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Abstract 

 

This paper uses high frequency spot price data from fourteen wholesale electricity markets in 

Europe to analyze asymmetric volatility in European day-ahead power markets with 

Exponential GARCH (E-GARCH) and TARCH models. Our data set ranges from 1992 to 

2015 and consists of approximately 926 thousand observations. As such, this paper constitutes 

the most extensive and comprehensive work conducted so far on European power markets, to 

the best of our knowledge. Unlike most of the literature that treats price as a continuous 

variable and attempts to model its trajectory, this paper adopts a unique approach and regards 

each hour in a day a separate market. The results show, in post-2008 period, the most 

expensive electricity is consumed in Turkey, Ireland and UK while the cheapest power is in 

Russia, Nordic countries and Czech Republic. Russia, Poland and Czech Republic have the 

least volatile markets while France, Ireland and Portugal have the most volatile ones. 

Volatility has decreased in many European countries in post-2008 period. Besides, we find 

magnitude effect is usually larger than the leverage effect, meaning that the absolute value of  

price change is relatively more important than the sign of the change (whether it is an 

increase or a decrease) to explain volatility in European day-ahead power markets. 

Moreover, the results imply there isn’t a uniform inverse leverage effect in electricity prices; 

that is, price increases are more destabilizing in some European markets (e.g. Poland, 

Slovenia, Ireland, Netherlands) than comparable price decreases but vice versa also holds true 

in some other countries (e.g. Portugal and France). Leverage (or inverse leverage) effect in 

post-2008 period is relatively stronger in Portugal, France and Ireland; but its impact is quite 
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limited in Turkey and Germany. Furthermore, although the impact of seasonality on prices is 

obvious, a specific pattern cannot be identified. Finally, large changes in the volatility will 

affect future volatilities for a relatively longer period of time in Nordic countries, Ireland and 

the UK while changes in current volatility will have less effect on future volatilities in Czech 

Republic, Russia and Turkey. 

 

JEL Classification: D44; D47; L94; Q41 

Keywords: asymmetric volatility; price modeling; European power markets; E-GARCH, TARCH 

 

1. Introduction 

 

Until the last three decades, electricity price modeling was rarely performed due to the 

regulatory nature of power prices. Since the 1980s, however, the structure of electricity 

industry has shifted from a vertically integrated (and usually state-owned) monopoly towards 

unbundled (and usually privately owned) regulated utilities (Erdogdu, 2013, 2014). The 

popularity and importance of power price modeling grew in the late 1990s due to an increase 

in market risk and price volatility after deregulation. Since then, price modeling has become 

an important tool for regulators, electricity generators, retailers, large consumers and those 

managing energy commodity portfolios.  

 

The liberalization process has caused significant changes in electricity markets all over 

Europe. Electricity is no longer sold by public enterprises with fixed tariffs and now becomes 

a commodity traded on energy exchanges, where prices are formed on day-ahead or intraday 

spot markets (Erdogdu, 2011). Over the past two decades, knowledge has accumulated about 

the characteristics of electricity prices, including seasonality, mean-reversion, time-varying 

volatility and price spikes. Some authors add other characteristics to the list like high 

volatility persistence (Frömmel et al., 2014) and inverse leverage effect (Bowden and Payne, 

2008), meaning that electricity price volatility tends to arise more with positive shocks than 

negative ones. These characteristics, usually called “stylized facts of electricity prices”, 

originate from the convex supply curve, price inelastic demand in the short-run and non-

storability of electricity. As power prices follow more or less these stylized facts, they can be 

explained with deterministic functions. 
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In power markets, supply or demand shocks due to for instance unexpected outages of 

generation units or transmission constraints cannot be fully compensated in the short run. As a 

result, sudden jumps in prices (so-called spikes) may occur, especially when reserve capacity 

is limited. In fact, electricity prices are much more volatile than the prices of other 

commodities and, therefore, pose a huge risk for market participants, which is unknown to 

other commodity or financial markets. For instance, in a typical power market, the price can 

increase by 100 times or more, followed by a relatively quick return to normal levels. The 

literature (summarized in Section 2) on power price modeling, however, have mostly focused 

so far on power price forecasting; leaving behind the need for modeling price volatility in 

electricity markets as a separate task. This is quite surprising given the deep impact price 

volatility has on market participants. This makes our work crucial as we address this issue 

directly by providing a simple but highly effective methodology. 

 

This paper contributes to the literature on power price modeling in several ways. First, as 

mentioned above, it contributes greatly to the evolving but limited literature on modeling the 

asymmetric price volatility in power markets − there have been very few such studies 

published in the last decade. Second, this paper constitutes the most extensive and 

comprehensive work on European power markets, to the best of our knowledge. No study has 

so far used so many observations on so many power markets in Europe. Our analysis is based 

on 14 European wholesale electricity markets for a period beginning in 1992 and extending 

through 2015 and the total number of observations is 926,227. As an additional contribution 

to the literature, unlike most of the literature that treats price as a continuous variable and 

attempts to model its trajectory, this paper adopts a unique approach and regards each hour in 

a day a separate market because of the reasons specified in Section 3. 

 

Within this context, we try to answer the following research questions: (i) Which countries in 

Europe have the most/least volatile power markets? (ii) What is the relative importance of the 

absolute value of price change and its direction (an increase or a decrease) to explain volatility 

in European day-ahead power markets? (iii) Is there an inverse leverage effect in European 

day-ahead electricity prices? (iv) Which European power markets have the strongest/weakest 

persistence in conditional volatility; that is, in which countries volatility takes a long/short 

time to die out following a shock irrespective of anything happening in the market? 

 



4 / 32 

This paper is organized as follows. In Section 2, a literature review is presented. The data and 

methodology are outlined in Section 3 while the corresponding estimation procedure is 

described and the results are discussed in Section 4. Section 5 concludes. 

 

2. Literature review 

 

Modeling power prices is a complex issue and the approaches applied to model electricity 

prices are quite diverse. In this section, we present a glimpse of the literature on modeling of 

power market prices. A detailed overview of all literature is outside the scope of this paper. 

The interested readers may be referred to Weron (2006) and Aggarwal et al. (2009) for a 

wide-ranging literature review. 

 

The methods applied to model (and sometimes, predict) electricity prices can be classified 

into four groups. Each of these methods has its own particular strengths and weaknesses, but a 

comprehensive comparison is again beyond the scope of this paper. Different methods cannot 

directly be compared with each other as each method has its strengths for a special task and 

also corresponding weaknesses. 

 

The first group includes the simulation models (Bastian et al., 1999; Deb et al., 2000; Lin et 

al., 2010) that try to imitate the dispatch, the physical status of power grid, and other system 

necessities and constraints. These methods model electricity prices within a simulation 

exercise designed to optimize power flow in a grid with some system constraints. The second 

group of methods is related to game theory and based on some equilibrium models (e.g. Nash 

equilibrium, Bertrand model, Cournot model). They try to model power prices by identifying 

the strategies of market stakeholders and detecting optimal solutions (Pozo et al., 2011; 

Siriruk and Valenzuela, 2011). For instance, Boogert and Dupont (2005) evaluate the 

effectiveness of the anti-gaming policy between the day-ahead and real-time electricity 

markets in The Netherlands. Artificial intelligence techniques (e.g. artificial neural networks) 

constitute the third group. Methods in this group try to identify a nonlinear relationship 

between inputs and outputs of the power system and, and then model power prices according 

to this relationship (Amjady and Keynia, 2011; Catalão et al., 2007; Lin et al., 2010; Szkuta, 

1999; Yamin et al., 2004). 
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This paper belongs to the final group of methods consisting of econometric techniques that 

use the past behavior of power prices and some other variables to model electricity prices. 

This group includes regression, autoregressive (AR) (Lucia and Schwartz, 2002; Pilipovic, 

1998), moving average (MA), autoregressive moving average (ARMA) (Bowden and Payne, 

2008), autoregressive integrated moving average (ARIMA) (Erdogdu, 2007, 2010), GARCH 

models and their variants, jump diffusion models (Clewlow and Strickland, 2000; Deng, 

2000; Knittel and Roberts, 2005; Seifert and Uhrig-Homburg, 2007) and the Markov regime-

switching models (Becker et al., 2007; Bierbrauer et al., 2007; Huisman and Mahieu, 2003; 

Kosater and Mosler, 2006). As our work clearly contributes to this line of research, more 

examples from it are presented below. 

 

Christensen et al. (2009) treat price spikes as count events and attempt to build a model of the 

spiking process. They propose a Poisson autoregressive framework in which price spikes 

occur as a result of the latent arrival and survival of system stresses. Dias and Ramos (2014) 

compare price dynamics of electricity in the U.S. wholesale markets using a regime-switching 

model with mean-reversion mechanism and shows that electricity prices from the West and 

East coasts have different regime dynamics. Efimova and Serletis (2014) investigate the 

empirical properties of oil, natural gas, and electricity price volatilities using a range of 

univariate and multivariate GARCH models and daily data from wholesale markets in the 

United States for the period from 2001 to 2013. Frömmel et al. (2014) propose using Realized 

GARCH-type models to estimate the daily price volatility in the European Power Exchange. 

Similarly, Hadsell et al. (2004) examine the volatility of wholesale electricity prices for five 

US markets for the period from May 1996 to September 2001 using a TARCH model. They 

document important differences among the regional electricity markets not only with respect 

to wholesale price volatility and seasonal variations, but also with respect to asymmetric 

properties and persistence of volatility. 

 

Hadsell and Shawky (2006) examine the volatility characteristics of the NYISO day-ahead 

and real time electricity markets for peak hours from January 2001 to June 2004. They use 

GARCH to study the differences in volatility across zones and find that price volatility is 

higher but less persistent in the real time market than in the day-ahead market. Haugom and 

Ullrich (2012) use high frequency real time spot prices and day-ahead forward prices from the 

Pennsylvania–New Jersey–Maryland wholesale electricity market to calculate, describe, and 

forecast spot price volatility. Hellström et al. (2012) empirically explore the possible causes 
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behind electricity price jumps in the Nordic electricity market, Nord Pool. A time-series 

model (a mixed GARCH–EARJI jump model) capturing the common statistical features of 

electricity prices is used to identify price jumps. They conclude that the structure of the 

market plays an important role in whether shocks in the demand and supply for electricity 

translate into price jumps. Hickey et al. (2012) estimate and evaluate the forecasting 

performance of four ARMAX–GARCH models for five MISO pricing hubs (Cinergy, First 

Energy, Illinois, Michigan, and Minnesota) using hourly data from June 1, 2006 to October 6, 

2007. Their results reveal (a) electricity price volatility is regional and the optimum volatility 

model depends in part on the hub location, the forecast horizon, and regulated versus 

unregulated status of the market; (b) the APARCH model performs well in hubs in 

deregulated states; and (c) volatility dynamics in regulated states are better captured by a 

simple GARCH model and thus are less complex. 

 

Higgs (2009); Higgs and Worthington (2008); Higgs and Worthington (2005) examine the 

electricity prices in four regional electricity markets in the Australian National Electricity 

Market (NEM). Le Pen and Sévi (2010) estimate a VAR-BEKK model using daily data from 

March 2001 to June 2005 and find evidence of return and volatility spillovers between the 

German, the Dutch and the British forward electricity markets. Liu and Shi (2013) applies 

various ARMA–GARCH models, along with their modified forms, ARMA–GARCH-in-mean 

to model and forecast hourly ahead electricity prices. Paraschiv et al. (2015) propose a novel 

regime-switching approach for electricity prices in which simulated and forecasted prices are 

consistent with currently observed forward prices. Schlueter (2010) introduces a new 

stochastic long-term/short-term model for short-term electricity prices, and applies it to four 

major European indices, namely to the German, Dutch, UK and Nordic one. Finally, Ziel et 

al. (2015) introduce an econometric model for the hourly time series of electricity prices of 

the European Power Exchange which incorporates specific features like renewable energy. 

 

3. Data and methodology 

 

Our data set is based on 14 European wholesale electricity markets for a period beginning in 

1992 and extending through 2015. Details of electricity markets in our data set are available 

in Table 1. Due to data availability, the data length differs throughout markets. Our dataset, 

for instance, covers more than 22-year data for Nordpool while it has slightly less than 5-year 
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data on Slovenia’s electricity market. Data beginning and ending dates for each electricity 

market represent the earliest and the last dates for which data were available at the time the 

research is conducted. The European markets included into our sample are also determined by 

data availability. In this study, the term “European” is used as inclusive as possible, so Russia 

and Turkey are regarded as “European” countries in this paper. The total number of 

observations is 926,227 (see Table 2). 

 

Table 1. European wholesale electricity markets analyzed in the study 

Country Market Unit 
Data 

starts on 

Data 

ends on 

Data Length 

(years) 

Nordic Countries Nordpool NOK per MWh 04.05.1992 30.01.2015 22.8 

Spain OMEL EUR per MWh 01.01.1998 30.01.2015 17.1 

Netherlands APX-NL EUR per MWh 26.05.1999 30.01.2015 15.7 

Germany EEX EUR per MWh 16.06.2000 30.01.2015 14.6 

UK APX-UK GBP per MWh 27.03.2001 30.01.2015 13.9 

France Powernext EUR per MWh 23.06.2004 30.01.2015 10.6 

Romania OPCOM EUR per MWh 01.07.2005 30.01.2015 9.6 

Poland POLPX Zloty per MWh 01.01.2007 30.01.2015 8.1 

Portugal OMEL EUR per MWh 02.07.2007 30.01.2015 7.6 

Ireland SEMO EUR per MWh 02.11.2007 30.01.2015 7.2 

Czech Republic OTE EUR per MWh 01.09.2009 30.01.2015 5.4 

Russia ATS Rouble per MWh 22.09.2009 30.01.2015 5.4 

Turkey PMUM TL per MWh 01.12.2009 30.01.2015 5.2 

Slovenia SRE EUR per MWh 26.03.2010 30.01.2015 4.9 

 

Time-series models assume that the information set is updated by moving from one 

observation to the next in time (Huisman et al., 2007). This assumption is not valid for power 

markets that do not allow for continuous trading. In a typical day-ahead electricity market, the 

quoted prices for each of the 24 hours are determined simultaneously through the daily 

auction, with the physical delivery arranged at each specific hour on the next day. That is, 

day-ahead electricity wholesale markets are structured such that agents submit their bids and 

offers for delivery of electricity in all hours in the next day before a certain market closing 

time. In short, hourly prices for next day delivery are determined at the same time. In this 

paper, therefore, hourly prices are not seen as a pure time series process. The information set 

used for setting the price of delivery in, say, hour 21 is the same as the information set used to 

set the price for delivery in, say, hour 2. Therefore, each of the 24 hours is regarded as a 

separate market in this paper. To sum up, unlike most of the literature that treats price as a 

continuous variable and attempts to model its trajectory, this paper regards each hour in a day 
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a separate market because the notion of modeling price as a continuous variable in time 

appears to be at odds with the way in which an electricity market functions and, therefore, 

applying directly a time-series approach is not sound from a methodological perspective. 

 

Data collection, classification, transformation and methodology development in the paper are 

carried out as follows. First of all, day-ahead prices for Turkish wholesale electricity market 

are obtained from PMUM (2015); and the data on day-ahead prices for all other wholesale 

markets are taken from Datastream (2015). The data on UK (APX-UK) and Ireland (SEMO) 

markets have half-hourly frequency; that is, each day consists of 48 observations. To ensure 

conformity with other data, half-hourly prices are converted into hourly prices by taking their 

arithmetic mean. The data from Datastream (2015) do not cover weekends; so, to ensure 

conformity throughout the dataset, observations on weekends are removed from the data 

obtained from PMUM (2015). Therefore, our analysis is based on working days. 

 

Second, in order to carry out a meaningful analysis, nominal prices in our dataset need to be 

converted into real prices to remove the effects of general price level changes (inflation) over 

time. Using monthly consumer price indices provided by OECD (2015), we transformed all 

nominal prices into real prices using June 2010 as the reference month (or base month). 

Besides, we divide observations in two groups: before and after September 1, 2008; since 

when negative price bids have been allowed at the German power exchange. The year 2008 is 

also a turning point due to Global Financial Crisis (also called “2008 financial crisis”), which 

has been the worst financial crisis since the Great Depression of the 1930s. It threatened the 

collapse of large financial institutions, which was prevented by the bailout of banks by 

national governments, but stock markets still dropped worldwide. The 2008 crisis played a 

significant role in the failure of key businesses, declines in consumer wealth estimated in 

trillions of U.S. dollars, and a downturn in economic activity leading to the 2008–2012 global 

recession and contributing to the European sovereign-debt crisis. Because of these two 

incidents, we identify a structural break in our data set at 1.9.2008. So, for each country we 

divide the observations into two and estimate them separately. Since our dataset does not have 

any observation on Czech Republic, Russia, Turkey and Slovenia for pre 1.9.2008 period, we 

cannot estimate models for these countries representing pre-2008 period. In total, we have 24 

(10x2+4) “country-time period” pairs in this analysis (see Table 2). Since we carry out a 

separate analysis for each hour of each market and focus on volatility of prices (not on prices 

themselves), we do not need to convert different national currencies into a common one. 
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Since we regard each of the 24 hours a separate market and consider 24 different “country-

time period” pairs, we analyze a total of 576 (24 x 24) micro-markets in this paper. Summary 

statistics for each micro-market is provided in Online Appendix A. 

 

At this point, it is necessary to explain how the issue of negative prices is tackled in the paper. 

We have 926,227 observations in total and only 235 of them are negative prices, meaning that 

only 0.03% of total observations belong to negative prices. In fact, negative prices can be 

removed from dataset and regressions may be carried out without them. Since negative prices 

represent extremely small portion of our dataset, our results would probably not change 

significantly if such an approach was adopted. Actually, the generators bidding negative 

prices are not willing to generate power at prevailing prices (that is, their actual bid may be 

regarded as very close to zero) but they still bid negative prices as the costs of shutting down 

and ramping up a power plant unit exceed the loss for accepting negative prices. Taking into 

account this idea, we convert negative prices in our dataset into positive but very low figures, 

by linear interpolation, ranging from 0.1 and 0.2, representing the lowest and highest negative 

prices respectively. For instance, a negative bid of -75 EUR per MWh is converted into 0.17 

EUR per MWh while another one of -140 EUR per MWh is converted into 0.14 EUR per 

MWh. Thanks to this approach; we keep price signals coming from negative prices while 

removing problems related to negative prices from our analysis. 

 

Having collected the data and converted them into real terms, as a third task, we need to test 

for a unit root, which should always be an essential part of time series analysis. Indeed no 

time series study in economics and other disciplines that use time series observations should 

ignore the crucial issue of non-stationarity caused by a unit root. Non-stationary data, as a 

rule, are unpredictable and cannot be modeled or forecasted. The results obtained by using 

non-stationary time series may be spurious in that they may indicate a relationship between 

two variables where one does not exist. In order to receive consistent, reliable results, the non-

stationary data needs to be transformed into stationary data. In contrast to the non-stationary 

process that has a variable variance and a mean that does not remain near, or returns to a long-

run mean over time, the stationary process reverts around a constant long-term mean and has 

a constant variance independent of time. Augmented Dickey–Fuller (ADF) test is applied to 

test for a unit root in 576 micro-markets analyzed in this paper, the results of which are 

available in Online Appendix B. ADF test is an augmented version of the Dickey–Fuller test 

for a larger and more complicated set of time series models. The ADF statistic, used in the 
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test, is a negative number. The more negative it is, the stronger is the rejection of the 

hypothesis that there is a unit root at some level of confidence. The ADF test results in Online 

Appendix B indicate that 98.4% (567 out of 576) of series in our dataset are stationary. 

Further details of stationarity, unit root and ADF test are outside the scope of the present 

paper but available from Wooldridge (2009). 

 

The fourth, and final, task is to select an appropriate method to measure asymmetric volatility. 

The GARCH (Bollerslev, 1986) family of models assume that the market conditions its 

expectation of market variance on both past conditional market variance and past market 

variables (price, output and so on). Bollerslev (1986) proposed an extension of the ARCH 

type models in order to allow longer memory and a more flexible lag structure. Thus, 

Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) type models were 

born. A GARCH (p,q) process is given by:  

 

𝑅𝑅𝑡𝑡 = 𝛼𝛼0 + �𝛽𝛽𝑖𝑖𝑘𝑘
𝑖𝑖=1 𝑋𝑋𝑖𝑖 + �𝜓𝜓𝑗𝑗𝑅𝑅𝑡𝑡−𝑗𝑗 +

ℎ
𝑗𝑗=1 𝜖𝜖𝑡𝑡   (1) 

 

where  ϵt|Ωt−1~N(0, ht) 

 

ht = α + �𝛽𝛽𝑖𝑖ht−i + �𝜃𝜃𝑖𝑖𝑞𝑞
𝑗𝑗=1

𝑝𝑝
𝑖𝑖=1 𝜖𝜖𝑡𝑡−𝑗𝑗2 (2) 

 

where ht = σt2|Ωt−1 (conditional variance dependent on the information set ′Ωt−1 ′) 

 

with the following conditions  p ≥ 0, q > 0 α ≥ 0, θ ≥ 0,β ≥ 0 

 

and  ϵt   is the residual of the mean equation, Rt denotes dependent variable at time t, and X’s 

are explanatory variables. Equation (1) is called the mean equation while Equation (2) is 

called the equation for the conditional variance. It can be clearly seen that the GARCH (p,q) 

models the conditional variance as the function of both the squared market values and its own 

past values. However, it is important to note that this equation restricts the parameters to be 

strictly non-negative in order to satisfy the condition of a positive variance. This means that 
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the regular GARCH type models only capture the magnitude of the shocks, and tend to 

neglect its sign. In order to capture asymmetric volatility, we need a model that does not 

impose a non-negativity constraint on market variance, and allows for conditional variance to 

respond asymmetrically to price spikes of different signs. 

 

To answer such a problem of not capturing signs, Nelson (1991) modified the GARCH which 

led to the Exponential GARCH (E-GARCH) model. By modifying ϵt  or the residuals of the 

mean equation such that 

 𝜖𝜖𝑡𝑡�ht = 𝑧𝑧𝑡𝑡 (3) 

 

where zt~iid (0,1) and is called the standardized residuals. The E-GARCH model is given by 

ln(ht) = αi + �𝛽𝛽𝑘𝑘∞
𝑘𝑘=1 𝑔𝑔(𝑧𝑧𝑡𝑡−𝑘𝑘),𝛽𝛽 ≤ 1 (4) 

 

where g(zt) = θzt + γ[|zt| − E|zt|]. Upon simplification, the EGARCH variance equation 

becomes 

ln (σt2|Ωt−1) = αi +  �𝜸𝜸𝑗𝑗��𝑧𝑧𝑡𝑡−𝑗𝑗� − 𝐸𝐸�𝑧𝑧𝑡𝑡−𝑗𝑗�� +

q
j=1 �𝜽𝜽𝑗𝑗𝑧𝑧𝑡𝑡−𝑗𝑗q

j=1 + �∆ip
i=1 ln (σt−i2 |Ωt−i−1) (5) 

 

Equation (4) employs the natural logarithm of the conditional variance in order to ensure that 

the conditional variance remains non-negative. This is in contrast to the previous approach of 

GARCH type models which impose conditions that the variables must be strictly positive so 

that a linear combination of such will also be positive. Given this freedom, g(zt) will now be 

able to accommodate asymmetric volatility. 

 

The notion that negative shocks have stronger effect on variance than positive shocks is called 

“leverage effect”. In Equation (5), the parameter denoted by “𝛉𝛉” is called the asymmetry or 

the leverage effect. This is the parameter of importance for this study as it lets E-GARCH 

model test for asymmetries. A negative “𝛉𝛉” indicates the existence of leverage effect. A 

positive “𝛉𝛉” implies “inverse leverage effect”, meaning that unanticipated price increases are 

more destabilizing than unanticipated price decreases. If “𝛉𝛉” equals to zero, then the model is 
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symmetric. The parameter denoted by “𝛄𝛄” is called the symmetry or the magnitude effect (or 

“GARCH” effect) and it captures the impact of the change in variable with its long run 

average. Finally, the parameter “∆” represents the persistence in conditional volatility 

irrespective of anything happening in the market. When it is relatively large, then volatility 

takes a long time to die out following a shock in the market. 

 

To check robustness of the results and improve the credibility of the study, a TARCH 

(threshold ARCH) model is also estimated. This model is sometimes called GJR-GARCH and 

may indicate a leverage effect as well. A TARCH(p,q) model is represented by:  

 

𝜎𝜎𝑡𝑡2 = 𝛼𝛼𝑖𝑖 + �𝜔𝜔𝑖𝑖𝑝𝑝
𝑖𝑖=1 𝜇𝜇𝑡𝑡−𝑖𝑖2 + �𝛾𝛾𝑗𝑗𝜇𝜇𝑡𝑡−𝑖𝑖2 𝑑𝑑𝑡𝑡−𝑖𝑖 +

𝛾𝛾
𝑖𝑖=1 �𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗2𝑞𝑞

𝑗𝑗=1  (6) 

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑡𝑡−𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝜇𝜇𝑡𝑡−𝑖𝑖 ≥ 0

0, 𝑖𝑖𝑖𝑖 𝜇𝜇𝑡𝑡−𝑖𝑖 < 0
 

 

The TARCH model in Equation (6) specifies that the ARCH effect depends on whether the 

error is positive or negative. If the error is negative, the effect is ⍵; if it is positive, the full 

effect is ⍵+γ. In this specification, ⍵ represents ARCH effect while γ denotes TARCH effect. 

If there is a leverage effect, γ must be both statistically significant and negative. The existence 

of a statistically significant but positive γ implies inverse leverage effect.  

 

4. Empirical analysis and discussion of the results 

 

Our analysis is based on estimation of E-GARCH(1,1) and TARCH(1,1) models for 576 

micro markets in our dataset. In order to capture the impact of seasonality on power prices, 

we regard spring as the base season and include three dummy variables representing summer, 

autumn and winter. Hansen and Lunde (2005) tested 330 different volatility model 

specifications and concluded that no specification could be shown to significantly outperform 

the GARCH(1,1). Similarly, Andersen and Bollerslev (1998); Wang and Wu (2012) argue 

that simple models of the GARCH(1,1) remain very useful because they converge much faster 

to a local maximum in quasi-maximum likelihood estimation while delivering very 

competitive forecasting performance. In the same way, we tested E-GARCH(1,2), E-
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GARCH(2,1) and E-GARCH(2,2) specifications and found that E-GARCH(1,1) performs 

much better in modeling volatility. Online Appendix B presents estimation results2. 

 

Each micro market is unique and, therefore, E-GARCH and TARCH model estimation results 

for a specific market should be evaluated independently within its own context; however, for 

practical considerations, we provide and analyze four different indicators for each market. 

The first indicator is the average of statistically significant coefficients representing day time 

hours (06:00–17:00); the second denotes the average of statistically significant coefficients 

for peak time hours (17:00–22:00); the third one is for night time (22:00–06:00), and the final 

one is the daily average of statistically significant coefficients representing 24 hours in a day. 

This clustering is taken from the well-established practice, called Time of Use Pricing (TOU), 

in many European power markets, which lets consumers shift their electricity consumption to 

hours where electricity costs the least and thereby lower their total bill. Under TOU pricing, 

there are three different prices for three different periods: day time (06:00–17:00), peak time 

(17:00–22:00) and night time (22:00–06:00). In this paper, we follow this well-established 

tradition to cluster significant coefficients for practical reasons. Interested readers may cluster 

coefficients in many other different ways and see the results using data in Online Appendix B. 

Without clustering; it is very difficult, if not impossible, to interpret the results due to large 

number of models estimated during our analysis. 

 

Before analyzing the estimation results, we would like to focus on the summary statistics as it 

may provide very useful insights into our study. Table 2 presents daily averages of summary 

statistics given in Online Appendix A. It is important to note that all prices in Table 2 are 

expressed in Euros3 at June 2010 prices to let readers compare the prices while the data in 

Online Appendix A is in national currencies. The data in Table 2 indicate that in post-2008 

period the most expensive electricity is consumed in Turkey, Ireland and UK while the 

cheapest power is in Russia, Nordic countries and Czech Republic.  

 

                                                            
2 Throughout the paper, model estimations are carried out and cross-checked by Stata 13 and Eviews 8. Stata 
data and command files are available in Online Appendix C and D, respectively. 
3 As of 15 June 2010, 1 EUR = 0.832 GBP = 7.8515 NOK = 38.48 Ruble = 1.9316 TL = 4.0734 Zloty (Source: 

https://sdw.ecb.europa.eu/curConverter.do)  
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Table 2. Summary statistics (daily averages, in Euros per MWh at June 2010 prices) 

Country (time period) 
Number 

of obs. 
Mean Min. Max. Std. Dev. Variance Skewness Kurtosis 

Czech Republic (after 1.9.2008) 33,936 42.79 0.25 92.70 12.04 149.08 -0.07 4.46 

France (after 1.9.2008) 40,200 48.58 5.83 673.07 27.76 1407.40 6.84 200.69 

France (before 1.9.2008) 26,232 53.86 9.87 547.29 32.85 1473.71 4.86 83.87 

Germany (after 1.9.2008) 40,200 45.34 2.60 163.10 15.74 264.78 1.40 12.23 

Germany (before 1.9.2008) 51,384 42.52 0.95 556.09 27.79 1109.48 4.88 87.71 

Ireland (after 1.9.2008) 40,200 57.04 18.45 267.23 22.84 677.78 2.73 29.38 

Ireland (before 1.9.2008) 5,184 74.92 30.80 220.36 23.92 704.69 2.83 25.32 

Netherlands (after 1.9.2008) 40,200 48.56 13.08 136.67 13.87 206.85 1.53 8.99 

Netherlands (before 1.9.2008) 58,032 53.73 0.75 989.58 52.31 4322.35 6.41 117.17 

Nordic countries (after 1.9.2008) 40,200 41.46 6.04 148.70 15.01 1798.38 0.19 1.32 

Nordic countries (before 1.9.2008) 102,240 29.87 1.36 149.50 15.05 1784.04 0.16 1.03 

Poland (after 1.9.2008) 40,200 43.92 17.57 125.92 11.04 629.83 0.37 2.83 

Poland (before 1.9.2008) 10,440 39.23 19.40 99.13 11.43 586.26 0.30 1.44 

Portugal (after 1.9.2008) 40,200 44.83 0.03 342.23 18.16 461.71 3.77 139.92 

Portugal (before 1.9.2008) 7,320 63.62 36.64 105.36 13.95 199.19 0.09 2.25 

Romania (after 1.9.2008) 40,200 46.58 1.03 102.04 16.37 271.72 0.31 3.20 

Romania (before 1.9.2008) 19,824 95.31 3.60 230.58 52.77 2858.63 0.39 2.01 

Russia (after 1.9.2008) 33,576 23.44 8.37 40.22 3.37 452.88 0.00 0.18 

Slovenia (after 1.9.2008) 30,384 49.33 0.93 144.21 14.69 228.38 0.82 7.34 

Spain (after 1.9.2008) 40,200 44.21 0.05 130.91 13.97 196.02 0.22 15.12 

Spain (before 1.9.2008) 66,768 45.39 2.92 142.46 16.69 294.18 0.98 4.66 

Turkey (after 1.9.2008) 32,371 65.00 9.53 203.27 15.31 466.29 0.92 18.50 

UK (after 1.9.2008) 40,200 53.50 25.00 245.60 18.04 336.51 3.97 31.77 

UK (before 1.9.2008) 46,536 41.17 11.76 299.99 27.38 741.75 2.98 16.89 

Total: 926,227 

        

The main focus of this paper is volatility and it is closely related to concepts of “variance” 

and “standard deviation”. The standard deviation is a measure that is used to quantify the 

amount of variation or dispersion of a set of data values. A standard deviation close to 0 

indicates that the data points tend to be very close to the mean (also called the expected value) 

of the set, while a high standard deviation indicates that the data points are spread out over a 

wider range of values. The standard deviation of a data set is the square root of its variance. A 

useful property of the standard deviation is that, unlike the variance, it is expressed in the 

same units as the data, and hence is comparable to deviations from the mean. Figure 1 

presents standard deviation in European day-ahead electricity markets by four different time 

periods. 
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Figure 1. Standard deviation in European day-ahead electricity markets 
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volatile day-time electricity markets. For peak hours, the least volatile markets seem to be in 

Russia, Czech Republic and Portugal while the most volatile ones are in Ireland, the UK and 

France. During night hours, Russia, Poland and the UK have the least volatile markets; 

Turkey, Portugal and Romania have the most volatile ones. Overall, our dataset clearly 

indicates that Russia, Poland and Czech Republic have the least volatile markets while 

France, Ireland and Portugal have the most volatile ones in post-2008 period. It should also be 

noted that volatility decreased in many European countries in post-2008 period. 

 

Skewness is a measure of the asymmetry of the distribution of a data set about its mean. The 

skewness value can be positive or negative. Negative skew indicates that the tail of the data 

set is longer or fatter on the left side of the distribution than the right side. Conversely, 

positive skew indicates that the tail on the right side is longer or fatter than the left side. In our 

sample, the tails of post-2008 day-ahead electricity price series for France (S: 6.84) and the 

UK (S: 3.97) on the right side seem to be relatively longer or fatter than the left side. 

Moreover, kurtosis is a measure of the “peakedness” of the distribution of a data set. In a 

similar way to the concept of skewness, kurtosis is a descriptor of the shape of a distribution. 

Higher kurtosis means more of the variance is the result of infrequent extreme deviations, as 

opposed to frequent modestly sized deviations. Our data indicate that more of the variance in 

France (K: 200.7) and Portugal (K: 139.9) is the result of relatively infrequent extreme 

deviations in post-2008 period. 

 

Table 3 summarizes GARCH(1,1) estimation results. At first look, magnitude effect seems to 

be usually larger than the leverage effect, meaning that the absolute value of  price change is 

relatively more important than the sign of the change (whether it is an increase or a decrease) 

to explain volatility in European day-ahead power markets. However, there are some 

exceptions. For instance; in Ireland (pre-2008 period), day-time volatility is explained more 

by inverse leverage effect than by magnitude effect, meaning that unanticipated price 

increases are more destabilizing than price decreases and this impact is stronger than the size 

of the price shock. Besides, although the findings imply that asymmetric volatility is an 

important component of overall volatility in European day-ahead power markets; unlike 

Bowden and Payne (2008) who detect an inverse leverage effect in electricity prices, a 

specific pattern cannot be identified in our analysis; that is, in post-2008 period, price 

increases are more destabilizing in some European markets (e.g. Poland, Slovenia, Ireland, 

Netherlands) than comparable price decreases but vice versa also holds true in some other 
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countries (e.g. Portugal and France). Besides, in terms of leverage effect, pre and post 2008 

periods differ enormously for some countries (e.g. Spain) while they are almost the same for 

some others (e.g. Nordic countries).  

 

To check robustness of the results, we also estimate TARCH(1,1) models and the results are 

shown in Table 4. As we mentioned before, there are 24 “country-time period” pairs and 4 

different time period indicators in this study, so in total there are 96 (24x4) specific models 

for the leverage effect. Out of 96 models, the results from GARCH and TARCH models 

indicate a similar relationship (i.e. the existence of leverage effect or inverse leverage effect) 

for 68 models (70.8%). Table 5 compares the results from two models. 

 

Table 6 provides magnitude/leverage effect ratio in absolute terms. The higher this ratio is, 

the stronger magnitude effect becomes. It is clearly seen in Table 6 that leverage effect in 

post-2008 period is relatively stronger in Portugal, France and Ireland; but its impact is quite 

limited in Turkey and Germany.  

 

Table 7 summarizes the results from GARCH and TARCH models related to the impact of 

seasonality on power prices. All coefficients in Table 7 are expressed in Euros4 at June 2010 

prices to let readers compare the results while the data in Online Appendix B is in national 

currencies. Since spring is taken as the base season, there are 3 coefficients representing 

summer, autumn and winter in each model and they show the difference of each specific 

season from spring season. As usual, there are 24 “country-time period” pairs and 4 different 

time period indicators, so in total there are 288 (3x24x4) specific models for the impact of 

seasonality on power prices. Out of these 288 models, 258 of them (89.6%) imply a 

relationship in the same direction with both GARCH and TARCH specification. Although the 

impact of seasonality on prices is obvious, a specific pattern cannot be identified. For 

instance, in post-2008 period, the results from both models imply that power prices decline in 

Nordic countries and France during summer by 2.3 – 4.3 Euros per MWh at June 2010 prices; 

however, they increase in Turkey, Spain and Portugal during the same period by 4.3 – 12.3 

Euros per MWh.  

 

                                                            
4 As of 15 June 2010, 1 EUR = 0.832 GBP = 7.8515 NOK = 38.48 Ruble = 1.9316 TL = 4.0734 Zloty (Source: 

https://sdw.ecb.europa.eu/curConverter.do)  
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Table 3. Summary of GARCH(1,1) estimation results (averages) 

Country (time period) 
Day Time (06:00–17:00) Peak Time (17:00–22:00) Night Time (22:00–06:00) Daily Average 

LE ME PiCV LE ME PiCV LE ME PiCV LE ME PiCV 

Czech Republic (after 1.9.2008) -0.10 0.90 0.72 -0.13 1.05 0.79 0.12 0.91 0.78 0.00 0.94 0.75 

France (after 1.9.2008) -1.61 2.06 0.80 -0.28 1.31 0.85 0.15 0.93 0.80 -0.51 1.63 0.81 

France (before 1.9.2008) 0.18 1.31 0.93 -1.35 2.81 0.92 0.19 1.02 0.95 -0.23 1.61 0.94 

Germany (after 1.9.2008) -0.09 1.00 0.81 -0.09 1.00 0.89 0.12 0.88 0.80 -0.02 0.97 0.83 

Germany (before 1.9.2008) 0.24 1.11 0.86 -0.06 1.84 0.76 0.25 1.03 0.80 0.12 1.35 0.83 

Ireland (after 1.9.2008) 0.14 0.45 1.10 0.15 0.56 0.90 0.09 0.38 0.59 0.13 0.45 0.87 

Ireland (before 1.9.2008) 0.35 0.30 0.43 0.10 0.50 0.50 -0.25 1.49 0.56 -0.02 0.80 0.49 

Netherlands (after 1.9.2008) 0.07 1.02 0.82 NSC 1.13 0.83 0.14 0.86 0.87 0.12 0.98 0.84 

Netherlands (before 1.9.2008) -0.02 1.42 0.89 -0.43 2.22 0.88 -0.03 1.48 0.93 -0.11 1.61 0.89 

Nordic countries (after 1.9.2008) -0.13 1.64 0.95 -0.17 1.89 0.93 NSC 1.71 0.95 -0.15 1.73 0.95 

Nordic countries (before 1.9.2008) -0.16 1.97 0.94 -0.17 1.99 0.95 -0.13 1.99 0.96 -0.15 1.98 0.95 

Poland (after 1.9.2008) -0.10 1.34 0.88 0.58 1.68 0.81 0.14 1.59 0.85 0.16 1.55 0.84 

Poland (before 1.9.2008) -0.36 2.52 0.87 NSC 2.06 0.98 0.26 0.97 1.01 0.11 1.95 0.93 

Portugal (after 1.9.2008) -0.94 2.11 0.81 -0.10 1.01 0.95 NSC 1.01 0.74 -0.52 1.56 0.85 

Portugal (before 1.9.2008) NSC 1.05 0.89 NSC 1.28 0.93 NSC 1.43 0.93 NSC 1.25 0.92 

Romania (after 1.9.2008) 0.07 0.83 0.81 NSC 0.88 0.82 0.11 0.60 0.84 0.09 0.74 0.82 

Romania (before 1.9.2008) NSC 1.43 0.90 NSC 1.54 0.97 0.25 1.14 0.90 0.25 1.34 0.91 

Russia (after 1.9.2008) NSC 1.12 0.76 NSC 1.16 0.76 -0.11 0.97 0.82 -0.11 1.08 0.78 

Slovenia (after 1.9.2008) -0.10 1.00 0.90 NSC 1.05 0.85 0.19 0.97 0.80 0.14 1.00 0.86 

Spain (after 1.9.2008) -0.10 1.09 0.83 -0.27 1.22 0.88 -0.12 0.83 0.79 -0.16 0.96 0.81 

Spain (before 1.9.2008) 0.11 1.09 0.85 NSC 1.07 0.86 0.10 1.24 0.88 0.11 1.14 0.87 

Turkey (after 1.9.2008) -0.07 1.08 0.74 NSC 0.82 0.73 0.10 0.86 0.87 0.01 0.96 0.80 

UK (after 1.9.2008) 0.15 0.79 0.87 -0.04 1.30 0.86 0.10 0.90 0.85 0.09 0.92 0.86 

UK (before 1.9.2008) 0.17 1.51 0.84 0.14 1.65 0.85 0.13 1.67 0.89 0.15 1.61 0.86 

LE: Leverage Effect, ME: Magnitude Effect, PiCV: Persistence in Conditional Volatility, NSC: No Significant Coefficient is available  
  



19 / 32 

Table 4. Summary of TARCH(1,1) estimation results (averages) 

Country (time period) 
Day Time (06:00–17:00) Peak Time (17:00–22:00) Night Time (22:00–06:00) Daily Average 

A T A + T A T A + T A T A + T A T A + T 

Czech Republic (after 1.9.2008) 0.82 -0.24 0.58 0.87 -0.32 0.56 0.56 0.13 0.69 0.74 -0.05 0.70 

France (after 1.9.2008) 0.85 1.30 2.15 0.88 0.48 1.36 0.55 0.32 0.87 0.75 0.74 1.49 

France (before 1.9.2008) 0.65 0.38 1.03 0.95 0.76 1.72 0.54 0.30 0.84 0.68 0.42 1.10 

Germany (after 1.9.2008) 0.78 -0.19 0.59 0.72 NSC 
 

0.52 0.26 0.78 0.68 0.19 0.87 

Germany (before 1.9.2008) 0.69 0.47 1.16 0.89 0.45 1.34 0.45 0.33 0.78 0.64 0.39 1.03 

Ireland (after 1.9.2008) 0.27 0.18 0.45 0.40 0.07 0.47 0.21 0.05 0.26 0.29 0.12 0.41 

Ireland (before 1.9.2008) 0.70 0.32 1.02 0.89 -0.84 0.05 0.53 -0.14 0.39 0.67 -0.08 0.58 

Netherlands (after 1.9.2008) 0.68 0.23 0.91 0.75 NSC 
 

0.49 0.26 0.76 0.63 0.25 0.88 

Netherlands (before 1.9.2008) 9.23 -7.97 1.25 1.30 0.18 1.48 0.74 0.39 1.12 4.34 -3.82 0.52 

Nordic countries (after 1.9.2008) 1.03 0.01 1.03 1.07 NSC 
 

1.00 NSC 
 

1.03 0.01 1.03 

Nordic countries (before 1.9.2008) 1.07 0.00 1.07 1.05 NSC 
 

1.15 -0.22 0.94 1.10 -0.11 0.99 

Poland (after 1.9.2008) 1.20 -0.29 0.91 1.68 -0.92 0.76 0.92 0.20 1.12 1.21 -0.46 0.75 

Poland (before 1.9.2008) 1.88 -1.04 0.85 0.77 NSC 
 

0.46 0.37 0.82 1.47 -0.62 0.85 

Portugal (after 1.9.2008) 2.25 -1.92 0.33 0.92 -0.31 0.61 0.84 -0.48 0.37 1.51 -1.19 0.31 

Portugal (before 1.9.2008) 0.74 NSC 

 
0.71 NSC 

 
1.03 NSC 

 
0.85 NSC 

 Romania (after 1.9.2008) 0.50 0.18 0.68 0.54 NSC 
 

0.27 0.24 0.51 0.43 0.21 0.64 

Romania (before 1.9.2008) 0.92 NSC 
 

0.98 -0.34 0.64 0.70 0.42 1.12 0.86 0.04 0.90 

Russia (after 1.9.2008) 0.80 0.18 0.98 0.82 0.22 1.04 0.80 -0.24 0.56 0.81 0.05 0.85 

Slovenia (after 1.9.2008) 0.75 0.29 1.04 0.76 NSC 
 

0.52 0.49 1.01 0.67 0.46 1.14 

Spain (after 1.9.2008) 0.89 -0.24 0.65 1.21 -0.66 0.55 0.83 -1.18 -0.35 0.93 -0.49 0.45 

Spain (before 1.9.2008) 0.62 0.23 0.85 0.67 0.20 0.88 0.65 0.22 0.87 0.64 0.23 0.87 

Turkey (after 1.9.2008) 0.98 0.17 1.15 0.92 0.14 1.06 0.53 0.26 0.80 0.82 0.19 1.01 

UK (after 1.9.2008) 0.42 0.52 0.94 0.55 0.79 1.34 0.57 0.19 0.76 0.50 0.51 1.00 

UK (before 1.9.2008) 0.57 0.87 1.44 0.70 0.60 1.30 0.79 0.30 1.09 0.69 0.70 1.39 

A: Arch Effect, T: Tarch Effect, NSC: No Significant Coefficient is available 
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Table 5. Comparison of GARACH(1,1) and TARCH(1,1) results on leverage effect 

Country (time period) 
Day Time (06:00–17:00) Peak Time (17:00–22:00) Night Time (22:00–06:00) Daily Average 

GARCH(1,1) TARCH(1,1) GARCH(1,1) TARCH(1,1) GARCH(1,1) TARCH(1,1) GARCH(1,1) TARCH(1,1) 

Czech Republic (after 1.9.2008) LE LE LE LE Inv. LE Inv. LE LE LE 

France (after 1.9.2008) LE Inv. LE LE Inv. LE Inv. LE Inv. LE LE Inv. LE 

France (before 1.9.2008) Inv. LE Inv. LE LE Inv. LE Inv. LE Inv. LE LE Inv. LE 

Germany (after 1.9.2008) LE LE LE No LE Inv. LE Inv. LE LE Inv. LE 

Germany (before 1.9.2008) Inv. LE Inv. LE LE Inv. LE Inv. LE Inv. LE Inv. LE Inv. LE 

Ireland (after 1.9.2008) Inv. LE Inv. LE Inv. LE Inv. LE Inv. LE Inv. LE Inv. LE Inv. LE 

Ireland (before 1.9.2008) Inv. LE Inv. LE Inv. LE LE LE LE LE LE 

Netherlands (after 1.9.2008) Inv. LE Inv. LE No LE No LE Inv. LE Inv. LE Inv. LE Inv. LE 

Netherlands (before 1.9.2008) LE LE LE Inv. LE LE Inv. LE LE LE 

Nordic countries (after 1.9.2008) LE Inv. LE LE No LE No LE No LE LE Inv. LE 

Nordic countries (before 1.9.2008) LE LE LE No LE LE LE LE LE 

Poland (after 1.9.2008) LE LE Inv. LE LE Inv. LE Inv. LE Inv. LE LE 

Poland (before 1.9.2008) LE LE No LE No LE Inv. LE Inv. LE Inv. LE LE 

Portugal (after 1.9.2008) LE LE LE LE No LE LE LE LE 

Portugal (before 1.9.2008) No LE No LE No LE No LE No LE No LE No LE No LE 

Romania (after 1.9.2008) Inv. LE Inv. LE No LE No LE Inv. LE Inv. LE Inv. LE Inv. LE 

Romania (before 1.9.2008) No LE No LE No LE LE Inv. LE Inv. LE Inv. LE Inv. LE 

Russia (after 1.9.2008) No LE Inv. LE No LE Inv. LE LE LE LE Inv. LE 

Slovenia (after 1.9.2008) LE Inv. LE No LE No LE Inv. LE Inv. LE Inv. LE Inv. LE 

Spain (after 1.9.2008) LE LE LE LE LE LE LE LE 

Spain (before 1.9.2008) Inv. LE Inv. LE No LE Inv. LE Inv. LE Inv. LE Inv. LE Inv. LE 

Turkey (after 1.9.2008) LE Inv. LE No LE Inv. LE Inv. LE Inv. LE Inv. LE Inv. LE 

UK (after 1.9.2008) Inv. LE Inv. LE LE Inv. LE Inv. LE Inv. LE Inv. LE Inv. LE 

UK (before 1.9.2008) Inv. LE Inv. LE Inv. LE Inv. LE Inv. LE Inv. LE Inv. LE Inv. LE 

LE: Leverage Effect, Inv. LE: Inverse Leverage Effect, No LE: No Leverage Effect 
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Table 6. The absolute value of magnitude/leverage effect ratio 

Country (time period) 
Day Time 

(06:00–17:00) 

Peak Time 

(17:00–22:00) 

Night Time 

(22:00–06:00) 

Daily 

Average 

Czech Republic (after 1.9.2008) 9.38 8.15 7.68 - 

France (after 1.9.2008) 1.28 4.59 6.37 3.18 

France (before 1.9.2008) 7.29 2.09 5.23 7.02 

Germany (after 1.9.2008) 11.50 11.60 7.63 50.33 

Germany (before 1.9.2008) 4.62 29.00 4.08 11.23 

Ireland (after 1.9.2008) 3.23 3.87 4.38 3.47 

Ireland (before 1.9.2008) 0.85 5.03 5.87 47.57 

Netherlands (after 1.9.2008) 14.54 - 6.36 7.87 

Netherlands (before 1.9.2008) 86.60 5.22 49.17 14.60 

Nordic countries (after 1.9.2008) 12.70 11.34 - 11.90 

Nordic countries (before 1.9.2008) 12.56 11.98 14.98 13.17 

Poland (after 1.9.2008) 12.84 2.91 11.29 9.48 

Poland (before 1.9.2008) 7.03 - 3.67 18.01 

Portugal (after 1.9.2008) 2.24 10.07 - 2.99 

Portugal (before 1.9.2008) - - - - 

Romania (after 1.9.2008) 11.83 - 5.32 7.90 

Romania (before 1.9.2008) - - 4.48 5.25 

Russia (after 1.9.2008) - - 8.81 9.77 

Slovenia (after 1.9.2008) 10.46 - 4.98 7.32 

Spain (after 1.9.2008) 11.12 4.47 6.95 5.88 

Spain (before 1.9.2008) 9.66 - 12.16 10.61 

Turkey (after 1.9.2008) 15.08 - 8.47 64.28 

UK (after 1.9.2008) 5.35 30.58 9.09 10.58 

UK (before 1.9.2008) 9.10 11.78 12.45 10.64 
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Table 7. The impact of seasonality on power prices (in Euros per MWh at June 2010 prices) 

 

Day Time (06:00–17:00) Peak Time (17:00–22:00) Night Time (22:00–06:00) Daily Average 

Country (time period) GARCH TARCH GARCH TARCH GARCH TARCH GARCH TARCH 

 
S A W S A W S A W S A W S A W S A W S A W S A W 

Czech Republic (after 1.9.2008) 5.1 8.8 5.3 5.4 9.1 6.9 -2.3 6.7 4.3 0.1 7.4 7.0 -1.0 -2.0 1.2 1.4 -1.2 -0.9 2.1 6.1 4.4 3.1 5.9 4.9 

France (after 1.9.2008) -3.2 8.6 6.1 -0.6 7.1 5.7 -1.9 12.7 12.1 -1.8 11.7 11.3 -6.0 0.6 7.1 -4.5 3.3 7.1 -3.6 8.2 7.7 -2.3 7.3 7.4 

France (before 1.9.2008) -2.2 1.9 5.2 1.9 2.5 2.7 4.4 12.7 12.4 2.1 11.5 13.1 -3.4 -1.4 4.5 -4.1 -2.4 2.4 -1.3 4.1 7.2 -0.1 3.3 4.9 

Germany (after 1.9.2008) 1.4 8.5 6.4 1.4 7.7 5.9 0.9 10.4 14.8 -0.1 9.3 9.3 0.1 2.5 3.1 -0.1 1.7 3.3 1.1 8.7 7.7 0.7 6.9 5.7 

Germany (before 1.9.2008) 6.0 4.1 3.3 1.9 3.9 4.0 0.9 5.3 26.4 -1.0 6.2 7.3 -2.8 0.0 0.8 -3.3 -0.5 1.6 3.0 4.5 13.3 -0.6 3.3 3.6 

Ireland (after 1.9.2008) 5.6 5.1 -0.8 2.1 -2.5 -5.1 -8.2 12.7 21.5 -8.5 12.6 21.0 -2.9 -3.2 -1.4 -2.6 -3.0 -2.2 0.4 3.9 5.2 -1.6 1.4 3.4 

Ireland (before 1.9.2008) 15.3 -20.0 -15.1 16.7 -13.8 -9.2 3.2 1.5 14.3 11.2 63.3 89.3 6.4 -20.1 -2.9 7.3 -17.3 -7.7 11.0 -14.7 -5.5 14.3 -5.0 3.4 

Netherlands (after 1.9.2008) 2.1 5.4 4.9 3.3 6.4 5.2 2.0 10.9 13.9 2.0 9.1 10.9 -1.1 2.2 2.6 -0.4 2.0 2.7 1.0 5.6 5.9 1.8 5.5 5.6 

Netherlands (before 1.9.2008) 7.0 10.5 2.2 0.2 16.8 5.6 0.3 28.9 26.0 -1.7 11.4 13.3 -1.6 -1.7 0.0 -2.5 0.4 1.3 3.6 11.9 8.4 -1.1 11.6 5.4 

Nordic countries (after 1.9.2008) -4.6 -1.7 7.8 -4.1 -2.0 -0.7 -3.4 -2.0 -1.4 -2.1 -0.8 0.1 -4.9 -3.1 -3.1 -3.0 -1.0 -0.8 -4.3 -2.2 2.5 -3.2 -1.4 -0.6 

Nordic countries (before 1.9.2008) 1.5 3.0 7.3 1.3 1.4 6.2 1.7 0.8 4.9 0.4 0.9 4.6 -0.1 4.2 4.8 0.0 5.0 4.9 1.1 3.1 6.1 0.6 2.9 5.5 

Poland (after 1.9.2008) 3.2 6.6 3.3 2.5 6.0 2.0 0.0 6.0 4.1 0.7 10.1 7.5 3.3 1.4 -1.3 3.2 1.5 -0.2 2.3 4.8 2.5 2.4 5.4 3.1 

Poland (before 1.9.2008) 10.3 -6.3 -2.2 0.7 -2.9 1.1 4.9 -15.4 -3.7 -0.4 -0.3 -0.4 -1.4 -1.6 -0.8 -2.1 -1.6 0.0 5.2 -6.2 -2.0 0.0 -2.5 0.9 

Portugal (after 1.9.2008) 2.9 0.5 4.1 6.8 7.6 7.0 5.2 10.7 12.7 5.6 11.7 13.1 7.2 4.7 1.1 6.9 4.6 3.6 4.3 4.8 7.0 6.6 7.4 7.3 

Portugal (before 1.9.2008) -2.4 -18.1 16.0 5.0 -18.7 15.6 4.3 -9.9 21.5 0.3 -14.8 20.5 4.9 -18.2 20.7 3.2 -17.8 9.8 2.3 -14.6 19.5 3.0 -17.8 14.5 

Romania (after 1.9.2008) 0.5 9.2 7.3 0.1 9.5 8.1 -6.6 16.2 9.6 -2.5 15.1 12.2 3.8 5.2 -4.0 3.5 4.9 -3.7 0.7 8.7 2.8 0.7 9.1 4.9 

Romania (before 1.9.2008) -39.2 35.7 28.7 -58.7 25.0 24.3 -55.3 26.3 51.1 -69.1 11.2 52.2 9.4 17.8 3.6 4.0 26.3 14.6 -23.0 26.7 24.9 -39.3 23.4 25.7 

Russia (after 1.9.2008) 2.7 1.5 0.3 2.9 1.3 0.6 2.6 1.5 0.6 2.3 1.7 0.3 2.4 -1.1 -1.6 3.2 -1.1 -1.6 2.5 0.8 -0.4 2.8 0.9 -0.5 

Slovenia (after 1.9.2008) 5.7 5.3 8.7 3.3 5.4 7.4 1.1 9.3 13.8 -1.0 10.1 12.5 1.8 1.3 0.4 1.8 0.4 -1.0 3.6 5.6 7.0 1.8 5.9 6.3 

Spain (after 1.9.2008) 8.6 8.8 7.3 6.8 7.1 5.7 5.8 14.8 24.5 6.0 12.2 17.7 7.2 4.3 4.7 7.3 4.8 9.7 7.6 6.9 8.5 6.8 7.4 9.5 

Spain (before 1.9.2008) 10.0 5.5 0.6 7.5 5.5 0.6 7.9 10.2 13.8 9.4 10.3 9.6 -0.4 -0.1 2.0 -0.4 -0.5 -0.7 5.7 4.5 4.1 5.3 4.5 2.6 

Turkey (after 1.9.2008) 9.8 7.1 9.7 10.8 8.1 8.1 14.5 9.8 7.7 14.8 13.8 13.1 14.1 6.7 7.3 13.7 7.4 7.9 12.3 7.1 8.6 12.7 9.1 9.2 

UK (after 1.9.2008) 0.0 0.0 -0.3 0.6 0.5 0.9 -3.0 3.1 3.7 -3.5 2.3 4.0 -1.2 1.9 1.9 -0.6 1.1 1.4 -0.8 1.2 1.2 -0.6 1.0 1.7 

UK (before 1.9.2008) 3.3 3.8 3.1 2.9 1.6 3.4 1.2 6.7 14.3 1.9 6.2 10.6 -0.1 3.2 3.2 -0.6 1.9 2.5 1.3 4.1 4.6 1.6 3.0 5.5 

S: Summer, A: Autumn, W: Winter, NSC: No Significant Coefficient is available 
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Figure 2. Persistence in conditional volatility 
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The final information coming from our analysis on European day-ahead power markets 

relates to the persistence in conditional volatility. When the persistence in conditional 

volatility is relatively large, then volatility takes a long time to die out following a shock 

irrespective of anything happening in the market. As can be seen in Figure 2, our results 

imply that large changes in the volatility will affect future volatilities for a relatively longer 

period of time in Nordic countries, Ireland and the UK in post-2008 period since the decay is 

slower in these countries. On the other hand, changes in current volatility will have less effect 

on future volatilities in Czech Republic, Russia and Turkey as volatility takes a relatively 

shorter time to die out following a shock in the market in these countries. 

 

5. Conclusion 

 

In this concluding section, we discuss whether we have answered the research questions asked 

in the introductory section. Then, we mention main policy repercussions of the results. The 

third part of the section mentions possible limitations of the research. The final part discusses 

what we have done and what still needs to be done. 

 

Let us start by discussing whether we have answered all research questions we asked in 

Section 1. The first question was which countries in Europe have the most/least volatile 

power markets? The analysis in the paper shows that Russia, Poland and Czech Republic 

have the least volatile markets while France, Ireland and Portugal have the most volatile ones 

in post-2008 period. The second question was what is the relative importance of the absolute 

value of price change and its direction (an increase or a decrease) to explain volatility in 

European day-ahead power markets? In the course of the analysis, we find that magnitude 

effect is usually larger than the leverage effect, meaning that the absolute value of  price 

change is relatively more important than the sign of the change (whether it is an increase or a 

decrease) to explain volatility in European day-ahead power markets. The third question was 

is there an inverse leverage effect in European day-ahead electricity prices? The results from 

the paper show that there isn’t a uniform inverse leverage effect in electricity prices; that is, 

price increases are more destabilizing in some European markets (e.g. Poland, Slovenia, 

Ireland, Netherlands) than comparable price decreases but vice versa also holds true in some 

other countries (e.g. Portugal, France). The final question was which European power markets 

have the strongest/weakest persistence in conditional volatility? Our empirical findings 

suggest that large changes in the volatility will affect future volatilities for a relatively longer 
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period of time in Nordic countries, Ireland and the UK in post-2008 period while changes in 

current volatility will have less effect on future volatilities in Czech Republic, Russia and 

Turkey.  

 

Since this is an all-encompassing study in which hundreds of models are estimated with 

hundred thousands of observations, the results and their policy repercussions are numerous. In 

this and previous section, we just provide a glimpse of the results. Interested readers may 

refer to Online Appendices to get much more detailed results. Within this context, regulators 

may benefit from our results to measure market efficiency and to assess market design and 

exercise of market power. The analysis in this paper has identified relatively more and less 

volatile European wholesale markets, but the investigation of reasons for being more/less 

volatile is outside the scope of present paper. Regulators should explore the reasons for why 

some markets are relatively more volatile than the others. Possible reasons for frequent and 

extreme volatility in the market may include abuse of market power, higher-than-expected 

demand, unexpected capacity bottlenecks, plant outages, poorly developed transmission 

networks, changes in purchasing and contracting behavior, fluctuant renewable electricity 

generation, inappropriately designed market mechanisms and information asymmetries. A 

satisfactory explanation of price volatility in any electricity market is required form a 

regulatory perspective and should be able to accommodate remarkable empirical price 

regularities and irregularities. Regulators should also investigate the issue of the persistence in 

conditional volatility. An answer is required to the question why do some markets have 

relatively larger persistence in conditional volatility; that is, why does volatility in some 

markets take a longer time to die out following a shock regardless of anything happening in 

the market? Moreover, power generators may utilize our results to optimize the terms of 

bilateral contracts and to participate efficiently in the day-ahead and real-time markets. A 

power generator that wishes to secure a stable flow of income may prefer to avoid concluding 

contracts for volatile hours. The findings of this study also let retailers and large consumers 

create an optimal bidding strategy. Risk averse retailers and large consumers may choose to 

buy their electricity by bilateral contracts rather than from spot markets if prices in the latter 

are highly volatile. Similarly, for those managing energy commodity portfolios, information 

about volatilities is required and value-at-risk calculations benefit from a comprehensive 

knowledge of price variance. 
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The research presented in this paper may have a number of limitations that we acknowledge. 

In fact, we have no reason to believe that any of these limitations should undermine our 

analyses, but cannot of course rule them out. The limited nature of our dataset, the lack of 

exogenous variables and inter/cross-market dependency constitute three potential limitations 

of the analysis presented in this paper. The first shortcoming may originate from the limited 

nature of our data set. Our sample is composed of 14 European wholesale electricity markets 

for which we could obtain data. There will be sample selection bias if the countries making 

this data available have differing results for volatility than those which do not make data 

available. Moreover, different countries may have different classifications and reporting 

conventions, so observations in a given data series may not have the same meaning across all 

countries. Taken together, any measurement error and omission of explanatory variables may 

bias estimates of coefficients in the models. Second, due to lack of data, we could not 

properly account for the impact of some other variables (e.g. regulatory practices, market 

power, demand structure, capacity constraints, share of renewable power, market structure) on 

volatility. Given the significance of understanding power price volatility and the fact that the 

literature has only begun to explore these issues, a comprehensive investigation of volatility 

with additional variables may be a useful contribution to the subject. Finally, as can be seen in 

Figure 3 (EC, 2015), which shows the map of commercial power flows between neighboring 

European power markets; there is huge cross-border power trade in Europe. Besides, through 

coordinated calculation of prices and flows between countries, the European Union tries to 

optimize the allocation process of cross-border capacities, called market coupling. The most 

important step of European power market integration took place on 4 February 2014, when 

price coupling in North Western Europe (NWE) went live. Since the launch of NWE, two 

extensions have taken place. In May 2014, Spain and Portugal joined; in February 2015, Italy 

coupled with France, Austria and Slovenia. As a result, the coupled area is called Multi-

Regional Coupling and now covers 19 countries, standing for about 85% of European power 

consumption. Cross-border trade and market coupling in Europe have the potential to 

influence volatilities in individual European markets. Due to space limitations, we could not 

investigate this potentially important topic. 

 

In this paper, we tried to model asymmetric volatility in European day-ahead power markets 

using a simple but highly effective methodology. However, even with the results from this 

paper, the present econometric evidence on the volatility in European power markets is still 

limited. The hope is that future research will continue developing econometric models to 
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analyze electricity price volatility. We suggest the following for future research. First of all, 

we focus on measurement of the volatility rather than its optimal level. However, there is a 

definite need for identifying optimal or excess volatility levels based on well-defined criteria. 

So, future research on electricity markets should focus on identifying what optimal level of 

volatility is and developing new tools to measure it. Second, we investigate the volatility in 

day-ahead power markets only. These are just one dimension of power markets. Therefore, 

there is clearly a need for further analysis regarding volatility in other sections of the power 

markets like real time electricity markets and derivative markets; including exchange-traded 

contracts such as futures and options, and over-the-counter (i.e., privately negotiated) 

derivatives such as forwards, swaps and options. Third, although there are some academic 

work on the social cost-benefit analysis of power price volatility, they mostly use data from 

one country or few countries and deal with a single dimension only (usually, redistribution of 

wealth from consumers to power producers/traders). However, what is needed is a 

comprehensive social-cost benefit analysis that takes into account as many countries as 

possible and all implications of volatility. The fourth task for future research should be the 

extension of the data set in terms of number of countries, time period, and number (and 

quality) of variables. The final extension may be realized by taking into account the fact that 

electricity markets is a part of wider economy in general and energy market in particular. In 

this research, we did not take into account possible spill-over effects from or to volatility of 

other energy (natural gas, oil etc.) and non-energy sectors but inter-market volatility 

relationship is clearly an important research area open to exploration. 
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Figure 3. Commercial electricity flows in GWh in December 2014 – February 2015 

 

Source: EC (2015) 
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