assuming the error terms follow iid (assumption 2) and the explanatory variables are 

strictly exogenous (assumption 3 and 4), Collado proposed the following matrix of 

instruments17 following the genuine panel case of Arellano and Bond (1991): 
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17 Collado note such matrix as Zc. Here we use Vc to avoid confusing with the cohort dummy instruments 

zi(t),t. Here, ttcy ),(  is simply noted as cty ; similarly, ttcx ),(
′  is noted as ctx′ . 
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Vc is correlated with the error terms only due to the measurement errors and the 

resulting moment conditions are given by: κγε +Λ=∆′ }{ ccVE , 

Where 
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=∆

TTc

c

c

),(
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...

ε

ε
ε , a 1)2( ×−T  vector; 








=

β
α

γ , a 1)1( ×+K  vector.  and � 

depend on the covariance of measurement errors.  

 

The measurement error corrected GMM estimator (GMMC) of ✄ is obtained by 

minimizing: 
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and was derived by Collado as: 

 )]()([)]()([ˆ 1 κγ −∆′Λ′+′∆⋅Λ+∆′Λ′+′∆= ∑∑∑∑ −
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...  and the weighting matrix Sc is a 

consistent estimator of the inverse of the covariance matrix of ccV ε∆′ . 

 

The error corrected GMM estimator is consistent for fixed T when ∞→C . When the 

population is divided into a large number of cohorts based on various time-invariant 

characteristics, with large repeated cross sectional survey dataset the corresponding 

sample of each cohort should be available. In this case, GMMC provides a consistent 

estimation approach. However, GMMC also has drawbacks. It uses ststcy −− ),(  for all s 

)21( ≥≥− st  as instrument of ttcy ),(∆ . The resulting large number of instruments, 

while adding estimation efficiency, would also introduce finite-sample bias (McKenzie, 

2004). It is also very complex computationally, given the need to estimate covariance 

matrix of the measurement errors and GMM weighting matrix Sc.  

 

5.1.1.3 Within Group Estimator 

Although the two error-corrected estimators by Collado are consistent with either a 

large number of time periods or a large number of cohorts, these are in fact not 
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common situations in empirical studies. More often, we have a limited number of cross 

sections, and each can be divided into a fixed number of cohorts. If each cross section 

contains a large number of observations, as is the case of many national surveys, we 

would have sufficiently large sample size in each cohort (nct). In this case, the most 

useful estimator would be the one that is consistent when ∞→ctn . 

 

When ∞→ctn , it is obvious that the measurement errors (7) converge in probability to 

zero: 

 0lim
*

),(

*
),( =










−
−

ctttc

ctttc

xx

yy
P       (15) 

Combining (15) and the iid assumption of the measurement errors, it directly follows 

that the last three terms in the right hand side of (9) are all asymptotically zero. As a 

result, ttc ),(ε  will have the same asymptotic mean as the true cohort error term *

ctε , 

whose mean is assumed to be zero as standard. 

 0)lim( ),( =ttcp ε        (16) 

  

From (16) and assumptions (2) to (4), we establish the moment conditions that will 

ensure the consistency of within-group estimator based on (5): 

 0}{ 1),1(),( =−− ttcttc yE ε        (17) 

 0}{ ),(),( =ttcttc xE ε        (18) 

The rank condition of (8) is also required to ensure (5) is identified. Rewrite (5) in the 

form of deviation from cohort means to eliminate the fixed cohort effect, it results in 

the within-group estimator in its standard form: 

 YUUUwithin

~~
)

~~
( 1 ′′= −γ        (19) 

where ),( ′′= βαγ .  U
~

 is as defined in (8). cyYY −=~
, with Y  being a 1)1( ×−∗ TC  

vector whose element is ttcy ),( , c = 1,…,C; t = 2,…,T; ttc

T

tc y
T

y ),(2
1

1
∑ =−

= , c = 1,…,C. 

 

It should be noted that assumption (2) can be relaxed to allow for correlations between 

observations within the same cohort, as long as there is no autocorrelation over time. In 

this case, (17) to (18) also hold so the consistency of within estimator is retained.  



 77 

 

The within group estimator is simple to implement in applied work and does not 

require very strong assumptions on the correlation structure of the error terms. It is 

consistent when the number of observations per cohort is sufficiently large, which is 

likely to be met with a real dataset. Ultimately, it is equivalent to the “Augmented IV 

Estimator” in Verbeek and Vella (2005), although it is developed using a different 

approach that is compatible with that of deriving measurement error corrected 

estimators. 

 

McKenzie (2004) presents an OLS estimator that is similar to our within-group 

estimators. More specifically, it allows for heterogeneity between cohorts, so (5) can be 

relaxed to: 

 ttcccttcttccttc xyy ),(),(1),1(),( ελβα ++′+⋅= −−     (20) 

Under similar assumption, the OLS estimator OLS

cγ  for cohort c is consistent and has 

the standard form of: 

 cccc

OLS

c YUUU
1)( −′=γ  

where ),,( ′′= cccc λβαγ ; )1( 1, ccc XYU −= . 1 is a vector of ones. 1,−cY  and cY both 

are 1)1( ×−T  vector for cohort c, whose element is 1),1( −− ttcy  and ttcy ),(  respectively, t = 

2,…,T. cX  is a K  1)-(T ×  matrix for cohort c with row ttcx ),(
′ , t = 2,…,T.  

 

For (20) to be identified, rank condition (8) need to be strengthened to: 

 )1( 1, ccc XYU −=  has full column rank K + 2.   (21) 

This implied that there have to be at least (K + 2) cross sections for the model to be 

identified. This result is intuitive: when the estimation is done separately for each 

cohort, the number of cross sections should be at least as large as the number of 

explanatory variables. In practice, it is unlikely we will be able to reliably estimate the 

heterogeneous model of (20) with only small number of cross sections, which is 

probably the most common situation. This will limit the application scope of 

heterogeneous OLS estimator in empirical work.  
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5.1.2 Estimator based on individual level data 

There are other estimators proposed in the literature, which are designed to use 

individual data directly without aggregating into cohorts and taking cohort averages. It 

has been argued that without aggregation, an estimation method based on individual 

level data can make a more efficient use of the available information (Girma, 2000). In 

this section, we will discuss two estimators not relying on cohort average and achieving 

consistency when ∞→ctn . We will show that each has its drawbacks and might not be 

promising in applied work. 

 

5.1.2.1  Two-Stage Least Square Estimator by Moffitt 

Moffitt introduced a two stage least square (2SLS) estimator, where the lagged 

dependent variable yi(t),t-1 is predicted from the regression on a vector of instrumental 

variables. First consider an auxiliary regression based on all the sample observations at 

t – 1: 

 1),1(2)1(11),1(1),1( −−−−−−− +′+′= ttitittitti ZQy ωδδ     (22) 

where Qi(t-1),t-1 is a vector of time-varying variables, and Zi(t-1) is a vector of time-

invariant variables. If Qi(t-1),t-1 and Zi(t-1) are strictly exogenous, 1δ  and 2δ  can be 

consistently estimated using OLS. Using the lagged value Qi(t),t-1 and time-invariant 

variable Zi(t), the predicted variable 1),(
ˆ −ttiy  can be obtained from (22). Inserting 1),(

ˆ −ttiy  

in place of yi(t),t-1 in (1) and applying least squares will produce consistent estimates of 

, 
✁

 and 
✂
 provided that 1),(

ˆ −ttiy  is asymptotically uncorrelated with �i(t),t.  

  

To apply the two stage least square estimator in practice, we need to know the value of 

the time varying variables in the previous period (Qi(t),t-1), which is a rather strong data 

requirement. With repeated cross sectional data, the history of the variables is usually 

unavailable. In practice, Qi(t),t-1 can either be functions of t, which may include the 

projection of unobserved variables, or variables that can be back-cast with reasonable 

accuracy. One example of the latter is the number of children in the household, if the 

ages of children are known.  

 

The 2SLS relies on the prediction of yi(t),t-1 based on functions of t and time-invariant 

variable Z. If such prediction is done for each individual observation without any 
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averaging, it is likely that the prediction 1),(
ˆ −ttiy  will be highly inaccurate. In this sense, 

the within group estimator of (19) would be preferable as it is based on the cohort 

average defined by Z. Overall, the 2SLS estimator does not seem promising in applied 

work due to its strong information requirement and likely prediction noise.  

 

5.1.2.2 GMM Estimator of Quasi-differences Model 

Girma (2000) proposed a pair-wise quasi-differencing approach for the estimation of 

dynamic pseudo panel model. Similar to McKenzie (2004), it allows for between 

cohort heterogeneity, so model (1) can be relaxed to: 

 ttiticttittictti zxyy ),()(),(1),(),( ελβα +′+′+= −  t = 2,…,T; c = 1,…,C;  (23) 

1),( −ttiy  as unobserved variables. Model (23) also implied that the population can be 

divided into C mutually exclusive cohorts and the data exhibit within cohort 

homogeneity. For any cohort c18, Girma applied the quasi-difference techniques of  

 1),1(),( −−− ttjtti yy α  for )]1(),([ −∀ tjti  and 2≥∀ t  

and made various assumptions of yi(t),0, xi(t),t and zi(t). More specifically, it is assumed 

that the initial conditions (yi(t),0) are random draws with a common (cohort) component 

in the specification of a conditional mean, and the time-varying variables xi(t),t are AR(1) 

plus individual specific drift and cohort-time specific error components. This leads to 

an estimable model of: 

 ijtttittjtti xyy ηβα +′+= −− ),(1),1(),(    (24) 

where �ijt is a composite error term, and two set of linear moment conditions: 

 0}{ ),( =−− ijtststgyE η ; t = 2,…,T; s = 1,…,t – 1; )1()1( −≠−∀ tjtg   (25) 

 0}{ ),( =−− ijtststgxE η ; t = 2,…,T; s = 0,…,t – 1; )()(|)( tistgstg ≠−−∀ or 

)1()1( −=− tjtg          (26) 

 

Conditions (25) and (26) suggest that the any past and present values of the dependent 

variables and explanatory variables within the same cohort can be used as instruments. 

Note that in (24) to (26), i and j index the random sample in different cross sections, so 

for notational convenience they can be standardized as i (since i(t) and i(t – s) represent 

                                                 

18 For a single cohort, the index on ✁ and ✂  can be dropped.  
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different individuals sampled so no confusion should arise). To narrow down the 

potentially infinite number of instruments, (25) and (26) are restricted to become: 

 0}{ =ititVE η          (27) 

with },,{ ),(1),1(1),1( ttgttgttgit xxyV ′′= −−−− , and g is arbitrarily specified as i – 1. 

 

The quasi-difference GMM estimator ),( ′′= βαγQDGMM  can then be obtained by 

minimizing: 
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where SnT is a sequence of weight matrices. 

 

Although the quasi-differencing approach avoids the strong data requirement of 

Moffitt’s 2SLS, it relies on arbitrarily chosen individuals in the same cohort as 

instruments, which would lead to inaccurate estimation results. More specifically, the 

lagged value of yi(t),t is approximated by an arbitrarily selected observation yj(t-1),t-1 in 

the same cohort and individual observations are used as instruments in the model. As a 

result, it employs a noisy approximation to the unobserved lagged values as well as 

noisy instruments (Verbeek and Vella, 2005). Although such noise would cancel out 

asymptotically, it does not achieve more efficient use of information as Girma claimed. 

The reason why a different observation j would provide information on observation i is 

because they are in the same cohort and this can be more easily captured by the cohort 

dummy variables, as does the within-group estimators presented above.  

 

5.2 Empirical Results from the Dynamic Car Ownership Model 

The pseudo panel dataset constructed from FES is used to estimate the dynamic car 

ownership model. The full dataset contains 254 observations from 16 cohorts, and after 

dropping the first observation of each cohort to account for the lagged dependent 

variable in the dynamic models, the number of observation is reduced to 238. Similar 

to the static model, the dependent variable is the average number of cars per household 

in cohort c in year t (Ac,t); the explanatory variables include the car ownership number 

for the same cohort in the previous year (Ac,t-1), average household disposable income 

or its log transformation (Ic,t), household structure (demographic characteristics) 
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variables (Sc,t), average age of household head (Gc,t), household location variables (Lc,t) 

and index of real motoring costs (Mt): 

 tcttctctctctctc MLGSIAfA ,,,,,1,, ),,,,,( ε+= −      (28) 

 

Similar to the static model, the household structure variables can take the form of 

proportions of household as household type 2 to 8 (variable HH2 to HH8, which 

measure the impact against household type 1, single working person household) 19; or 

the average number of children, employed and household size (variable CHILD, 

WORKER and HHSIZE). The household location variables are either the proportions 

of households living in four types of area (AREA2 to AREA5, measuring impacts 

against area type 1, Greater London), or compressed variables for metropolitan areas 

(variable MET, which combines area type 1 and 2) and the least populated rural area 

(variable RURAL, same as type 5). 

 

In section 5.1.1.3 of the current chapter, we have shown the Within Group (WG) 

Estimator is consistent when ∞→ctn . Since we only include cohorts with sufficiently 

large sample during the construction of the pseudo panel dataset, the WG Estimator is 

deemed appropriate for the current empirical works. The following sections report the 

specification search that is mainly based on the WG Estimator.  

 

5.2.1 Assuming linear economic relationship at individual level 

The first set of tests assumes the linear economic relationship at individual household 

level and the data transformations (log, square, etc.) are performed for each household 

sampled in the Family Expenditure Survey. Each variable in the pseudo panel dataset is 

also weighted by the square root of the cohort sample size. Such treatments are 

consistent with the Weighted Least Square Estimator for the static model. 

 

Linear models and semi-log linear models have been estimated. Alternative forms of 

household structure variables and household location variables (as discussed above) 

have been tested with each functional form. Standard set of tests applied to each model 

include the RESET misspecification test, White heteroskedasticity test and Durbin-

                                                 

19 See Table 3-2 in Chapter 3 for the definition of household type. 
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Watson autocorrelation test. High adjusted R square and sensible value of regression 

coefficients are additional criteria of good model fit. 

 

The models with the best fit include proportions of household types in a cohort as 

household structure variables, and compressed household location variables. In 

alternative models, the coefficient for the number of children is consistently negative 

and significant, possibly due to strong interaction with other household structure 

variables. The more detailed breakdown of area type does not increase explanatory 

power of the model and most of the area type variables are not statistically significant. 

Table 5.1 present the results from the models with best fit, with both linear and semi-

log linear forms. 

 

The various specification test statistics are similar for both the linear and semi-log 

models. Both have high adjusted R square statistic and the RESET test does not reject 

the hypothesis of no misspecification in both models. Judging by adjusted R2 alone, 

one might even conclude that the semi-log model has the better fit. It has turned out 

that the adjusted R2 is misleading here.  

 

There are three problems with the semi-log model in Table 5-1. Firstly, the implied 

adjustment speed is too high to be realistic, which suggests that 93% of adjustment of 

car ownership to the change of explanatory variables happens in one year. Secondly, 

the coefficients for purchase price and running costs are significant and of wrong sign. 

Thirdly, the estimated fixed effects show a wrong trend across cohorts, implying older 

cohorts with higher car ownership level when other things being equal. Most 

importantly, all these problems are consistently found in all the eight semi-log models 

tested (different forms of household structure and location variables; whether or not 

with log transformation of price and running cost index), and the third problem is also 

present in the static models discussed in the last chapter. These empirical results seem 

to suggest that it is not appropriate to assume a linear economic relationship between 

car ownership and various explanatory variables at individual household level.  
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Table 5-1 Models with best fit (comparison of linear and semi-log functional form) 

Linear  Semi-Log 
  

Coeff t-ratio Coeff t-ratio 

CAR [-1] 0.1482 4.00 0.0740 2.17 
INC 0.0004 3.14     
ALINC     0.3963 8.61 
HH2 -0.2069 -1.09 0.1465 0.84 
HH3 -0.4633 -1.77 0.0130 0.05 
HH4 0.4687 3.09 0.5694 4.27 
HH5 0.4964 2.69 0.5342 3.27 
HH6 0.5939 3.89 0.4256 3.11 
HH7 0.9901 5.16 0.9481 5.60 
HH8 0.7925 4.36 0.6357 3.99 
MET -0.1497 -1.43 -0.1981 -2.15 
RURAL 0.2134 1.93 0.1116 1.15 
PRICE -0.0006 -0.76     
RUNCST -0.0016 -3.07     
LNPRICE     0.1179 1.64 
LNRUNCST     0.1598 2.64 
AGE 0.0351 8.26 0.0160 3.55 
AGSQ -0.0002 -4.83 -0.0002 -6.15 
C1 -1.1933 -5.16 -2.8161 -4.96 
C2 -1.1316 -5.07 -2.8459 -5.00 
C3 -1.1046 -5.03 -2.9143 -5.09 
C4 -1.0389 -4.82 -2.9638 -5.13 
C5 -0.9865 -4.65 -3.0131 -5.17 
C6 -0.9132 -4.38 -3.0483 -5.17 
C7 -0.8151 -3.99 -3.0454 -5.12 
C8 -0.7303 -3.65 -3.0467 -5.07 
C9 -0.6157 -3.16 -3.0298 -4.99 
C10 -0.5340 -2.80 -3.0465 -4.96 
C11 -0.4662 -2.51 -3.0800 -4.96 
C12 -0.3862 -2.12 -3.1122 -4.94 
C13 -0.2989 -1.68 -3.1360 -4.92 
C14 -0.2100 -1.20 -3.1555 -4.88 
C15 -0.1693 -0.97 -3.2183 -4.92 

C16 -0.1686 -0.98 -3.2989 -5.01 

Adjusted R2 0.993 0.995 
SSE  114.27 88.43 
Log Likelihood -250.4 -219.89 
DW stat  2.04 2.11 
F-stat of White Test 5.72 3.22 
t-stat of RESET Test -0.54 0.11 

Note: ctAy =  in both models 
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On the other hand, the results from the linear model are more sensible20. Based on the 

linear model, the short run income elasticity is 0.14 and running cost elasticity is -0.17 

for mid-income household; the corresponding long run elasticity is 0.17 for income and 

-0.2 for running cost. Compared to the income elasticity of 0.43 (also for mid-income 

household) derived from the static linear model, both the short run and long run 

elasticities are much lower21. In general, the elasticities derived from the dynamic 

model are lower than the ones estimated by Dargay and Vythoulkas (1999), especially 

the long run elasticities. This is largely due to the much smaller coefficient for the 

lagged dependant variable (LDV) in the current work. The explanation and implication 

of small LDV coefficient will be further explored in the next sub-section. 

 

The coefficients for the variables of ‘Age’ and ‘Age Square’ are positive and negative 

respectively, indicating a peak in the life cycle of car ownership. Regarding the 

coefficients of household structure and location variables, they are not very different 

from those estimated by the static model, so no further discussion is presented here.   

 

5.2.2 Assuming Linear Economic Relationship at Cohort Level 

As discussed in the previous chapter, there are theoretical and practical problems in 

assuming a linear economic relationship of car ownership and explanatory variables for 

each individual household. Theoretically, it is unrealistic to assume car ownership 

growth is linear at household level and this assumption is particularly problematic in 

the dynamic setting. This is because for individual household, the increase of car 

ownership level is not linear, and the relationship between the past and current car 

ownership can not be simply measured by a constant parameter. The empirical results 

reported earlier do not support the assumption of a linear relation at household level. 

Furthermore, we can not directly forecast future values of the explanatory variables if 

the log transformation is done before averaging into cohorts so such a model becomes 

useless for forecasting purpose. 

                                                 

20  As it does not involve any log transformation, linear model can be used to describe economic 
relationship at either individual household level or cohort level. No distinction can be made between 
these interpretations and the linear model results are discussed here purely for convenience of 
presentation. 
21 For the dynamic model, the coefficient for purchasing price variable is not significant so no reliable 
elasticity can be derived; for static model, the coefficient for running cost variable is not significant. As a 
result, comparison is only done for income elasticity.  
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Alternatively, we can view the economic relationship between car ownership and the 

explanatory variables as linear at cohort level. In this case, the transformation (log, 

square, etc) of variables should be done on cohort average. As discussed in the 

previous chapter, there are some advantages of weighting all the variables by the 

square root of the sample size of each cohort, as the observations in the synthetic panel 

that are more accurately measured will be assigned a greater weight. As a result, 

similar weighting is done for the dynamic model. 

 

5.2.2.1 Specification Search 

The specification search is similar to that described in the previous section, although 

we also investigate models with double log functional form here. The coefficient for 

the CHILD variable (average number of children) is consistently negative and 

significant, which is opposite to expectation. The coefficient for the WORKER 

variable (average number of person in work) is positive but not significant for all linear 

and semi-log linear models; for all double log models, it is negative and significant. 

However, the double log models with CHILD, WORKER and HHSIZE as household 

structure variables could be mis-specified according to the RESET test. On the other 

hand, using the split of household types as explanatory variables produces more 

satisfactory results. Regarding the household location variables, the more detailed 

breakdown of location type does not offer additional explanatory power to the model 

with only the AREA5 variable (proportion living in the least populated rural area) 

being significant. Consequently, the compressed location variables are chosen in the 

preferred model. 

 

For the models with the preferred form of household type and location variables, the 

difference between those with different functional forms (linear, semi log and double 

log) is more subtle. All models have high adjusted R square, and none of the RESET 

test rejects the hypothesis of no misspecification. The Durbin-Watson statistic is very 

close to 2 for all models, which does not indicate the presence of autocorrelation. 

However, the White test rejects the hypothesis of homoskedasticity for all models, 

which will be addressed later. 

 

Similar to the static model, the sign and magnitude of the regression coefficients are 

used as additional criteria to determine the model of best fit. The household structure 
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and location variables are the same for all three models, and their coefficients are very 

similar for the linear and semi-log models (and comparable for the double log model). 

None of the coefficients of the purchase price elasticity are significant at 10% level, so 

no reliable conclusion can be made about the price elasticity. The income and running 

cost elasticities, as implied by models of different functional forms, are different. Table 

5.2 and 5.3 compare the short run and long run elasticities implied by the three models. 

Table 5-2 Short Run and Long Run Income Elasticity 

Short Run Long Run Income / 
Car Linear Semi-Log Dbl-Log Linear Semi-Log Dbl-Log 
Low 0.173 0.394 0.225 0.203 0.460 0.316 
Middle 0.141 0.181 0.225 0.165 0.211 0.316 
High 0.145 0.133 0.225 0.171 0.155 0.316 

 

Table 5-3 Short Run and Long Run Running Cost Elasticity 

Short Run Long Run 
Car 

Linear Semi-Log Dbl-Log Linear Semi-Log Dbl-Log 

Low -0.371 -0.309 -0.067 -0.436 -0.360 -0.095 

Middle -0.170 -0.141 -0.067 -0.200 -0.165 -0.095 

High -0.125 -0.104 -0.067 -0.147 -0.121 -0.095 

Note:  1. Low, middle and high real disposable income are 172, 306 and 430 pound per week 
respectively; low, middle and high car ownership level are 0.42, 0.92 and 1.25 cars per household 
respectively. 
 2. The running cost elasticity is based on a constant cost index of 100 (1995 level); 
 3. The coefficient of running cost variable is not significant for the double log model, and hence 
the corresponding elasticity is in italic.  
 

In the double log model, the income and running cost elasticities are constant for 

families with variable income/car ownership level. This is a characteristic of the double 

log model and could be problematic for car ownership models, where the income 

elasticity is known to decline with income and “saturation” is observed in mature car 

markets such as the UK. Consequently, the double log model is regarded as 

inappropriate form. The income elasticities implied by the linear model are low and 

similar cross household with various income and car ownership level; meanwhile, the 

running cost elasticity is much higher than the income elasticity for low car ownership 

households and declines rapidly with car ownership level. Regarding the semi-log 

model, the income elasticity declines rapidly with car ownership level, and the running 

cost elasticities are always lower than the income elasticities by a consistent proportion. 

Overall, the income and price elasticity implied by the semi-log model seem more 

sensible so the semi-log model is selected as the preferred model. 
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As mentioned above, White test detects presence of heteroskedasticity in all models 

with different functional forms. Further examination of the residual identifies that one 

observation has particularly high prediction error. Figure 5.1 shows the residual plot of 

the semi-log model with the preferred household structure and location variables. 

Figure 5-1 Residual Plot of Semi-Log Model with outlier 
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Note: X-axis is ordered by year for each cohort 

Figure 5-2 Identifying outlier for cohort 9 in year 1999 
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The outlier is the observation for cohort 9 (household heads born between 1941 and 

1945) in 1999. The real weekly disposable income increased from £415 in the previous 

year to £433 and then suddenly dropped to £367 in the following year; on the other 



 88 

hand, the car ownership level dropped from 1.36 cars per household in 1998 to 1.19 

cars and then increased to 1.23 cars. Figure 5.2 illustrates the unexpected change of 

income and car ownership level for cohort 9 in 1999.  

 

In the dynamic model, the outlier can not be simply excluded, since that will upset the 

dynamic relationship. As a result, a new dummy variable “OUT”, which takes the 

value of 1 for the outlier and 0 for other observations, was added to the model. The 

coefficient of the “OUT” variable measures the prediction error for this observation. 

The likelihood ratio test produces a Chi Square statistic of 21.7, which strongly 

suggests the increased level of fit with the additional variable. When the model is re-

estimated, the coefficient for the purchase price variable is wrong signed and not 

significant. As a result, the purchase price variable is dropped from the model.  

 

5.2.2.2 Results of the Preferred Models 

The specification search identifies the most suitable functional form and explanatory 

variables. It is also discovered that there is a strong linear trend in fixed cohort effects, 

similar to the static model. As a result, a restricted model is estimated, where the cohort 

dummy variables are replaced by a variable of cohort ID. Table 5.4 reports the results 

of the unrestricted and restricted fixed effect model with the semi-log functional form. 

 

The likelihood ratio test leads to a chi square statistic of 54.3, which strongly favour 

the unrestricted fixed effect model. The RESET test rejects the hypothesis of no 

misspecification for the restricted FE model, and the coefficient of the log purchase 

price variable is significant and with wrong sign. On the other hand, the RESET test 

does not indicate misspecification for the unrestricted FE model. Its residual plot 

(Figure 5.3) does not show any apparent misspecification. 

 

The coefficient of the lagged dependent variable (LDV) in the unrestrictive fixed effect 

model is 0.19. Based on the structure of exponentially distributed lag, the implied 

adjustment speed is 81% in one year and the full adjustment takes mere four years 

(99.9%). Why is the adjustment speed here is much higher than that reported in Dargay 

and Vythoulkas (1999)? To understand the impacts of model specification on the 

coefficient of LDV, we report the results from 4 comparable models in Table 5-5. 
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Table 5-4 Unrestricted and restricted fixed effect model (semi log form) 

 Unrestricted FE Restricted FE 
  Coeff t-ratio Coeff t-ratio 

Constant     -2.7679 -4.08 
CAR [-1] 0.1889 5.29 0.2903 7.79 
LNINC 0.1894 4.20 0.2336 4.88 
HH2 -0.1090 -0.60 -0.4286 -2.43 
HH3 -0.3393 -1.35 -0.6618 -3.19 
HH4 0.4702 3.31 0.2035 1.40 
HH5 0.4802 2.78 0.1222 0.70 
HH6 0.5201 3.65 0.2497 1.72 
HH7 0.9149 5.14 0.5430 3.00 
HH8 0.7286 4.31 0.4493 2.66 
MET -0.1612 -1.61 -0.3184 -3.14 
RURAL 0.1942 1.84 0.2637 2.36 
LNPRICE     0.1788 2.27 
LNRUNCST -0.0958 -2.08 -0.0235 -0.43 
AGE 0.0306 7.29 0.0173 5.02 
AGSQ -0.0002 -4.53 -0.00005 -1.41 
COHORT     0.0694 8.22 
C1 -1.7403 -4.91     
C2 -1.6816 -4.79     
C3 -1.6537 -4.67     
C4 -1.5985 -4.47     
C5 -1.5547 -4.30     
C6 -1.4920 -4.08     
C7 -1.4019 -3.80     
C8 -1.3214 -3.56     
C9 -1.2043 -3.22     
C10 -1.1352 -3.00     
C11 -1.0751 -2.81     
C12 -1.0067 -2.60     
C13 -0.9314 -2.38     
C14 -0.8541 -2.16     
C15 -0.8214 -2.04     
C16 -0.8104 -2.00     
OUT -0.1554 -4.44 -0.1559 -4.19 

Adjusted R2 0.994 0.993 
SSE 103.78 130.44 
Log Likelihood -238.94 -266.15 
DW stat 2.05 1.88 
t-Stat of RESET test -0.23 2.03 

Note: ctAy =  in both models 

 

Table 5-5 Model Specification and LDV Coefficient 

 Fixed Effect Restrictive FE Rst FE, 
HH_Var * 3 

Rst FE, HH_Var * 3, 
no Age, AgSq 

Adjusted R2 0.994 0.993 0.992 0.991 
LDV Coeff 0.19 0.29 0.34 0.44 
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Figure 5-3 Residual Plot of the unrestricted fixed effect model 

Residuals.  Bars mark mean res. and +/- 2s(e)
Observ.# 

-1

0

1

2

-2
48 96 144 192 2400

Residual 
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Comparing the 4 models in Table 5-5, one can see that while the goodness of fit gets 

worse, the coefficient for the LDV increases. The first two models are those reported in 

Table 5-4. The larger LDV coefficient in the restrictive model might be a reflection of 

uncontrolled cohort heterogeneity. This interpretation is an analogy to the phenomenon 

of ‘spurious state dependence’ in the discrete choice model to be discussed in Chapter 

7. The difference between the second and the third model lies in the form of household 

characteristic variables. When the average number of children, people in work and 

household size are used as explanatory variables (rather than split of 8 household 

types), the LDV coefficient goes up again. In the fourth model, when the variables of 

‘Age’ and “AgSq’ are dropped and the resulting specification is similar to Dargay and 

Vythoulkas (1999), the LDV coefficient becomes close to their figures. Actually, their 

original estimates seem to have substantial upward bias due to omission of relevant 

variables or other mis-specifications, as the more general models in Dargay (2001) and 

Dargay (2002), which consider more flexible functional form, segmentation of 

explanatory variables and unrestrictive cohort effects, produce much smaller 

coefficient for LDV. 

 

Returning to the unrestricted fixed effect model in Table 5-4, the coefficients for the 

log income and log running costs variables are significant and of expected sign. The 

implied income elasticity and running cost elasticity are comparable to those from the 
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corresponding static model (the coefficient of purchasing price variable is not 

significant in both models). Table 5.6 compares the short run and long run elasticities 

from the dynamic model with elasticities from the static model. 

Table 5-6 Comparison of elasticities (dynamic and static unrestricted FE models) 

Income Elasticity Running Cost Elasticity 
Car Dynamic 

SR 
Dynamic 
LR 

Static 
Dynamic 
SR 

Dynamic 
LR 

Static 

Low 0.461 0.569 0.560 -0.228 -0.281 -0.339 
Middle 0.211 0.261 0.256 -0.104 -0.129 -0.155 
High 0.155 0.191 0.188 -0.077 -0.095 -0.114 

 

The coefficients of the household structure variables, location variables, and second 

polynomial of the age of household head variables are all comparable to those of the 

static model. All the coefficients for the proportion of households with two or more 

adults are positive and significant. According to the model, for example, if the 

proportion of households with three or more adults but no children (Household type 7) 

increases by 1%22, the average number of cars per household would increase by 0.0091 

for that cohort; similarly, if the proportion of households with three or more adults plus 

children (Household type 8) increases by 1%, the average number of car would 

increase by 0.0073. The parameter for the proportion of living in metropolitan area is 

negative (although not significant), and that for the proportion of living in the least 

populated rural area is positive. The value of the coefficient suggests that a 1% increase 

of households living in the least populated rural area would increase the average car 

number by 0.0019 per household in the cohort. 

 

5.2.2.3 Alternative Model Specification and Estimation 

Similar to the static models, we also test a set of random effect models. While the 

Hausman’s Test indicates preference to the fixed effect model in only about half of the 

models estimated, the RESET test rejects the hypothesis of no misspecification in 

almost all models. This is likely to be caused by the correlation between the 

explanatory variables and the cohort effects, which would violate the orthogonality 

assumption of the random effect model. 

 

                                                 

22 This implies the proportion of single working household decreases by 1%. 
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We also investigate the hypothesis of homogeneity by estimating cohort specific 

models. Due to insufficient number of observations, the youngest and two oldest 

cohorts have to be dropped. To save degrees of freedom, the household structure 

variables are average number of children and household size, and compressed location 

variables are used. Then, the models are estimated for each of the 13 cohorts separately. 

The results are unsatisfactory, as the majority of the coefficients are not significant 

even at 10% level. It is unlikely that we are able to make reliable inference on elasticity 

or to make forecasts based on these models.   

 

Finally, we investigate the robustness of the estimation using the parametric bootstrap 

technique, which is implemented in four steps. First, the unrestricted fixed effect model 

in semi-log form (as reported in Table 5.4) was estimated, and the predicted value tcA ,
ˆ  

was saved. Second, a series of random number W was generated with zero mean and 

standard deviation of 0.65, which are the approximate moments of the residual from 

the model estimated in step one. Third, the model is re-estimated with a simulated 

dependent variable wAA tc

S

tc += ,,
ˆ , where w are random draws from W. It should be 

noted that for the first observation in each cohort, the simulated variable is 

wAA tc

S

tc += 0,0, , where tocA ,  is the “observed” value in the pseudo panel dataset rather 

than the predicted value 23 . Finally, step three is repeated 1000 times and the 

coefficients estimated from each run are saved for further analysis. 

 

In general, the coefficients estimated using “observed” dependent variable are 

consistent with those based on simulation. Figure 5.4 plots the distribution of the 

simulated coefficients for the log income variable, compared with the value of the 

coefficient estimated based on “real” data. The latter is close to the centre of the bell 

shape distribution, which shows that the initial estimate is broadly unbiased. 

 

Figure 5.5 shows the distribution of the simulated coefficient for the log running costs 

variable as well as the point estimate based on observed data. Similar to above, the 

                                                 

23 
S

tcA 0,  is only used as lagged dependent variable (regressor).  
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latter is very close to the centre of the simulated distribution. This also confirms the 

unbiasedness of the point estimate coefficient for the log running cost variable. 

Figure 5-4 Log Income Variable: distribution of the simulated coefficients and point 

estimate based on real data 
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Figure 5-5 Log Running Cost Variable: distribution of the simulated coefficients and point 

estimate based on real data 

Log Running Costs: Distribution of simulated coefficients & point 

estimate based on real data
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Figure 5.6 compares the “most likely” fixed effects from simulation and the point 

estimate based on observed data. To obtain the “most likely” simulated coefficient, we 

divide the 1000 parameter values obtained from simulation into 31 ranges, and 

determine the “most likely” range, which is the one with the most occurrences. The 

mid-point of the “most likely” range becomes the representative simulated fixed effect. 

Figure 5.6 shows the point estimates based on real data are quite close to the “most 
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likely” simulated values expect for the youngest cohort. As discussed before (and in the 

literature, e.g. Dargay and Vythoulkas, 1999), the linear trend in the fixed effect 

become less clear for the youngest cohort, and this effect seems to be amplified with 

the simulated data. 

Figure 5-6 “Most Likely” fixed effects from simulation and point estimate from real data 
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5.3 Conclusion 

In this chapter, we first investigate the theoretical aspects of the dynamic pseudo panel. 

Two types of consistent estimators have been discussed: one based on cohort average 

and the other based on individual survey data. Regarding the former, we review the 

Error Corrected Within-Group Estimator, consistent when ∞→T , and the Error 

Corrected GMM Estimator, consistent when the number of cohort is large ( ∞→C ), 

both of which were proposed by Collado (1997). We also present a Within-Group 

Estimator, which is computationally attractive and consistent when the number of 

sample observation is large for each cohort unit ( ∞→ctn ). Certain rank conditions 

have to be satisfied for identification, which requires the cohort means of the dependent 

and independent variables should not exhibit perfect collinearity and vary over time. It 

is also required that there are at least three cross sections for the model to be identified.  

 

Regarding the estimators based on data at individual level, we review the Two-Stage 

Least Square Estimator by Moffitt (1993) and the GMM Estimator of Quasi-
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Differences model by Girma (2004). Both approaches involve noisy approximation of 

the lagged dependent variable. Although such noise would cancel out asymptotically, 

its impacts on practical application might be severe. In another word, their usefulness 

in empirical work would be limited. 

 

The second part of this chapter reports the empirical work on dynamic car ownership 

model. As the pseudo panel is a synthetic panel constructed from individual survey 

data, we can assume a linear economic relationship between the car ownership level 

and various explanatory variables either at individual household level or at cohort level. 

Consequently, separate sets of the specification search have been carried out to 

determine the model with best fit under each assumption.  

 

Assuming a linear economic relationship between the dependent variable and the 

regressors for each household requires the transformation (log, square, etc.) of 

individual survey data before obtaining cohort average. However, the empirical results 

from the semi-log models show various problems including a very low coefficient for 

the lagged dependent variable, coefficients with wrong sign for motoring cost variables 

and wrong trend in fixed effects across cohorts. These problems reinforce the idea that 

it is not appropriate to view the relationship between car ownership and explanatory 

variables as linear for each individual household, especially when the regressors 

include a lagged dependant variable. This is because for individual household, the 

relationship between past and current car ownership level is unlikely to remain constant 

over time.  

 

Alternatively, we assume that the economic relationship is linear at cohort level. A 

number of models have been estimated, with different explanatory variables, functional 

forms and representation of cohort effects. Systematic specification search has been 

carried out, and an un-restrictive fixed effect model in semi-log form is found to have 

the best goodness of fit. The implied long run income elasticity is 0.57, 0.26 and 0.19 

for households with low, middle and high car ownership level; the implied long run 

running cost elasticity is -0.28, -0.13 and -0.10 respectively, which all appear to be 

sensible. To check the robustness of the estimation, the preferred model is re-estimated 

using parametric bootstrap technique, and the distributions of the simulated coefficients 

confirm the unbiasedness of the point estimates obtained using the pseudo panel data.  
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Chapter 4 and 5 thoroughly investigate the static and dynamic car ownership model 

with linear (or generalised linear) form. The models with the best fit will be used for 

forecast at a later stage. The next two chapters will investigate the car ownership 

models with non-linear form.  
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Chapter 6 Random Utility Model of Pseudo Panel 

In demand forecasting, the presence of non-linearity could have significant effects on 

the accuracy of the forecast results. In the previous chapters, the misspecification tests 

do not appear to reject the hypothesis of linearity for many of the estimated models. 

However, this does not preclude further investigation on nonlinear pseudo panel 

models. Nonlinear pseudo panel models can take the functional form of Logit, Probit or 

other forms of discrete choice model, while the underlying data are average 

characteristics of the cohort sample. As a result, it becomes possible to investigate the 

impact of dynamics and saturation within a single modelling framework. Such models 

can be regarded as a “third way” of analysing repeated cross section data, presenting 

advantages over the linear pseudo panel models and the cross sectional discrete choice 

models.  

 

This chapter is organised as follows: section one introduces the nonlinear pseudo panel 

model and discusses its advantage and disadvantage by comparing it to the linear 

pseudo panel model and cross sectional model. Section two develops a random utility 

model of pseudo panel and as an application, a hierarchical car ownership model. 

Section three discusses the consistent estimation of the discrete choice pseudo panel 

model including models with fixed effect and random effect, drawing from a growing 

econometric literature on nonlinear (genuine) panel model. Section four reports the 

empirical results for the car ownership model, although limited to static models of 

various forms. Dynamic models and models with saturation will be discussed in the 

following chapter. 

 

6.1 Pros and Cons of Nonlinear Pseudo Panel Models 

As the pseudo panel model is based on the cohort average data, it normally has linear 

form. For models of durable goods or other discrete choice, linear pseudo panel would 

be regarded as an approximation of economic relationship at (cohort) aggregate level. 

While such an approximation appears to be sufficient in most empirical studies, it 

could be beneficial to extend the pseudo panel technique to a discrete choice model. In 

this section, we will discuss the pros and cons of nonlinear (more specifically, discrete 

choice) pseudo panel model and argue for its potential as an effective “third way” in 
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modelling and forecasting using repeated cross sectional data. First, comparison will be 

made between nonlinear and linear pseudo panel models, evaluating the advantage and 

disadvantage of each approach. Then similar comparison is made between nonlinear 

pseudo panel and cross sectional models.  

 

6.1.1 Nonlinear and Linear Pseudo Panel Models 

In the literature of durable goods, saturation is an important concept. It is a limit on the 

choices faced by decision maker, which may be reached but not exceeded. In the linear 

pseudo panel model, saturation can only be implicitly handled by choosing the 

appropriate functional form, e.g. in semi-log models the elasticity declines with the rise 

of income. On the other hand, the impact of saturation can be explicitly considered and 

estimated, and its statistical significance can also be examined in nonlinear pseudo 

panel models. By specifying car ownership models with an S-shape functional form 

and a saturation level, forecasts of vehicle ownership will be curtailed as saturation is 

approached. Although probably not being significant in developing countries, this 

feature would be highly significant to forecasts in more mature passenger car markets 

such as Great Britain (Whelan et al, 2000). 

 

In chapter 4, we discuss the problem of interpreting the Weighted Least Square 

Estimator as the Instrumental Variable estimator of individual household data. In that 

case, the number of cars owned or used by the household is treated as a continuous 

variable, which is inconsistent with consumer’s utility maximization behaviour on 

durable goods. Alternatively, the linear pseudo panel model can be interpreted as an 

aggregate model, with the cohort average as the unit of observation. In that case, this 

model becomes detached from the microeconomic theory of utility maximization.  

 

On the other hand, nonlinear pseudo panel models can be specified within the 

framework of the Random Utility model, thus ensuring their consistency with the 

economic theory. As will be shown in the following section, the utility function of car 

ownership can be specified as a deterministic term based on the mean sample 

characteristics of households in each cohort plus various random components. In this 

way, the model would be based on economic theory rather than aggregate empirical 

functions. 
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The nonlinear pseudo panel model also has its shortcomings. Firstly, the fixed effect 

models suffer the “incidental parameter” problem and can not be consistently estimated 

using linear panel model’s demeaning technique. This is a problem suffered by 

nonlinear panel model in general and will be discussed in more details later in this 

chapter. Secondly, the incidental parameter problem is complicated by the 

measurement error problem, making it difficult to establish the consistency conditions 

under various asymptotics. Unlike the linear models, where the theory is relatively well 

developed (see Chapter 4 and 5 for detailed reviews), there are no theoretical studies on 

nonlinear pseudo panel models to the author’s knowledge. Thirdly, for empirical work, 

only some basic models can be estimated using commercial econometric packages, 

while more advanced models such as random parameter logit models (also called 

mixed logit models) are beyond the reach of readily available software. The current 

study is the first attempt to address some of these issues, although further research into 

various theoretical and empirical aspects of nonlinear pseudo panel models is likely to 

produce more fruitful results.  

 

6.1.2 Pseudo Panel and Cross Sectional Models  

After comparing the nonlinear pseudo panel model with its linear counterpart, we make 

a similar comparison to the cross sectional discrete choice models. As modelling “third 

way”, nonlinear pseudo panel model also has two advantages over cross sectional 

models. The first is the inclusion of dynamics in modelling and the second is effective 

tackling of the aggregation bias problem. 

 

The static cross sectional models rely on the assumption of equilibrium, which in 

practice is the exception rather than norm. The disequilibrium status might be revealed 

by the instability of cross sections, i.e. different parameter estimates are obtained using 

cross sectional data in different years. If we believe that each cross sectional sample is 

representative of the population and long run equilibrium exists, then the cross 

sectional instability can be explained by the divergence of each cross section from such 

equilibrium. As the divergence depends on the determining factors in the current and 

previous periods, the degree of disequilibrium will vary between years, so will the 

parameter estimates (Dargay and Vythoulkas, 1999).  
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When the cross sectional data are not in equilibrium, it can no longer be assumed that 

such data capture the long run relationship24 , and the model based on them will 

produce biased estimates of long run parameters. When these biased parameters are 

used for policy analysis, it can lead to wrong conclusions; when they are used in 

forecasts, it can lead to biased results. However, all these problems could be tackled in 

the pseudo panel setting, where the dynamic effects can be explicitly quantified and 

analyzed. In a dynamic model, it is possible to examine the significance of the lagged 

effects, the speed of adjustment, the extent of asymmetry25, etc. Long-run as well as 

short run elasticity, which has significant policy and practical importance, can be 

obtained from dynamic models. The unbiased parameters derived from the dynamic 

models could in theory improve the performance of the forecasting models as well.  

 

Another potential advantage of nonlinear pseudo panel model relates to the choice of 

aggregate and disaggregate model. In many practical applications, including car 

ownership forecasts in the current study, the subject of interest is the aggregate 

statistics. Traditionally, there are two approaches to obtain aggregate measures such as 

market shares from data at individual level, i.e. aggregating individual data either 

before or after model estimation. Various classical aggregate models belong to the first 

approach, which are subject to various criticisms including inefficiency in the use of 

data, not accounting for full data variability and the risk of statistical distortion such as 

ecological fallacy (Ortuzar and Willumsen, 2001). Although the second approach 

addresses most of these criticisms, the difficult question of how to perform aggregation 

based on micro relations remains. 

 

The simplest method, naïve aggregation of the discrete choice model, uses average 

characteristics of the individual (household) to forecast the aggregate choice 

probability or market share. It is well known that such an approach gives biased results, 

and consequently, a number of alternative approaches have been proposed (Ben-Akiva 

and Lerman, 1985; Ortruza and Williamsum, 2001; Whelan, 2003). Among them, the 

most robust approach is sample enumeration, where the choice probability of each 

individual is averaged over all observations within the sample. If the sample is 

                                                 

24 Except for some very special cases, e.g. homogenous cointegration between variables at the individual 
level (Madsen, 2005).  
25 A notable example on car ownership is Dargay (2001).  
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representative of the population, this approach will give unbiased estimate of the 

aggregate estimate. However, it encounters difficulties in the long term when the 

distribution of attributes in the population will be different from the base year sample. 

In this case, the base year sample needs to be adjusted so that it can be considered 

representative. Daly and Gunn (1985) proposed a method called prototypical sample 

enumeration, which involves creating an artificial sample with the same aggregate 

characteristics of those forecasted by planners (e.g. age and sex distribution of the 

populations). Another method of aggregation is the classification approach, i.e. 

classifying the sample into homogeneous groups and using group average 

characteristics as input to the discrete choice model. The accuracy of this method 

depends on the number of classes and their selection criteria, and good methods of 

defining the classes were suggested by McFadden and Reid (1975). Nevertheless, this 

method still involves using average characteristics as input to the disaggregate model 

and some degree of aggregation is inevitable. 

 

The nonlinear pseudo panel model is the “third way” in obtaining aggregate statistics 

from data at individual level. Individual data are aggregated into homogenous groups 

(cohorts), and the models are estimated using average characteristics of the cohort 

sample. As a result, the empirical model describes the economic relationship between 

the observed share of choices and explanatory variables at the cohort level. The 

probability of (cohort) decision-makers making a certain choice, when estimated based 

on such a model, would give an unbiased estimate of the market share for that choice26. 

Moreover, the explanatory variables are cohort average characteristics that could be 

directly derived from published planning statistics, thus avoiding the need for more 

complicated procedures such as prototypical sample enumeration at the forecasting 

stage. This feature would make nonlinear pseudo panel particularly attractive for long 

term forecasting based on cross sectional data. For longer term forecasts, Daly and 

Ortuzar (1990) conclude that the use of more aggregate data tend to have more 

favorable cost/accuracy trade-off; the discussion here suggests that using pseudo panel 

data has the potential of actually improving the forecast accuracy. 

 

                                                 

26  For multinomial logit model whose utility function includes a constant term, this result directly 
follows the first order condition of the log likelihood function.  



 102 

Nevertheless, the aggregation of cross sectional data into cohorts thus reduces the 

variability of the data, a similar criticism suffered by the aggregate models. For car 

ownership model, it might cause difficulty in the estimation of saturation levels 

(although it is not the case for the current study). Furthermore, the information on 

individual decision makers will be lost after aggregation, and only the average 

characteristics of cohort sample remain observable. The discrete choice pseudo panel 

model would have a composite error term, which makes the model parameters 

estimated on pseudo panel data not directly comparable to those estimated on 

individual data due to the different scale. This issue will become apparent in the 

discussion of the random utility model in the next section. Generally speaking, one 

should probably be more cautious in using nonlinear pseudo panel models as analytical 

tools, as whether the various disadvantages are outweighed by the inclusion of 

dynamics remains to be seen.  

 

We summarise the above discussions in Table 6.1, highlighting the advantage and 

disadvantage of nonlinear pseudo panel models compared with the linear models and 

cross sectional models. 

 

Table 6-1 Advantage and Disadvantage of nonlinear pseudo panel model 

 Vs. Linear Pseudo Panel Model Vs. Cross Sectional Model 

Advantage •  Explicitly modelling and 
estimating saturation level; 

•  Consistent with theory of 
utility maximization; 

•  Consideration of dynamics in 
modelling; 

•  Effective tackling of 
aggregation bias problem; 

Disadvantage •  Bias in the Fixed Effect 
Estimator; 

•  Lack of ready-made software 
for advanced models; 

•  Reduction of data variability; 

•  Loss of information on 
individual decision makers; 

 

 

6.2 A Random Utility Model of Car Ownership 

In the previous section, we present the nonlinear pseudo panel as a “third way” 

between its linear counterpart and cross sectional discrete choice model. However, to 

the best of our knowledge, there is no previous application of this method. One 

possible explanation is the perceived contradiction between the disaggregate nature of 

the discrete choice model and the fact that pseudo panel is aggregated from cohort 
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sample. In this case, it is tempting to conclude that pseudo panel is an aggregate model 

so the use of discrete choice method is not appropriate. Such belief seems misguided. 

 

In this section a simple Random Utility Model will be presented. We start from a 

general random utility model for pseudo panel; then proceed to the car ownership 

model in terms of model structure and specification of utility function; and finally we 

discuss the estimation of such model. It should be noted that the model presented here 

is in a general form without explicit consideration of dynamics, which will be 

discussed in the next chapter.  

 

6.2.1 Random Utility Model of Pseudo Panel 

The concept of utility was initially introduced by the neoclassical economic theory of 

consumers. The consumer is assumed to have preferences on all the possible 

alternatives a, b… (consumption bundles in the neoclassical literature) in the choice 

(consumption) set A. We note ba� if a is at least as good as b. Assuming that 

preferences are complete, reflexive, transitive, continuous and strongly monotonic, 

then there exists a continuous utility function U, which represents those preferences 

(detailed discussion of these assumptions can be found in Varian, 1992): 

)()( bUaUba ≥⇔�   Aba ∈∀ ,    (1) 

 

Because the choice set A is finite, there must exist an alternative a
*, which is most 

preferred to (or as good as) the rest of them: 

)()( **
aUaUaa ≥⇔�  Aa ∈∀    (2) 

 

So the most preferred alternative a* is identified by: 

)(maxarg* aUa
Ca∈

=       (3) 

 

In the neoclassical setting, the preference maximization problem is defined subject to a 

budget constraint and the solution exists when the utility function is continuous and the 

constraint set is closed and bounded. However, the strong assumptions required by the 

neoclassical economic theory severely limit its practical application. The complexity of 

human behaviour suggests that a choice model should explicitly capture some level of 
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uncertainty. The Random Utility Model inherits the deterministic decision rules from 

the neoclassical economic theory, while capturing uncertainty by the random 

components of the utilities (Bierlaire, 1998). 

 

The random utility model makes precise distinction between the behaviour of the 

decision maker and the analysis of the researchers. It assumes that the decision-makers 

have a perfect discrimination capability; however, the researcher does not have 

complete information about all the elements considered by the individual making a 

choice. Therefore, the utility Ua,it, which individual i associates with alternative a in 

year t, can be decomposed into two parts27: 

itaitaita VU ,,, ε+=      (4) 

where Va,it is the deterministic and observable part, which is a function of the measured 

attributes; and �a,it is the stochastic part, capturing the uncertainty, which reflects 

unobserved alternative attributes, unobserved taste variation and measurement errors 

made by the researcher.  

 

In the pseudo panel setting, the deterministic part of the utility of the decision-maker 

(Va,it) can be further decomposed into three terms: ciVV itactactaita ∈∀++= ,,,,, θη , 

among which only the first component is observable. After the individuals are 

aggregated into cohorts, the researcher can only observe the average deterministic 

utility of all sampled individuals in cohort c in year t, ctaV , ; on the other hand, 

measurement error of true mean utility for the cohort ( cta ,η ), and the deviation from the 

cohort mean utility ( ita,θ ) are unobservable to the researcher. Furthermore, we assume 

that the random term ita ,ε  has a component of variance structure: 

ciitacaita ∈∀′+= ,,,, ελε . As a result, expression (4), the utility of individual i in cohort 

c year t choosing alternative a, can then be rewritten as: 

itacaitactactaita VU ,,,,,, ελθη ′++++=      (5) 

 

                                                 

27 We directly start from a panel data model and introduce a time dimension accordingly.  
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where: 

∑
=

∈=
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i
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ct

cta ciV
n

V
1

,, ,
1

, which is the sample mean observable utility of alternative a for 

cohort c in year t. Note that nct is the sample size of cohort c in year t; 

ctactacta VV ,

*

,, −=η , representing the measurement error. It is the difference between the 

sample mean utility and the (unobservable) true mean utility of alternative a for cohort 

c in year t ( ∑
=

∈=
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i
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c

cta ciV
N

V
1

,

*

, ,
1

)28; 

ita,θ  represents the unobserved utility of alternative a for individual i in year t, which is 

the deviation from the mean utility for the cohort. Ignoring measurement errors then 

ita,θ  is observable to researchers in the cross-sectional models and is “lost” in the 

aggregation process of pseudo panel; 

ca,λ  is the (time-invariant) unobserved heterogeneity, which includes alternative 

specific constants and cohort fixed (random) effects. It is assumed to be distributed 

independently of ita,ε ′ ; 

Finally, the last term in (5), ita,ε ′  accounts for the randomness besides heterogeneity, 

which we assume to be independently identically distributed with mean zero and 

variance 2. 

 

The derivation of choice probability for the discrete choice model of pseudo panel will 

be similar to the standard random utility model. The probability of individual i 

choosing alternative a is equivalent to the probability that the utility of alternative a is 

higher than that of any other alternatives:  

abAbUUP itbitaita ≠∈∀>= ,),(Prob ,,,    (6) 

 

Substituting (5) into (6), we have: 

abAbVVobP itbcbitbctbctbitacaitactactaita ≠∈∀′++++>′++++= ,),(Pr ,,,,,,,,,,, ελθηελθη
       (7) 

                                                 

28 Note that while cohort sample changes year by year, the cohort population remains fixed over time if 
cohorts are defined based on time-invariant variables and we assume total population is close, i.e. there 
is no birth or death and cohort size Nc remains constant over time. 
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Equation (7) is a general probability model of discrete choice pseudo panel, and its 

estimation remains a problem. The first issue to confront is the measurement error 

problem with pseudo panel. For linear model, various error-in-variable estimators have 

been proposed in the literature. However, their application in empirical work is quite 

complex and such problem is likely to be greater for non-linear model. As a result, here 

we only consider (7) under the most common asymptotic in empirical studies: ∞→ctn , 

i.e. the sample size is sufficiently large for each cohort. In this case, the measurement 

error converges in probability to zero: 

0Plim , =
∞→ cta

nct

η  

 

As in the case of linear pseudo panel, the measurement error is asymptotic zero when 

the number of sample observations nct is sufficiently large for each cohort c in year t. 

This condition is likely to be met in the current study, and by ignoring the measurement 

error cta ,η , the dimension of integral required to solve (7) is reduced.  

 

Second, we aggregate the two random terms ita,θ  and ita,ε ′ , and consider their sum as a 

new composite random variable: itaitaitae ,,, εθ ′+= . These two random terms are both 

unobservable to the researcher and while they represent different source of randomness, 

they are empirically indistinguishable in the pseudo panel setting. Consequently, these 

two sources of uncertainty have to be combined, which further reduces the dimension 

of integral required to solve (7). However, it follows that the stochastic part of utility is 

different between discrete choice models based on pseudo panel and those based on 

individual data, and hence the parameters estimates are not directly comparable 

between them.  

 

At this stage, it is not possible to make a general assumption about the unobserved 

heterogeneity ca,λ , as the appropriateness of such assumption will depend on the 

relationship between ca,λ  and the observed deterministic utility component ctaV , .  

Conditional on the unobserved heterogeneity ca,λ , the cumulative distribution of the 

aggregated random term itae ,  would determine the probability model ( ca,λ  need to be 
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integrated out, estimated, or tackled using some semi-parametric techniques at a later 

stage). Rearranging the terms in (7), the probability function can be expressed as: 

abAbVVeeobP cbctbcactaitaitbita ≠∈∀+−++<= ,)],()([Pr ,,,,,,, λλ  (8) 

 

Note the distribution of the residuals e by ),...,()( 1 neefef =  expression (8) can be 

written more precisely as: 

deefP
nR

ita )(, ∫=        (9) 

where 




≥++
≠∈∀+−++<

=
0

,),(

,,,

,,,,,,

itbcbctb

cbctbcactaitaitb

n
eV

abAbVVee
R

λ
λλ

 

By assuming specific distributions of e, it is possible to derive analytical expressions 

for model (9) and generate models of different functional forms. What is the most 

appropriate assumption on the distribution of the random term will certainly vary 

between studies, so the following section will discuss it in the context of car ownership 

model.  

 

6.2.2 A Discrete Choice Model of Household Car Ownership 

To formulate a Random Utility model of car ownership, the first step is to determine 

the decision maker and choice set. In the current study, the decision makers are the 

household i within cohort c. For a car ownership model, the complete choice set is the 

number of car owned: 0 car, 1 car… n Cars. Due to smaller sample size for households 

with 3 or more cars, we limit the choice set of our car ownership model to 0 car, 1 car 

and 2+ cars.  

 

As mentioned above, the different assumptions on the distribution of random residuals 

give rise to discrete choice model of different forms. The most common model is 

multinomial logit model (MNL), which assumes the random terms ( itae ,  in the current 

study) are distributed IID (independently and identically distributed) Gumbel. Its 

popularity lies in the low computation costs of parameter estimation. However, it 

exhibits the Independence of Irrelevant Alternatives (IIA) property, i.e. the ratios of 

any two probabilities is necessarily the same no matter what other alternatives are in 

the choice set or what the characteristics of other alternatives are. This property is 

clearly inappropriate in certain situation, and the MNL has the danger of failure in the 
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presence of correlated alternatives (e.g. the red bus, blue bus problem). As the two 

options of owning one car and two plus cars are correlated, MNL might not be 

appropriate for the car ownership model either. Nevertheless, such structure is popular 

in the empirical work, especially as part of the bigger modelling system (e.g. Train, 

1986; HCG, 2000). 

 

Multivariate probit model relaxes the IID assumption of the random components of the 

utility. Instead, the random residuals are assumed to be distributed jointly normal, with 

a general variance-covariance matrix. Because of the assumption on the random utility 

components is completely general, probit model successfully tackles two problems 

confronting MNL model: non-independence from irrelevant alternatives as well as taste 

variation among individuals. The choice probabilities of the probit model are quite 

complex (multiple integrals with no closed form), and it can only be estimated using 

alternative approaches such as Clark approximation and Monte Carlo Simulation 

(Daganzo, 1979; Train, 2003). The application of probit models to the nonlinear 

pseudo panel model of (9) is even more complicated. More specifically, there are two 

sources of unobserved heterogeneity, one choice specific and one cohort specific. To 

distinguish these two sources of heterogeneity, while maintaining the flexible 

correlation structure of the composite random term itae , , would make consistent 

estimation of the model extremely difficult.  

 

MNL and probit are “flat” models, which can be illustrated by graph (a) in Figure 6-1. 

Given the drawbacks of MNL and complexity of probit, a hierarchical model structure 

becomes an attractive alternative, which is illustrated by graph (b). It involves 

estimating two binary choice models in steps.  

 

The hierarchical model of car ownership involves two binary choice models: the first is 

the choice between zero car and one plus cars (noted as Model 1+ hereafter); then 

conditional on owning at least one car, choice between owning exactly one car and two 

plus car (noted as Model 2+|1+ hereafter). It should be noted that the hierarchical 

model of (b) is not a standard Nested Logit Model, which would have the same 

complication as the multivariate probit model; instead, it consists of two separate 

binary choice models. For each binary choice model, it does not require the IIA 
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Figure 6-1 Two Structures of multiple car ownership modelling 

 

 

assumption and the assumption on the random term can be general. Moreover, such 

formulation facilitates the consistent estimation of the unobserved heterogeneity and 

dynamic effect, thanks to a growing econometric literature in this field. It also has the 

advantage of choice probability (of higher car ownership) increases monotonically with 

income. As a result, the hierarchical model structure is adopted for the current project, 

similar to other car ownership models such as NRTF (1997), Whelan (2001) and RAC 

(2002b).  

 

After determining the decision maker, choice set and model structure, the empirical 

model of car ownership can be readily identified. For Model 1+, the utility of owning 

no car is normalized to zero: 00 =U ; on the other hand, the utility of owning at least 

one car can be expressed as a linear function of: 

 itcct exU ++′=+ λβ1        (10) 

where ctx ′   is a vector of explanatory variables for cohort c in year t, including car 

purchase price, car running costs, income and other relevant household characteristics29. 

While all the households in cohort c have the same mean deterministic utility ( βctx′ ) 

and unobserved cohort heterogeneity ( cλ ), they have different composite error term ite . 

This reflects the essence of the Random Utility Model: given the same observed 

deterministic utility, decision makers behave differently due to the unobserved random 

                                                 

29 For dynamic models, lagged dependent variable 1, −tcy  could also be included, although it could 

impact the consistent estimation of the model. These issues will be discussed in the next chapter. 

0 Car 1 Car 2+ Cars 

0 Car 1+ Cars 

2+ Cars 1 Car 

(a) “Flat” model of MNL and 
probit 

(b) Hierarchical model 
structure 
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error. In the current study, this is manifested in the fact that only a proportion of 

households in a cohort choose to own car(s). Note the household in cohort c owning at 

least one car in year t is noted as 11 =+
cty , then: 

01 01

1 >++′⇔>⇔= +
+

itcctct exUUy λβ     (11) 

 

Assuming the distribution of ite  is IID logistic, the probability of household i in cohort 

c owning at least one car is that of a familiar logit model: 

 )xexp(1

 )xexp(
),|1(Pr

ct

ct1

1

c

c

cctct xyobP
λβ

λβλ
+′+

+′
=′== +

+     (12) 

If ite  is assumed to follow a normal distribution, the car ownership model becomes a 

probit model. As the normal and logistic distributions are similar except in the tails, 

these two models should give similar predictions except that one choice completely 

dominates the other. The choice of functional form is sometimes determined for 

practical reasons, and will be investigated in the empirical section later this chapter.  

 

Model 2+|1+ would be estimated using a reduced pseudo panel dataset of car owning 

households, while having the identical formulation of Model 1+. The utility of owning 

exactly one car will be normalized to zero, and the utility of owning two or more cars 

will be defined in a similar fashion.  The choice probability of household owning two 

or more cars conditional on owning at least one car (P2+|1+) will also be similar to (12) 

based on the IID logistic assumption of the composite random term.  

 

Finally, we discuss the interpretation of the linear utility of owning a car, i.e. 

expression (10). Households derive utility of car ownership from driving the car; as a 

result, it seems odd that income, price and other household characteristics are 

appropriate explanatory variables to be included in the utility function. This is a 

recognized issue and in the literature of joint car ownership/use model, the utility 

function of (10) is interpreted as the linear approximation of the conditional indirect 

utility function. The conditional indirect utility function is the function that gives 

maximum utility achievable at given prices and income, conditional on the choice of a 

certain alternative. As shown by Varian (1992), consumers’ preferences can be 

equivalently represented by a direct utility function or an indirect utility function. 

Starting with the latter, it is relatively straightforward to derive the demand function of 
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car use using Roy’s identity30 (Train, 1986). Although the current study deals with car 

ownership only, it is more appropriate to interpret (10) as the (linear approximation of) 

conditional indirect utility function, and the extension to car use would also become 

straightforward.  

 

6.3 Estimation of Discrete Choice Pseudo Panel Model 

In the previous section, we formulate the random utility model of pseudo panel under 

the asymptotic of ∞→ctn , ignoring the measurement error problem. In this case, it 

can be treated as genuine panel and estimated using similar techniques (although it 

should be weighted by the number of observations in the cohort sample, as it is shown 

next). However, the consistent estimation of discrete choice model with (genuine) 

panel data is non-trivial and the most familiar fixed effect model suffers the incidental 

parameter problem when T is small. Random Effect models can be consistently 

estimated using maximum likelihood methods, although the likelihood function 

involves an integral with no closed form so Gauss-Hermite quadrature or simulation 

method has to be used. The drawback of the random effect model is that it makes 

restrictive assumption on the distribution of the unobserved heterogeneity and relies on 

the orthogonality assumption between the explanatory variables and the unobserved 

effect. 

 

A growing literature has explored various semi-parametric models, without specifying 

a parametric form of the distribution of the underlying errors, or the distribution of the 

individual effects conditional on the explanatory variables. While semi-parametric 

models have growing significance as analytical models, their limitations are the 

inability to calculate marginal effects based on these estimators and the need for larger 

samples. As a result, semi-parametric models will only be mentioned as passing 

reference. Finally, we limit our discussion to the binary choice model, although some 

of the methods can be extended to the multinomial case readily.  

 

                                                 

30 An alternative method (De Jong, 1989a) is to start from the empirical demand function of car use and 
derive the indirect utility function, also using Roy’s identify.  
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6.3.1 Fixed Effect model 

For panels and pseudo panels, fixed effect models do not assume specific distribution 

of the unobserved heterogeneity 
✂

c. This unrestrictive feature makes fixed effect model 

particularly attractive. However, unlike the linear model, whose fixed effect can be 

eliminated by demeaning or differencing, it is not possible for the case of nonlinear 

panel model. Nevertheless, in the case of a limited number of individuals observed 

over many time periods, one can justify treating the cohort fixed effects as parameters 

to be estimated (Honore, 2002). More specifically, the maximum likelihood estimation 

of panel data fixed effect model is consistent when ∞→T . For pseudo panel, if the 

measurement error problem can be ignored, FE model can also be estimated by 

maximum likelihood using cohort dummy variables.  

 

However, when estimating discrete choice pseudo panel data, it is important that the 

data are weighted by the number of the observations in each cohort. For binary choice 

model, noting the proportion of decision makers in cohort c making Choice 1 in year t 

( ciyit ∈∀= ,1 ) as rct, un-weighted MLE assumes that rct is from a distribution with 

variance )1( ctct rr − . However, the unconditional variance is in fact ctctct nrr /)1( − , 

where nct is the number of observations in the cohort sample in year t, so the efficiency 

of maximum likelihood estimation using un-weighted data is underestimated (Greene, 

1995). Furthermore, if the choice proportion rct is based on different numbers of 

observations, the variances will differ correspondingly, so the un-weighted model will 

not account for the inherent heteroskedasticity of the pseudo panel model. The 

maximum likelihood estimation of standard logit or probit model based on proportions 

data (the form of pseudo panel data), both weighted and unweighted, has been 

implemented in standard econometric software such as Limdep31. 

 

The above discussion will become clear with the derivation of log likelihood function 

for the pseudo panel data. Note the number of individuals in the cohort sample making 

Choice 1 in year t as mct, we have ctctct rnm ⋅= , with rct and nct as defined above. The 

likelihood function can be expressed as: 

                                                 

31 However, random effect model is not available for models with proportions data.  
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where Pct is the probability of the individuals in cohort c making Choice 1 in year t. In 

the current study of car ownership, it could take the form of equation (12).  

 

Taking logarithm of expression (13) we have derived the log likelihood function of 

logit model based on proportions (pseudo panel) data: 

∑∑
= =

−−+=
C

c
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t

ctctctctct PrPrnL
1 1

)]1ln()1()ln([)ln(    (14) 

 

Comparing the log likelihood function of (14) with that of binary choice model based 

on individual (discrete) data, it is clear that the only difference is the introduction of 

weighting nct. It should be noted that while the discussion here is based on binary 

choice model, it can be easily extended to the case of multinomial choice model. 

 

However, the maximum likelihood estimator of the Fixed Effect model is only 

consistent when the number of time period is large, i.e. ∞→T . This can be illustrated 

using the analysis of asymptotic variance. Rewrite the log likelihood function of (14) as:  

∑∑
= =

+′=
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c
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t

cctctct xnrgLnLLn
1 1

),,([)( λβ    (15) 

If 
✁

 were known, the solution for 
✂

c would be based on only the T(c) observations for 

cohort c. This implies that the asymptotic variance for 
✂

c is of order T(c). Because 
✁

 is 

not known, is has to be estimated, and the estimator is a function of the maximum log 

likelihood estimator of 
✂

c. As a result, the asymptotic variance of bML (maximum log 

likelihood estimator of 
✁

) must also be of order T(c). In another word, the MLE of 
✁

 is 

a function of a random variable which does not converge to a constant as ∞→C  

(Greene, 2001a; 2001b). This is the incidental parameter problems as identified in 

Neyman and Scott (1948). This problem can also be explained intuitively. For 

nonlinear panel model in general (and same for nonlinear pseudo panel), the incidental 

parameter 
✂

i can not be differenced away as in the case of linear model. Only new 

observations for individual i give new information about 
✂

i; however, given a fixed T 

more individuals do not help with the estimation of 
✂

i because they add more 

parameters to be estimated. 
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In some cases, the pseudo panel might be constructed in a way that the number of 

cohorts is large and the number of observations per cohort is small. If the number of 

time periods is also small, it would be appealing to consider asymptotic with large C 

and fixed T. However, further research is required to establish the consistent pseudo 

panel estimator under such asymptotic, as measurement error needs to be taken into 

account. For genuine panel, fixed T consistent estimator has been proposed in the 

literature. For example, although the nuisance parameter 
✂

i can not be differenced away, 

∑ ity  is the sufficient statistic for binary logit and other small class of models. 

Conditional on the sufficient statistic ∑ ity , conditional maximum likelihood 

estimator would produce unbiased estimate of 
✁

 (Andersen, 1970). The conditional 

maximum likelihood estimator is extended to the multinomial logit by Chamberlain 

(1980). 

 

While ∑ ity  is the sufficient statistic for panel data logit model, the existence and 

form of such statistic are difficult to establish for the case of pseudo panel. Furthermore, 

the conditional maximum likelihood approach has one significant drawback: it does not 

allow the calculation of the average effect of xit on the probability of 1=ity  across the 

distribution of 
✂

i. The similar problem applies to other semi-parametric estimators such 

as the maximum score estimator of Manski (1987). 

 

Another class of estimators does not attempt to be fixed T consistent; instead, the 

objective is to reduce the biases rather than to eliminate biases completely. One prime 

example is the modified concentrated likelihood estimator proposed by Arellano (2003), 

which has bias of order 1/T2 rather than the maximum likelihood estimator of 1/T. The 

modified concentrated likelihood estimation has been extended to dynamic panel by 

Carro (2003), and both will be discussed in the next chapter. 

 

Given that the maximum likelihood estimator of the fixed effect model is not consistent, 

it is important to establish the extent of biases. The discrete choice fixed effect 

estimator shows a substantial finite sample bias when the number of time period is very 

small. Hsiao (1986) found that for T = 2, the maximum likelihood estimator for a 

binary logit model is 100%. However, such large bias might only be of theoretical 
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importance, as the bias reduces rapidly as T increases to 3 or more. In another widely 

cited study, Heckman (1981b) found that the small sample bias of fixed effect 

estimator is surprisingly small even with moderate T. Using Monte Carlo simulation, 

the author showed that for the probit model with sample size of Ti = 8 and N = 100, the 

bias of the slope estimator is on the order of only 10%. In a more recent study, Greene 

(2002) found that the bias in the marginal effects is smaller than the bias in the slope 

parameters of MLE, which suggests that even when T = 2, the bias of 100% might also 

be overstated. 

 

In the current study, 11 out of a total of 16 cohorts have pseudo panel observations for 

19 years. As a result, the problem of small T bias for the MLE of fixed effect model 

might not be significant. In the empirical study of car ownership, the use of weighted 

MLE for the discrete choice pseudo panel model with fixed effects seems justified.  

 

6.3.2 Random Effect Estimators 

The “classic” random effect estimator assumes that the unobserved heterogeneity 
✂

c is 

unrelated to the explanatory variables X, so that the conditional distribution )|( Xf cλ  

is not dependent on X. This is an assumption that is restrictive and in many case 

unrealistic, so a number of studies attempt to develop estimators between random 

effect and fixed effect, i.e. not requiring the orthogonality assumption while un-

affected by the incidental parameter problem. In this section, we first briefly discuss 

the estimator of “classic” random effect model; then we introduce some “generalized” 

random effect estimators that allow correlation between the unobserved heterogeneity 

and the explanatory variables. 

 

A random effect discrete choice model was first implemented by Bulter and Moffitt 

(1982) and was subsequently implemented in some econometric software such as 

Limdep (Greene, 1995). It should be noted that random effect model in Limdep does 

not apply to proportions data, so the random effect pseudo panel model can not be 

estimated using Limdep. Nevertheless, there is no reason why this approach can not be 

extended to the pseudo panel case if the assumptions on the error terms can be 

maintained. 
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In a binary choice model with error terms of iititu λε += , assuming the two error 

components are independent random variables with 

0]|[ =XE itε ; 1]|[]|,[ == XVarXCov itjsit εεε  if i=j and t=s; 0 otherwise 

0]|[ =XE iλ ; 2]|[]|,[ σλλλ == XVarXCov iji  if i=j; 0 otherwise 

0]|,[ =XCov jit λε  for all i, t, j. 

 

Based on the above assumption, itu  are independent conditional on the unobserved 

heterogeneity 
✂

i. As a result, by integrating 
✂

i out of the joint density of ),,...,( 1 iiTi uu λ , 

the likelihood function of joint probability of all Ti observations can be simplified to an 

one dimensional integral of: 

∫ ∏
+∞

∞−
=

+′===
T

t

iiiitititiTiti dfxyYobXyyPL
1

)()]|(Pr[]|,...,[ λλλβ   (16) 

 

The inner probability of (16) can be any forms of discrete choice model including 

probit, logit, etc. The question remains how to do the outer integration. Basically, there 

are two approaches. The first one relies on the normality assumption of 
✂

i, and after a 

bit of manipulation, (16) can be further reduced to a function that is amenable to 

Gauss-Hermite quadrature for computation. This is the approach used in Limdep and 

other modern econometric software. The second approach is the method of maximum 

simulated likelihood. It allows more flexibility in the distribution of 
✂

i, and it is 

straightforward to extend the random effect model to random parameter model and to 

the case of pseudo panel by weighting the log likelihood function. The maximum 

simulated likelihood method will be discussed in the next chapter. 

 

One appealing feature of the fixed effect model is that the unobserved heterogeneity 
✂

i 

is allowed to correlate to the explanatory variables X. A number of authors have tried to 

achieve this in a random effect model by parameterizing the distribution of 
✂

i as a 

function of xi. The most notable example is Chamberlain (1984), in which the 

following assumption is made: 

),(~),...,(| 2

1

1 tt

T

t

itiTii

i

i
xNxx σγλ ∑

=

′     (17) 
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where the parameters tγ  and 2

tσ  might depend on Ti. For a probit model, after 

necessary normalizations for identification, T

tt 1}{ =γ , as well as the slope coefficient 
✁

, 

can be estimated using maximum likelihood.  

 

Newey (1994) and Chen (1998) are the semi-parametric extension of Chamberlain 

(1984), where the conditional mean is assumed to be ),...,( 1 iTi xxρ  with the function �  

remains unspecified. These models are reviewed in Arellano and Honore (2001) so 

they will not be repeated here. 

 

As pointed out by Honore (2002), for (17) to hold for all Ti, it would place strong 

assumptions on the distribution of the explanatory variables. As implied by the law of 

iterated expectations, if (17) holds in both time periods T and T+1, then the conditional 

mean of xiT+1 would be a linear function of its past value, whose coefficients are 

directly related to those of a probit model for the distribution of yit. This assumption 

makes the “generalized” random effect model much less appealing then it first appears, 

so it will not be investigated in the empirical work in the current study.  

 

6.4 Empirical Results of Static Car Ownership Model 

In this section, the results of static car ownership model will be reported. Investigation 

is made on the forms of the explanatory variables (average household size and other 

demographic characteristics, splits of household types, log transformation, etc.), 

functional form (logit and probit), fixed effect and random effect. Separate results will 

be reported for models of owning at least one car, and those of owning two or more 

cars conditional on owning the first one.  

 

Both Limdep and Gauss have been used in the estimation. The Gauss code used in the 

current project is specially adapted for pseudo panel data and has been used to estimate 

most of the models in the current study. Limdep is used for some specific models not 

implemented in the Gauss code, such as probit model, and is also used as validation of 

the correct implementation of the Gauss code. 
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6.4.1 Models of One Plus Cars 

The pseudo panel dataset used for the models of one plus cars is the same as that used 

in the linear model of Chapter 4 and 5. It has 254 observations, covering 16 cohorts 

from years 1982 to 2000 (not all cohorts have observations for all periods). The 

descriptive statistics of the data was discussed in the previous chapters so is not 

repeated here. 

 

Systematic specification search has been conducted to determine the model with the 

best fit. As car ownership is influenced not only by income and price, but also by 

household structure (demographic characteristics) and the proxy for accessibility, 

location, all these variables should be included in the indirect utility function of car 

ownership. Household demographic characteristics include average number of children 

per household in a cohort, average number of person in work and average household 

size, which can be directly used as explanatory variables. Alternatively, there is an 

eight-way categorization of the household types based on these three variables (for 

detailed description see Table 3-2 Chapter 3), and the split of each household types 

within a cohort can be used as the explanatory variables.  

 

The household locations are divided into five categories including Greater London, 

metropolitan areas and other areas with varied population density. Proportion of 

households within a cohort living in each of the area types (dropping one for 

identification) can be used as explanatory variables. Alternatively, proportions of 

households living in Greater London and metropolitan areas are combined in a variable 

“MET”, which is then included in the utility function, together with the proportion of 

households living in the least populated rural areas (re-named from “Area5” to “Rural” 

for clarity). Table 6-2 reports the logit model results with different representation of 

household characteristics and locations. 

  

Besides the household characteristics and location variables, the variables common to 

model 1-4 are: Constant (ONE), average weekly real disposable income per household 

(Inc), index of real car purchase price (Price), index of real car running costs (RunCst), 

average age of the household head in the cohort (Age), and square of cohort age 

divided by 100 (AgSq). Table 6-2 shows the model coefficients with the t-statistics in 

the parenthesis. Across all four models, slope coefficients for income are always 
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Table 6-2 Logit Model 1-4, alternative variables for household characteristics and location 

(t-stat in the parenthesis) 

   Model 1 Model 2 Model 3 Model 4 

ONE -0.7100 (-2.34) -0.7477 (-1.59) -0.4506 (-0.76) 0.3870 (0.81) 

Inc 0.0028 (8.13) 0.0027 (7.84) 0.0023 (6.94) 0.0023 (7.06) 

Child 0.2067 (1.78) 0.1474 (1.24)         

Worker -0.1643 (-2.35) -0.1868 (-2.65)         

HHSize -0.0718 (-0.55) -0.0130 (-0.10)         

HH2         -0.8050 (-1.75) -0.7243 (-1.59) 

HH3         -1.6564 (-2.94) -1.6361 (-2.93) 

HH4         1.2817 (3.12) 1.3235 (3.26) 

HH5         1.1509 (2.42) 1.1888 (2.51) 

HH6         1.2524 (3.21) 1.3083 (3.40) 

HH7         -0.1193 (-0.24) -0.0579 (-0.12) 

HH8         0.5463 (1.20) 0.6118 (1.35) 

Area2     -0.9704 (-1.87) 0.1482 (0.28)     

Area3     -0.2651 (-0.53) 0.6459 (1.25)     

Area4     0.5199 (1.10) 1.2575 (2.58)     

Area5     1.5368 (3.38) 1.6069 (3.45)     

Met -0.7775 (-2.72)         -0.8340 (-2.89) 

Rural 1.3056 (4.23)         0.6323 (2.02) 

Price -0.0077 (-4.67) -0.0086 (-5.11) -0.0170 (-9.38) -0.0166 (-9.30) 

RunCst -0.0090 (-6.65) -0.0091 (-6.65) -0.0068 (-4.84) -0.0071 (-5.04) 

Age 0.1309 (19.17) 0.1288 (18.71) 0.0848 (10.79) 0.0866 (11.10) 

AgSq -0.1416 (-21.77) -0.1402 (-21.47) -0.0905 (-10.89) -0.0922 (-11.17) 

LL -70047   -70044   -69938   -69940   

Null LL -85914   -85914   -85914   -85914   

Adj. LRI 0.1845   0.1846   0.1857   0.1857   

LL: Log Likelihood;  
Null LL: Null Log Likelihood; 
Adj. LRI: Adjusted Likelihood Ratio Index (sometimes called Rho bar square); it is calculated as 1 - (LL 

- K) / Null_LL, where K is the number of explanatory variables. 

 

positive, significant and of very similar magnitude. The slope coefficients for car 

purchase price index and running costs index are always negative and significant. The 

coefficients for cohort age and age squares are highly significant, suggesting a strong 

life cycle effects of car ownership. The coefficients for cohort age are always positive, 

while those for cohort age square are always negative, indicating a peak of car 

ownership over the life cycle. 

 

Model 1 and 2 include the average number of children, person in work and household 

size as explanatory variables. However, the coefficients for “Child” and “HHSize” are 

not statistically significant, and those for “Worker” have the unexpected negative sign. 

The statistics of model fit are reported in the bottom part of Table 6-2, and Model 1 and 

2 have smaller log likelihood compared to Model 3 and 4 with lower Adjusted 
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Likelihood Ratio Index at about 0.1845. This shows that Model 1 and 2 have the worse 

level of fit than the other two models, where the eight-way categorization is used to 

describe household demographic characteristics.  

 

In Model 3 and 4, the proportion of household type 1 (single working adult household) 

is dropped, so the coefficients for other household types should be interpreted in 

relation to type 1. The coefficients for type 2 and 3, both being single adult household, 

are negative, indicating lower propensity of car ownership for these two household 

types compared to the base case of type 1. The coefficients for type 4 to 8 (Household 

with two ore more adults) are mostly positive (one negative coefficient is not 

statistically significant at all), indicating higher propensity of car ownership. Regarding 

the location variables, Model 3 includes four location types while in Model 4 the 

location types are compressed into two. However, the two models have very similar log 

likelihood; the Likelihood Ratio Test produces a chi square statistic of 3.18 with 2 

degree of freedom, which is not significant at 10% level. This result shows that there is 

no loss of fit in compressing the area type, so model 4 should be regarded as the 

preferred model. 

 

Table 6-2 reports the slope coefficients, which are different from the marginal effects 

for discrete choice models. Marginal effect measures the impacts of a small change of 

explanatory variable on the choice probability, and for logit model it is calculated by32: 

β
β

β ⋅
′+

′
=

∂
∂

2)]exp(1[

)exp()|(

x

x

x

XyE
    (18) 

which depends not only on the slope coefficients, but also on the value of explanatory 

variable. The marginal effects can be evaluated at the sample means of the data; 

alternatively, one can evaluate the marginal effects at each observation then calculate 

the average effect over the sample observations. Table 6-3 reports the marginal effects 

based on the first method, evaluating at the weighted average of the explanatory 

variables (weight being the number of sample households within a cohort).  

 

 

                                                 

32 Expression (18) calculates the marginal effect for continuous variable, although it also provides “an 
approximation that is often surprisingly accurate” for dummy variables (Greene, 2003, p668).  
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Table 6-3 Marginal Effect at weighted average of explanatory variables, Model 1 – 4 

   Model 1 Model 2 Model 3 Model 4 

ONE -0.14300 ** -0.15059 ' -0.09081 ' 0.07800 ' 

Inc 0.00056 *** 0.00054 *** 0.00046 *** 0.00046 *** 

Child 0.04163 * 0.02968 '         

Worker -0.03308 ** -0.03762 ***         

HHSize -0.01445 ' -0.00262 '         

HH2         -0.16223 * -0.14597 ' 

HH3         -0.33381 *** -0.32972 *** 

HH4         0.25829 *** 0.26671 *** 

HH5         0.23194 ** 0.23957 ** 

HH6         0.25240 *** 0.26365 *** 

HH7         -0.02403 ' -0.01166 ' 

HH8         0.11010 ' 0.12328 ' 

Area2     -0.19544 * 0.02986 '     

Area3     -0.05338 ' 0.13017 '     

Area4     0.10471 ' 0.25342 ***     

Area5     0.30952 *** 0.32383 ***     

Met -0.15659 ***         -0.16808 *** 

Rural 0.26296 ***         0.12743 ** 

Price -0.00155 *** -0.00173 *** -0.00342 *** -0.00334 *** 

RunCst -0.00182 *** -0.00184 *** -0.00138 *** -0.00142 *** 

Age 0.02637 *** 0.02594 *** 0.01709 *** 0.01744 *** 

AgSq -0.02852 *** -0.02823 *** -0.01823 *** -0.01857 *** 

***: Significant at 1% level; 
**: Significant at 5% level; 
*: Significant at 10% level; 
': Not statistically significant  
 
 

Besides the marginal effects, sometimes it is useful to interpret the results in terms of 

elasticity, which can be calculated by ))(( pxxPEl ∂∂=  when the explanatory 

variable x is in linear form (no logarithm or other transformation). Note that the first 

term )( xP ∂∂  is the marginal effect as expression (18), which depends on the evaluated 

values of all explanatory variables. Table 6-4 reports the income elasticity, purchase 

price elasticity and running costs elasticity for Model 1 and Model 4. 

 

Table 6-4 Income, price and running costs elasticity for household with various income 

 Model 1 Model 4 

Income 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Low 0.29 -0.49 -0.51 0.24 -1.04 -0.40 
Median 0.24 -0.19 -0.29 0.18 -0.38 -0.20 
High 0.21 -0.14 -0.14 0.17 -0.30 -0.11 

Low income: 10 percentile of income, £172 per week; 
Mid income: 50 percentile of income, £306 per week; 
High income: 90 percentile of income, £430 per week. 
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Both models show the relatively low income elasticity, and the difference between the 

low income household and high income household is very small. Based on model 4, 

the results suggest that a 1% increase of income would increase of probability of 

owning at least one car by 0.24% from 0.3975 to 0.3984 for low income household; for 

high income household, such probability is increased by 0.17% from 0.8267 to 0.8281. 

For those with high income, the proportion of households owning at least one car is 

already very high, so it is reasonable to expect low income elasticity. On the other hand, 

when income is specified as linear term in the utility function, it implies that a £1 

increase has the same impact on utility of car ownership whether the weekly household 

income is £100 or £1,000. This implication can be problematic, and it can be tackled by 

the nonlinear transformation of the income variables. The methods of nonlinear 

transformation include logarithm, Box-Cox, piecewise, power, etc. We will investigate 

the most common method—logarithm transformation latter this section. 

 

Purchase price elasticity and running costs elasticity, on the other hand, are higher than 

the income elasticity, especially for low income household. Although some earlier 

studies (e.g. Dargay and Vythoulkas, 1999; Whelan 2003) found price elasticity to be 

lower than income elasticity, results similar to Table 6-4 are reported for the some 

linear pseudo panel models in Chapter 4 and 5. Based on Model 4 for mid income 

household, a 1% increase of purchasing price would reduce the probability of owning 

one or more car by 0.38% from 0.7484 to 0.7455; a similar increase of running costs 

would reduce the probability of car ownership by 0.2% to 0.7469.  

 

After the investigation on the representation of household demographic characteristics 

and location variables, the issue of model functional form has been examined. We limit 

our comparison to the two most common models (logit and probit), as other models 

such as Weibull and Gompertz are rarely used in empirical work. As logistic and probit 

distributions mainly differ towards the tails, the use of either model would have 

significant impacts on prediction if the probability of choosing one alternative is high 

for most observations. On the other hand, if there are few cases of extremely high or 

extremely low probability, logit model and probit model would produce similar results 

(after accounting for different model scale). Figure 6-2 shows the observed probability 

(equal to the aggregate proportion) of owning at least one car and the predicted 

probability based on Model 4.  
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Figure 6-2 Observed (Y) & Predicted (P) probability of household owning 1+ car by income 

Probability of Owning 1+ Cars against Household weekly Disposable Income: 

Observed & Modelled Probability
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Figure 6-2 does not reveal any systematic difference between the observed and 

predicted probability, suggesting the appropriateness of the logit functional form. It 

also illustrates the lack of extreme choice probability, thus more or less eliminating the 

difference between the logit and probit model. As a matter of fact, the corresponding 

probit versions of Model 1 to 4 have almost identical marginal effect as Table 6-3. 

 

Next we investigate the problem of heteroskedasticity. Arranging the residual term in 

Model 4 by average household income, as shown in Figure 6-3, it appears that the 

variance of residual is larger for the very low income group. To test whether such 

heteroskedasticity is significant, we estimate a model that has different scale (random 

errors) for households with low income (weekly income lower than £180) and other 

households. However, the scale parameter is not statistically significant, suggesting 

that heteroskedasticity might not be a serious problem. 

 

The next set of test examines the impact of logarithm transformation of income and 

price variables. The results for models with compressed location variables (“Met” and 

“Rural”) are reported in Table 6-5, with Model 5 and 6 corresponds to Model 1 and 

Model 4 in Table 6-2 and 6-3. 
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Figure 6-3 Residual against household income 

Residual against Household weekly Disposable Income
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Table 6-5 Models with Log Income and Log price variables (t-stat in parenthesis) 

 Slope Coefficient Marginal Effects 

   Model 5 Model 6 Model 5 Model 6 

ONE -7.0711 (-4.10) -0.7656 (-0.40) -1.4246 *** -0.1543 ' 
LnInc 1.5463 (14.10) 1.1500 (10.55) 0.3115 *** 0.2318 *** 
Child -0.0464 (-0.40)   -0.0094 '   
Worker -0.4357 (-6.24)   -0.0878 ***   
HHSize 0.1836 (1.40)   0.0370 '   
HH2   -0.4735 (-1.05)   -0.0955 ' 
HH3   -1.4396 (-2.59)   -0.2902 *** 
HH4   1.3115 (3.30)   0.2644 *** 
HH5   0.6998 (1.49)   0.1411 ' 
HH6   0.9122 (2.37)   0.1839 ** 
HH7   -0.1397 (-0.29)   -0.0282 ' 
HH8   0.1085 (0.24)   0.0219 ' 
Met -0.7433 (-2.60) -0.7996 (-2.77) -0.1498 *** -0.1612 *** 
Rural 0.6715 (2.16) 0.3309 (1.06) 0.1353 ** 0.0667 ' 
LnPrice -0.1578 (-0.92) -1.0336 (-5.20) -0.0318 ' -0.2084 *** 
LnRunCst -0.3743 (-2.57) -0.3828 (-2.53) -0.0754 *** -0.0772 ** 
Age 0.0893 (11.55) 0.0725 (8.89) 0.0180 *** 0.0146 *** 
AgSq -0.0983 (-13.03) -0.0787 (-9.18) -0.0198 *** -0.0159 *** 

Log Like'd -69983  -69921      
Null LL -85914  -85914      
Adj. LRI 0.1853  0.1860      

***: Significant at 1% level; 
**: Significant at 5% level; 
*: Significant at 10% level; 
': Not statistically significant  
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Compared to Model 1, the log likelihood of Model 5 has increased by 65; compared to 

Model 4, that of Model 6 has increased by 19. As the two corresponding models have 

the same number of explanatory variables, the higher log likelihood indicates a better 

fit for models with log income and log price variables. The likelihood ratio test 

between Model 5 and Model 6 has a Chi square statistic of 123, suggesting a 

significant loss of fit when average household demographic factors are used instead of 

proportions of household types. The coefficients and marginal effects of the household 

characteristics and location variables are broadly similar between Model 4 and Model 6. 

However, the income and price coefficients and marginal effects are not directly 

comparable. For Model 5 and 6, the income, purchase price and running cost elasticity 

(calculated by PxPEl /)( ∂∂= ) are reported in Table 6-6.  

Table 6-6 Elasticity derived from models with log income and log price variable 

 Model 5 Model 6 

Income 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Low 0.95 -0.10 -0.23 0.70 -0.63 -0.23 
Median 0.42 -0.04 -0.10 0.29 -0.26 -0.10 
High 0.29 -0.03 -0.07 0.21 -0.19 -0.07 

(Note: the price elasticity for Model 5 is not statistically significant, hence in italic.) 

 

The income elasticity derived from the log variable model is broadly similar to that 

derived from the linear variable model for high income households. However, the 

income elasticity is much higher for low income households, suggesting the rise in 

income has a much bigger impacts on car ownership for poorer households. The results 

obtained from linear pseudo panel model (Chapter 4 and 5) showed a similar picture, 

where the income elasticity derived from semi-log model more than doubles that from 

the linear model for low income households. Based on Model 6, a 1% income rise 

would increase the probability of owning 1+ car from 0.3920 to 0.3947 for low income 

households; from 0.8195 to 0.8212 for those with high income.  

 

The purchase price elasticity and running costs elasticity are lower than the income 

elasticity, a similar result to the (semi-log) linear pseudo panel model. Both price and 

running cost elasticity for low income households is about three times of that for high 

income households. The running costs elasticity derived from Model 5 and Model 6 is 

almost identical, while the purchase price coefficient is not significant for Model 5 so 
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we are unable to make any meaningful comparison. Overall, these elasticity estimates 

look sensible, which should give us some confidence in the estimated model. 

 

Finally, we investigate the fixed effect model and random effect model. The fixed 

effect models are estimated by adding cohort dummy variables and estimating their 

coefficients in a similar way as other explanatory variables. This method is justified 

because the number of time periods is not very short, and maximum likelihood 

estimator is unbiased when ∞→T . The Fixed Effect models have higher log 

likelihood. The fixed effect version of Model 4 increases log likelihood by 36, and the 

LR Test is significant at 1% level (Chi square statistic of 72 with 14 degree of freedom). 

The Random Effect Model assumes that the unobserved heterogeneity follows a 

normal distribution, and it is estimated by maximum simulated likelihood method. 

However, the additional error component is not significant at all and there is no 

improvement of log likelihood with Random Effect model.  

 

Fixed Effect model and Random Effect model are the most common and important 

panel (and pseudo panel here) data models and will be further investigated with the 

dynamic models in the next chapter. As a result, the details of the static FE and RE 

models are not reported here. 

 

6.4.2 Models of Two plus Cars Conditional on Owning the First Car 

As the model of two plus cars is conditional on households owning at least one car, a 

second pseudo panel dataset (called Dataset 2 hereafter) has been constructed from the 

sub-sample of car owning households. For the measurement error problem to be 

ignored, only cohorts with a sufficiently large number (over 100) of observations are 

included. This reduces the number of pseudo panel observations from 254 of the full 

dataset to 220 of Dataset 2.  

 

Dataset 2 contains 14 cohorts, with the oldest cohort born between 1906 and 1910 and 

the youngest cohort born between 1971 and 1975. Two cohorts in the full pseudo panel 

dataset have to be excluded due to insufficient survey sample size. Table 6-7 presents 

the descriptive statistics of the pseudo panel Dataset 2.  
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Table 6-7 Descriptive Statistics of Pseudo Panel Dataset 2 

 Car Inc Child Adult Worker HHSize Area2 Area3 Area4 Area5 

Median 1.30 369.20 0.42 1.95 1.53 2.53 0.19 0.22 0.23 0.27 
Mean 1.31 365.83 0.60 2.02 1.30 2.62 0.19 0.22 0.23 0.27 
Stdev 0.16 85.35 0.58 0.21 0.65 0.62 0.03 0.03 0.03 0.04 
Max 1.67 534.10 1.76 2.63 2.33 3.84 0.27 0.33 0.31 0.43 
Min 1.04 209.03 0.00 1.64 0.08 1.66 0.07 0.12 0.17 0.15 

 

As Dataset 2 is constructed based on car owning households, it is expected that the 

minimum number of cars per household is greater than one. Compared to the full 

pseudo panel dataset (summary descriptive statistics in Table 4-1), car owning 

households have higher income (median weekly real income of £369 compared to £302 

in the full sample), bigger household size (median size of 2.53 instead of 2.27) and 

more persons in work (median of 1.53 instead of 1.27). 

 

Systematic specification search has been conducted for the model of two plus cars. We 

start from the binary logit model, investigating the representation of household 

structure and locations variables, while the income and price variables are specified in 

linear forms. In contrast to the model of one plus car, compressing the location types 

from four to metropolitan area and least populated rural area leads to significant loss of 

fit. The Likelihood Ratio Test of compressing location variables produces a Chi square 

statistic of over 16 with 2 degree of freedom, which is significant at 1% level. On the 

other hand, whether the average demographic statistics (household size etc.) or 

proportions of household types are used to represent household characteristics have 

small impacts on the model fit. Table 6-8 reports the slope coefficients and marginal 

effects of the two models with detailed location variables (dropping Area1, Greater 

London for identification).  

 

The marginal effects of the common variables in Model 2 and Model 3 are quite 

similar. When there is higher proportion of households for any cohort living in areas 

other than Greater London, the share of households owning two or more cars increases. 

Interestingly, the propensity of owning 2+ cars is not the highest for households living 

in the least populated rural area (Area5), which is different from the model of 1+ car. 

Regarding the household characteristic variables, the higher number of persons in work 

would increase the probability of owning 2+ cars. However, the coefficient for the 

average number of children is negative, which could be caused by the correlation 
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Table 6-8 Results of Model with Detailed Location Variables and Linear Income variable (t-

stat in the parenthesis) 

 Slope Coefficient Marginal Effects 

 Model 2 Model 3 Model 2 Model 3 

ONE -4.9005 (-7.78) -4.5509 (-6.06) -0.9886 *** -0.9178 *** 
Inc 0.0022 (6.64) 0.0025 (7.65) 0.0005 *** 0.0005 *** 
Child -0.2576 (-1.71)   -0.0520 *   
Worker 0.2225 (2.34)   0.0449 **   
HHSize 0.0661 (0.41)   0.0133 '   
HH2   1.5915 (2.06)   0.3210 ** 
HH3   -1.3072 (-1.56)   -0.2636 ' 

HH4   -0.7008 (-1.38)   -0.1413 ' 

HH5   -0.5407 (-1.01)   -0.1090 ' 

HH6   -0.7864 (-1.73)   -0.1586 * 
HH7   0.4941 (0.92)   0.0997 ' 

HH8   -0.1143 (-0.22)   -0.0231 ' 

Area2 2.3635 (3.77) 2.2550 (3.56) 0.4768 *** 0.4548 *** 
Area3 1.1794 (1.87) 0.9623 (1.51) 0.2379 * 0.1941 ' 

Area4 1.7840 (3.05) 1.6578 (2.82) 0.3599 *** 0.3343 *** 
Area5 1.3787 (2.48) 1.2387 (2.22) 0.2781 ** 0.2498 ** 
Price -0.0154 (-7.04) -0.0130 (-5.42) -0.0031 *** -0.0026 *** 
RunCst 0.0013 (0.78) 0.0016 (0.95) 0.0003 ' 0.0003 ' 

Age 0.1360 (13.45) 0.1543 (11.57) 0.0274 *** 0.0311 *** 
AgSq -0.1494 (-13.07) -0.1808 (-11.09) -0.0301 *** -0.0365 *** 

LL -49459  -49454      
Null LL -59422  -59422      
Adj LRI 0.1674  0.1675      

 

Table 6-9 Income and Price Elasticity (Model 2 & 3 with linear income and price variable) 

 Model 2 Model 3 

Income 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Low 0.60 -1.31 0.14 0.67 -1.10 0.17 

Median 0.56 -1.04 0.09 0.61 -0.86 0.11 

High 0.53 -0.88 0.06 0.58 -0.76 0.08 

Note 1: the running cost elasticity is not statistically significant, hence in italic. 
Note 2: Low income: 10 percentile of car owning household income, £251 per week; 

 Mid income: 50 percentile of car owning household income, £370 per week; 
 High income: 90 percentile of car owning household income, £481 per week. 

 

between the three household characteristics variables. When the eight-way 

categorization of household types is used, most of the household type variables are not 

significant. The coefficients for cohort age and square of cohort age (divided by 100 

for scaling purpose) are highly significant, and their different signs indicate a peak of 

second (or more) car ownership in the cohort life cycle. 
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Regarding the impacts of income and costs on car ownership, it is clearer to discuss 

them in terms of elasticity. Table 6-9 reports the income and price elasticity for 

households with different income level. 

 

The income elasticity of owning 2+ cars conditional on owning the first one is much 

higher than that of owning at least one car, especially for high income households. 

Based on Model 3, a 1% income rise would increase the conditional probability of 

owning two or more cars from 0.4384 to 0.4409 for households at 90 percentile income. 

For those at 10 percentile income, a 1% income rise would increase the conditional 

probability of second car ownership from 0.0588 to 0.0592. The purchase price 

elasticity for 2+|1+ cars is also higher than that for 1+ car, which is what we expect. 

While the ownership of at least one car might be a necessity for many households, 

owning the second or even more cars is certainly more of an option. The coefficients 

for running costs are not significant for both Model 2 and Model 3, so no reliable 

inference can be made on running cost elasticity. 

 

Model 2 and 3 are in logit form, and we have also investigated the alternative 

functional form. Similar to the model of one plus car, the marginal effects from the 

probit model are almost identical to those from Model 2 and 3. Furthermore, it appears 

that heteroskedasticity is not an issue here, as illustrated by the residual plot of Figure 

6-4. 

Figure 6-4 Residual against Household Income (Model 3, Car 2+|1+) 

Residual against Weekly Household Real Income

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

200 250 300 350 400 450 500 550

Rsd(car2+)

 



 130 

The linear form of income variable implied that the impact of income change on utility 

is the same regardless of current income level. This assumption might not be 

appropriate, so we have examined alternative models with logarithm transformation of 

the income and price variables. These results are reported in Table 6-10. 

Table 6-10 Model 2+|1+ with Log Income and Log Price Variables (t-stat in the parenthesis) 

 Slope Coefficients Marginal Effects 

 Model 5 Model 6 Model 5 Model 6 

ONE -7.4219 (-3.02) -8.8338 (-3.44) -1.4969 *** -1.7812 *** 
LnInc 1.1154 (7.56) 1.2001 (8.53) 0.2250 *** 0.2420 *** 
Child -0.2864 (-1.88)   -0.0578 *   
Worker 0.1643 (1.68)   0.0331 *   
HHSize 0.0973 (0.60)   0.0196 '   
HH2   1.4199 (1.84)   0.2863 * 
HH3   -1.3016 (-1.55)   -0.2624 ' 
HH4   -0.6160 (-1.20)   -0.1242 ' 
HH5   -0.7498 (-1.41)   -0.1512 ' 
HH6   -0.9917 (-2.19)   -0.2000 ** 
HH7   0.3316 (0.62)   0.0669 ' 
HH8   -0.3349 (-0.65)   -0.0675 ' 
Area2 2.5714 (4.14) 2.4443 (3.88) 0.5186 *** 0.4929 *** 
Area3 1.4200 (2.26) 1.1951 (1.89) 0.2864 ** 0.2410 * 
Area4 1.9605 (3.35) 1.7983 (3.05) 0.3954 *** 0.3626 *** 
Area5 1.5122 (2.73) 1.3856 (2.48) 0.3050 *** 0.2794 ** 
LnPrice -1.2825 (-5.46) -0.9638 (-3.77) -0.2587 *** -0.1943 *** 
LnRunCst 0.3035 (1.69) 0.3510 (1.88) 0.0612 * 0.0708 * 
Age 0.1213 (11.20) 0.1436 (10.49) 0.0245 *** 0.0290 *** 
AgSq -0.1333 (-11.04) -0.1697 (-10.24) -0.0269 *** -0.0342 *** 

LL -49463  -49455      
Null LL -59422  -59422      

Adj LRI 0.1674  0.1674      

 

Comparing the results in Table 6-10 and Table 6-8, the marginal effects of the 

household characteristic, location and cohort age variables are very similar. The 

marginal effects of the income and price variables are not directly comparable. For 

high income households, the income elasticity derived from the log model is similar to 

that derived from the linear variable model; while for low income households, the log 

models lead to much higher income elasticity. All these results are very similar to the 

earlier discussion of the one plus car model. However, there is one distinctive 

difference for Model 2+|1+, i.e. the log models have the worse fit than the linear 

variables models. The log likelihood of Model 5 is reduced by 3.5 compared to Model 

2, and that of Model 6 is lower by 1.3 when compared to Model 3. Nevertheless, the 
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difference in log likelihood is very small, and the log models can not be dismissed 

completely because they appear to have more realistic income elasticity profile. 

 

Finally, the Fixed Effect Models and Random Effects Models have been examined. 

Unlike the model of one plus car, the introduction of cohort dummies in the Fixed 

Effect Model does not improve the model fit, and the log likelihood actually reduces in 

one case. The Random Effect Model does not lead to better model fit either, which is 

similar to the case of one plus car model. Further investigation of the fixed effect and 

random effect models will be presented in the next chapter. 

 

6.5 Conclusion 

In this chapter, we extend the pseudo panel method to the discrete choice case, which is 

the first study of the kind to our best knowledge. To understand why it has never been 

investigated in the literature, and why it could prove an effective technique for 

empirical work, it is necessary to discuss the pros and cons of nonlinear pseudo panel 

model method. Compared to the conventional cross sectional model, nonlinear pseudo 

panel has two main advantages: consideration of dynamics in modelling and effective 

tackling of aggregation bias problem. On the other hand, it has the disadvantages of 

reducing data variability and loss of information on individual decision makers. 

Compared to the more familiar linear counterpart, nonlinear pseudo panel method has 

the advantages of explicitly modelling and estimating the saturation level as well as 

consistency with the theory of utility maximization. However, it also suffers two 

limitations: biased estimation of the fixed effect models due to “incidental parameter 

problem” and the need for tailored code for estimating advanced models. On balance, 

nonlinear pseudo panel model is most suitable for forecasting purpose, and the case is 

less clear for analytical purpose.  

 

We then go on to introduce a random utility model of pseudo panel. In a standard 

random utility model of cross sectional data, the utility function consists of a 

deterministic term and a random term. For pseudo panel model, the deterministic term 

can be further decomposed into three components: the sample mean observable utility, 

measurement error and decision-maker’s utility deviation from cohort mean. The 

resulting random utility pseudo panel model has a similar probability function but with 
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different scale compared to the cross-sectional model. The pseudo panel RUM is then 

applied to car ownership modeling. The pros and cons of various modeling structures 

are evaluated and the hierarchical structure for handling multiple car ownership is 

subsequently chosen.  

 

In this chapter, we also discuss the consistent estimation of the pseudo panel RUM. 

The fixed effect estimator is consistent only when the number of time periods is 

sufficiently large, while the random effect estimator requires the orthogonality 

assumptions that the unobserved heterogeneity are uncorrelated with the explanatory 

variables. While some authors have attempted to relax the orthogonality assumption of 

the random effect model by parameterizing the distribution of 
✂

i as a function of xi, it is 

not always easy to justify the such parameterization if one want it to hold for all Ti. As 

a result, this approach is not adopted in the empirical work; instead, we rely on the 

large T consistency of the fixed effect estimator, justified on the ground that there are 

19 periods for most cohorts in the pseudo panel dataset. The last section of this chapter 

reports the empirical results of car ownership model. Separate results are presented for 

models of one plus cars and those of two plus cars. Systematic specification search has 

been conducted to determine the models with the best fit, and the income, purchase 

price and running costs elasticity derived from these models are shown to be sensible 

and comparable to other studies.  
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Chapter 7 Dynamic Model and Model with 

Saturation 
 

The importance of dynamics in transport analysis has been increasingly recognised in 

recent years and it is argued that travel behaviour should be treated as a process in 

continual flux, with history and a path through time (Goodwin, 1997). Dynamics in 

behaviour have been identified in the literature: people can anticipate the expected new 

situation or adapt their behaviour in the longer term. However, cross sectional data and 

models based on such data rely on assumptions that equilibrium is observable in the 

real world; when this is not the case, the cross sectional model would give a biased 

picture in people’s choice behaviour (except under certain special conditions). This is 

the main reason that compels us to depart from the cross sectional model and adopt a 

pseudo panel approach.  

 

On the other hand, we have argued that linear pseudo panel model is not sufficient 

when dealing with durable goods. There are two main reasons behind this argument, i.e. 

consistency with the micro economic theory of utility maximization and explicit 

consideration of saturation. While saturation can be approximated through certain 

linear transformation of variables (e.g. semi-log X models) in the linear model, with 

discrete choice model, it can be more accurately measured and its statistical 

significance can also be tested.   

 

In this chapter, we discuss a dynamic random utility model of pseudo panel, its 

consistent estimation and applications to car ownership models. As discussed in 

previous chapter, the utility function for pseudo panel model mirrors that of individual 

decision-maker and the probability model of pseudo panel is similar to that of cross 

sectional models except for the different scale. As a result, it is more convenient to start 

the model development based on individual decision-maker, and extending it to pseudo 

panel would be a straightforward task. In Section One, we first present a general 

structural model encompassing three forms of choice dynamics; after detailed 

evaluation of each sub-model, the standard state dependence model (first order Markov 

model) is selected and we subsequently derive its pseudo panel version. Section Two 
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discusses the consistent estimation of the preferred structural model developed in 

Section One. Thanks to the close relationship between the random utility model of 

individuals (genuine panel of discrete data) and cohorts (pseudo panel of proportions 

data), we are able to draw on parametric and semi-parametric techniques developed for 

discrete data and propose appropriate estimation method for the proportions data. 

 

Section Three reports the empirical finding of dynamic pseudo panel model of car 

ownership. In the fourth section, the focus of investigation is changed from dynamics 

to saturation, another motive for the use of non linear pseudo panel model. We present 

a “Dogit” type car ownership model, which incorporates saturation into the random 

utility model framework. Empirical results of models with saturation are reported 

subsequently. Section Five is a brief conclusion. 

 

7.1 Dynamic Random Utility Model of Pseudo Panel 

In the econometric literature, the importance of distinguishing true state dependence 

and spurious state dependence caused by unobserved heterogeneity has been widely 

recognised (e.g.  Heckman, 1981a; Arellano and Honore, 2001; Greene, 2003; Carro, 

2003). Receiving much less attention is one related topic, i.e. distinguishing different 

forms of true state dependence, which is the centre of our investigation here. Following 

a general to specific approach, we start from a general dynamic model, taking into 

account three prevalent forms of true state dependence. While the general model is a 

binary choice model based on discrete data, it will later be transformed to model of 

proportions data (pseudo panel) in section 7.1.4 and can also be extended to the case of 

multinomial choice. 

 

According to the random utility model, the utility of choosing an option is the sum of a 

deterministic term and a random term unobservable to the researchers. If there is true 

state dependence, the choice made in one period will affect the utility in other periods. 

As a result, the deterministic utility component Vit would not only include the 

explanatory variables in the current periods, but also the past and future choices and 

past value of explanatory variables. For a general dynamic model, equation (1) 

describes the breakdown of the utility components for individual i choosing Option 1 in 

year t: 
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Then individual i in year t would choose Option 1 if and only if the utility of choosing 

Option 1 is greater than that of choosing the alternative option: ititit UUy ′>⇔=1 . 

Normalising the utility of choosing the alternative option to zero ( 0=′
itU ), and the 

model can be formally expressed as: 

yit = 1 (Uit > 0)        (2) 

 

Equation (1) and (2) describe the general dynamic random utility model for individual 

decision maker, which needs to be estimated using genuine panel data. As it will be 

straightforward to transform this model into a pseudo panel form at a later stage, it is 

more convenient to based our analysis on the individual decision-maker for now, and 

discuss the meaning, underlying economic theory and specific models represented by 

the various terms on the right hand side of equation (1). 

 

The first term represents the effect of exogenous variables on current utility 

comparison. It is assumed that X is strictly exogenous, i.e. the past, current and future 

values of X are un-correlated with the error term �it. Meanwhile, the last term �it is the 

random utility component, representing the factors unobservable to researchers. When 

there is temporal correlation between � in different periods, the dynamic effect would 

also be caused by the effect of unobserved heterogeneity or true series correlation. The 

lagged dependent variable might appear significant due to temporal correlation in the 

random term even there is no true state dependence. This is an important issue that has 

to be considered in model development. 

 

While the second, third and fourth terms on the right hand side of equation (1) appear 

together in the general model, it is more common that they appear separately with the 

exogenous variables and the error term. The three corresponding types of dynamic 

models are: standard state dependence model, propensity dependence model and 

dynamic optimization model. 
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7.1.1 Standard State Dependence Model 

In a standard state dependence model, states (choices) in the previous periods affect the 

choice in the current period. An example of standard state dependence in labour 

economics is the evidence of past work experience raising wage rates and thus raising 

the probability that a woman works in the future (Heckman 1981a). In the case of car 

ownership, state dependence arises because households that already own a car 

experience higher utility of car ownership in the current period because, for example, 

they develop a habit of relying on their car and they are more familiar with the road 

network and traffic conditions. When persistence is in the form of standard state 

dependence, its effects can be modelled by the inclusion of a lagged dependent variable, 

i.e. the second term on the right hand side of equation (1). When only the choice in the 

last period is included in the utility function, it is also called first order Markov model. 

  

There are two potential extensions to the standard state dependence model with first 

order lagged effect. The first is Heckman (1981a), where he considered the effect of the 

entire past history of the process on current choice and the coefficients are assumed to 

be the functions of the current time period t, and the period in which the event occurred, 

t-j. The second is Beck et al. (2002), where it is shown that the state dependence model 

here is a special case of a “full” transition model, i.e. estimating two separate models 

conditional on the previous state (0 and 1 as in the current binary choice model). 

However, there appear to be no significant benefits in adopting either extension in the 

current study, so we refrain from making further investigation into these models. 

 

7.1.2 Models of Propensity Dependence  

When the lagged effect is represented by the utility difference in the previous period 

rather than the actual state in the previous period, the model become a propensity 

dependence model, also called Latent Markov model. It assumes that the prior 

propensity to select an option rather than prior choice itself determines the current 

probability that an option is chosen.  

 

Models of propensity dependence have a closer resemblance to the time series model 

of exponential decay, capturing the idea that it takes time for a change in an 

independent variable to fully work its way through the system, while the most recent 

past receives the greatest weight. As shown in Beck (1991) and Beck et al. (2002), 
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applying the Koyck (1954) transformation33 to an exponentially distributed lag model 

of (3): 

...... 2,

2

1,2,

2

1, +⋅+⋅+++′⋅+′⋅+′= −−−− titiittitiitit xxxU ερερεβρβρβ   (3) 

one would obtain the utility function of propensity dependence, with 1, −tiU  and various 

exogenous variables being the explanatory variables.  

 

An alternative motivation for the exponential distributed lag model is the accumulation 

of information and formation of expectations (Greene, 2003). For example, in our car 

ownership model, households form expectations about their future income and it is 

assumed that the currently formed expectation is a weighted average of the 

expectations in the previous periods and the most recent observation. When the budget 

constrain is relaxed to account for future income growth (with borrowing), the 

conditional indirect utility function would include income expectation rather than 

actual income. Such model of expectation, after some manipulation, would lead to the 

exponential distributed lag model of (3). 

 

Model of propensity dependence can be estimated using Bayesian method of Markov 

Chain Monte Carlo (MCMC), which should not be a big burden with modern 

computing. However, there is considerable difficulty in using the estimation results in 

forecasts, as the lagged utility is a latent variable and unobservable. Since the objective 

of the empirical study in this project is to develop car demand forecasts in Great Britain, 

the value of modelling propensity dependence seems limited in this context. On the 

other hand, the idea that income expectation rather than actual income should 

determine the indirect utility function of car ownership remains an interesting and 

credible hypothesis. The testing of competing hypothesis of state dependence and 

propensity dependence in household car ownership decision could be undertaken in 

future projects. 

 

                                                 

33 The transformation is done by multiplying both sides of equation (3) by )1( L⋅− ρ  with L being the 

lag operator. Note that 0lim , =′⋅ −∞→ sti

s

s
xβρ , assuming a stationary condition of 1<ρ . 
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7.1.3 Models of Dynamic Optimisation 

The model of dynamic optimisation is related to the concept of state dependence: if 

past choices affect current choice, then current choices affect future ones; consequently, 

a decision maker who is aware of this fact will take the future effects into 

considerations. A link from the past to present would imply a link from the present to 

the future (Train, 2003). In this case, it seems natural to include the effect of future 

choices on the current choice, and this effect is represented by the fourth term on the 

right hand side of equation (1). 

 

Adding future choices to the utility function of (1) is a simplified example of the 

dynamic optimisation model. As a binary choice model, it does not consider the 

impacts of current choice on the attributes and availability of other alternatives in the 

future. When car ownership is examined as a standalone decision, it is difficult to see 

how owning a car or not in the future could influence the utility of car ownership now. 

 

A well defined dynamic optimisation model assumes that decision makers choose the 

alternative in the current period that maximizes his expected utility over the current and 

future periods. For example, in Train (2003), when students decide whether or not to 

go to college, they consider not only the current period of college years, when the trade 

off is made between study and work, but also the post college years with different 

employment opportunities and even the post retirement years with different retirement 

options.   

 

An interesting application of dynamic optimisation in the study of car ownership is 

Adda and Cooper (2000). They developed a dynamic transaction model of discrete 

choice to study the effect of government subsidies on durable goods market. By 

assuming a positive value to a car in any age and no used car market, the choice set is 

reduced to two alternatives in each period: keeping the existing car of age i; or 

replacing it with a new one and receiving a government subsidy. For each option, the 

total utility is the sum of three components: 

1) current utility flow;  

2) probability-weighted (discounted) expected utility of using the car (of age i or 

age 2 depending on the current choice) in the next period; 
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3) probability-weighted (discounted) expected utility of scrapping the car owned 

in the current period and replacing it with a new car in the next period.  

 

The optimisation problem assumes no borrowing or lending and a stochastic process 

for income, prices and aggregated taste shocks. Based on aggregate data, the authors 

use observations on sales as well as moments of the cross-sectional distribution to 

identify the parameters for the dynamic programming problem. 

 

Model of dynamic optimisation offers an alternative approach in modelling car 

ownership dynamics. This approach is not adopted in the current study, because it 

requires a fundamental shift of the underlying car ownership model from holding 

model (as examined in the current study) to transactions model. Nevertheless, it could 

be a fruitful area for future research. 

 

Finally, as noted by Train (2003, p174), “a model of rational decision making over 

time does not necessarily represent behaviour more accurately than a model of myopic 

behaviour, where the decision maker ignores future consequences”. To turn a complex 

dynamic optimisation problem into a tractable form, one usually has to impose certain 

restrictive assumptions, which would reduce the appeal of such models in empirical 

work. 

 

7.1.4 Transforming the Reduced Model for Repeated Cross Sections 

In the previous sections, we have discussed a general model that encompasses three 

specific types of structural state dependence model: standard state dependence model, 

propensity dependence model and dynamic optimisation model. Based on the pros and 

cons of each model and their relevance to the car ownership forecasting, it seems 

appropriate to select the standard state dependence model for the current empirical 

work. In this model, household i in year t choose to own a car when such ownership 

yields a positive utility Uit, if the utility of not owning car is normalised to zero. 

Formally, the car ownership model can be expressed as: 

yit = 1 (Uit > 0)      (4) 

where the utility function in our reduced model is: 

ittiitititit yxVU εαβε +⋅+=+= −1,'    (4a) 
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However, model (4) is still based on genuine panel data. For repeated cross sectional 

data, different individuals are sampled in different years, so notation similar to that of 

the linear models in Chapter 4 and 5 has to be used. Adding the time dimension to the 

person identifier, i becomes i(t) and equation (4a) can be written more precisely as: 

ttittittittittitti yxVU ),(1),(),(),(),(),( ' εαβε +⋅+=+= −   (4b) 

 

For repeated cross section data, household’s choice in the previous period, yi(t),t-1, is 

unobservable; instead, we only have information of yi(t-1),t-1. In order to investigate the 

choice dynamics, repeated cross sectional data have to be aggregated into pseudo 

panel34. Assuming no birth or death in the total population and defining cohorts based 

on time-invariant variables, the cohort population remains fixed over time. As a result, 

we can write the deterministic part of the utility function in (4b) as true cohort 

population mean plus deviation from such mean ( tti ),(θ ) for individual i in year t: 
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However, the true cohort population mean of the deterministic utility components are 

unobservable; instead, we only have cohort sample mean calculated from two 

consecutive years. Note the total measurement errors in these two periods as 

)( 1, −+ tcct ηη , we have: 
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Finally, we turn our attention to the error term tti ),(ε . Since it is important to distinguish 

true state dependence and the so-called “spurious state dependence” 35 , where the 

                                                 

34 Another possibility is to use the first order Markov models proposed in Moffitt (1993), in particular 
the linear probability model for hazards. However, the data requirement for such model is very high, as it 
requires the previous values of the explanatory variables, or at minimum, the accurate backcast of such 
variables. 
35 As pointed out by Heckman (1981a), the lagged dependent variable in the dynamic model might 
appear significant even if there is no true state dependence. In another word, inter-temporal correlation 
of the error term has to be accounted for before true state dependence can be revealed. 
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dynamic effect is caused by unobserved heterogeneity, we assume a “components of 

variance” structure of the error term36: 

ttictti ),(),( ελε ′+=     (7) 

where cλ  is the (time-invariant) unobserved heterogeneity (cohort fixed or random 

effect) and is assumed to distributed independent of tti ),(ε ′ ; 

tti ),(ε ′  captures the randomness besides heterogeneity, which is assumed to be 

independently identically distributed with mean zero and variance 2. 

 

Substituting (5), (6) and (7) into equation (4b), and noting the cohort sample mean of 

the deterministic utility component as ctV , we have: 

tticttitcctcttti VU ),(),(1,),( ελθηη ′+++++= −    (8) 
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Similar to the static model in the previous chapter, two simplifications have been 

applied to the utility function (8). This first is about the measurement errors. Under the 

asymptotic of tnct ∀∞→ , , the measurement errors converge in probability to zero: 

0)lim( 1, =+ −tcctp ηη       (9) 

In another word, when the cohort sample size is sufficiently large, which is the case for 

the current project, the measurement errors can be ignored.  

 

The second is the aggregation of two sources of randomness into a composite error 

term. Residual error tti ),(ε ′  and deviation from the true cohort mean (deterministic) 

utility tti ),(θ  are aggregated, as they are empirically in-distinguishable in the pseudo 

panel setting: 

ttittittie ),(),(),( εθ ′+=       (10) 

 

                                                 

36 In theory, there is another source of inter-temporal correlation of errors: series correlation of the 

residual error term ε ′ . This is ignored in the current study for the reason suggested by Beck et al. (2002), 

i.e. series correlation might not be important after accounting for dynamics. 
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Substituting (9) and (10) into (8), we obtain the utility function of a discrete choice 

pseudo panel model with state dependence (equation 11). Note that the deterministic 

utility component and unobserved cohort heterogeneity are the same for all decision 

makers in cohort c, and only the composite error term ttie ),(  is different across decision 

makers. The random term ttie ),(  causes the actual (observed) choice behavior to vary 

between individuals in the same cohort. 

tticcttti eVU ),(),( ++= λ       (11) 

 

Conditional on unobserved heterogeneity 
✂

c, one can estimate model (11) in the form 

of probit or logit, depending on the assumption on the distribution of ttie ),( . In the 

following section, we will discuss the consistent estimation of the dynamic discrete 

choice model based on utility function of (11). 

 

7.2 Consistent Estimation of Dynamic Model 

In the previous section, we investigate a structural model of discrete choice with 

different forms of true state dependence. The standard state dependence model has 

been selected as the preferred dynamic model of car ownership, which probably is the 

simplest among all three sub-model types. However, the consistent estimation of the 

standard state dependence model is not a trivial issue, even for genuine panel data. To 

obtain unbiased estimation of the structural parameters, it is important to appropriately 

account for the unobserved heterogeneity (cause of “spurious state dependence”). For 

genuine panel, there is a growing literature on the fixed effect, random effect and semi-

parametric estimators of the standard state dependence model (first order Markov 

model). Because the discrete choice models of pseudo panel and genuine panel share 

similar utility and probability function, it would be beneficial to first review these 

estimators. Based on the findings of such literature review, we will propose the 

parametric methods to be used for the current study and discuss their application to 

pseudo panel. 

 

The difficulty of consistent estimation arises from the inclusion of lagged dependent 

variable in the explanatory variables. This has different consequences on the fixed 

effect models and the random effect models. For fixed effect model, the presence of 



 143 

lagged dependent variable increases the bias caused by the “incidental parameter 

problem”. In the Monte Carlo study of Heckman (1981b), the bias of fixed effect 

estimator for T = 8 varies between 12% and 40% depending on the assumption of 

variance and “true” parameter value. Such bias is significantly larger than the bias of 

up to 10% for static fixed effect model cited in the same study.  

 

For random effect model, the inclusion of lagged dependent variable causes a difficult 

“initial conditions problem”. If the first sample observation is a state during a process, 

then it would depend on the dependent variable before the sampling period, although 

this is usually tackled by dropping the first observation in empirical work. The real 

difficulty lies in the relationship between the first lagged dependent variables and the 

unobserved heterogeneity37, which depend on the parameters of the model as well as 

the distribution of the explanatory variables in periods prior to the start of the sample 

(Arellano and Honore, 2001). In many empirical studies, the initial condition problem 

is ignored by assuming the first lagged dependent variable is strictly exogenous. This 

assumption is justifiable only when one can reasonably assume the process is observed 

from the start. For example, in labour economics, if the sample period starts from 

people leaving secondary school, then the first observation of labour participation can 

be assumed to be strictly exogenous and no initial condition problem would arise. 

 

7.2.1 Literature Review on Genuine Panel Model 

In this sub-section, we review the dynamic discrete choice models with fixed effects 

and random effects proposed in the literature. While the emphasis is on parametric 

methods due to a higher degree of relevance to the current theme of demand forecasts, 

some important semi-parametric methods will also be reviewed for reference purpose. 

  

7.2.1.1 Fixed Effect Models and Incidental Parameter Problem 

In the last chapter, we discussed the incidental parameter problem that causes bias in 

the maximum likelihood estimation of the fixed effect estimators when the number of 

time period is fixed. The conditional maximum likelihood estimator, while achieving 

consistency for large C, does not allow the calculation of marginal effect, which 

                                                 

37 Unlike the linear dynamic panel data model, the unobserved heterogeneity in discrete choice model 
can not be eliminated by taking first difference.  
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severely limits its usefulness in empirical work. Given the attractiveness of the fixed 

effect estimator (the distribution of the unobserved heterogeneity is left un-specified 

and no orthogonality assumption between the explanatory variables and error terms), 

another class of the estimator was proposed in the literature, which seeks to reduce the 

order of bias rather than achieving fixed T consistency. This is the modified 

concentrated likelihood estimator, initialled proposed in Arellano (2003) and extended 

by Carro (2003) to the dynamic model. 

 

The modified concentrated likelihood estimator is implemented in three steps: first is 

the reparametrization of the original parameters ),( iλγ  in the log-likelihood function 

),( iil λγ  to ),( iςγ , so that ),()),(,( *

iiiii ll ςγςγλγ = ,  

where ),( ′′= βαγ  and 0
),( 00

*2

=








∂∂
∂

i

iilE
ςγ

ςγ
 is satisfied 38 . The condition that the 

expected cross derivative is zero implies information orthogonality between the 

structural parameters γ  and the nuisance parameters iς . Information orthogonality is a 

weaker condition than standard form of orthogonality, which requires the cross 

derivative (rather than its expected value) to be zero and can not be achieved for 

discrete choice model. 

 

The second step is to modify the concentrated likelihood, because the maximum 

likelihood estimator of the γ  does not change with the reparametrization and still have 

bias of order O(T-1). The modified concentrated likelihood follows Cox and Reid (1987) 

and is expressed as: 

))](ˆ,(log[
2

1
))(ˆ,()( ** γςγγςγγ ςς iiiMi dll −−=   (12) 

where )(ˆ γς i  is the maximum likelihood estimator of iς  given γ , and the modification 

term is a log function of 2*2* ))(ˆ,( iii ld ςγςγςς ∂∂= . The modification term is introduced 

to penalize values of γ  for which the information about the effects is relatively large.  

 

                                                 

38 Subscript 0 denotes the true parameter values. Also, it should be noted that in the original paper of 
Arellano (2003) and Carro (2003), the unobserved heterogeneity is noted as �i while the 
reparametrization is noted as ✁ i. The notation is changed to be consistent with the rest of the thesis. 
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The third step involves re-writing (12) in terms of original parameterization. The 

modified concentrated likelihood of (12) is not directly usable, as it is based on 

reparametrization form of ),(*

iil ςγ . Expressing the term ))(ˆ,(* γςγςς id  as the product of 

Fisher information in the ),( iλγ  parametrization and the square of the Jacobian of the 

transformation from ),( iλγ  to ),( iςγ , (12) becomes: 

)log())](ˆ,(log[
2

1
))(ˆ,()(

)(ˆ γλλ
λλ λ

ςγλγγλγγ
ii

i

i

iiiMi dll

=
∂
∂

+−−=   (13) 

 

The modified concentrated likelihood function of (13) can be further simplified for 

binary logit and probit model and estimated using maximum likelihood estimation. The 

modified concentrated likelihood estimator, although not fixed T consistent, reduces 

the bias of the estimated parameters from O(T-1) to O(T-2). Monte Carlo experiments in 

Carro (2003) shows that the bias is sufficiently small for logit and probit model with 

lagged dependent variable and strictly exogenous variables. Furthermore, the fixed 

effect iλ  is calculated during the estimation process, which enables the calculation of 

the marginal effect of the explanatory variables. This makes the modified concentrated 

likelihood estimator more attractive compared to other fixed T consistent estimators. 

 

7.2.1.2 Random Effect Model and Initial Condition Problem 

After reviewing the parametric model proposed in the literature to tackle the incidental 

parameter problem of the fixed effect model, we turn our attention to the initial 

condition problem of the random effect model. As mentioned before, in a standard first 

order Markov model, the distribution of the process ),...,( 1 iTi yy  can be specified 

conditional on the strictly exogenous variables, the individual specific effect 

(unobserved heterogeneity) and the initial condition 0iy , which can also be the first 

lagged dependent variable. However, the model does not specify the distribution of 0iy  

conditional on the individual effects and the strictly exogenous variables. There are 

essentially two parametric approaches in tackling the initial condition problem. The 

first approach is proposed in Heckman (1981b), which involves specifying a separate 

model for 0iy  given the unobserved effects and the strictly exogenous variables. More 

specifically, if one specifies ),|( 0 ii xyf λ , then 
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),|(),,|,...,(),|,...,,( 00110 iiiiiTiiiTii xyfxyyyfxyyyf λλλ ⋅=   (14) 

If the density of )|( xf iλ  is specified, one can then integrate (14) with respect to this 

density to obtain )|,...,,( 10 xyyyf iTii . This model would in theory enable one to 

achieve consistent estimation by maximum likelihood, although the computation costs 

involved can be significant. 

 

The second approach is proposed in Wooldridge (2005), which specify the distribution 

of the unobserved heterogeneity as ),|( 0 xyf iiλ , conditional on the strictly exogenous 

variables and the first observation 0iy . With prior assumptions made on the density of 

),...,( 1 iTi yy  conditional on ),,( 0 ii xy λ , assumptions on ),|( 0 xyf iiλ  can lead to the 

identification of the density of the entire process ),...,,( 10 iTii yyy  conditional on the 

strictly exogenous variables x. 

 

As shown in Wooldridge (2005), specifying ),|( 0 xyf iiλ  can lead to very tractable 

functional forms for some common nonlinear models, and the author argues that such 

specification is no worse than specifying separate models of initial conditions, which 

themselves can only be approximate. The approach suggested by Wooldridge is simple 

to implement and computationally attractive. It has been applied in dynamic car 

ownership model by Leth-Petersen and Bjorner (2005) using Danish household panel 

data. As a result, it would thus seem natural to use this approach in the current study.  

 

However, such conclusion is premature for two reasons. Firstly, for unbalanced panel 

data, one has to specify a different conditional distribution of iλ  for each configuration 

of the missing data; alternatively, one can use the balanced sub panel if sample 

selection is exogenous conditional on ),( 0 xyi . The obvious drawback of the latter 

treatment is the danger of discarding a lot of useful information. The treatment of 

unbalanced panel is highly relevant in the current study as the pseudo panel dataset is 

unbalanced. Secondly, it is not realistic to assume a simple distribution of ),|( 0 xyf iiλ , 

as pointed out by Honore (2002). If the first observation depends on the random effect 

iλ , then the distribution of iλ  conditional on ),( 0 iti xy  will depend on the values of itx  

before the start of the sample. The distribution of the random effect conditional on the 
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strictly exogenous variables and initial conditions will therefore depend on the time 

series properties of itx  in some very complicated way. This difficulty is confronted by 

Arellano and Carrasco (2003) in their semi-parametric model, which will be discussed 

below. 

 

7.2.1.3 Semi-Parametric Model 

Semi-parametric methods have the advantage of allowing estimation of parameters 

without specifying a distribution (conditional or unconditional) of the unobserved 

effects. Avoiding certain strong parametric assumptions, some semi-parametric models 

achieve consistent estimation of structural parameters based on minimum or no 

assumptions on nuisance parameters. Chamberlain (1985) considered a logit model 

with the lagged dependent variable as the only explanatory variables. Considering only 

the first four observations, the probability of not selecting a state in the second period 

( 01 =iy ) conditional on state-switching between the second and third period 

( 121 =+ ii yy ) would depend on the state of the initial and fourth period ( 30 ii yy − ) but 

not on the nuisance parameters. The result can be extended to T periods and be used to 

make inference on the structure parameters. Similar models were proposed in Jones 

and Landwehr (1988) and Magnac (1997), with the latter being a multinomial logit 

model. 

 

Honore and Kyriadizou (2000) consider a model with lagged dependent variable as 

well as strictly exogenous variables. Considering only four periods, the authors showed 

that: 

),1,,|,1,0,( 3221332101 iiiiiiiiii xxyyxdyyydyP ==+==== λ  

))()exp((1

1

3021 ddxx ii −+−+
=

αβ
    (15) 

which does not depend on nuisance parameter iλ . With continuous variable, the 

condition of 32 ii xx =  in (15) is usually not satisfied. As a result, the author proposed a 

kernel estimator to average over observations close to the value. The major limitation 

of this approach is that as it uses only observations in a neighborhood of 32 ii xx = , it is 

necessary to assume the xit process satisfies 0)( 32 >= ii xxP , which rules out time 

dummies or other variables that always increase for each cross-sectional unit.  
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In contrast to the fixed effect approach of Chamberlain (1985) and Honore and 

Kyriadizou (2000), the approach used by Arellano and Carrasco (2003) lies between 

fixed effect and random effect. The distribution of a composite error, iit λε +  

conditional on all observables up to year t39 is assumed to be homoskedastic normal. 

However, the unobserved heterogeneity is allowed to be correlated with the 

predetermined variables through the unspecified (non-parametric) conditional mean, 

thus avoiding the orthogonality conditions required by the standard random effect 

model. A Generalized Method of Moment (GMM) estimator was proposed for this 

model, which was shown to be consistent and asymptotically normal for fixed T and 

large N. One weakness of this approach, as recognized by the author, is that it matters 

to the distributional assumption if one starts observing the individuals one period 

earlier or later. 

 

Besides the limitation of each specific model, there has been more general criticism of 

the semi-parametric models. As pointed out by Greene (2001a), the structural 

parameters in these semi-parametric models are essentially uninformative, as “they are 

not slopes of conditional means so they do not necessarily help in understanding 

behaviour”. Also, the conditional means are unspecified, which renders these structural 

parameters in effect useless for prediction. This view is shared by Wooldridge (2005), 

who states that as the partial effects on the response probability or conditional mean are 

not identified, the economic importance of covariates, or even the amount of state 

dependence, cannot be determined from semi parametric approaches40.  

 

7.2.2 Estimation Methods Proposed for the Current Study 

The literature review shows that the consistent estimation of discrete choice model with 

state dependence is a complex issue and different approaches have their advantages and 

limitations. For fixed effect models, it is not necessary to specify any distribution of the 

unobserved heterogeneity conditional on the explanatory variables, thus avoiding the 

strong orthogonality assumptions. For this reason, the fixed effect model should be the 

                                                 

39 This condition determines the explanatory variables as predetermined (with feedback effect from the 
errors in the previous periods) rather than strictly exogenous. 
40 Another reason preventing us adopting semi-parametric approach is that it seems all but impossible to 
extend these methods from genuine panel data to pseudo panel. 
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preferred choice. However, treating the unobserved effects as parameters and 

estimating the model using maximum likelihood method produce biased estimation 

when the number of time period T is small. In the case of dynamic model, the bias 

appears to be larger with the presence of lagged dependent variables. Furthermore, the 

marginal effects in discrete choice model depend on the nuisance parameters, so 

eliminating these parameters, as in the case of certain semi-parametric models, does not 

seem to be the solution here. 

 

For this reason, the approach of Arellano (2003) and Carro (2003), which aims at 

reducing the order of bias rather than achieving fixed T consistency, appears to be the 

most attractive. Because their approach is based on modifying the concentrated 

likelihood, there is no reason why this approach can not be extended to the pseudo 

panel model by adapting the log likelihood function to one based on proportions data 

rather than discrete data. However, it has proved very complicated in implementation 

and we have to leave it to future research. In the empirical work of the current project, 

we would rely on a rather optimistic result of the fixed effect estimator, i.e. consistency 

under the asymptotic of large T41. This action is partially justifiable on the grounds that 

we have relatively long sample periods of up to 19 years. 

 

Regarding the random effect model, the main criticism is the strong orthogonality 

assumption between the unobserved effects and the explanatory variables. Furthermore, 

the relationship between the first lagged dependent variable and the unobserved 

heterogeneity is usually undefined, which leads to the so-called initial condition 

problem. Two solutions to the initial condition problem have been proposed in the 

literature, i.e. assumption on a separate distribution of the initial conditions in 

Heckman (1981b), or assumption on the distribution of the unobserved effects 

conditional on the initial conditions in Wooldridge (2005). However, neither approach 

is the definitive answer, as both have the real danger of modelling the distributions that 

are inconsistent with the data generating process. 

 

                                                 

41 While consistency is established for genuine panel, it is likely to carry over to pseudo panel when 
measurement errors can be ignored. 



 150 

In the current study, we propose a slightly different approach, i.e. random parameter 

models. Unlike the random effect model, where a constant term is assumed to capture 

the unobserved heterogeneity, such unobserved effects are captured by a randomly 

distributed parameter vector in a random parameter model. Adding a subscript i 

( ),...,1 ni =  to recognize heterogeneity in the parameter vector ),( ′′= βαγ , Model (4) 

can be re-written as: 

yit = 1 ( 0),( 1, >+′− itiitti xy εγ )    (16) 

where, ii νγγ Γ+=  is a vector of random parameter with mean ✄ and variance Γ′Γ ; 

 Γ  is a diagonal parameter matrix42; 

 iν  is a random vector with zero vector mean and covariance matrix I.  

 

Any fixed (non-random) parameters in iγ  can be specified by constraining the 

corresponding rows in Γ  to be zero, and it is easy to see the random effect model is a 

special case of (16), where only the constant term is random. Recall the problem of 

random effect specification for dynamic discrete choice model. The distribution of the 

random effect is specified conditional on the explanatory variables, and it requires 

orthogonality assumption between the unobserved effect and the explanatory variables. 

With the presence of lagged dependent variable, the orthogonality assumption would 

usually be violated except for some special circumstances (e.g. the initial conditions are 

strictly exogenous and the unobserved effect is conditional on such initial conditions). 

However, in a random parameter model, the orthogonality condition becomes moot, as 

the individual specific heterogeneity is embodied in the marginal responses (parameters) 

of the model43 (Greene, 2001a).  

If one assumes the error term itε  in (16) follows an iid logistic distribution, the 

underlying probability model has a logit form and (16) becomes a special (binary 

choice) version of mixed logit model. As shown in McFadden and Train (2000), mixed 

logit is a highly flexible model that can be used to approximate any random utility 

model. It alleviates the three limitation of standard logit by allowing for random taste 

                                                 

42 The assumption of diagonal Γ  makes our model a specific version of the general model in Greene 
(2004). 
43 Random parameter model also partially incorporate the idea of Heckman (1981b). Assuming the 

element corresponding to 1, −tiy  in the random vector iν  is distributed as N(0,1), Model (16) would 

encompass a standard random effect model with the initial condition assumed to be yi0 ~ N(0,1). 
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variation, unrestricted substitution patterns and correlation in unobserved factors over 

time (Train, 2003). In recent years, mixed logit model has been applied to many 

empirical studies based on panel data (see, for example, Revelt and Train, 1998; Bhat, 

2000; Mohammadian and Miller, 2003; Leth-Petersen and Bjorner, 2005, with the last 

two study being dynamic mixed logit model of car ownership) as well as cross 

sectional data (e.g. Bhat, 1998; Brownstone and Train, 1999; Hess and Polak, 2005; 

Hess et al. 2006; various mixed logic models of car ownership including Brownstone et 

al., 2000; Whelan, 2003; Golounov el al., 2004). One contribution of this study is to 

extend the application of mixed logit model to pseudo panel data. 

 

For panel data model, dependence of the Ti observations for individual i results from 

the common random vector iν . Conditional on the unobserved heterogeneity, the 

observations are independent. In another word, conditional on iν  (or alternatively on 

iγ ) the probability of a person makes a sequence of choices over T periods is the 

products of logit formulas: 

∏
= −

−

′+
′

=
T

t iitti

iitti

iit
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1 1,
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)),exp((
)(

γ
γ

γ     (17) 

since �it’s are independent over time. The unconditional probability is the integral of 

this product over all values of iγ : 

∫ Γ=
i

iiiitit dfpP
γ

γγγγ ),|()(      (18) 

Equation (17) and (18) illustrate the flexibility of mixed logit model in handling 

dynamic discrete choice model, as lagged dependent variables have been readily 

accommodated in the utility function in a given period to represent lagged response 

behaviour. Conditional on ✄i, the only remaining random terms in the mixed logit are 

the �it’s, which are independent over time, so the lagged dependent variable in the 

utility function is uncorrelated with these remaining error terms for period t (Train, 

2003). In another word, the lagged dependent variable can be added to the mixed logit 

model without having to change the estimation procedure. 

 

If we only have repeated cross sectional data rather than genuine panel data, 

transformation similar to those described in section 7.1.4 of this chapter has to be 

applied. After aggregating individual observation into cohorts, the utility of choosing 
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Option 1 by a particular individual in cohort c in year t can be expressed as the sample 

average (deterministic) utility ctV  plus various error terms. When the sample size is 

sufficiently large for each cohort, the measurement errors ctη  can be ignored. 

Deviation of individual deterministic utility from cohort mean, ctttitti VV −= ),(),(θ , can 

be merged with the residual error term tti ),(ε ′ . The only difference from Section 7.1.4 is 

the treatment of unobserved heterogeneity, cλ , which will be absorbed into the random 

parameter vector cγ  in the mixed logit model (Note cccc νγβαγ Γ+=′′= ),(  and 

assume that xct contains a constant term). Conditional on random vector cγ , the sample 

average deterministic utility for cohort c will become the argument to the exponential 

function in (17), and the probability of any individual within cohort c choosing Option 

1 over T period can be expressed as a product of logit formulas c

ct

γΛ  (raised to the 

power of ctct rn ⋅ ): 
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Similar to the case of genuine panel, the unconditional probability ctP  is the integral of 

(19) over all values of cγ . The mixed logit model of (19) can be estimated most 

conveniently using the method of Maximum Simulated Likelihood (MMSL), which is 

based on the simulated logit probability within the right hand side of equation (19):  

∑
=

Λ=Λ
D

d

d

ctct
D 1

)(
1~ γ       (20) 

where dγ  is a value obtained from the dth draw of ),|( Γγγcf  and D is the number of 

draws. By construction, ctΛ~  is an unbiased estimate of ctΛ . Inserting the simulated 

probability (20) into the log likelihood function of binary choice model based on 

proportions data, it gives a simulated log likelihood function:  

∑∑
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1ln()1()
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ln([   (21) 

where nct is the sample size for cohort c and rct is the proportion of household in cohort 

c choosing Option 1 in year t. 
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For empirical application, the random parameter model for pseudo panel based on 

equation (19) to (21) has been implemented in Gauss (Aptech Systems, 1996). The 

code was adapted from a mixed logit program of Revelt and Train (1998), and various 

checks have been applied to ensure the correct implementation of the model. Appendix 

2 is simplified version of the Gauss code we have used. 

 

7.3 Empirical Results of Dynamic Car Ownership Model 

Similar to the previous chapter, two separate pseudo panel datasets have been used to 

estimate the model of one plus car and that of two plus cars. For the former, the dataset 

was compiled using the entire sample of Family Expenditure Survey covering the 

period of 1982 to 2000. We exclude observations that are derived based on less then 

100 households, resulting in a pseudo panel with 254 observations with 16 cohorts. The 

first observation of each cohort has to be dropped for dynamic model, so the number of 

pseudo panel observations is reduced to 238.  

 

For the model of two plus cars, the dataset was constructed using a sub-sample of car 

owning households in the Family Expenditure Survey for the same period. After 

excluding observations based on small number of households, the pseudo panel dataset 

has 220 observations from 14 cohorts; for dynamic model, the sample size is further 

reduced to 206 after dropping the first observation of each cohort. 

 

We carry out systematic specification search to determine the model with best fit. For 

clarity, results are reported separately for models of one plus car and two plus cars. 

 

7.3.1 Dynamic Model of One plus Car 

The explanatory variables in the utility function include the lagged dependent variable 

and other exogenous variables, including income and other household characteristics 

(household size, number of person in work, number of children), location of household 

as proxy for accessibility, costs of car ownership and use, and finally the second 

polynomial of average age of household head in the cohort.  

 

In the initial tests, unobserved heterogeneity is not modelled and the models estimated 

are pooled logit or probit. We compared models with different representation of the 
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household characteristics, using either average household demographic statistics 

(household size etc.) or split of eight household types. We also compared models with 

different representation of the household locations, using either the full five location 

categories or the three compressed location categories. Regarding household income 

and costs of car ownership and use, variables of both linear form and logarithm form 

have been tested. Finally, different functional forms of logit and probit have been 

investigated. Table 7-1 summarises the various models mentioned above and compares 

their degree of fit based on log likelihood. 

Table 7-1 Summary of Initial specification search  

 
Functional 

Form 

HH Characteristic 

Variables 

Location 

Variables 

Income/Cost 

Variables 

No. of 

Variables 

Log 

Likelihood 

Model 1 Logit Ave No. of people* Compressed Linear 12 -65911 
Model 2 Logit Household types Full Linear 18 -65879 
Model 3 Logit Household types Compressed Linear 16 -65879 
Model 4 Logit Ave No. of people* Full Linear 14 -65910 
Model 5 Logit Ave No. of people* Compressed Log 12 -65901 
Model 6 Logit Household types Compressed Log 16 -65877 
Model 7 Probit Ave No. of people* Compressed Linear 12 -65914 

Model 8 Probit Household types Compressed Linear 16 -65881 

(* Average number of people within the household, in work and under the age of 16) 

 

The null log likelihood of the logit model is -81240, so the Adjusted Likelihood Ratio 

Index (also called Rho bar square) of Model 1 to 6 vary between 0.1885 and 0.1889. 

Using proportions of eight household types (Model 3) instead of average number of 

people (Model 1) as explanatory variables, the model loses 4 degree of freedom but has 

the log likelihood increased by 32 and the Adjusted Likelihood Ratio Index increased 

by 0.0004. On the other hand, there is almost no change of log likelihood when the five 

household location variables (Model 2) are compressed into three (Model 3), indicating 

no loss of fit. From these analysis, it appears that household characteristics are better 

represented by the eight-way categorization of household type, while locations are 

better represented by three area types, i.e. metropolitan areas, least populated rural 

areas and others.  

 

Model 5 transforms the income and cost variables in Model 1 to the logarithm form, 

and the log likelihood is increased by 10. Similarly, Model 6 is the logarithm version of 

Model 3, while the log likelihood is increased by 2. As the degree of freedom is the 
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same between each pair of linear and logarithm models, the higher log likelihood 

suggests that models with log transformed income and costs variables are preferred. 

 

Finally, Model 7 and 8 are the probit version of Model 1 and Model 3 respectively. 

Because the null log likelihood for the probit model is slightly different, the log 

likelihood of Model 7 and 8 is not directly comparable to that of other models. 

However, the marginal effects in the each pair of logit and probit models are very 

similar, suggesting that the robustness of the logit specification. 

 

The above results are similar to those reported in the previous chapter for the static 

model. Models 1 to 8, while including the lagged dependent variable, do not consider 

the unobserved heterogeneity. Given the importance of accounting for unobserved 

effects in the dynamic model, both fixed effect models and random parameter models 

are also investigated. 

 

The fixed effect version of Models 1 to 6 was estimated. With the presence of cohort 

dummy variables, the degree of freedom is reduced by 14, while the log likelihood is 

increased by 7 to 16 depending on the specific models. It should be noted that the fixed 

effects are treated as parameters in the model, and the finite T bias would be present for 

the model coefficients estimated using maximum likelihood method, although the bias 

might not be significant due to the relatively long sample period. Table 7-2 reported the 

results of two fixed effect model with log income and costs variables. 

 

Comparing Model 13 and 14 with their pooled logit version of Model 5 and Model 6, 

the log likelihood increases by 10 and 15 respectively. The likelihood ratio test of fixed 

effects, with 14 degree of freedom, is not statistically significant for Model 13 but 

significant at 5% level for Model 14. This is not surprising as none of the coefficients 

for the cohort dummy in Model 13 is significant. In Model 14, the slope coefficient and 

marginal effect are larger for the younger cohorts, indicating a higher propensity of car 

ownership for the younger generations. Figure 7-1 illustrates the marginal effects of the 

cohort dummy variables, which has a clear linear trend except for the youngest cohorts. 

This result is similar to those reported for the linear models in Chapter 4 and 5 and 

those reported in Dargay and Vythoulkas (1999). 
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Table 7-2 Fixed Effect Models with Log Income and Cost Variables (t-stat in parenthesis) 

 Slope Coefficient Marginal Effect 

   Model 13 Model 14 Model 13 Model 14 

LagY 1.6387 (8.93) 1.1311 (5.72) 0.3278 *** 0.2263 *** 
LnInc 0.6329 (5.67) 0.2986 (2.61) 0.1266 *** 0.0598 *** 
Child -0.3762 (-2.71)   -0.0753 ***   
Worker -0.2835 (-4.02)   -0.0567 ***   
HHSize 0.4648 (2.99)   0.0930 ***   
HH2   -1.4670 (-2.52)   -0.2935 ** 
HH3   -1.9185 (-2.36)   -0.3839 ** 
HH4   1.2822 (2.76)   0.2565 *** 
HH5   0.7844 (1.36)   0.1569 ' 
HH6   1.3520 (2.79)   0.2705 *** 
HH7   0.8068 (1.37)   0.1614 ' 
HH8   0.9000 (1.57)   0.1801 ' 
Met -0.8946 (-2.83) -0.7237 (-2.27) -0.1790 *** -0.1448 ** 
Rural 0.8815 (2.66) 0.5683 (1.70) 0.1763 *** 0.1137 * 
LnPrice -0.5794 (-5.47) -0.4621 (-3.81) -0.1159 *** -0.0925 *** 
LnRunCst -0.5412 (-4.92) -0.5906 (-5.11) -0.1083 *** -0.1182 *** 
Age 0.0467 (4.19) 0.0620 (4.76) 0.0094 *** 0.0124 *** 
AgSq -0.0554 (-5.62) -0.0382 (-3.05) -0.0111 *** -0.0077 *** 
C2 -0.0805 (-0.79) 0.0949 (0.90) -0.0164 ' 0.0186 ' 
C3 -0.0861 (-0.86) 0.1402 (1.31) -0.0175 ' 0.0272 ' 
C4 -0.0747 (-0.70) 0.2853 (2.33) -0.0152 ' 0.0537 ** 
C5 -0.0793 (-0.69) 0.3772 (2.76) -0.0161 ' 0.0699 *** 
C6 -0.0589 (-0.46) 0.5024 (3.23) -0.0119 ' 0.0905 *** 
C7 -0.0148 (-0.10) 0.6610 (3.76) -0.0030 ' 0.1148 *** 
C8 -0.0007 (-0.01) 0.7621 (3.94) -0.0002 ' 0.1294 *** 
C9 0.0182 (0.11) 0.8853 (4.10) 0.0036 ' 0.1467 *** 
C10 0.0731 (0.38) 1.0314 (4.33) 0.0144 ' 0.1670 *** 
C11 0.0416 (0.20) 1.1114 (4.24) 0.0083 ' 0.1760 *** 
C12 0.0607 (0.26) 1.2655 (4.36) 0.0120 ' 0.1936 *** 
C13 0.0807 (0.33) 1.4403 (4.50) 0.0159 ' 0.2101 *** 
C14 0.0603 (0.23) 1.5981 (4.56) 0.0119 ' 0.2168 *** 
C15 -0.1093 (-0.40) 1.6529 (4.27) -0.0224 ' 0.2136 *** 
C16 -0.2695 (-0.88) 1.7282 (3.98) -0.0570 ' 0.2139 *** 

Log Like'd -65891  -65861      
Null LL -81240  -81240      
Adj. LRI 0.1888  0.1891      

***: Significant at 1% level; 
**: Significant at 5% level; 
*: Significant at 10% level; 
': Not statistically significant  

 

Table 7-3 Short run elasticity derived from FE models with log income and price variables 

 Model 13 Model 14 

Income 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Low 0.31 -0.28 -0.27 0.15 -0.23 -0.30 
Middle 0.13 -0.12 -0.11 0.06 -0.10 -0.12 
High 0.10 -0.10 -0.09 0.05 -0.08 -0.10 
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Figure 7-1 Marginal Effects of Cohort Dummies (Model 14) 
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0.00

0.05

0.10

0.15

0.20

0.25

C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

Cohort

M
a
rg

in
a
l 

E
ff

e
c
t

 

 

One concern about the fixed effect model is the much smaller coefficient (and smaller 

t-stat) of the income variable, especially for Model 14, suggesting some explanatory 

power of income has been taken away by the cohort dummies. This would have some 

negative impacts on forecasts, as income is the exogenous variable that we can more 

easily control, while the fixed effects for the new cohorts are difficult to predict. Table 

7-3 reports the short run elasticity of income, car purchase price and running costs for 

low, median and high income cohort, which have been calculated as PxPEl /)( ∂∂= .  

 

The short run income elasticity reported in Table 7-3 is lower than that derived from 

the pooled logit model (Model 5 and 6 in Table 7-1). While Model 14 seems to have 

better goodness of fit, the income elasticity is lower than those commonly found in the 

literature. Furthermore, the income elasticity becomes lower than the price elasticity in 

Model 14, inconsistent with earlier findings in Dargay and Vythoulkas (1999). On the 

other hand, the income and cost elasticity derived from Model 13 is more sensible, 

even though it has worse goodness of it. 

 

One advantage of using dynamic model is the ability to capture long run relationship 

under equilibrium and the possibility of estimate long run elasticity. However, unlike 

the case of linear model, the long run elasticity can not be easily derived for dynamic 

discrete choice model. In the current study, we use Taylor expansion to derive 

approximate results. The formula used in the calculation of long run elasticity using 
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Taylor expansion is reported in Appendix 3 and the results for Model 13 and 14 are 

reported in Table 7-4. 

Table 7-4 Long run elasticity derived from FE models with log income and price variables 

 Model 13 Model 14 

Income 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Low 0.53 -0.48 -0.45 0.20 -0.32 -0.40 
Middle 0.19 -0.17 -0.16 0.08 -0.12 -0.15 
High 0.13 -0.12 -0.11 0.06 -0.09 -0.11 

 

Table 7-5 Results of Random Parameter Model (t-stat in parenthesis) 

 Mean of Param Std Dv of Param Marginal Effect 

ONE -1.72791 (-0.88) -0.00009 (-0.01) -0.34581 ' 
LagY 1.49168 (8.10) 0.00001 (0.00) 0.29853 *** 
LnInc 0.79112 (6.55) 0.00000 (0.00) 0.15833 *** 
HH2 -0.97067 (-1.98) 0.00051 (0.02) -0.19426 ** 
HH3 -1.11800 (-1.90) 0.00252 (0.03) -0.22374 * 
HH4 0.91559 (2.12) 0.00045 (0.02) 0.18324 ** 
HH5 0.22397 (0.44) 0.00100 (0.03) 0.04482 ' 
HH6 0.48834 (1.16) 0.00082 (0.04) 0.09773 ' 
HH7 0.05382 (0.10) -0.00229 (-0.04) 0.01077 ' 
HH8 -0.03899 (-0.08) -0.00304 (-0.03) -0.00780 ' 
Met -0.72991 (-2.43) 0.00104 (0.05) -0.14608 ** 
Rural 0.47943 (1.46) -0.00010 (-0.00) 0.09595 ' 
LnPrice -0.60235 (-2.91) - - -0.12055 *** 
LnRunCst -0.13253 (-0.84) - - -0.02652 ' 
Age 0.02671 (2.61) 0.00000 (-0.01) 0.00535 *** 
AgSq -0.03006 (-2.84) 0.00000 (0.01) -0.00602 *** 

Log Like'd -65877      
Null LL -81240      
Adj. LRI 0.1887      

***: Significant at 1% level; 
**: Significant at 5% level; 
*: Significant at 10% level; 
': Not statistically significant 

 

The expansion point for the linear Taylor expansion corresponds to the proportion of 

households owning at least one car for the low, median and high income cohort. 

Comparing the results in Table 7-3 and 7-4, it shows that the long run elasticity is 

higher than short run elasticity by about 70% for Model 13 and by about 40% for 

Model 14 (low income household). Nevertheless, the long run income elasticity 

derived from Model 14 is still much lower than those reported in Dargay and 

Vythoulkas (1999), and is also lower than those derived from linear dynamic model in 

Chapter 5. These results are clearly unsatisfactory. 
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As discussed in Section 2, the fixed effect estimators are fixed T biased due to the 

incidental parameter problem. We then proposed to extend the random effect model to 

random parameter model, which relaxes the orthogonality assumption between the 

unobserved effects and the explanatory variables and accommodates lagged dependent 

variable. For the ownership model of one plus car, we estimate the random parameter 

version of Models 1 to 6 reported in Table 7-1. We report the results of the model with 

best fit in Table 7-5. 

 

The model log likelihood of the random parameter model is -65877 and the adjusted 

likelihood ratio index is 0.1887, slightly lower than the fixed effect model. The residual 

plot (Figure 7-2) does not reveal any severe problems of auto-correlation and 

heteroskedasticity.  

Figure 7-2 Residual plot of the Random Parameter model 
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The log variables of purchase price and running costs index are the same in any year 

for all cohorts, so their coefficients are treated as fixed parameters. The coefficients of 

other variables are assumed to be normally distributed. However, none of the estimated 

standard deviations of the random parameters (the square root of the diagonal elements 

of Γ  in equation 16) are statistically different from zero. Regarding the mean of the 

random parameters, the constant term and log running cost parameter are not 

significant, while lagged dependent variable, log income, log purchase price, age 

parameters are all significant at 1% level. Only some of the household characteristic 
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variables and location variables have significant coefficients. Based on the mean of the 

random parameter, the short run and long run elasticity is reported in Table 7-6. 

Table 7-6 Short Run and Long Run elasticity based on the mean of random parameters 

 Short Run Long Run 

Income 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Low 0.39 -0.29 -0.06 0.61 -0.46 -0.10 

Middle 0.17 -0.13 -0.03 0.23 -0.18 -0.04 

High 0.13 -0.10 -0.02 0.17 -0.13 -0.03 

 

The running cost elasticity is not significant so is shown in italic. The short run income 

elasticity ranges from 0.13 for high income household to 0.39 to low income household, 

while the long run income elasticity ranges from 0.17 to 0.61. The purchase price 

elasticity varies between -0.10 and -0.29 in the short run while the range is between      

-0.13 and -0.46 in the long run. The income and price elasticity for high income 

households is about one third of that for low income households, and such difference is 

much bigger than that reported in Dargay and Vythoulkas (1999). This might suggest 

that the logit functional form adopted here better accounts for the impact of saturation.  

 

Finally, it is worthy to provide some tentative explanations of why none of the random 

parameters has standard deviation significantly differently from zero. The first 

possibility is that the unobserved heterogeneity is no longer significant after the 

individual data are aggregated into cohorts. However, this argument is not supported by 

results of the fixed effect models, where the fixed cohort effects are significant for 

most of the cohorts under certain specification. Nevertheless, the improvement of the 

goodness of fit for the fixed effect model is not spectacular given the loss of degree of 

freedom (likelihood ratio test is significant at 5% but not at 1% level), which might 

suggest that the significance of heterogeneity is limited for cohort data. The second 

possibility is that the pseudo panel sample size might be too small to reliably estimate 

the distribution of parameters representing unobserved heterogeneity. Although the 

Family Expenditure Survey has thousands of observations each year, after they are 

aggregated into pseudo panel, we only have observations for 16 cohorts covering 19 

years. This small sample size might not be enough to establish the distribution of the 

random parameters. The third possibility is that the assumption of normal distribution 

of parameters is inappropriate. However, alternative assumptions of uniform, triangular 
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and log-normal distribution all yield almost identical results so the assumption on 

parameter distribution is less likely to be the problem here. 

 

7.3.2 Dynamic Model of Two plus Cars 

The models of two plus cars are conditional on households owning the first car. As a 

result, it is based on the reduced pseudo panel constructed from survey observations of 

car owning households. As mentioned at the beginning of this section, the number of 

pseudo panel observations using in modelling is 206 after dropping the first 

observation for each cohort. 

 

For the models of households with two or more cars conditional on owning the first car, 

specification search is similar to that described in the previous section and will not be 

reported here in details. The key results from the specification search are summarised 

as follows: firstly, the household characteristics variables that have statistically 

significant coefficients are the average number of children and people in work per 

household. Secondly, using compressed household location variables (“Met” and 

“Rural”) leads to significant loss of model fit. Thirdly, the fixed effects are not 

significant and in some models their inclusion leads to loss of goodness of fit. Finally, 

there is no difference in log likelihood (model fit) whether the income and costs 

variables are in linear or log form.  

 

Based on the above results, we identify the model with the best fit, which is reported in 

Table 7-7. To alleviate the problem of correlation between the explanatory variables 

and unobserved heterogeneity, random parameter (mixed logit) model is used. Table 7-

7 reports the mean and standard deviation of the parameter of interest as well as the 

marginal effects evaluated at the weighted average of the explanatory variables.  

 

The model log likelihood is -47152, and the Adjusted Likelihood Ratio Index is 0.1619. 

While no standard deviation of any random parameters is significantly different from 

zero, the mean of most parameters are significant and with expected sign. The means of 

two random parameters appear to have wrong sign: average number of children per 

household and log running costs. However, this appears to be the genuine results based 

on the data, as similar finding was obtained for static models in Chapter 6. Figure 7-4 is 
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the residual plot of the Car 2+|1+ model, which does not indicate any problem of auto-

correlation and heteroskedasticity. 

Table 7-7 Random Parameter Model for Car 2+|1+ (t-Stat in parenthesis) 

 Mean of Param Std Dv of Param Marginal Effect 

ONE -7.52859 (-2.81) -0.00006 (-0.01) -1.53371 *** 
LagY    1.61840 (5.48) 0.00105 (0.04) 0.32970 *** 
LnInc    0.75088 (4.30) -0.00008 (-0.06) 0.15297 *** 
Child   -0.12968 (-4.22) -0.00027 (-0.04) -0.02642 *** 
Worker  0.12459 (1.94) -0.00004 (-0.01) 0.02538 * 
AREA2    1.89829 (2.58) -0.00096 (-0.02) 0.38672 *** 
AREA3    1.04462 (1.41) -0.00030 (-0.01) 0.21281 ' 
AREA4    1.29271 (1.87) -0.00133 (-0.04) 0.26335 * 
AREA5    0.85025 (1.29) 0.00069 (0.02) 0.17321 ' 
LnPrice -0.61564 (-2.39) - - -0.12542 ** 
LnRunCst 0.33163 (1.78) - - 0.06756 * 
Age 0.08985 (7.08) 0.00000 (0.02) 0.01830 *** 
AgSq -0.09975 (-7.08) -0.00001 (-0.05) -0.02032 *** 

Log Like'd -47152      
Null LL -56288      
Adj. LRI 0.1619      

***: Significant at 1% level; 
**: Significant at 5% level; 
*: Significant at 10% level; 
': Not statistically significant  

 

Figure 7-3 Residual Plot of the Car 2+|1+ Model 

Residual against Obs ID (by cohort and by year for each cohort)
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The income and costs elasticity for low, median and high income cohorts are reported 

in Table 7-8. It should be noted that the overall income level for the car owning 
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households are higher, so these elasticity for Car 2+|1+ is evaluated at higher income 

than the model of one plus car. In general, the income and cost elasticity for the second 

(or more) car are higher than those for the first car. This result is as expected, since the 

ownership for second or third car in the household is less driven by necessity and is 

further away from saturation point. The elasticity differences between the low and high 

income cohorts are much smaller for 2+|1+ Car, mainly due to higher income and cost 

elasticity for high income cohort. In Table 7-8, both short run and long run elasticity 

have been reported, with the latter based on linear Taylor expansion described in 

Appendix 3. The long run income elasticity are higher than those in the short run by the 

range of 26% and 53%. 

Table 7-8 Income and cost elasticity for model of Car 2+|1+ 

 Short Run Long Run 

Income 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Low 0.64 -0.52 0.28 0.84 -0.69 0.37 

Middle 0.55 -0.45 0.24 0.72 -0.59 0.32 

High 0.47 -0.38 0.21 0.67 -0.55 0.29 

 

7.4 Model with Saturation 

As discussed in Chapter 6, there are two major advantages of using pseudo panel 

instead of cross sectional model in the empirical study of car ownership: the first is the 

consideration of dynamics, which has been investigated in the last three sections; the 

second is the modelling of saturation, which is the main focus here. In car ownership 

forecast model, saturation is an important concept. As pointed out by the Leitch 

Committee Report, “the accurate determination of the saturation level is of prime 

importance if the resulting forecasts are to command confidence. If the saturation level 

cannot be satisfactorily determined then the resulting forecasts are to that extent 

themselves unsatisfactory.” (Department of Transport, 1978; cited in Whelan 2003, 

p79) 

 

Saturation is a limit on the choices faced by decision maker, which may be reached but 

not exceeded. A model with saturation explicitly assumes that increasing income will 

bring car ownership levels closer to but never in excess of a saturation limit. Similar 

models that restrict range of possible choice fractions have been used under the name 
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of “Dogit” (Gaudry and Dagenais, 1979) 44 . While well established, there are 

outstanding issues with the interpretation and estimation of these saturation models, 

which will be addressed below. 

 

7.4.1 Dogit Model 

If the unconstrained discrete choice model is a binary logit model, the probability 

function of the corresponding model with saturation is commonly expressed as 

equation (22): 

)'exp(1

)'exp(

β
β

x

xS
P

+
⋅=     (22) 

where S is the saturation level. However, it is not always possible to directly estimate 

(22), as such attempt failed miserably in the current study. Furthermore, S in (22) is 

simply a statistical parameter defining the upper asymptote, which is a parameter of no 

consequence in its own right (Button et al, 1982). We have yet to provide clear 

interpretation of S in the framework of Random Utility Model.  

 

Saturation implies that some household are constrained not to own a car (captive to the 

alternative of zero cars). Reflected in the random utility model, the choice set faced by 

the decision maker 45  would have to be expanded to include new alternatives of 

“constrained choice”. The difference in utility between the constrained and 

uncontained choice can then be used to infer level of saturation. However, it remains an 

issue how to estimate the random utility model with constrained choice. As shown in 

Daly (1999), by notionally separating the constrained choice set further into 

“voluntarily constrained” and “forcibly constrained”, such model can be estimated 

using the conventional maximum likelihood method.  The resulting model has a “tree 

logit” structure illustrated by Graph (b) in Figure 7-4. 

 

When the choice set is formulated in the “tree-logit” form, Model (22) can be written in 

a way that is consistent with the random utility theory and can be estimated using 

conventional techniques. While the observable utilities of those choosing to own zero 
                                                 

44 It is called Dogit Model because it dodges (avoids) the researcher’s dilemma of choosing a priori 
between a format which commits to IIA restrictions and one which excludes them. 
45 The decision maker is an individual household in the micro survey. The probability model presented 
here refers to individual decision makers, and the corresponding pseudo panel model should be 
developed similarly as in Section 6.2.1 and 7.1.4. This is not shown in order to avoid duplication.   
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Figure 7-4 Choice Set when some decision makers are constrained not to own a car 

 

 

or one plus car remain unchanged, the observable utilities of those constrained not to 

own a car would include an additional linear modifier: )(, ** RSS ∈ . As a result, the 

observable utilities for the four alternatives in Graph (b) are: 
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For identification, the scale parameters of the two lower nests (�1 and �2) have to be 

constrained to 1. In this case, the above nested logit model collapses into a multinomial 

logit model with four alternatives. For cross sectional model with discrete data, this 

model can be estimated using commercial software; for pseudo panel, the estimation 

routine is implemented in Gauss based on the mixed logit code for proportions data. 

More specifically, the probability of household choosing 1+ car can be expressed as: 
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As researchers are not able to empirically distinguish household that choose not to own 

a car and those constrained not to own a car, the probability of household not owning a 

car has to be considered in aggregate: 

 
)exp()exp()exp(1

)exp()exp(1
**

**

0
SSxx

SSx
P

++′+′+
++′+=

ββ
β

  (24) 

 

0 Car 1+ Cars 
Choose 0 Car 

1+ Cars 

Constrained: would 
own car if allowed  

Constrained: would 
not own car anyway 

(a) Unconstrained 
choice set 

(b) Full choice set when 
some are constrained 

✁
2 

✁
1 



 166 

In (23) and (24), *
S  reflects the impact of constraints on the probability of car 

ownership, whose sign, magnitude and statistical significance remained to be estimated. 

When the impact of such constraints on car ownership is negligible, then −∞→*
S , 

and the probability of household owning zero car is the same as when no constraints 

exists: 
)exp(1

1
lim 0* x

P
S β ′+

=
−∞→

. On the other hand, when the impact of such constraints 

on car ownership is extremely large, we have ∞→*
S , and the probability of 

household owning zero car is close to one: 1lim 0*
=

∞→
P

S
. 

 

Model (24) is a special case of the Dogit Model proposed in Gaudry and Dagenais 

(1979)46. On the other hand, it is easy to show that the probability model of (23) is 

mathematically equivalent to equation (22), the empirical probability function 

commonly assumed for logit model with saturation. Rewriting equation (22) as: 
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and by noting  *1
ln S

S

S =−
       (26)  

we would obtain the probability model of (23). Instead of directly estimating the non-

linear term S in (22), we now estimate a linear term S*
 in the exponential function in 

(23). As 
)exp(1

1
*

S
S

+
= , it would satisfy 10 << S , representing the probability limit 

that can never be exceeded.  

 

7.4.2 Empirical Results of Car Ownership Model with Saturation 

The specification search is similar to that described in section 7.3.1 for models of one 

plus car and section 7.3.2 for models of two plus cars. While the consideration of 

saturation improves the goodness of fit, it does not change the comparative 

                                                 

46 The Dogit Model has the probability distribution as: 
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θ
. Model (24) 

is a binary Dogit with the following speficications: normalizing V1 to zero, )exp( *
1 S=θ  and 

02 =θ . 



 167 

performance between models with different forms of explanatory variables and 

unobserved heterogeneity. 

 

For model of one plus car, the model with the best fit is the fixed effect model, where 

the household characteristics are represented by the eight-way categorization of 

household types. While this model has the highest log likelihood after taking into 

account the degree of freedom, there are practical difficulties in using it for forecasts. 

One is the fixed effect for new cohorts in future years, which can not be estimated from 

existing data. The other difficulty is forecasting the split of households for the eight 

household types in each cohort, which, unlike the variables of household size and 

number of children/employed, can not be controlled using the forecasts published by 

the planning authority. Both issues would lead to additional uncertainty in the forecasts. 

Furthermore, the income elasticity implied by the fixed effect model is lower than the 

range identified in the literature, which is another cause of concern.  

 

For these reasons, we also report the result of the “second best” model with alternative 

household characteristic variables. Initially, the model estimated was a random 

parameter (mixed logit) model; but as none of the random parameter has standard 

deviation significantly different from zero, the random parameter specification was 

abandoned and all parameters were treated as fixed. Table 7-9 reports the results of the 

fixed effect model and the “second best” pooled logit model for household owning at 

least one car, which will be used for forecasting in the next chapter. 

 

The log likelihood of the fixed effect model with household type split is -65859, higher 

than the pooled logit model with average demographic statistics by about 40. The 

former has higher adjusted likelihood ratio index of 0.1889, which suggests better 

model fit after allowing for degree of freedom adjustment. As mentioned before, there 

are practical issues in applying the fixed effect model in forecasts, so it would be 

interesting to compare the forecasting results based on both models later on.   

 

The coefficient for the linear modifier S* is similar for both models. They translate to 

the saturation level of 0.9212 and 0.9437 respectively. However, the income elasticity 

differs significantly between these two models, with that for the pooled logit model 

being much higher. Table 7-10 compared the short run and long run income elasticity 



 168 

Table 7-9 Forecasting model of one plus cars (t-statistic in parentheses) 

 Slope Coefficient Marginal Effect 

 Fixed Effect Pooled Logit Fixed Effect Pooled Logit 

ONE   -4.8731 (-2.31)   -0.9628 ** 
LagY 1.0786 (4.45) 1.8888 (9.72) 0.2115 *** 0.3732 *** 
LnInc 0.3945 (2.55) 1.1075 (6.52) 0.0774 ** 0.2188 *** 
Child   -0.2550 (-1.74)   -0.0504 * 
Worker   -0.2991 (-3.54)   -0.0591 *** 
HHSize   0.3950 (2.38)   0.0780 ** 
HH2 -1.3671 (-1.87)   -0.2681 *   
HH3 -2.0141 (-1.90)   -0.3950 *   
HH4 1.4763 (2.46)   0.2895 **   
HH5 1.0815 (1.44)   0.2121 '   
HH6 1.8374 (2.77)   0.3603 ***   
HH7 1.2892 (1.58)   0.2528 '   
HH8 1.6144 (1.83)   0.3166 *   
Met -0.9489 (-2.25) -0.9420 (-2.60) -0.1861 ** -0.1861 *** 
Rural 0.6772 (1.57) 0.9621 (2.51) 0.1328 ' 0.1901 ** 
LnPrice -0.5800 (-3.46) -0.2662 (-1.17) -0.1137 *** -0.0526 ' 
LnRunCst -0.8184 (-4.30) -0.2980 (-1.61) -0.1605 *** -0.0589 ' 
Age 0.0919 (4.01) 0.0356 (2.99) 0.0180 *** 0.0070 *** 
AgSq -0.0583 (-3.16) -0.0436 (-3.77) -0.0114 *** -0.0086 *** 
S* -2.4582 (-6.42) -2.8195 (-6.90) - - - - 
C2 0.1040 (0.92)   0.0204 '   
C3 0.1679 (1.45)   0.0329 '   
C4 0.3347 (2.44)   0.0656 **   
C5 0.4439 (2.82)   0.0870 ***   
C6 0.5997 (3.24)   0.1176 ***   
C7 0.8187 (3.72)   0.1605 ***   
C8 0.9730 (3.85)   0.1908 ***   
C9 1.1991 (3.87)   0.2351 ***   
C10 1.4448 (3.90)   0.2833 ***   
C11 1.5371 (3.86)   0.3014 ***   
C12 1.7391 (3.94)   0.3410 ***   
C13 1.9663 (4.04)   0.3856 ***   

C14 2.1536 (4.10)   0.4223 ***   
C15 2.2183 (3.91)   0.4350 ***   
C16 2.3610 (3.73)   0.4630 ***   

Log Like'd -65859  -65900      
Null LL -81240  -81240      
Adj. LRI 0.1889  0.1887      

***: Significant at 1% level; 
**: Significant at 5% level; 
*: Significant at 10% level; 
': Not statistically significant 

Table 7-10 Short run and long run income elasticity of one plus car model 

 Short Run Income Elasticity Long Run Income Elasticity 

Income Fixed Effect Pooled Logit Fixed Effect Pooled Logit 

Low 0.198 0.550 0.238 0.925 
Middle 0.082 0.240 0.111 0.413 
High 0.065 0.191 0.069 0.252 
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for these two models. The impacts of different income elasticity on car ownership 

forecast will be examined in the next chapter. 

 

Regarding the model of household owning two or more cars conditional on owning 

the first car, specification search shows that fixed effect models do not have better 

goodness of fit. While using the five-area household location split improves model fit, 

there is no significant loss of fit when using average demographic statistics rather than 

eight-way household type split if degree of freedom is taken into account. The average 

household size variable is not significant and subsequently dropped, so the household 

characteristics are described by the average number of children and people in work per 

household. This leads to the model of best fit reported in Table 7-11. It should be noted 

that the model initially estimated was a random parameter model; as the standard 

deviations of the random parameters were not significantly different from zero, all 

parameters are treated as fixed in the final model. 

Table 7-11 Model of Car 2+|1+ (t-stat in parenthesis) 

 Slope Coeff Marginal Effect 

ONE -10.4365 (-3.08) -2.1587 *** 
LagY    2.3361 (5.23) 0.4832 *** 
LnInc    1.0649 (4.63) 0.2203 *** 
Child   -0.1362 (-3.67) -0.0282 *** 
Worker  0.1844 (2.26) 0.0381 ** 
AREA2    2.2701 (2.77) 0.4695 *** 
AREA3    1.1823 (1.45) 0.2446 ' 
AREA4    1.6324 (2.11) 0.3376 ** 
AREA5    1.0771 (1.44) 0.2228 ' 
LnPrice -0.6078 (-1.88) -0.1257 * 
LnRunCst 0.6191 (2.42) 0.1280 ** 
Age 0.0769 (5.15) 0.0159 *** 
AgSq -0.0840 (-5.08) -0.0174 *** 
S* -0.7891 (-3.07) -  

Log Like'd -47147    
Null LL -56288    
Adj. LRI 0.1621    

***: Significant at 1% level; 
**: Significant at 5% level; 
*: Significant at 10% level; 
': Not statistically significant  

 

Similar to the unconstrained Car 2+|1+ model reported in Table 7-7, there are two 

parameters with unexpected sign. The coefficient of average number of children in the 

household is negative and significant, but it might be due to the correlation between 

that variable and the average number of people in work. The latter is significant at 5% 



 170 

level, with marginal effects on the conditional choice probability of 0.038. While the 

coefficient for log of real purchase price is negative and significant, that for the log of 

real running costs is significant but of wrong sign. This result was previously identified 

for the static and unconstrained dynamic model of Car 2+|1+ and might be caused by 

the concurrent substantial rise of car running costs and ownership of two plus cars in 

the second half of 1990s. In terms of household location, if the proportions of 

households living in metropolitan and rural areas (Area type 2 to Area type 4) increase 

at the expense of that in Greater London (the base case of Area type 1), the conditional 

probability of household owning two or more cars would also increase. Finally, the 

coefficients for the average age of household head and age square (dividing by 100) are 

positive and negative respectively, indicating a peak of car ownership during the 

household life cycle. 

 

The estimated linear utility modifier S* is -0.7891, implying a saturation level of 0.6876. 

We have also calculated the short run and long run income and costs elasticity for 

cohorts with low, median and high income level, which is reported in Table 7-12, The 

income and purchase price elasticity are higher than those for models of one plus car, 

which is as expected. On the other hand, the running cost elasticity is shown in italic 

due to its unexpected sign. 

Table 7-12 Income and cost elasticity of Car 2+|1+  

 Short Run Long Run 

Income 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Income 
Elasticity 

Price 
Elasticity 

Running Cost 
Elasticity 

Low 0.95 -0.54 0.55 1.23 -0.70 0.72 

Middle 0.78 -0.45 0.45 0.94 -0.53 0.54 

High 0.62 -0.35 0.36 0.68 -0.39 0.39 

 

7.5 Conclusion 

In this rather long chapter, we tackle two important issues that motivate the estimation 

of non-linear pseudo panel model in the first place: the consideration of dynamics and 

saturation in the car ownership choice. Since the 1980s, there have been a growing 

number of researchers that recognised the importance of dynamics and applied it in 

transport studies (e.g. Hensher and Wrigley, 1986; Kitamura, 1990; Mears et al. 1990; 

Goodwin et al. 1990; Goodwin, 1997; Long, 1997). In the current study, we focus on 

the methodological aspects of the nonlinear dynamic models. In particular, the first two 
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sections deal with the development and consistent estimation of the dynamic discrete 

choice pseudo panel model. We have shown in the previous chapter that the utility 

function of the pseudo panel model is a direct transformation from its cross-sectional 

counterpart, and if the measurement error can be ignored, these two types of models 

have the similar probability function, albeit with different scale (random term). This 

result facilitates the discussion in this chapter, where the behaviour models are more 

conveniently developed for individual decision maker before transforming into pseudo 

panel model. 

 

In developing a dynamic car ownership model, we follow a general to specific 

approach, starting from a structural model with three forms of true state dependence. 

The general model encompasses three specific models: standard state dependence 

model, propensity dependence model and dynamic optimisation model. In propensity 

dependence model, the lagged effect is captured by the previous tendency to select a 

state (choice), which is unobservable and will lead to additional uncertainty in forecasts. 

Model of dynamic optimisation, despite its promise of enriching choice dynamics, 

requires a fundamental shift of car ownership model from holding model to 

transactions model. As a result, the standard state dependence model is chosen as the 

preferred model of dynamic car ownership choice.  

 

The estimation of the nonlinear dynamic pseudo panel model is examined theoretically 

and empirically. We first review the various fixed effect, random effect and semi-

parametric estimators proposed for the genuine panel data in the literature; 

subsequently, the fixed effect model and random parameter model of pseudo panel are 

proposed for the current study. In the empirical section, separate models have been 

estimated for households owning at least one car and those owning two or more cars 

conditional on the ownership of the first car. Both fixed effect models and random 

parameter models are tested, although the standard deviations of the random 

parameters are not significantly different from zero in all models. 

 

The other important issue investigated in this chapter is the specification and estimation 

of car ownership model with saturation, which is a key consideration for the use of 

discrete choice method. In the framework of random utility model, saturation implies 

that some households are constrained not to own a car. Accordingly, the choice set 
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faced by the decision makers has been expanded to include the new alternatives of 

“constrained zero cars”. To facilitate estimation, the model is specified with a “tree 

logit” structure and instead of directly estimating the saturation level S (a nonlinear 

term in the probability function), we estimate a linear modifier S* in the utility function. 

The constrained dynamic model is subsequently implemented in the empirical study of 

car ownership. The estimated models of Car 1+ and Car 2+|1+ will then be used to 

forecast car ownership in Britain to year 2021, which will be the subject of next chapter. 
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Chapter 8 Car Ownership Forecasts 

In the last four chapters, a range of car ownership models have been estimated using 

the pseudo panel dataset constructed from the Family Expenditure Survey. The 

systematic specification search determines the models with best fit, which will be used 

in car ownership forecasting here. The forecasting models include both linear and 

nonlinear models so their performance can be compared. In the current study, the 

geographic area covered is limited to Great Britain (as opposed to the United Kingdom) 

to be consistent with the National Road Traffic Forecasts (NRTF) and the National 

Transport Model maintained by the Department for Transport. The forecasting period 

is between 2001 and 2021, since more detailed household projection data are only 

available up to year 2021. 

 

As all the empirical models are estimated using pseudo panel data, which are average 

statistics of cohort sample, it is easier to obtain aggregate measures such as total car 

stock compared to cross sectional models. Unlike the latter, it is not necessary to use 

the more complicated techniques such as prototypical sample enumeration (Daly and 

Gunn, 1985; Whelan, 2003; Whelan, 2007). However, it is still a challenging task to 

derive the cohort based household characteristics in future years using the available 

planning data. More specifically, it is important to separate the age effects and time 

trend effects (similar to the ‘life cycle effects’ and ‘generation effects’ in Dargay and 

Vythoulkas, 1999) on income and other characteristics over the life cycle. This issue 

will be discussed in Section One, which deals with projection of explanatory variables 

and other relevant variables over the forecasting period. Section Two uses the projected 

input data and the model parameters estimated in the previous chapters to generate 

forecasts. The forecasts results have been validated to the observed data and compared 

to those obtained from other studies. A number of scenario tests have also been carried 

out to ensure the models have the appropriate sensitivities. Section Three is a brief 

conclusion. 
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8.1 Projection of Explanatory Variables 

It is necessary to first establish the age profile of the existing and new cohorts over the 

forecasting period. We decide to drop data points when household head is aged over 

100, which also leads to the exclusion of the oldest cohort in the dataset (born between 

1901 and 1906) from the forecasting model. On the other hand, five new cohorts have 

been introduced over the period, with the youngest born between 2001 and 2006. As a 

result, the model involves 20 cohorts in total over the forecasting period. 

 

8.1.1 Forecast Assumptions 

For each of the twenty cohorts in the period between 2001 and 2021, one has to make 

projections of explanatory variables in the econometric models and two other variables: 

number of households and ‘multiple-car factor’ for households with two or more cars. 

The explanatory variables include household real disposable income, average 

household demographic statistics, split of households between the eight household 

types, split of households between location types and aggregate real purchase price and 

car running costs index. The input data in 2000 (Year 0) are estimated based on Family 

Expenditure Survey data or backcast of 2001 census data. The future year growth 

assumptions are derived from social economic forecasts published by various sources. 

  

Regarding the number of households in the 20 cohorts, we make use of the census 

product from Office of National Statistics, “Focus on Family” (ONS, 2005), which 

contains data on the number of families based on the 14 age bands of family reference 

person in 2001. By further taking into account the number of one person household in 

different age groups, it is possible to derive the number of household for all cohorts in 

2001. ODPM (1999)47 and Scottish Executive (2002) provide projections of household 

in England and Scotland and are used to derive the growth rates of household number 

by different age bands of household representatives. 

 

Regarding household real disposable income, the base year (Year 2000) data is 

obtained from Family Expenditure Survey. The income growth is assumed to be in line 

with the growth of Gross Domestic Product (GDP), which however has to be adjusted 

                                                 

47 While more recent household projection data have been published, they do not provide the growth rate 
by age of household representative so can not be used. 
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downward to account for the increasing number of household in each cohort. We use 

the observed real GDP growth between 2001 and 2006, which is obtained from 

Treasury Weekly Economic Indicators Databank (Treasury, 2007). From 2007 onwards, 

the GDP is assumed to grow at 2.25% per annum, the same rate used in Department for 

Transport’s National Road Traffic Forecasts (1997), National Transport Model 

(Whelan, 2003; 2007) and 10 year plan (DETR, 2000). 

 

The base year estimates of household size and average number of children and person 

in work per household by cohorts are obtained from Family Expenditure Survey. The 

publication by Government Actuary’s Department on projected populations by age 

(GAD, 2003) is used to calculate the growth rate of household size and average number 

of children per household (taken into account the change of household numbers). 

Regarding the average number of working persons per household, we assume a 

constant labour market participation rate of 74.6% of the adult population (Treasury, 

2007), so the workforce growth is entirely driven by population change. 

 

It is not possible to project the change of location split by cohorts. As a result, the base 

year location split estimated from Family Expenditure Survey is assumed to be 

unchanged over the forecasting period. Regarding the real car ownership costs index, 

we assume the car purchase price falls by 0.37% per annum and the car running costs 

remain constant. These assumptions are also consistent with those in the National 

Transport Model and the 10 year plan. 

 

8.1.2 Generating Projections of Input Variables 

The analysis in Chapter 3 reveals that for pseudo panel data, household characteristics 

such as income go through a “hump” shape life cycle peaking at the age of late 40s; 

furthermore, at a given age, households in younger cohorts tend to have higher income 

than those in older cohorts. To derive sensible projection of the input variables, one 

should separate the age effect and time trend effect. The current study develops a sub-

model of input projection, which includes 81 overlapping age bands and explicitly 

separates these two effects. This sub-model is implemented in three steps: 

 

1. Estimating the base year figures for the relevant variables for 81 overlapping 

age bands of household head, e.g. those aged 15-19, 16-20, 17-21…94-98, 95-
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99. The data sources include census and Family Expenditure Survey, and 

because the original data are for non-overlapping age groups (15-19, 20-24, 25-

29…), method of interpolation is used to obtain estimates for all 81 age bands. 

This stage isolates the age effect cross cohorts. 

2. For each of the 81 age band, forecast the future year figures based on standard 

growth assumption described in the previous sub-section. Different growth rates 

are applied to different cohorts whenever it is possible. This stage introduces 

the time trend effect.  

3. The first two steps have produced a matrix of 21 rows by 81 columns (21 years 

for 81 age bands) for each input variable. Within each matrix, identify the 

twenty cohorts by the age of the household head. For example, in 2001, age 

band 16-20 corresponds to cohort whose head is born between 1981 and 1985 

(Cohort ID F5); age band 21-25 is cohort born between 1976 and 1980 (ID F6). 

In 2002, it is age band 17-21 that refers to cohort F5 and age band 22-26 refers 

to cohort F6. Similarly, age band 36-40 refers to cohort F5 and age band 41-45 

refers to cohort F6 in 2021. Extract the appropriate cells for each of the 20 

cohorts from the 21x81 matrix and arrange them by cohort and year, we obtain 

the projection of input variables that can be used in the car ownership 

forecasting models.  

 

The above method is used to generate projection for most of the input variables. 

However, an alternative approach has to be adopted regarding the split of eight 

household types, because it is not possible to obtain the appropriate growth rate 

required in the second step of the projection model and it is not satisfactory to assume 

that there is no change of household type split within cohort over time. The alternative 

approach involves assigning the observations in the original pseudo panel dataset into a 

69 by 20 matrix. The 69 rows cover cohorts aged between 19 and 87, and the 20 

columns correspond to the 20 cohorts. At a certain age (in one particular row), there are 

a number of pseudo panel observations belonging to different cohorts, which gives the 

growth rate between generations (younger and older cohorts). To dampen down noise, 

we actually use the average growth rates of cohorts with similar age (within 5 years 

difference) to project the future year values. These future year figures are contained in 

different cells of the 69x20 matrix and have to be extracted and re-arranged by cohorts 
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and years. A final adjustment is made to ensure that the proportions of the eight 

household types sum to 100%. 

 

8.1.3 Checking of Projection Results 

Before using the projected values of the explanatory variables in forecasts, it is 

necessary to check whether the projections are sensible. One way of checking is to 

examine the life cycle profile of the explanatory variables in the forecasting period. 

The variables of household real disposable income and average household size are used 

as example here. 

 

Figure 8-1 shows the profile of the income variable for nine selected cohorts, covering 

age between 19 and 97. The income profile has a “hump shape” life cycle with the 

peak occurs when the head of household is in his early 50s. Furthermore, the younger 

cohorts always have higher income compared to the older ones at the same age, 

reflecting the so-called “generation effects”. At the same age, the typical income 

difference between the two adjacent cohorts in Figure 8-1 is about 17%. Such 

difference is consistent with the typical income growth assumption of around 1.6% per 

annum (taking into account smaller household size and larger household number) and 

the 10 years gap between those cohorts. Comparing Figure 8-1 with Figure 3-5 in 

Chapter 3, one can see that the observed data and the projected data have broadly 

similar profile, although the former obviously has much more noise.  

 

Figure 8-2 shows the life cycle of average household size for nine cohorts at different 

ages. The life cycle pattern is similar to that of household income, although for 

household size it peaks at the much earlier age of late 30s. This result is consistent with 

that obtained from the Family Expenditure Survey data. The generation effect is also 

present, and the younger cohorts always have smaller household size at the same age. It 

is consistent with the observed demographic change and reflects the household size 

growth assumptions of between -0.04% and -0.37% per annum. Besides income and 

household size, similar checks have been carried out for other input variables and the 

results are found to be satisfactory. 
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Figure 8-1 Projected weekly disposable income: Profile by age of household head 

Projected Weekly Income (£ in 1995 price):  Profile by Age of Household Head from 9 Cohorts
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Figure 8-2 Projected average household size: profile by age of household head 

Average Household Size:  Profile by Age of Household Head from 9 Cohorts
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8.2 Car Ownership Forecasts and Model Performance Evaluation 

After projecting the future values of the explanatory variables in a sub-model, we are 

ready to apply the econometric models to generate car ownership forecasts. A number 

of econometric models have been used and the results are compared to the observed 

data between 2001 and 2006 as well as forecasts from other published studies. Several 
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scenario tests have been carried out to ensure that the forecasting models have the right 

sensitivity. 

 

8.2.1 Selection of Econometric Models 

A range of econometric models have been reported in Chapter 4 to 7, and it is 

important that the most appropriate ones are selected for forecasting. Some models are 

not suitable for forecasting purpose. For example, the linear models based on Weighted 

Least Square Estimator assume that economic relationship between the dependent 

variable and explanatory variables is linear for individuals in the micro survey. For 

such models, the linear transformation is done on individual data and the pseudo panel 

observations are the average of the transformed data (e.g. average of log income rather 

than log of average income). Besides the difficulty in supporting the assumption of 

linear relationship between car ownership and the explanatory variables for individual 

household, the fundamental problem is the impossibility to derive future values of the 

average transformed variables. As a result, the linear models used in forecasts are those 

assuming linear economic relationship at cohort level. 

 

Furthermore, some models are more suitable for analytical purpose rather than 

forecasting purpose. The most notable examples are semi-parametric models and 

conditional logit models discussed in Chapter 6 and 7. After eliminating the nuisance 

parameters, the marginal effects of these models are not defined, which renders them 

useless in forecasting. For this reason, no such empirical models have been estimated. 

Another class of models that is less suitable for forecasting purpose is heterogeneous 

models. As shown in Baltagi and Griffin (1997) and Baltagi et al. (2003), “simplicity 

and parsimony in model estimation offer more plausible estimates and better forecasts”; 

homogenous models offer better out-of-sample forecasting performance, even though 

the hypothesis of homogeneity is formally rejected in the statistical tests. Furthermore, 

when using the random parameter model in forecasts, the random parameters 

themselves have to be simulated, so the likely outcome is more noise in the forecasts. 

For this reason, the heterogeneous models of individual cohorts and random parameter 

models are not taken forward in the forecasts48. 

                                                 

48 Actually, the estimated standard deviation of the random parameters in the mixed logit models are not 
statistically different from zero, so there are obviously no benefits in using these models.  
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After some careful selection, five dynamic models49 have been selected to generate 

four sets of forecasts in order to compare the impacts of functional forms and choices 

of explanatory variables on the forecasts results. They include a linear fixed effect 

model (noting as Model L1 for convenience), a linear restrictive fixed effect model 

(Model L2), a fixed effect Dogit model for Car 1+ (Model D1), a pooled Dogit model 

for Car 1+ (Model D2) and a pooled Dogit model for Car 2+|1+ (Model D3). The 

parameters of these five models are reproduced in Table 8-1. 

 

Model L1, D1 and D3 are the ones that were found to have the best goodness of fit in 

the specification search, and were reported in Table 5-4, Table 7-9 and Table 7-11 

respectively. However, there are two issues when using Model L1 and D1 in forecasts. 

Firstly, both models are fixed effect models, and there are uncertainty regarding the 

assumptions of fixed effects for new cohorts. Secondly, both models use the split of 

eight household types as explanatory variables; however, there are no aggregate 

planning data on which the projection of these variables can be based.  Regarding the 

first issue, it seems most appropriate to assume that the fixed effects for the new 

cohorts are the same as the youngest one in the sample, as the linear trend stops and the 

fixed effects become levelled for the younger cohorts (See Figure 5-6 and 7-1). 

Regarding the second issue, we have to rely on the alternative methods described in the 

previous section to identify growth from past trends. 

 

As the solutions to these two issues are not entirely satisfactory, it seems worthy to 

generate forecasts using other models. More specifically, the alternative linear model 

restricts the cohort fixed effects to be linear (Model L2), and the alternative nonlinear 

model of Car 1+ ignores cohort fixed effect (Model D2). In both models, the household 

characteristics are represented by the average number of children, worker and 

household size rather than split of household types. By comparing the four sets of 

forecasts, one can establish whether the results are robust and how sensitive they are to 

model specification. 

 

                                                 

49 As the initial condition for new cohorts has to be estimated using the parameters of static models, there 
are actually 10 econometric models in total that have been used in forecasting. 
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Table 8-1 Parameters of Econometric Models Used in Forecasts 

 L1: FE L2: Rst FE D1: Car1+ FE D2: Car1+ Pooled D3: Car2+|1+ 

Constant  -3.0926  -4.8731 -10.4365 

LagY 0.1889 0.3447 1.0786 1.8888 2.3361 

LnInc 0.1894 0.2901 0.3945 1.1075 1.0649 

Child  -0.1740  -0.255 -0.1362 

Worker  0.0137  -0.2991 0.1844 

HHSize  0.1637  0.395  

HH2 -0.1090  -1.3671   

HH3 -0.3393  -2.0141   

HH4 0.4702  1.4763   

HH5 0.4802  1.0815   

HH6 0.5201  1.8374   

HH7 0.9149  1.2892   

HH8 0.7286  1.6144   

Met -0.1612 -0.3235 -0.9489 -0.942  

Area2     2.2701 

Area3     1.1823 

Area4     1.6324 

Area5 (Rural) 0.1942 0.3640 0.6772 0.9621 1.0771 

LnPrice  0.1855 -0.58 -0.2662 -0.6078 

LnRunCst -0.0958 -0.0260 -0.8184 -0.298 0.6191 

Age 0.0306 0.0197 0.0919 0.0356 0.0769 

AgSq -0.0002 -0.0001    

AgSq/100   -0.0583 -0.0436 -0.084 

Cohort  0.0451    

C1 -1.7403     

C2 -1.6816  0.104   

C3 -1.6537  0.1679   

C4 -1.5985  0.3347   

C5 -1.5547  0.4439   

C6 -1.4920  0.5997   

C7 -1.4019  0.8187   

C8 -1.3214  0.973   

C9 -1.2043  1.1991   

C10 -1.1352  1.4448   

C11 -1.0751  1.5371   

C12 -1.0067  1.7391   

C13 -0.9314  1.9663   

C14 -0.8541  2.1536   

C15 -0.8214  2.2183   

C16 -0.8104  2.361   

OUT -0.1554 -0.1720    

Saturation   0.921 0.944 0.688 

Adj R2 0.994 0.992    

Adj LRI (
2ρ )   0.1889 0.1887 0.1621 

 

8.2.2 Forecasting and Validation 

For linear model, the dependent variable is the average number of cars per household, 

so the total car stock can be easily obtained by multiplying the fitted dependent 
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variable by the household numbers in each cohort and summing over all cohorts. For 

nonlinear model, we estimate the probability  of household owning at least one car (P1+) 

and owning two or more cars conditional on owning the first one (P2+|1+). The 

unconditional probability of household owning two or more cars are the product of 

P2+|1+* P1+. When the discrete choice model is a multinomial logit model with a 

constant term, first order condition ensures that these probabilities are the unbiased 

estimates of proportions of households owning certain number of cars. It thus follows 

that the proportion of household owning exactly one car is (P1+ - P2+|1+* P1+) and the 

proportion of household owning two plus cars is P2+|1+* P1+. 

 

For those with two or more cars, one has to estimate the average number of cars in the 

household, or the so-called ‘multiple-car factor’ (noted as F, 2≥F ). The base year 

values of multiple-car factors (Fc0) are derived using the Family Expenditure Survey 

data. The long term growth rate of F is assumed to be 0.10% per annum, calculated 

using FES data over a 10 year period. Table 8-2 shows the assumed average number of 

cars in multiple-car household for six age bands in five years50. 

Table 8-2 Multiple-car factor used in forecasting 

 16-19 20-24 25-44 45-64 65-74 75+ 

2001 2.002 2.022 2.156 2.298 2.065 2.002 

2006 2.013 2.033 2.167 2.310 2.076 2.013 

2011 2.023 2.043 2.178 2.322 2.086 2.023 

2016 2.034 2.054 2.190 2.335 2.097 2.034 

2021 2.044 2.065 2.201 2.347 2.108 2.044 

 

For every year, the total number of cars is then calculated by multiplying the total 

number of households by the proportions of car owning households for each cohort, 

and summing over all cohorts: 
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where, TAt = Total number of cars in year t; 

HHct = Total number of household for cohort c in year t; 

                                                 

50 To obtain multiple-car factor for all cohorts, we follow a process similar to the sub-model of input 
projection, which involves calculating the future year factors in a 21 by 81 matrix. 
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Fct = Average number of cars in multiple car household for cohort c in year t. 

 

Initial forecasts are produced using the model parameters reported in Table 8-1. These 

results are then compared to the observed car stock in Great Britain between 2001 and 

2006. The total car stock are calculated from Transport Statistics Bulletin ‘Vehicle 

Licensing Statistics’ (DfT, 2005; 2006a) and ‘Vehicle Exercise Duty Evasion’ (DfT, 

2006b), with the latter providing estimates of unlicensed car stock. The total number of 

cars includes private cars (whether owned by individuals or companies) but excludes 

“non-cars private light goods vehicle”. Table 8.3 compared the four sets of forecasts 

against the observed car stock. 

Table 8-3 Observed Total car stock vs. forecasting results (000s) 

 Observed L1 L2 D1+D3 D2+D3 

2001 24,951 24,688 24,008 24,800 24,645 
2002 25,623 25,235 24,369 25,300 25,085 
2003 25,897 25,736 24,957 25,822 25,570 
2004 26,502 26,047 25,672 26,181 26,133 
2005 27,020 27,052 26,439 27,058 26,725 
2006 27,648 27,845 27,106 27,546 27,167 

 

Overall, the results from four models are all close to the observed figures, which should 

give confidence to our forecasting model. However, it should be beneficial to apply a 

small adjustment to the model parameters so that all 2001 forecasts are validated 

against the observed figure. Such adjustment also makes it more transparent in the 

comparison of the four models. The following changes are subsequently made:  

•  All cohort fixed effects are increased by 0.011 in Model L1; 

•  The constant term is increased by 0.0396 in Model L2; 

•  The saturation level is increased from 0.921 to 0.927 in Model D1; 

•  The saturation level is increased from 0.944 to 0.955 in Model D2. 

 

The above adjustments ensure the 2001 forecasts match the observed number of cars of 

24,951 in all four sets of forecasts. The post validation results are illustrated in Figure 

8-3, where the observed car stock is represented by ‘red diamond’ points. The forecasts 

based on nonlinear model D1 and D2 (both with Car 2+|1+ model of D3) closely match 

the observed figures between 2001 and 2006. On the other hand, the linear fixed effect 
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model L1 over-predicts the car stocks by 1.9% in 2006, and the other linear model L2 

over-estimates by a higher 3.4%.  

Figure 8-3 Observed Total Car Stocks and Forecasts from four Models 

Forecasted and Observed Car Stocks
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The similar results from model D1 and D2 suggest that the impacts of using different 

household characteristics variables on forecasts are small; also, assuming the new 

cohorts have the same fixed effects as the youngest one in the sample leads to similar 

outcome as the pooled logit model. On the other hand, both linear models generate 

higher forecasts, and the difference becomes larger in future years. Because linear 

models do not explicitly account for saturation, such results are in line with expectation. 

Finally, restricting the fixed effect to be linear leads to high car ownership in the new 

cohorts and hence the much higher aggregate forecasts. 

 

For nonlinear models, it is also possible to compare the forecasted proportions of 

households owning cars to the observed values. The observed data are available up to 

year 2004, obtained from the latest Transport Statistics Great Britain (DfT, 2006c). It 

should be noted that the reported data are the proportions of households with regular 

use of cars and vans, while our forecasts refer to cars only. The comparisons are 

presented in Table 8-4. 
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Table 8-4 Proportion of Households with zero, one and two plus cars 

 Zero Car One Car Two or more Car 

 Obs D1+D3 D2+D3 Obs D1+D3 D2+D3 Obs D1+D3 D2+D3 

2001 26% 28% 27% 45% 46% 46% 29% 27% 27% 
2002 26% 27% 27% 44% 45% 45% 30% 28% 28% 
2003 26% 27% 27% 44% 45% 45% 30% 28% 28% 
2004 25% 27% 26% 44% 44% 45% 31% 29% 29% 

 

The first impression from Table 8-4 is that our forecasts have higher proportions of 

household with no cars and lower proportions with two plus cars. The actual result is 

that the forecasted proportions of Car 1+ and Car 2+|1+ are both lower than the 

reported figures (note the proportion of household with exactly one car is calculated as 

P1+ - P2+|1+* P1+). This is what we should expect, as our models do not include private 

vans. 

 

8.2.3 Forecasts Evaluation and Sensitivity Test 

Beyond year 2006, when no observed car ownership data are available, the forecasts 

are evaluated using alternative methods. The analyses include comparison to other 

published studies, examination of car ownership profiles by age of household head and 

various sensitivity tests.  

 

The other studies used for comparison include National Road Traffic Forecasts (NRTF, 

1997), car ownership model supporting the influential RAC report “Motoring Towards 

2050” (RAC 2002a; 2002b), and car ownership sub-model in the UK Department for 

Transport’s National Transport Model (Whelan, 2003 and Whelan, 2007). Table 8-5 

compares the four sets of forecasts in the current studies with the above sources. 

Table 8-5 Forecasts Comparison: current studies vs. published studies (millions) 

Year L1 L2 D1+D3 D2+D3 
NRTF 
(1997) 

RAC 
(2002b) 

Whelan 
(2003)* 

Whelan 
(2007)* 

2001 24.95 24.95 24.95 24.95 25.18 25.18 28.12 25.63 
2006 28.18 28.59 27.74 27.62 n.a. n.a. 30.28 28.59 
2011 31.12 31.92 29.95 29.71 28.88 28.88 32.66 30.84 
2016 33.87 35.15 31.92 31.59 n.a. n.a. 34.48 32.71 
2021 36.52 38.56 33.94 33.58 31.77 32.26 36.08 34.26 

* National Transport Model 

 

The forecasts in the early NRTF (1997) are the lowest, and all other studies predict 

higher car numbers in 2021. The early National Transport Model forecasts (Whelan, 
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2003) appear to be too high and have been subsequently revised down in Whelan 

(2007). In the current study, the forecasts based on nonlinear models are slightly lower 

than the latter but slightly higher than RAC (2002b). Overall, our nonlinear model 

results are comparable to the latest “official” figures. On the other hand, the forecasts 

based on our linear models are substantially higher than other studies (except Whelan, 

2003), which seems to reinforce our concern that linear model will result in over-

prediction as saturation can not be properly controlled.  

 

Another “sense check” of the forecasts is to examine the profile of car ownership by 

cohort age. Similar to the profile of projected household income (Figure 8-2), the 

number of cars owned by household should follow a hump shape life cycle. The results 

from linear model L1 are presented in Figure 8-4, which shows the average number of 

cars per household for nine selected cohorts between age 19 and 97.  

Figure 8-4 Model L1: Average Number of Cars per Household, X-axis by cohort age 

Average Number of Cars per household:  Profile by Age of Household Head from 9 Cohorts
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The life cycle of car ownership is clearly illustrated in Figure 8-4, which also shows car 

ownership peaks when the household head is in his early 50s. Generally, the younger 

cohorts would have higher car ownership compared to older ones at the same age; 

however, this is no longer the case for the new cohorts. Such result is consistent with 

our assumptions that the fixed effects of all new cohorts are the same as that of the 

youngest cohort in the sample. Comparing Figure 8-4 to the observed car ownership 
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profile from FES (Figure 3-2), it seems our forecasts correctly reproduce the age 

effects and (diminishing) generation effects in the observed data. 

 

On the other hand, in the restrictive fixed effect model of L2, the car ownership levels 

for the new cohorts are substantially higher. For cohort born between 1996 and 2000, 

the model predicts on average one car per household when the household head reaches 

the age of 19. This figure seems to be unrealistically high. The life cycle profile of car 

ownership from Model L2 is presented in Figure A-1 in Appendix 1. Also included in 

the Appendix are two tables on the average number of cars per household for all 20 

cohorts in the forecasting period. Table A-2 refers to Model L1 and Table A-3 refers to 

Model L2.  

 

For nonlinear models, we examine the proportions of household owning cars rather 

than the average number of cars. Figure 8-5 presents the results of Model D1, which 

refers to households with at least one car.  There are some similarities between Figure 

8-5 and Figure 8-4 of the linear model L1. One is the apparent hump shape life cycle; 

the other is the increase of car ownership for younger cohorts at a given age except for 

the new cohorts, which is due to the similar assumptions on fixed effects of these 

cohorts. On the other hand, the ‘hump’ for Model D1 is much flatter than L1, 

indicating a strong effect of saturation regarding household owing at least one car51.  

 

Similar profile for Model D2 is presented in Figure A-2 in Appendix 1. It shows 

similar age effects and generation effects of car ownership probability (proportions), 

although younger cohorts always have higher proportions than older ones at a given 

age (for both existing and new cohorts). Table A-4 and Table A-5 in the Appendix give 

the full results of the proportions of household owning 1+ car for Model D1 and D2 

respectively. 

 

Figure 8-6 presents the profile on the proportions of households owning two or more 

cars conditional on owning the first one. Compared to Model D1 of one plus car, the 

                                                 

51 Another notable feature of the D1 profile is the bigger fluctuation of forecasts for households at young 
and old ages. This is due to the larger marginal effects of the household type split variables in D1. As 
discussed in the previous section, the projection of type split variables solely relies on the historical data 
and there are substantial noises for young and old cohorts due to small sample size. 
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Figure 8-5 Model D1: Proportion of Households Owning 1+ Car, X-axis by cohort age 

Proportion of HH with 1+ Car:  Profile by Age of Household Head from 9 Cohorts
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Figure 8-6 Model D3: Proportion of Households Owning 2+|1+ cars, X-axis by cohort age 

Proportion of HH with 2+|1+ Cars:  Profile by Age of Household Head from 9 Cohorts
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profile of D3 is more peaky since it is further away from saturation. Similar to Model 

D2, D3 is a pooled logit model so the differences of car ownership between younger 

and older cohorts at the same age are always present. The full results are also included 

in Table A-6 in the Appendix. 

 

A better way to see saturation in force for model of Car 2+|1+ is to look at Figure 8-7. 

It contains data series for five cross sections of cohorts in five years, each reporting the 
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proportion of households with 2+|1+ cars. It illustrates the age effects and time trend 

(generation) effects from a different angle. One can also see the data series for the 2001 

cross section is quite peaky, while those for the future years become flatter. This result 

indicates the gradual approach towards saturation over time.  

Figure 8-7 Model D3: Proportion of Households with 2+|1+ cars, 5 cross sections of cohorts 

Proportions of Household with 2+|1+ Cars for 20 cohorts: 

'Snap shot' in 5 Years
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A number of sensitivity tests have been carried out to ensure the forecasting models 

respond sensibly to the change of growth assumption and can be used to evaluate the 

impacts of transport policy measures. The first set of tests is income sensitivities, 

where we assume the GDP growth is 0.5% higher than the original assumption. The 

resulting forecasts as well as the implied elasticity from the five models are reported in 

Table 8-6, which should be compared to the central forecasts in Table 8-5. It shows 

that the two fixed effects models (L1 and D1) have lower income elasticity, mainly due 

to the smaller coefficient of the income variable in the econometric models. On the 

other hand, the pooled logit model D2 (combined with D3) has the highest income 

elasticity of 0.35. Overall, the income elasticity of these models appears to lie within a 

sensible range. 

 

Other scenarios examined include no demographic change, real purchase price 

reduction of 0.87% per annum (instead of original assumption of 0.37%) and real 

running costs inflation of 0.5% per annum (rather than no costs change). The test 
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results for the nonlinear models are reported in Table 8-7, which should also be 

compared to the original results in Table 8-5. 

Table 8-6 Sensitivity Test: GDP growth is 0.5% higher per annum  

 L1 L2 D1+D3 D2+D3 

2001 24973 24984 24975 24993 
2006 28342 28882 27926 27962 
2011 31430 32500 30314 30355 
2016 34345 36031 32449 32531 
2021 37169 39760 34635 34803 

Elasticity 0.180 0.276 0.198 0.350 

 

Table 8-7 Other Sensitivity Tests Results of Nonlinear Models 

 D1+D3 D2+D3 

 
Fixed 
Demography 

Higher Price 
Drop 

Run Costs 
Rise 

Fixed 
Demography 

Higher Price 
Drop 

Run Costs 
Rise 

2001 25113 24972 24943 25006 24967 24953 
2006 27273 27898 27702 27122 27751 27642 
2011 28735 30255 29905 28544 29961 29757 
2016 29868 32358 31860 29653 31960 31662 
2021 31019 34511 33874 30810 34069 33683 

Elasticity n.a. -0.174 -0.062 n.a. -0.128 0.017 

 

The assumption of no demographic change leads to a big reduction of total car stock in 

2021. Further examination reveals that most of the difference can be attributed to the 

rising number of households in the original forecasts. The higher deflation of purchase 

prices leads to a small increase of car numbers, which implies a purchase price 

elasticity of -0.17 and -0.13 for Model D1 and D2 (each combined with D3) 

respectively.  

 

However, the results on running cost elasticity are unsatisfactory, as they are either 

very low or of wrong sign. This is mainly due to the fact that the coefficient of running 

costs variable has wrong sign in the Car 2+|1+ model, which reflects the concurrent 

rise of two plus car ownership and real car running costs in the 1990s. As a result, our 

model can not be used to evaluate the impacts of changing costs (and any transport 

policy measures that are designed to cause such change) on car ownership without 

fixing the running cost coefficient. This is the approach taken in the National Transport 

Model (Whelan, 2003; Whelan, 2007), where the parameters of both purchase price 

and running cost variables are constrained to certain values so that the model would 



 191 

generate target elasticity. We have not implemented such measures since it is 

questionable of what ‘target elasticity’ should be. 

 

8.3 Conclusion 

In this chapter, selected econometric models estimated earlier have been applied to 

generate forecasts of car ownership in Great Britain to year 2021. A sub-model of input 

projection is developed to provide estimates of the household numbers and other 

explanatory variables in the forecasting period. A key feature of the input projection 

model is the ability to separate the age effects and time trend effects. For most of the 

explanatory variables, the time trend effects are reflected in the various growth rates 

applied to each of the 81 overlapping age band. The growth assumptions are obtained 

from various government sources and presented in a transparent way. Regarding the 

split of 8 household types within cohorts, the projections are solely based on the 

historical growth rate between different cohorts (at the same age) in the FES data. 

Overall, the projections of all input variables appear to be sensible. 

 

Four sets of forecasts have been generated, two based on linear models and two based 

on (three) nonlinear models. To facilitate comparison, the model parameters have been 

slightly adjusted so that all 2001 forecasts are validated against the observed figures. 

The results are then compared to the observed total car stock in Great Britain between 

2001 and 2006; beyond 2006, our forecasts are compared to other published sources. It 

shows our forecasts based on nonlinear models closely match the observed figures and 

are comparable to the latest “official” forecasts. On the other hand, both linear models 

forecast higher car ownership, presumably because the saturation effects are 

unaccounted for. In particular, if we ignore the “diminishing generation effects” and 

assume the cohort fixed effects are linear, the forecasted car stock becomes much 

higher in the distant future year. 

 

A number of sensitivity tests have also been carried out. In general, the income 

elasticity in all four forecasting models appears to be sensible. While the purchase price 

elasticity also lies in the acceptable range, the running costs elasticity is either very low 

or with wrong sign for both nonlinear forecasting models. Although it is possible to 

force the models to have “right” elasticity by fixing the coefficient of the running costs 
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variable, we refrain from doing so in the current study as modeler’s judgments on pre-

defined elasticity will inevitably introduce bias in any examination of policy measures.  
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Chapter 9 Conclusion 

Car ownership forecasting plays a central role in the planning and decision making of 

numerous public agencies and private organisations. It has been a lively area of 

research and numerous models have been constructed to forecast car demand. 

Traditionally the literature was dominated by static models, which rely on equilibrium 

assumptions that are sometimes questionable. Using dynamic models, on the other 

hand, it is possible to identify both the long run equilibrium conditions and short-term 

departure from such equilibrium. This in turn would reveal the true economic 

relationship and lead to more accurate forecasts.  

 

The trend in car ownership modelling is to use dynamic and disaggregate methods. 

However, such effort has been hampered by the need for expensive and hard-to-collect 

panel data. To utilize the rich and readily available sources of long running cross 

sectional surveys, this study adopts the pseudo panel methods, which involves 

constructing an artificial panel based on (cohort) averages of repeated cross-sections. 

The cross-sectional data used here are the Family Expenditure Surveys between 1982 

and 2000. By defining the cohorts on some time-invariant characteristics and 

developing appropriate econometric models, one could investigate dynamics for each 

cohort as well as heterogeneity between different cohorts. This would overcome the 

deficiencies in both the static models and aggregate time series.  

 

The use of pseudo panel for car ownership modelling raises a number of interesting 

theoretical and empirical questions, which were initially listed in Chapter One. The 

results reported in this thesis provide satisfactory answers to these questions.   

 

Chapter 4 and Chapter 5 deal exclusively with linear pseudo panel models. Firstly, it 

has been shown that the Weighted Least Square Estimator based on cohort means is 

equivalent to the Instrumental Variable (IV) estimator based on individual data from 

the micro survey and using cohort dummy as instruments. However, such relationship 

is based on the assumption that the economic relationship between the dependent 

variable and explanatory variables is linear and holds for individuals in the survey. 

Theoretically, this assumption is hard to defend for car ownership models, as individual 

household’s car ownership decision is discrete. Empirically, this assumption is not 
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supported by the data, as the models using cohort averages of log-transformed 

variables have many coefficients that do not seem sensible, especially for the dynamic 

models. On the other hand, the models assuming linear economic relationship at cohort 

level produce much more satisfactory results.  

 

We also investigate the frequently encountered problem of measurement errors in 

variables and the conditions required to ignore such problem. It has been shown that 

the way cohorts are constructed has direct implication on the bias of the within 

estimator if pseudo penal is to be estimated as genuine panel. The cohort should be 

defined in a way such that the population cohort means of the variables concerned vary 

as much as possible over time. Furthermore, the sample number in each cohort has to 

be sufficiently large to minimize sampling errors. These conditions appear to be met by 

our pseudo panel dataset constructed from the Family Expenditure Survey, which 

justify us to ignore the problem of measurement error in the empirical work.   

 

Another important methodological issue that has been investigated in this thesis is the 

consistent estimation of dynamic models under different asymptotics. We first review 

the Error Corrected Within-Group Estimator, consistent when the time period is long 

( ∞→T ), and the Error Corrected GMM Estimator, consistent when the number of 

cohort is large ( ∞→C ). We then present a Within-Group Estimator, which is 

computationally attractive and consistent under the most common asymptotic of 

∞→ctn , which can be satisfied if the number of sample observations is sufficiently 

large for each cohort unit. Certain rank conditions have to be satisfied for identification, 

which require the cohort means of the dependent and independent variables should not 

exhibit perfect collinearity and vary over time. It is also required that there are at least 

three cross sections for the model to be identified. 

 

The empirical models in this thesis incorporate various improvements to those in 

Dargay and Vythoulkas (1999) and the follow-on studies. Great efforts have been put 

in to identify the household structure (demographic characteristics) variables that best 

describe the data. The so-called life cycle effects are better captured by the second 

polynomial of the age of household head. We have investigated models with different 

functional forms, different representation of cohort effects and different assumptions of 
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error term. The robustness of the estimators has also been confirmed using parametric 

bootstrap technique. The final model has a very high adjusted R Square, showing a 

good degree of fit. All model coefficients have correct sign and sensible magnitudes 

and both the short run and long run elasticity of income and motoring costs lie in the 

range identified in the literature. If the dynamic model is viewed as a partial adjustment 

mechanism, the implied long run (equilibrium) effects are about 25% higher than the 

short run effects and full adjustment takes about four years. These results demonstrate 

key benefits of adopting the dynamic pseudo panel approach: to establish whether there 

is departure from equilibrium, the extent of departure and time taken towards full 

adjustment. 

 

While the results of linear pseudo panel car ownership models are generally 

satisfactory, one important theoretical question remains. After rejecting the 

assumptions of linear economic relationship between car ownership level and various 

explanatory variables at individual household level, it is important to ask whether it is 

possible to develop a pseudo panel model that is consistent with the microeconomic 

theory of utility maximization. We provide a positive answer in this thesis. 

 

Chapter 6 and 7 present a Random Utility Pseudo Panel Model, a theoretical model 

consistent with the Random Utility Theory. It combines the pseudo panel approach 

with discrete choice model, which does not seem to have been done before. We discuss 

the pros and cons of nonlinear (discrete choice) pseudo panel model and argue for its 

potential as an effective “third way” in modelling and forecasting using repeated cross 

section data. More specifically, it has the distinctive advantages of allowing both 

dynamics and saturation without the need for expensive genuine panel data. However, 

some valuable information on individual decision makers would be lost during cohort 

aggregation. On balance, it appears that nonlinear pseudo panel model is most suitable 

for forecasting purpose, while the case is less clear for analytical purpose. 

 

Under the framework of random utility model (RUM), it is shown that the utility 

function of the pseudo panel model is a direct transformation from that of cross-

sectional model and both share similar probability model albeit with different scale. In 

a standard random utility model of cross sectional data, the utility function consists of a 

deterministic term and a random term. For pseudo panel model, the deterministic term 
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can be further decomposed into three components including: sample mean observable 

utility, measurement error and individual decision maker’s utility deviation from the 

cohort mean. We also assume the random part of the (standard) utility function has a 

“components of variance” structure, which is the sum of cohort specific component 

representing unobserved heterogeneity and a temporally independently identically 

distributed (IID) residual error component. Under the asymptotic of infinitive nct (the 

sample size per cohort is sufficiently large in each year), the measurement error 

converge in probability to zero. In the pseudo panel setting, the component that 

represents utility deviation from cohort mean has to be combined with the IID residual 

error term, which leads to models that has a similar probability function but with 

different scale compared to the cross-sectional model.   

 

Based on this result, we then explore the various forms of true state dependence in the 

dynamic model and tackle the difficult econometric issues caused by the inclusion of 

lagged dependent variable. The fixed effect estimator is consistent only when the 

number of time period is sufficiently large, while the random effect estimator requires 

the orthogonality assumptions, i.e. the unobserved heterogeneity are uncorrelated with 

the explanatory variables. The mixed logit model allows all the parameters to be 

random, thus relaxing the orthogonality assumptions of the random effect model. The 

estimation of empirical models in the current study uses both the fixed effect and the 

mixed logit approaches, which have been implemented in a special Gauss routine for 

pseudo panels. 

 

The empirical model of car ownership is formulated with a hierarchical structure. More 

specifically, two separate binary logit models are estimated. One predicts the 

probability of households owning at least one car (Car 1+), which uses the pseudo 

panel dataset constructed from the entire Family Expenditure Survey. The other 

predicts the probability of households owning two or more cars conditional on owning 

at least one car (Car 2+|1+), which is based on the second pseudo panel dataset 

constructed from a sub-sample of car owning households in FES. The use of 

hierarchical modeling structure avoids the undesirable Independence of Irrelevant 

Alternative (IIA) property of the multinomial logit model as well as the demanding 

computation tasks of the probit model. 
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This study specifically recognizes the importance of saturation in car ownership 

modelling. As a result, the discrete choice pseudo panel model has also been specified 

to model saturation. This leads to a so-called “Dogit” model, which is also consistent 

with the Random Utility Theory. The final models with the best fit for Car 1+ and Car 

2+|1+ are both dynamic Dogit models. The estimated saturation levels are statistically 

significant and comparable with those identified in the literature. The short run and 

long run income elasticity appears to be sensible, with the elasticity for Car 2+|1+ 

much higher than that for Car 1+. It should be noted that the long run effects are 

indicative measures derived using linear Taylor approximation, which could be up to 

70% higher than the short run effects 52 . This again demonstrates the benefits of 

allowing for dynamics in pseudo panel data. 

 

Finally, this thesis presents the car ownership forecasts for Great Britain to year 2021. 

To the best of our knowledge, this is the first application of pseudo panel models to 

generate car ownership forecasts. Four sets of forecasting results are reported, two 

based on linear models and two based on discrete choice models. While the forecasts 

based on discrete choice models closely match the observed car stock between 2001 

and 2006, those based on linear models appear to be too high. Furthermore, the results 

from nonlinear models are comparable to the findings in other authoritative studies, 

while the long term forecasts from linear models are significantly higher. These results 

highlight the importance of saturation, and hence the choice of model functional form, 

in car ownership forecasts. 

 

In summary, this study has made significant contribution to the thriving research of car 

ownership by introducing the random utility pseudo panel model. It has been 

demonstrated that such model has solid theoretical foundation and strong empirical 

appeal. Further researches into its underlying economic meanings, statistical properties 

and estimation methods as well as more empirical applications in a wider context are 

likely to be most fruitful. 

 

 

                                                 

52 For Pooled Logit Model of Car 1+, mid-income household. The differences between the long run and 
short run effects depend on various factors and could be as low as 10% for high income household in 
Model of Car 2+|1+, 
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Appendix 1  Supplementary Tables and Figures 
 

Table A-1 Constructing pseudo panel by household head’s date of birth (mean age for all cohorts) 

Born 
1976-

1980 

1971-

1975 

1966-

1970 

1961-

1965 

1956-

1960 

1951-

1955 

1946-

1950 

1941-

1945 

1936-

1940 

1931-

1935 

1926-

1930 

1921-

1925 

1916-

1920 

1911-

1915 

1906-

1910 

1901-

1905 

Cohort 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

1982    19 24 29 34 39 44 49 54 59 64 69 74 79 

1983    20 25 30 35 40 45 50 55 60 65 70 75 80 

1984    21 26 31 36 41 46 51 56 61 66 71 76 81 

1985    22 27 32 37 42 47 52 57 62 67 72 77 82 

1986    23 28 33 38 43 48 53 58 63 68 73 78 83 

1987   19 24 29 34 39 44 49 54 59 64 69 74 79  

1988   20 25 30 35 40 45 50 55 60 65 70 75 80  

1989   21 26 31 36 41 46 51 56 61 66 71 76 81  

1990   22 27 32 37 42 47 52 57 62 67 72 77 82  

1991   23 28 33 38 43 48 53 58 63 68 73 78 83  

1992  19 24 29 34 39 44 49 54 59 64 69 74 79 84  

1993  20 25 30 35 40 45 50 55 60 65 70 75 80 85  

1994  21 26 31 36 41 46 51 56 61 66 71 76 81 86  

1995  22 27 32 37 42 47 52 57 62 67 72 77 82 87  

1996  23 28 33 38 43 48 53 58 63 68 73 78 83   

1997  24 29 34 39 44 49 54 59 64 69 74 79 84   

1998 20 25 30 35 40 45 50 55 60 65 70 75 80 85   

1999 21 26 31 36 41 46 51 56 61 66 71 76 81 86   

2000 22 27 32 37 42 47 52 57 62 67 72 77 82 87     
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Table A-2 Forecasted Average Number of Cars per Household (Model L1) 

Born 
2001-

06 

1996-

00 

1991-

95 

1986-

90 

1981-

85 

1976-

80 

1971-

75 

1966-

70 

1961-

65 

1956-

60 

1951-

55 

1946-

50 

1941-

45 

1936-

40 

1931-

35 

1926-

30 

1921-

25 

1916-

20 

1911-

15 

1906-

10 

ID F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

2000     0.28 0.54 0.95 1.09 1.13 1.20 1.38 1.34 1.23 1.03 0.88 0.71 0.53 0.41 0.25 0.13 

2001     0.36 0.66 0.99 1.13 1.19 1.29 1.39 1.37 1.25 1.02 0.86 0.68 0.54 0.37 0.21 0.13 

2002     0.44 0.73 1.00 1.18 1.23 1.34 1.40 1.39 1.24 1.01 0.85 0.65 0.53 0.36 0.20 0.13 

2003     0.46 0.80 1.06 1.18 1.25 1.37 1.41 1.39 1.21 1.00 0.84 0.67 0.48 0.36 0.20 0.12 

2004     0.48 0.85 1.07 1.19 1.27 1.38 1.42 1.36 1.22 0.98 0.81 0.65 0.47 0.37 0.19 0.12 

2005    0.29 0.62 0.94 1.13 1.24 1.31 1.44 1.45 1.34 1.20 0.99 0.83 0.63 0.48 0.30 0.19 0.11 

2006    0.37 0.67 1.00 1.18 1.29 1.39 1.47 1.46 1.35 1.19 0.97 0.80 0.63 0.44 0.32 0.19  

2007    0.45 0.73 1.02 1.22 1.34 1.43 1.48 1.48 1.33 1.19 0.96 0.78 0.62 0.43 0.31 0.18  

2008    0.47 0.80 1.08 1.22 1.36 1.46 1.50 1.47 1.30 1.17 0.95 0.79 0.57 0.43 0.31 0.17  

2009    0.48 0.85 1.09 1.24 1.38 1.47 1.51 1.44 1.31 1.15 0.92 0.77 0.56 0.43 0.30 0.17  

2010   0.29 0.62 0.94 1.15 1.28 1.41 1.52 1.54 1.42 1.29 1.16 0.93 0.75 0.57 0.37 0.30 0.16  

2011   0.38 0.67 1.01 1.20 1.33 1.50 1.56 1.54 1.43 1.28 1.14 0.91 0.75 0.53 0.39 0.29   

2012   0.45 0.73 1.02 1.24 1.38 1.54 1.57 1.56 1.41 1.28 1.13 0.88 0.74 0.52 0.37 0.28   

2013   0.48 0.80 1.08 1.24 1.40 1.57 1.59 1.56 1.38 1.26 1.12 0.90 0.69 0.51 0.37 0.28   

2014   0.49 0.85 1.09 1.25 1.41 1.57 1.59 1.53 1.38 1.24 1.08 0.88 0.68 0.52 0.36 0.27   

2015  0.29 0.63 0.93 1.15 1.30 1.45 1.63 1.62 1.51 1.36 1.25 1.10 0.86 0.69 0.46 0.36 0.26   

2016  0.38 0.66 1.01 1.20 1.35 1.54 1.66 1.63 1.52 1.36 1.23 1.07 0.85 0.65 0.47 0.35    

2017  0.46 0.73 1.03 1.24 1.39 1.58 1.67 1.65 1.49 1.35 1.22 1.05 0.84 0.64 0.46 0.35    

2018  0.48 0.80 1.09 1.24 1.41 1.61 1.69 1.65 1.46 1.34 1.21 1.06 0.80 0.63 0.46 0.34    

2019  0.49 0.84 1.10 1.26 1.43 1.61 1.69 1.61 1.47 1.32 1.18 1.04 0.79 0.64 0.45 0.33    

2020 0.33 0.63 0.93 1.15 1.30 1.47 1.67 1.73 1.59 1.45 1.33 1.19 1.02 0.79 0.58 0.45 0.33    

2021 0.42 0.66 1.01 1.21 1.35 1.56 1.70 1.73 1.60 1.45 1.31 1.16 1.02 0.76 0.60 0.44     

Note:  Number in red is derived from Family Expenditure Survey; 
 Number in pink is estimated using parameters from the static car ownership model; 
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Table A-3 Forecasted Average Number of Cars per Household (Model L2) 

Born 
2001-

06 

1996-

00 

1991-

95 

1986-

90 

1981-

85 

1976-

80 

1971-

75 

1966-

70 

1961-

65 

1956-

60 

1951-

55 

1946-

50 

1941-

45 

1936-

40 

1931-

35 

1926-

30 

1921-

25 

1916-

20 

1911-

15 

1906-

10 

ID F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

2000     0.51 0.54 0.95 1.09 1.13 1.20 1.38 1.34 1.23 1.03 0.88 0.71 0.53 0.41 0.25 0.08 

2001     0.62 0.78 1.03 1.13 1.17 1.27 1.38 1.35 1.20 1.00 0.87 0.71 0.56 0.41 0.24 0.07 

2002     0.70 0.90 1.08 1.16 1.21 1.32 1.40 1.34 1.18 0.99 0.85 0.70 0.56 0.40 0.23 0.05 

2003     0.78 0.98 1.12 1.19 1.25 1.36 1.41 1.33 1.16 0.98 0.84 0.70 0.56 0.39 0.21 0.04 

2004     0.84 1.05 1.15 1.23 1.29 1.40 1.43 1.32 1.14 0.97 0.83 0.69 0.55 0.37 0.20 0.02 

2005    0.59 0.91 1.11 1.19 1.26 1.32 1.44 1.45 1.30 1.12 0.96 0.82 0.68 0.54 0.36 0.18 0.01 

2006    0.72 0.97 1.16 1.23 1.30 1.37 1.47 1.45 1.28 1.12 0.96 0.81 0.68 0.52 0.34 0.16  

2007    0.81 1.04 1.20 1.26 1.34 1.41 1.49 1.43 1.27 1.11 0.95 0.80 0.67 0.51 0.33 0.15  

2008    0.88 1.10 1.23 1.29 1.37 1.44 1.50 1.42 1.25 1.10 0.93 0.80 0.65 0.49 0.31 0.13  

2009    0.95 1.16 1.27 1.33 1.41 1.48 1.52 1.40 1.23 1.09 0.92 0.79 0.64 0.47 0.29 0.11  

2010   0.67 1.01 1.22 1.30 1.36 1.45 1.52 1.53 1.38 1.21 1.08 0.91 0.78 0.63 0.46 0.27 0.09  

2011   0.81 1.07 1.26 1.33 1.39 1.48 1.54 1.53 1.36 1.20 1.07 0.90 0.77 0.61 0.44 0.25   

2012   0.90 1.14 1.30 1.37 1.43 1.52 1.55 1.51 1.34 1.19 1.06 0.89 0.75 0.59 0.42 0.24   

2013   0.98 1.20 1.33 1.40 1.46 1.56 1.57 1.49 1.32 1.18 1.05 0.88 0.74 0.58 0.40 0.22   

2014   1.04 1.26 1.37 1.43 1.50 1.59 1.58 1.47 1.30 1.17 1.03 0.87 0.73 0.56 0.38 0.20   

2015  0.75 1.10 1.31 1.40 1.46 1.53 1.62 1.59 1.45 1.28 1.16 1.02 0.86 0.71 0.54 0.36 0.19   

2016  0.90 1.17 1.36 1.43 1.49 1.57 1.64 1.59 1.43 1.27 1.15 1.01 0.85 0.70 0.52 0.35    

2017  1.00 1.23 1.39 1.46 1.53 1.60 1.66 1.57 1.42 1.26 1.14 1.00 0.84 0.68 0.50 0.33    

2018  1.07 1.29 1.43 1.50 1.56 1.64 1.67 1.55 1.40 1.26 1.13 0.99 0.82 0.66 0.49 0.31    

2019  1.14 1.35 1.46 1.53 1.60 1.67 1.68 1.53 1.38 1.25 1.12 0.98 0.81 0.65 0.47 0.30    

2020 0.83 1.20 1.41 1.50 1.56 1.63 1.70 1.70 1.51 1.36 1.24 1.10 0.98 0.80 0.63 0.45 0.28    

2021 0.99 1.26 1.45 1.53 1.59 1.66 1.72 1.69 1.50 1.35 1.23 1.09 0.97 0.78 0.61 0.43     

Note:  Number in red is derived from Family Expenditure Survey; 
 Number in pink is estimated using parameters from the static car ownership model; 
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Table A-4 Forecasted proportion of household owning at least one car (Model D1) 

Born 
2001-

06 

1996-

00 

1991-

95 

1986-

90 

1981-

85 

1976-

80 

1971-

75 

1966-

70 

1961-

65 

1956-

60 

1951-

55 

1946-

50 

1941-

45 

1936-

40 

1931-

35 

1926-

30 

1921-

25 

1916-

20 

1911-

15 

1906-

10 

ID F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

2000     0.33 0.43 0.71 0.79 0.82 0.82 0.82 0.82 0.80 0.76 0.71 0.61 0.46 0.38 0.25 0.16 

2001     0.31 0.51 0.74 0.80 0.82 0.84 0.83 0.83 0.80 0.74 0.68 0.58 0.46 0.33 0.21 0.17 

2002     0.36 0.57 0.73 0.82 0.83 0.84 0.83 0.84 0.79 0.73 0.67 0.55 0.45 0.31 0.20 0.17 

2003     0.33 0.63 0.76 0.82 0.83 0.84 0.84 0.84 0.79 0.73 0.67 0.55 0.40 0.30 0.20 0.17 

2004     0.34 0.66 0.77 0.82 0.84 0.84 0.84 0.83 0.79 0.72 0.64 0.53 0.39 0.32 0.19 0.16 

2005    0.36 0.46 0.71 0.79 0.83 0.84 0.85 0.84 0.83 0.79 0.73 0.66 0.51 0.40 0.26 0.19 0.16 

2006    0.31 0.51 0.76 0.81 0.84 0.86 0.85 0.84 0.83 0.78 0.71 0.64 0.51 0.36 0.27 0.19  

2007    0.36 0.56 0.76 0.82 0.85 0.86 0.85 0.84 0.82 0.78 0.71 0.61 0.51 0.34 0.26 0.19  

2008    0.33 0.62 0.79 0.82 0.85 0.86 0.86 0.84 0.82 0.78 0.71 0.62 0.45 0.34 0.26 0.18  

2009    0.34 0.65 0.79 0.82 0.85 0.86 0.85 0.84 0.82 0.77 0.68 0.60 0.44 0.36 0.25 0.18  

2010   0.37 0.46 0.71 0.81 0.84 0.86 0.86 0.86 0.84 0.82 0.78 0.70 0.58 0.45 0.29 0.25 0.18  

2011   0.32 0.50 0.76 0.83 0.85 0.87 0.86 0.85 0.84 0.81 0.76 0.68 0.57 0.41 0.30 0.25   

2012   0.36 0.55 0.76 0.84 0.85 0.87 0.86 0.86 0.83 0.81 0.76 0.65 0.57 0.39 0.29 0.24   

2013   0.33 0.61 0.78 0.83 0.85 0.87 0.87 0.86 0.83 0.81 0.76 0.66 0.52 0.39 0.29 0.24   

2014   0.33 0.64 0.79 0.83 0.86 0.87 0.87 0.85 0.83 0.80 0.74 0.64 0.51 0.40 0.28 0.24   

2015  0.39 0.45 0.70 0.81 0.85 0.86 0.88 0.87 0.85 0.83 0.81 0.75 0.62 0.52 0.33 0.28 0.23   

2016  0.32 0.49 0.75 0.83 0.86 0.87 0.88 0.87 0.85 0.82 0.80 0.73 0.62 0.48 0.35 0.28    

2017  0.36 0.54 0.76 0.84 0.86 0.88 0.87 0.87 0.85 0.82 0.79 0.71 0.62 0.46 0.33 0.27    

2018  0.33 0.60 0.78 0.83 0.86 0.88 0.88 0.87 0.84 0.82 0.80 0.72 0.56 0.46 0.34 0.27    

2019  0.33 0.63 0.79 0.83 0.87 0.87 0.88 0.87 0.85 0.81 0.78 0.70 0.56 0.47 0.33 0.26    

2020 0.43 0.44 0.69 0.81 0.85 0.87 0.88 0.88 0.86 0.85 0.82 0.79 0.69 0.56 0.40 0.33 0.26    

2021 0.37 0.48 0.75 0.83 0.86 0.88 0.88 0.88 0.87 0.84 0.81 0.77 0.68 0.53 0.42 0.32     

Note:  Number in red is derived from Family Expenditure Survey; 
 Number in pink is estimated using parameters from the static car ownership model; 
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Table A-5 Forecasted proportion of household owning at least one car (Model D2) 

Born 
2001-

06 

1996-

00 

1991-

95 

1986-

90 

1981-

85 

1976-

80 

1971-

75 

1966-

70 

1961-

65 

1956-

60 

1951-

55 

1946-

50 

1941-

45 

1936-

40 

1931-

35 

1926-

30 

1921-

25 

1916-

20 

1911-

15 

1906-

10 

ID F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

2000     0.47 0.43 0.71 0.79 0.82 0.82 0.82 0.82 0.80 0.76 0.71 0.61 0.46 0.38 0.25 0.41 

2001     0.47 0.56 0.74 0.79 0.82 0.83 0.84 0.83 0.79 0.73 0.68 0.58 0.46 0.34 0.22 0.21 

2002     0.49 0.64 0.76 0.80 0.82 0.84 0.84 0.82 0.78 0.72 0.67 0.57 0.44 0.31 0.20 0.14 

2003     0.53 0.69 0.77 0.81 0.83 0.84 0.84 0.82 0.77 0.71 0.65 0.55 0.42 0.29 0.19 0.12 

2004     0.58 0.73 0.79 0.82 0.83 0.85 0.84 0.81 0.76 0.71 0.64 0.54 0.41 0.27 0.17 0.11 

2005    0.48 0.62 0.76 0.80 0.83 0.84 0.85 0.85 0.80 0.76 0.71 0.63 0.52 0.39 0.25 0.16 0.11 

2006    0.50 0.66 0.77 0.81 0.84 0.84 0.85 0.84 0.80 0.75 0.70 0.62 0.51 0.37 0.24 0.15  

2007    0.53 0.70 0.79 0.82 0.84 0.85 0.85 0.84 0.79 0.75 0.69 0.60 0.49 0.35 0.22 0.14  

2008    0.58 0.73 0.80 0.83 0.85 0.85 0.85 0.83 0.79 0.75 0.68 0.59 0.47 0.32 0.21 0.13  

2009    0.62 0.76 0.81 0.83 0.85 0.85 0.85 0.82 0.78 0.75 0.67 0.58 0.45 0.30 0.19 0.12  

2010   0.48 0.66 0.78 0.82 0.84 0.85 0.86 0.85 0.81 0.77 0.74 0.65 0.56 0.42 0.28 0.18 0.12  

2011   0.52 0.69 0.79 0.82 0.85 0.86 0.86 0.85 0.81 0.77 0.74 0.64 0.54 0.40 0.26 0.17   

2012   0.57 0.73 0.80 0.83 0.85 0.86 0.86 0.84 0.80 0.77 0.73 0.63 0.52 0.37 0.24 0.16   

2013   0.61 0.76 0.81 0.84 0.86 0.86 0.86 0.84 0.80 0.76 0.72 0.61 0.50 0.35 0.23 0.15   

2014   0.65 0.78 0.82 0.85 0.86 0.86 0.86 0.83 0.79 0.76 0.70 0.60 0.48 0.33 0.21 0.14   

2015  0.49 0.69 0.80 0.83 0.85 0.86 0.87 0.86 0.82 0.78 0.76 0.69 0.59 0.45 0.31 0.20 0.13   

2016  0.54 0.72 0.81 0.84 0.86 0.86 0.87 0.85 0.82 0.78 0.75 0.68 0.57 0.43 0.28 0.18    

2017  0.60 0.75 0.82 0.84 0.86 0.87 0.87 0.85 0.81 0.78 0.74 0.67 0.55 0.40 0.27 0.17    

2018  0.64 0.78 0.83 0.85 0.87 0.87 0.87 0.84 0.81 0.78 0.73 0.66 0.53 0.38 0.25 0.16    

2019  0.68 0.80 0.84 0.86 0.87 0.87 0.87 0.83 0.80 0.77 0.72 0.65 0.51 0.36 0.23 0.15    

2020 0.50 0.72 0.81 0.84 0.86 0.87 0.87 0.87 0.83 0.79 0.77 0.71 0.63 0.48 0.33 0.21 0.14    

2021 0.57 0.75 0.82 0.85 0.87 0.87 0.87 0.86 0.82 0.79 0.76 0.70 0.62 0.46 0.31 0.20     

Note:  Number in red is derived from Family Expenditure Survey; 
 Number in pink is estimated using parameters from the static car ownership model; 
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Table A-6 Forecasted proportion of household owning 2+|1+ cars (Model D3) 

Born 
2001-

06 

1996-

00 

1991-

95 

1986-

90 

1981-

85 

1976-

80 

1971-

75 

1966-

70 

1961-

65 

1956-

60 

1951-

55 

1946-

50 

1941-

45 

1936-

40 

1931-

35 

1926-

30 

1921-

25 

1916-

20 

1911-

15 

1906-

10 

ID F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

2000     0.09 0.23 0.29 0.33 0.32 0.41 0.51 0.47 0.42 0.30 0.23 0.17 0.13 0.08 0.04 0.01 

2001     0.10 0.23 0.34 0.38 0.39 0.46 0.51 0.49 0.42 0.30 0.22 0.15 0.12 0.06 0.04 0.02 

2002     0.12 0.25 0.37 0.40 0.43 0.48 0.52 0.50 0.41 0.29 0.21 0.15 0.10 0.05 0.03 0.02 

2003     0.15 0.29 0.39 0.42 0.45 0.50 0.52 0.49 0.39 0.28 0.19 0.14 0.09 0.05 0.03 0.02 

2004     0.17 0.33 0.41 0.43 0.47 0.51 0.53 0.48 0.37 0.27 0.18 0.14 0.08 0.05 0.03 0.02 

2005    0.10 0.20 0.37 0.42 0.44 0.49 0.52 0.53 0.47 0.35 0.26 0.17 0.14 0.07 0.04 0.03 0.02 

2006    0.12 0.24 0.40 0.43 0.46 0.50 0.53 0.53 0.45 0.34 0.25 0.17 0.13 0.07 0.04 0.02  

2007    0.14 0.28 0.41 0.45 0.48 0.51 0.54 0.52 0.44 0.33 0.23 0.17 0.12 0.06 0.04 0.02  

2008    0.16 0.32 0.43 0.46 0.49 0.52 0.54 0.51 0.42 0.31 0.22 0.16 0.10 0.06 0.04 0.02  

2009    0.19 0.36 0.44 0.47 0.50 0.53 0.55 0.50 0.40 0.30 0.21 0.16 0.09 0.05 0.03 0.02  

2010   0.11 0.22 0.40 0.45 0.48 0.51 0.54 0.55 0.49 0.38 0.28 0.20 0.16 0.08 0.05 0.03 0.02  

2011   0.13 0.26 0.42 0.46 0.49 0.52 0.55 0.54 0.47 0.37 0.27 0.19 0.14 0.07 0.05 0.03   

2012   0.15 0.30 0.44 0.47 0.50 0.53 0.55 0.54 0.46 0.35 0.25 0.19 0.13 0.07 0.04 0.02   

2013   0.18 0.34 0.45 0.48 0.51 0.54 0.55 0.53 0.44 0.34 0.24 0.18 0.11 0.06 0.04 0.02   

2014   0.21 0.39 0.46 0.49 0.52 0.55 0.56 0.52 0.43 0.32 0.23 0.18 0.10 0.06 0.04 0.02   

2015  0.13 0.24 0.43 0.47 0.50 0.53 0.56 0.56 0.50 0.41 0.31 0.21 0.17 0.09 0.05 0.03 0.02   

2016  0.14 0.28 0.45 0.48 0.51 0.54 0.56 0.56 0.49 0.39 0.29 0.21 0.16 0.08 0.05 0.03    

2017  0.17 0.33 0.46 0.49 0.52 0.55 0.56 0.55 0.48 0.38 0.28 0.20 0.14 0.07 0.05 0.03    

2018  0.20 0.37 0.47 0.50 0.53 0.56 0.57 0.54 0.46 0.36 0.26 0.20 0.13 0.07 0.04 0.02    

2019  0.23 0.41 0.48 0.51 0.54 0.57 0.57 0.53 0.45 0.35 0.25 0.19 0.11 0.06 0.04 0.02    

2020 0.14 0.26 0.45 0.49 0.52 0.55 0.57 0.57 0.52 0.43 0.33 0.24 0.19 0.10 0.06 0.04 0.02    

2021 0.16 0.31 0.47 0.50 0.53 0.56 0.58 0.57 0.51 0.41 0.32 0.23 0.17 0.09 0.05 0.03     

Note:  Number in red is derived from Family Expenditure Survey; 
 Number in pink is estimated using parameters from the static car ownership model; 
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Figure A-1 Model L2: Average Number of Cars per Household, X-axis by cohort age  

Average Number of Cars per household:  Profile by Age of Household Head from 9 Cohorts
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Figure A-2 Model D2: Proportion of Households with 1+ car, X-axis by cohort age 

Proportion of HH with 1+ Car:  Profile by Age of Household Head from 9 Cohorts
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Appendix 2 Gauss Code for Pseudo Panel Mixed 

Logit Model 
 
@Gauss code for Mixed Logit model of binary choice with proportions data@ 
@Code adapted from Revelt and Train, 1998@ 
 
new , 30000; 
screen on; 
output file=C:\temp\Gauss\C_choice8d_holton_out.txt reset; 
print "This program estimates a mixed logit with fixed or normal coefficients"; 
nobs = 254;              @Number of choice situations.@ 
np=16;                   @Number of people (each facing multiple choice situations)@ 
nv=5;    @Number of variables in the Xmat file@ 
 
load vars[nobs,nv]=C:\temp\Gauss\xmat2.dat; 
load yvec[nobs,1]=C:\temp\Gauss\yvec.dat;  
load times[np,1] =C:\temp\Gauss\times.dat; 
load Wgt[nobs,1]=C:\temp\Gauss\weight.dat; 
 
nrep=500;                 @Number of draws to use in simulation.@ 
 
NFC=0;                    @Number of fixed variables@ 
IDFC={0};            
NNC=5;                    @Number of normal variables@ 
IDNC={1,2,3,4,5}; 
@starting values in this order: mean for all fixed variables; mean1, std1, mean2, std2, etc. for all normal 
variables@ 
b={-10.1146, 0, 1.8172, 0, 0.2108, 0, 0.0523, 0, -0.2044, 0};  
 
       @ Create the Halton sequence @ 
 
       print "Creating Halton sequences ...."; 
 
 /* Number of random coefficients or 1, whichever is higher. */ 
 RowHlt = maxc( ones(1,1) | NNC ); 
  
        /* Provide prime number vector */ 
 
       prim = { 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 
                    73 79 83 89 97 101 103 107 109 113 }; 
       print "Halton sequences are based in primes: " prim[1,1:RowHlt]; 
       print; 
 
      h = 1; 
      hm = {}; 
      do while h<=RowHlt; 
         hm1 = halton(10+nrep*np, prim[h]); 
         hm1 = (cdfni(hm1))'; 
         @ The inverse-normal proc produces very extreme values sometimes. This truncates.@ 
         hm1=hm1.*(hm1 .le 10) + 10 .* (hm1 .gt 10); 
         hm1=hm1.*(hm1 .ge -10) -10 .* (hm1 .lt -10); 
         hm = hm|hm1[1,11:cols(hm1)]; 
         h=h+1; 
      endo;    
  
@Call maxlik, specify its globals, and do estimation.@ 
xx=ones(nobs,1);          @to use in maxlik@ 
library maxlik,pgraph; 
#include maxlik.ext; 
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maxset; 
_max_GradTol=0.000001; 
_max_GradProc = &gr; 
@_max_GradCheckTol=0.0001;@  
_max_MaxIters=500; 
_max_Algorithm=5;  
 
print "Mixed Logit Panel estimation."; 
{beta,f,g,cov,ret}=maxlik(xx,0,&llp,b); 
 
call maxprt(beta,f,g,cov,ret); 
format /m1 /rd 16,8; 
print; 
print "gradient(hessian-inverse)gradient is:" ((g/_max_FinalHess)'g); 
print "diagonal of hessian:" ((diag(_max_FinalHess))'); 
print "Beta (8 decimal places)"; 
print beta; 
 
/*Log-Likelihood routine for panel data.*/ 
proc llp(b,x); 
@uses globals nobs,np,xmat,yvec,times,nrep@ 
local p,m,n,count,err,beta,ev,t,r,q1,q2,k,v,kmm; 
p=zeros(np,1);           @Probability for np people's sequence of choices@ 
 
n=1;                     @To loop over people.@ 
count=0;                 @Number of observations before n-th person.@ 
 
v=zeros(nobs,1); 
 
  k = 1; 
  do while k <= NFC;            @ Adds variables with fixed coefficients @ 
    v = v + b[k] * vars[.,IDFC[k,1]]; 
    k = k+1; 
  endo; 
do while n .le np; 
 
   if NNC>0; 
     err=hm[.,(nrep*(n-1)+1):(nrep*(n-1)+nrep)]; 
     r=zeros(1,nrep);                 @Hold probability for this person's sequence of choices (one for each 
draw)@ 
     q1=ones(1,nrep); 
     q2=ones(1,nrep); 
   else; 
    r=0; 
    q1=1; 
    q2=1; 
   endif; 
    
   t = 1; 
    
   do while (t<=TIMES[n]);      @To loop over choice situations that this person faced.@ 
      kmm = count + t; 
      ev = v[kmm,.]; 
      k = 1; 
      do while k <= NNC;        @ Adds variables with normal coefficients @ 
        ev = ev + (b[NFC+2*k-1] + b[NFC+2*k] .* err[k,.])  @kth row, Nrep cols @ 
              .* Vars[kmm,IDNC[k,1]]; 
        k = k+1; 
      endo; 
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      ev = exp(ev); 
      @ev's for one choice situation: 1 by nrep@ 
      q1=yvec[kmm,1] .* Wgt[kmm,1] .* ln(ev[1,.] ./ (1 + ev[1,.])); 
      q2=(1 - yvec[kmm,1]).* Wgt[kmm,1] .* ln(1 ./ (1 + ev[1,.])); 
      r=r + q1 + q2;        @add log likelihood for previous choice situations: 1 by nrep@  
       
      t=t+1; 
   endo; 
   p[n,1]=meanc(r');   @probability is average of r over all nrep draws@ 
   count=count+times[n]; 
   n=n+1; 
 
endo; 
retp(p); 
endp; 
 
 
/* GRADIENT PROCEDURE */ 
proc gr(b,x); 
 
  @ Relies on the globals: NOBS, NP, NREP@ 
  @                        NFC, IDFC, NNC, IDFC @ 
  @                        Vars, Yvec  @ 
 
  local c, g, k, n, t, km, kmm, rd, nevar; 
  local denom, der, v, ev, p0, p00, p1, err, mm; 
 
@ Number of estimated variables @ 
nevar = NFC+NNC*2; 
 
  v = zeros(NOBS,1);           @ Argument to logit formula      @ 
  p0  = zeros(NP,1);           @ Simulated probability          @ 
  der = zeros(NP,nevar);       @ Jacobian matrix                @ 
 
  k = 1; 
  do while k <= NFC;            @ Adds variables with fixed coefficients @ 
    km = IDFC[k,1]; 
    v = v + b[k] .* Vars[.,km]; 
    k = k+1; 
  endo; 
 
  rd = 0; 
  n = 1; 
  do while n <= NP; 
 
   if NNC>0; 
    err=hm[.,(nrep*(n-1)+1):(nrep*(n-1)+nrep)]; @ err has nnc (or one) rows and NREP columns for each 
person. @ 
    p00 = ones(1, NREP); 
    p1  = ones(1, NREP); 
    g = zeros(nevar, NREP); 
   else; 
    p00 = 1; 
    p1  = 1; 
    g = zeros(nevar, 1); 
   endif;  
 
    t=1; 
    do while (t<=TIMES[n]); 
      kmm = rd + t; 
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      ev = v[kmm,.]; 
       
      k = 1; 
      do while k <= NNC;        @ Adds variables with normal @ 
        km = IDNC[k,1]; 
        ev = ev + (b[NFC+2*k-1] + b[NFC+2*k] .* err[k,.]) 
              .* Vars[kmm,km]; 
        k = k+1; 
      endo; 
       
      ev = exp(ev); 
      denom = ev[1,.] + 1; 
      p00   = p00 .* (ev[1,.] ./ denom); 
      p1    = ev[1,.] ./ denom; 
      
      k = 1;                  @Add (1-p)*x for fixed variables@ 
      do while k<=NFC; 
        km = IDFC[k,1]; 
        g[k,.] = g[k,.] + Wgt[kmm,1] .* (yvec[kmm,1] - p1) .* Vars[kmm,km]; 
        k = k + 1; 
      endo; 
 
      k = 1;                   @Add (1-p)*x for normal variables@ 
      do while k<=NNC; 
        km = IDNC[k,1]; 
        g[NFC+2*k-1,.] = g[NFC+2*k-1,.]  
        + Wgt[kmm,1] .* (yvec[kmm,1] - p1) .* Vars[kmm,km]; 
        g[NFC+2*k,.]   = g[NFC+2*k,.]    
        + Wgt[kmm,1] .* (yvec[kmm,1] - p1) .* Vars[kmm,km] .* err[k,.]; 
        k = k + 1; 
      endo; 
        
      t = t+1; 
    endo; 
     
    der[n,.] = (meanc((g)'))';  
    rd = rd + TIMES[n]; 
    n = n + 1; 
  endo; 
 
  retp(der); 
   
endp; 
 
/* Halton procedure */ 
 
proc halton(n,s); 
local phi,i,j,y,x,k; 
k=floor(ln(n+1) ./ ln(s));    @We create n+1 Halton numbers including the initial zero.@ 
phi={0}; 
i=1; 
do while i .le k;   
  x=phi; 
   j=1; 
  do while j .lt s; 
     y=phi+(j/s^i); 
     x=x|y; 
     j=j+1; 
  endo; 
  phi=x; 
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  i=i+1; 
endo; 
  
x=phi; 
 j=1; 
do while j .lt s .and rows(x) .lt (n+1);   
   y=phi+(j/s^i); 
   x=x|y; 
   j=j+1; 
 endo; 
 
phi=x[2:(n+1),1];  @Starting at the second element gets rid of the initial zero.@ 
retp(phi); 
endp; 



 222 

Appendix 3 Deriving Long Run Elasticity Using 

Taylor Expansion 
 

In a dynamic binary logit model, the probability of decision maker choosing Option 1 

in year t can be expressed as: 
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  (1) 

Under long run equilibrium, the probability of owning car is stable over time, so the 

following equation holds: 

1−= tt PP     (2) 

Substituting (1) into (2), it becomes: 
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Dropping the sub-script 1−t  and arrange terms in (3), we have: 

)exp()exp()1( 1 xPP βα ′−=−−       (4) 

 

While it is not possible to directly solve for P based on (4), we start from using Taylor 

series to approximate the left hand side of (4), noting )exp()1()( 1 PPPf α−= − . The 

linear approximation of )(Pf  is: 

PPfPPfPfPf ⋅′+′−≈ )(])()([)( 0000      (5) 

where the subscript “0” indicates the function is evaluated at the arbitrarily chosen 

expansion point 0P . Also required is )( 0Pf ′ , the first derivative of )(Pf  evaluated at 

the expansion point: 
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Substituting (6) into (5) and collecting terms: 
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Substituting (7) back into (left hand side) of (4) and dividing both sides by )exp( 0Pα , 

we have: 
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Then one can easily solve (8) for: 
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Based on (9), the long run marginal effect of the explanatory variable kx  is: 
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where b is the estimated coefficients for the exogenous explanatory variables and a is 

the estimated coefficient for the lagged dependent variable. The long run elasticity 

follows directly from the marginal effects. 

 


