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Abstract

This paper explores a way to construct a new family of univariate probability distributions where the
parameters of the distribution capture the dependence between the variable of interest and the continuous
latent state variable (the regime). The distribution nests two well known families of distributions, namely,
the skew normal family of Azzalini (1985) and a mixture of two Arnold et al. (1993) distribution. We
provide a stochastic representation of the distribution which enables the user to easily simulate the data
from the underlying distribution using generated uniform and normal variates. We also derive the moment
generating function and the moments. The distribution comprises eight free parameters that make it very
flexible. This flexibility allows the user to capture many stylized facts about the data such as the regime

dependence, the asymmetry and fat tails as well as thin tails.
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1 Introduction

Over the last three decades, extensive research papers have focused on the construction of asymmetric family
of distributions which include the normal distribution as a particular case, that are flexible and able to capture
a wide range of skewness and kurtosis relative to the normal distribution. For instance, skewed distributions
are particularly useful in modelling empirical stock returns which are known to exhibit negative skewness
and excess kurtosis.

Univariate skew-symmetric distributions have been studied by several authors. Azzalini (1985,1986)
introduced the skew-normal (SN) distribution as a continuous extension of the normal distribution which
accommodates asymmetry. A random variable X has a skew normal distribution with parameter A if its
density function is given by,

f(z|A) = 2¢(z)®(A\x), z, A € R,

where ¢(-) and ®(-) denote, respectively, the density and distribution functions of the standard normal dis-
tribution, and ®(Az) is the skewing function. The special case, where A = 0, gives the standard normal
distribution. Henze (1986) obtained a stochastic representation for the SN and used it to obtain its odd mo-
ments. A comprehensive treatment of the skew normal family of distributions can be found in Genton (2004),
Arellano-Valle et al. (2004, 2005) and Gupta et al. (2002).

Another setting in which skewed-normal distributions arise is discussed in Arnold et al. (1993, 2000).
Authors consider the distribution of the truncated bivariate normal random variable (X, Y") where X is ob-
served and Y is a hidden truncation. The marginal density of X is obtained and the resulting distribution of
X is skew-normal. It was also shown that their general family of distributions contains as a special case the
skew-normal distribution of Azzalini (1985).

There also exists another type of general method that is used to transform symmetric distribution into a
particular mixture. This class consists of truncated mixtures that are known as split distributions or two-piece

distributions. This family is presented by Fernandez and Steel (1998) and generalized by Arellano-Valle et



al. (2005).! Its generalized form is

2g _r 2g _r
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where «vis areal, 7(a) = fi(a)
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the origin in its standard form and f;(«) and f2(«) are known positive functions that govern the asymmetry

» I1z<0y is an indicator function, g(.) is a symmetric density around

and the behavior in the tails of the distribution.

The aim of this paper is to introduce a new family of univariate probability distributions capable of
capturing a wide range of values of skewness and kurtosis. Our eight parameters distribution is a mixture of
two asymmetric densities making it more flexible than its competitors. The most important contribution to the
literature is the inclusion of a latent state variable with a continuum of states, unlike the traditional mixture
distributions where the state variable is discrete with few number of states. This new class of distributions
will henceforth be referred to as the hidden-threshold-skew-normal (HTSN).

This paper is outlined as follows. In section 2, the HTSN distribution is introduced. We give the sto-
chastic representation of the proposed family of distributions which allows us to simulate data from HTSN
distribution by only generating samples from the uniform and the normal distributions. Moreover, the mo-
ments generating function and formulas for centred moments are derived. In section 3, we use the HTSN
distribution to model the physical distribution of US market returns and the height of Australian athletes. Our
results show that the family of HTSN distributions outperforms the family of Skew-distributions introduced
by Arnold et al. (1993), the mixture of two hidden truncated normal distributions, the Skew-Generalized
Normal Distribution (SGN) discussed in Arellano-Valle et al. (2004), the mixture of two Normals and Split-
Normal Distributions. In addition, we present the discrete version of the HTSN with Markov Switching
Dynamic and an estimation of this version of HTSN is given using maximum likelihood. Section 4 concludes

the paper with a final discussion.

ISimilar approach can be found in Fernandez et al. (1995), Fernandez and Steel (1998), Mudholkar and Hutson (2000), and Jones
(2006).



2 The continuous hidden threshold distribution
2.1 Definition

Definition 1 The random variable x follows a hidden threshold distribution if its probability density function

is defined by
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where [y, [bry Ogyy Ogyy Oryy Oryy Orgy, Org, are the parameters that govern the location, the scale and

the shape of the distribution. The mixing probability is given by
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We will show below that the distribution (/) is the marginal of x derived from (5).
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For the derivation see Appendix 1l

We now introduce some general notation, which is used throughout the reminder of this paper. We
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with mixing probability,

_ ®(-Ay)
= D (—A1) + P (A2) @
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If we set i, = pt, a;foml =0, 0z, = 1,and 0, = 04, we get the normal distribution with mean

14, and standard deviation o, .

If 7 is allowed to be a free parameter, i.e. independent of the other parameters then we obtain a mixture
of two Arnold et al. (1993) distribution with mixing probability 7.

Also if p, = p, = 0, we get a mixture of two Azzalini’s Skew-Normal distributions with skewness
1

parameters — A1 and Aj2, scaling parameters o, and o, , with mixing probability 7 = 5.

If in addition 05, = 0., = 1, we have a mixture of two Azzalini’s standard skew-normal distributions

. 1- Orx 1- Orzx :
with skewness parameters — 5 12 d 5 22 . Moreover, if we set 075, = 0,5, = 0 we get
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a mixture of two Azzalini’s skew-normal distributions with location parameter 1, scaling parameters o,
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2.2 Derivation and stochastic representation

2.2.1 Derivation

Consider the bivariate distribution who’s density is given by

exp ((Z —1) Q7 (Z - u)) I

f(2) =c 2 5)
27T|Ql‘2
I'—1
exp (_(Z—u) 922 (Z—u)>
+ 1 (1 _I) ’
27T|Q2|2

where Z = (z, T)/ , « is the observable random variable, 7 is a latent random variable i.e., the hidden random
threshold, / = 1 if ¢ < 7 and I = 0 otherwise, u = (u,, ,uT)/ is a vector of location parameters of the

distribution, 27 and 25 are 2 x 2 symmetric and positive definite scaling matrices written as

2
(o O rxi
Q Xt T .
i ) 1 1727

2
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and c is the normalizing parameter of the distribution as can be shown in appendix 1 to be,

1
‘- D (A1) +P(A2) ©

The marginal distribution of the observable x is obtained by integrating out the latent variable 7. The
following lemma gives the form of this marginal distribution.
Lemma 1 The marginal distribution of the observable x is given by (1).

For the Proof see Appendix 1l

2.2.2 Stochastic representation

In the proposition below we give a stochastic representation of the distribution (/). The proposed simple

representation allows for easy simulation of random variables from (7).



Proposition 1 (Stochastic representation). Ler A1, Ao; and A; be as above (i = 1,2), uw and v be two
independent standard normal variables and 1 is uniformly distributed random variable in [0, 1] independent

from u and v, where w is truncated below at A1 if n < 7 and above at A5 otherwise. In addition, let

A 1
- 1 U + v, lf n < ™
V142 V142
z = Ao 1 7
— U+ v, otherwise,
/ 2 2
14 Al 14 Al
and
Oz 2+ Ly fn<m
. 2t if 1) ®
OxyZ + [y, otherwise,

then x has a distribution with a density function (1).

For the Proof see Appendix 2l

2.2.3 The marginal moments of =

The moments of (1) are given in the following proposition.

*

Proposition 2 Suppose x has a distribution with a density function (1). Let p* = Ha = Ha
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For the Proof see Appendix 3H

The four first moments are given in appendix 3.

2.3 The moment generating function and some properties

The moment generating function of (5) is given in the following theorem.

Theorem 1 The moment generating function of (5) is

pr
P 1
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where (i, = . — i, + 04 (ami — ail) +6. (U?_i — Umi)fori = 1, 2 and the mixing probability 7 is given

by (2).



For the Proof see Appendix 4l

The following lemma gives the moment generating function of the marginal density of  in (/).
Lemma 2 The moment generating function of (1) is
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P
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For the proof we just set 6 = 0 in (12).

The four first moments are given in appendix 3.

3 Applications

3.1 Maximum likelihood estimation

Let X1, Xo,..., X, be a random sample from HTSN (i, firyOuys Oans Trys Orgy Oray, Orzy) SO that the

likelihood function is given by

n

L0 |x1, 22, ..., xp) :Hf(xl|6) (14)

i=1

where for ¢ = 1,...,n, f(z; |0) is given by (1). The maximum likelihood estimator of  is obtained by max-
imizing (14), a task that has to be accomplished numerically. We employ the BFGS algorithm optimization
method based on two datasets which are described below to estimate the parameters by numerically maximiz-
ing the log-likelihood function (14) with respect to the parameter vector 0 = (fi, fry Oy s Tagy Orys Orgs Oy s Oras) -
(14) is maximized using the instruction Maximize in RATS and choosing initial values for the parameters as
My = 174.594 and 0,,, = 8.24. The latter values are the sample mean and the sample standard deviation for
the Australian athletes dataset. In a similar fashion, we choose as starting values p,, = 0.028 and 0, = 1.07

for the market excess returns. In terms of computational time, the BFGS algorithm converges rather quickly.



3.2 Application to two datasets

We apply the HTSN to model the physical distribution of two real datasets. The first dataset consists of daily
market excess return of the US stock market covering the period, July 1, 1926 to June 28, 2013.2 The second
set concerns the heights (in centimeters) of 100 Australian female athletes available from the Australian
Institute of Sport (AIS dataset) extensively used in the literature by Azzalini (1986) and Arellano-Valle et al.
(2004).3

Summary statistics of the AIS data are given in Table 1 and in Table 9 for the market excess return of the
US stock market. These summarizes suggest leptokurtic densities for both examples with negative skewness
in all cases.

For performance purposes, we also estimate five competing distributions namely, the hidden truncation
normal, mixture of two hidden truncated normal distributions, the Skew-Generalized Normal distribution
(SGN), the mixture of two normals and Split-Normal distributions (densities of these mixtures are given
bellow).

Mixture of two hidden truncation normal distribution (MHTN)

7o () @ (u + g A0 (52) @ (N + hegte)

where 0 < w < 1.

Hidden truncation normal distribution (HTN)

14 (z=p T—p
f(x):aqs(a)@()‘1+>\20)
V1+22

where ¢ > 0, A1, A2 and p are all real numbers.

2US stock market returns are available at: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
3 AIS dataset is available at http://azzalini. stat.unipd.it/SN/index.html.



Skew-Generalized normal distribution (SGN)

_ 2 (z—p Az —p)
rw =20 (4 >¢>< 02+/\2(x—u)2>

where o > 0, A\1, p and Ay > 0 are all real numbers .

The mixture of two normals (MN)

1 1 /x— iy, 2
= e () )

where 0 < w < 1.

Split normal distribution (SN)

2
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where
1 if e < p,
Iw<;tz = .

0 Otherwise

Figure 1 shows plots of the HTSN and standard normal distributions for different parameters values. We

note that the HTSN distribution nests several density shapes starting from symmetric heavy tails to asymmet-

ric heavy tailed distributions as shown in figure 2 — 4 along with particular parameter values. Figures 5 — 6

are histograms for both datasets. The superimposed densities are obtained from fitting the HTSN. MHTN,

SGN and MN using maximum likelihood estimation. The best fit of the HTSN over the other distributions

are also illustrated in figures 5 — 6, which show that HTSN density is a better fit than the other densities. It is

also worth noting that the fitted HTSN captures all the skewness and kurtosis present in the data.

Tables 2 — 5 show our results using AIS dataset. According to the BIC information criterion reported at

the bottom of Tables 2 — 7, we conclude that the HTSN model provides the best fit compared to the other

10



distributions using this dataset. Tables 10 — 15 provide results using US market excess returns which show
by using the same criteria (BIC and AIC) that HTSN outperforms all the five competing distributions. These

results are interpreted as strong evidence in favor of the HTSN distribution.

3.3 Discrete version of HTSN distribution

From (5) it is clear that the parameters 0,,, and 0., in (1) capture the dependence between the observable
x and the latent regime (threshold) 7 in the bad state and the good state respectively, while p is the location
of the threshold. This property of the coefficient makes the distribution (1) more tractable since it departs
from the traditional regime switching models in two ways. On one hand, the regime or state variable is a
continuous process handling a good updating of the distribution if the regime changes. On the other hand,
regimes of the distribution are also identifiable and hence the distribution doesn’t suffer from the problem of
label switching unlike the case of discrete mixtures. We now introduce a discrete version of HTSN with a
switching regime dynamic.

Henceforth a Markov regime switching model will be abbreviated as (MS). The following description
follows closely that of Hamilton (1993).

We assume to have observed x; but not the state S;. We consider a two-state, first-order Markov process

and assume that the state variable is governed by the Markov chain:

p_ <P(St+1 =11S;=1) P(Siz1=1|S= 2)) _ <P11 p12)
P(Si41=2|S:=1) P(Si41 =25 =2) D21 P22

These transition probabilities are restricted so that pjo = 1 — p11, this follows because starting in regime
1, you can only switch to either regime 2 or stay in 1, etc.

In order to estimate the parameters of an MS model with this uncertainty, we must compute probabilities
associated with each possible regime. An estimation of the parameter vector @ = (p,,, fbr, Oxy O ans Orys Orgys Orays Orays P11, P22)
in the MS model is carried out using maximum likelihood as described below. The basic assumption made

here is the existence of the regime variables S; = 1,2, which for each time ¢ selects one of the following

11



distributions

—2
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which is then observed, i.e. the conditional density of ; given that S; = 7, 0 is equal to f;.The log-likelihood

of the model is then given by,

T
2

InL=> 1Y (f;(z:]8 =4,0)Pr(S; = j)) (15)

j=1
t=1

Where T is the number of observations. (15) may be interpreted as the weighted average of the likelihood
in each state, where the weights are given by the state’s probabilities. Since Pr(S; = j) is not observed,
equation (15) cannot be directly used. Instead we apply Hamilton’s (1993) method to calculate filtered
probabilities for each state based on the available information. The estimation of MS model is obtained by
finding the set of parameters that maximizes (15). We apply this methodology to the market excess return
and AIS datasets and display the results of this estimation in tables 8 and 16.

We note that convergence of the discrete HTSN proved to be slower compared to the continuous HTSN.
The two main drawbacks of the discrete HTSN model are, first, an updating of the probability of each state
is required with the arrival of new information, unlike the continuous HTSN where the process is updated
continuously in time. Second, since the states are unobservable, estimates based on forecasts of the state in the
following period are inconsistent as we have came across in the estimation procedure. This inconsistencies

are mainly due to the nonidentifiability of the two regimes, in contrast to the continuous HTSN where the

regimes are identifiable.

12



4 Conclusion

In this paper we propose a new family of distributions which we referred to as hidden-threshold-skew-normal
(HTSN). The most important contribution to the literature is the inclusion of a latent state variable with
a continuum of states unlike the traditional mixture distributions where the state variable is discrete with
few number of states. The new family of distributions is regime dependent. The distribution contains eight
parameters which makes it more flexible than its competitors. A wide range of shapes of HTSN are obtained.
The distribution has a mixture interpretation. The information criteria shows that the HTSN distribution
outperforms all the proposed competitors, including the split normal, the hidden truncation normal and the

mixture of two normals with different location and scale parameters.

13
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Table 1: Descriptive Statistics for the AIS dataset

Sample Mean Standard Deviation ~Skewness Kurtosis
174.5940 8.2422 —0.5684  4.3212
Table 2: Parameter Estimates for the ATS dataset under HTSN
Parameter ity . Oy Or Ora, o Ory lo
Value 173.8034 171.7584 10.8978  5548.9526  —16128.212 6.5308 3.2168 19.9747
Std Error 3.4980 2.9936 2.0894 176746.6703 531285.505 1.7692 3.0566 21.0419
T-Stat 49.6860  57.3751  5.2156 0.0314 —0.0304 3.6914 1.0524  0.9493
Log-likelihood —336.779
BIC 7.104
AIC 7.096
Table 3: Parameter Estimates for the AIS dataset under MHTN
Parameter iy fio &1 o) oY Az A3 A4 w
Value 163.2777  164.5975  6.4540  8.6878  —29.8276  0.0668 < —116.1166 —645.4920 0.9222
Std Error 0.1349 0.05646  0.42550  0.3699 1.8586 0.000741 6.6866 8.9949 0.0303
T-Stat 1210.1854 2915.3633 15.1680 23.4845 —16.0483 90.1539  —17.3656  —71.7620  30.4220
Log-likelihood —347.568
BIC 7.366
AIC 7.131
Table 4: Parameter Estimates for the AIS dataset under HTN
Parameter by Oz M Ao
Value 174.4617896 8.2010669 —1.4901255 0.0083191
Std Error 14.0486411  0.4730751  11.7003650  0.9954514
T-Stat 12.41841 17.33566 —0.12736 0.00836
Log-likelihood —352.318
BIC 7.231
AIC 7.126
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Table 5: Parameter Estimates for the AIS dataset under GSN

& A o

Parameter it
Value 170.3204  9.2476  4.3802 24.1780
Std Error 0.9776 0.6561  3.9173 46.3275
T-Stat 174.2266 14.0952 1.1182  0.5219
Log-likelihood —347.2392
BIC 7.129
AIC 7.025
Table 6: Parameter Estimates for the AIS dataset under MN
Parameter iy, fb, 0z Oy w
Value 177.022  6.3517 214.982 60.854 0.1810
Std Error 1.5273  0.5519 3.6510 0.6482  0.0069
T-Stat 115.904 11.509 58.883 93.888 26.2996
Log-likelihood —350.844
BIC 7.240
AIC 7.110
Table 7: Parameter Estimates for the AIS dataset under SN
Parameter ity Oz [o
Value 177.022  9.6983 6.4635
Std Error 1.5273  1.1198 0.9996
T-Stat 115.904 8.6600 6.4662
Log-likelihood —350.844
BIC 7.155
AIC 7.076
Table 8: Parameter Estimates for the AIS dataset under discrete HTSN
Parameter fi i G, 6y Gra, Gy Gry Oray P11 D22
Value 177.381 177.279 9.911 1.5687 13.3414 6.4076 0.595 —3.813 0.819 0.275
Std Error 0.6863  0.0373 0.817 0.0697 0.6763 0.0394 0.0352 —15.393 0.044 0.000
T-Stat 258.458  4757.75 12.13 22.518 19.727  162.58 16.893  0.2477  18.76 737013
Log-likelihood —337.772
BIC 7.216
AIC 6.955
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Table 9: Descriptive Statistics for the US Market Excess Returns dataset

Sample Mean Standard Deviation ~Skewness Kurtosis

0.027923 1.0704233 —0.1333  16.6038

Table 10: Parameter Estimates for US Market Excess Returns dataset under HTSN

Parameter ity i, Oz, Ory Ora; Oy Ory Gray
Value 0.5344 0.0785 2.2068 2.1827 4.7515 0.7933 343.99 213.78
Std Error 0.0174 0.0042 0.0057 0.0052 0.0197 0.0146 0.1186  8.2648
T-Stat 30.758 18.551 386.58 415.17 241.58 54.331 2898.99 25.866
Log-likelihood —30256.19

BIC 2.634

AIC 2.631

Table 11: Parameter Estimates for the US Market Excess Returns dataset under MHTN

Parameter iy fio 61 o) A1 Az As W w
Value —0.0186 0.0424 2.1504 0.6086 —1.7627 —0.0246 —1.5634 0.0172 0.1810
Std Error 0.1907  0.0315 0.0369 0.0069  1.0982 0.0257 0.6494  0.0206 0.0071
T-Stat —0.0974 1.3471 58.144 88.171 —1.6052 —0.9567 —2.4536 0.8339 25.324
Log-likelihood —30290.39

BIC 2.637

AIC 2.634

Table 12: Parameter Estimates for the US Market Excess Returns dataset under HTN

Parameter by Oy A1 ;\2
Value 0.0220 1.0704 —0.0983 0.0064
Std Error 0.0034 0.0051  0.2600  0.0026
T-Stat 6.5148 209.54 —0.3782 2.4213
Log-likelihood —34207.77

BIC 2.976

AIC 2.974
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Table 13: Parameter Estimates for the US Market Excess Returns dataset under GSN

Parameter it o 5\1 5\2
Value —0.6898  1.2888  3.5417 6.9373
Std Error 0.0087  0.0077 0.1089 0.5461
T-Stat —78.925 166.937 32.498 12.703
Log-likelihood —32105.26

BIC 2.793

AIC 2.792

Table 14: Parameter Estimates for the US Market Excess Returns dataset under MN

Parameter iy, f, Oy Oy w
Value —0.1330 0.0635 2.1498 0.6085 0.1810
Std Error 0.0345  0.0052 0.0375 0.0068 0.0070
T-Stat —3.8476 12.206 57.313 90.042 25.730
Log-likelihood —30290.39
BIC 2.635
AIC 2.633
Table 15: Parameter Estimates for the US Market Excess Returns dataset under SN
Parameter . Oz Oy
Value 0.0669 1.1003 1.0394
Std Error 0.0103 0.0075 0.0077
T-Stat 6.4751 147.67 135.37
Log-likelihood —34195.09
BIC 2.974
AIC 2.973

Table 16: Parameter Estimates for the US Market Excess Returns dataset under discrete HTSN

Parameter ity . Oz, 0r Ora, Oy Ory Oray D11 D22
Value —1.2347 —5.4433 0.6872 1.5599 0.8338 2.2020 385.38 —548.48 0.9869 0.0410
Std Error 0.0896 0.0601  0.0098 0.0289 0.0178 0.0530 46.712  55.444  0.0011 0.0030
T-Stat —13.786 —90.560 69.810 53.854 46.759 41.516 8.250 —9.8926 874.52 11.640
Log-likelihood —28642.69

BIC 2.494

AIC 2.491
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Figure 1: HTSN Distribution plots in particular cases
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Figure 2: An Example of (right-skewed) heavy tailed Figure 3: An Example of (left-skewed) heavy tailed
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Figure 4: An Example of symmetric heavy tailed HTSN (dashed lines), N(0,1) density (solid line)
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Figure 5: Histogram of percentage excess market returns

The lines represents distributions fitted using maximum likelihood estimation
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22

2000



Figure 6: Histogram of heights of 100 Australian athletes

The lines represents distributions fitted using maximum likelihood estimation
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Appendix 1

Consider f(z) as the probability density function of a random variable x, we have that

+oo
fx)de =c(I1 + 1),

— 00

where N L
I1:/ exp{—(Z_'u) & (Z_M)}dT
s 21|02 2
x 7 — O 1 7 — )
I:/ lexp{_( n) 5 ( u)}dT
—00 21 || 2 2
and
o 1
D(—A1)+P(Ay)
LetY =7 — pand
0 = or O
Ore, 0%,

then,

YUY = w1yl + 2w12YaYr + Warla-

Noting that

2
. w1l w12 07, Oraz 10
Q]. Ql = ) = s
w12 W22 Orzy 0'301 0 1
then
2
w1107, + w1202, = 1,
2 =0
W110 g, +W120,, =0,
2
w1207, + w220z, =0,
and

W120rg1 +w220i1 =1,
from (16-19) we deduce

_ -2
W12 = =04, W110 7z,
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a7)
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wag = 0;12 (1 —wi2074,),

and
wir =057 (1 — wi20+4,)
= 0';12 (1 =+ O';IQWHU.,Q_II)
_ 1
= (U’Qfl - 0112072'$1) .
Thus
YOU'Y = wiiy? 4 2w12Yayr + waale-
1 ys
Y'OTY = w192 + 2wiey.yr + UTJC
T1
+ whwi'va
2
=% o (g + @)
Uml
2 2
+w
— yTw + 2(y‘l' _2)2 , (20)
T, (07'1 O U‘rﬂh)
where @ = (w12ys) /W11 = =03 200, Ya = —05 0 rg, (€ — ). This implies that,

teo g Z—w' ot (Z -
11:/ lexp{_( p) 2 ( u)}dT
x 27‘(‘91‘2 2

1 z—p,)° teo -, + @)’
= ——F 71 €Xp —(275) / T €Xp § — ( 3 H 5 2) dT,
(271')2 |Ql|2 021 T (27T)2 2(07'1 — O, o"rxl)
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T*‘LLT+’W

where u = . It follows that

(072'1 - 0';120.3481) %

1
o2 — o252 )2 _ 2 +o00 1 2
I = ( n %o 7'9161) exp _(m gw) / . . exp{—u}du
(27)7 | |2 203, —2ltT_ (97)2 2

T — g T — [y + @
=& o e —2 3
o (02, — oz0%,,)
L= Mg T = Py
= ¢(7M )‘b (—)\01 — A1l a > .
O’.’C1 1

Similarly, we have

L - /g”1exp{_(Z—u)'ﬂzl(Z—/~L)}dT

o0 2 [ Q]2 2
x x—
= ¢ MI)‘I’ (Aoz + A2 /%) )
UIQ T2

and the result follows.
End of the proofll

Appendix 2 Proof of proposition 1

—2
O (1+0, 07m) _ Ly — [y _ TR, o
Let )\li - ’ )‘Oi = ——————— and Az = \/ = 5 — \/1+A2 ,
2 —o,l0? 2 5252 02+ 02, — 204
Ori Oxi Orwi (o] O i 00 T i TX

(i=1,2). uwand v are two independent standard normal variables and 7 is a uniformly distributed random
variable in [0, 1], independent from w and v, where w is truncated below at A; if n < 7 and above at A

otherwise, in addition let

)\11' 1
z=— U+ v

VIHAL 1N

then the joint density of v and v given that ) < 7 is,

fluvln<m) =~ Lui>

and

v=1/14+ A2+ A\u.
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We then have,

fzulnp<n

= exp exp

the marginal density of z is

<) = s, 5

2 A
/+°° (1+20) (” i
5 exp | —

Aq

_ 2 A1l
Leth =4/1+ A (u + mz) then,

femen pton (-2) [ (-2
\/ﬂ@ (7A1) 2 Ao1+A112 \/ﬂ 2
1 22
= mexp <—2> P (—>\01 - )\112)

Letz = 04,2 + 1, then

<I>( Aor — An = “”)
(x_/‘La:) Oz,

where

+o0o 1 h2
D (=Xo1 — A1z :/ ——exp (—) dh.
( o H ) Ao1+A112 V 2m 2

We can similarly show that,

@ <)\02 + )\12:5 — Hz)
- :ux) Oz,
Ozy @ (AQ)
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then it follows that

fle) = af@h<m)+A—n)f(zln>m)
. @(—AOI—AH“@;%)
- B (A

o <>\02 + )\1230 — /«%)
(FF) T
Oy (I)(Ag)

= 7¢

+(1-mo

which is just the density function given by (1).
End of the proofll
Appendix 3

The central moment of order K of (1)

m* (z) = / & — B@)* [(Zlen.00)dZ,

(Z—MTHWZ—M}
drdx

] e

o | |2
(Z—MTEWZ—M}

L

27T|Qg|%

drdx,

= c(If* (z) + I3 (2)),

(Z— ) Q7" (Z —p) }
drdz,

28



o [ (XY — o (1Y — )
I () = / +: / " o — B@)¥ p{ 2 }

2 |Ql‘%
(Y—uﬂ%ﬁ—WTY_Mw}

T e = § ’

dy,dy,

T dy - dyz,
2 |Ql|2
where
10
T = ,
1 1
Z =7Y,
. L0 Ha
o= W= ,
-1 1 Hor — g
U;? O—:zi
Q7 =
O—;k'xi o—;k'%
= (v'o;tr)
— T7191T/71
_ ail Orzy — ail
Orgy — Uf,l 031 + U?L.l — 20,4,
(Y =) Q7 (YY — ) = (¥ — ) @7 (v = 1)
) w2
e N el ),
- *2 + %2 *—2 42
o o2 — o7, “0r2
where W = —o% 20%, y-. It follows that

(yr — pt)° (yo — pt +w)°
€ _— Y eX _
K +oo  ptoo . XP{ 20';’2? p 9 (0;? — 05‘;1_20—?;-:2“)
11@%:/ A [y — E(z)]

dy, dys.
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Let hy =y, — ' and h, =y, — pt thenw = —o*720%, (h, + p2) and

T1 TI1

e

X - X -

2073 2(032 — o503

K ( 1 1 1) dh,rdhm

27T|Ql|%

ﬁ@»=/:j/:jmfﬂg—Eun

K (K K—k +oo  ptoo P
= > ()b -m@ [ :
=0\ F —oo J—px 2m |2

Now let u, = h, + @ and u, = h. then

@) = 8 () b - B

1 K K « K—k k k . % k—
@) = 3 ()l = @l 2 (1) (o%0n,)
|Q1]2 k=0 i=0\J
{ } {2
oo - *2 _ o k—2 %2 _ . o) €Xp§ — *
—0o v 2T i=0 i T — i T 27
Letv, = Yz and v; = — then
32— o’il_zai%l T1
1 K K * K—k k k *—2 % k—
IlK(x): 1 (k) [/‘LI_E(ZI)] Z() ( 7'12 7‘:51) !
\Ql|2 k=0 j=0\J

where

1}2
e
I = / T2 =2 du,. (21)
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and

22
o T v (22)

From the standard normal properties, we have

0, if 7 is odd
I = 4!

(§)12%

Lety = % then from the first part of (22) we have,

’02
+oo exp{—} k=1 +o0
2 272 / ko1
k
v 76&) = 2 ex — d
/0 o 5s ) Y p(—y)dy
B 2%F(k+1)
V2T 2

where

+oo
I(a) = /0 y* ! exp(—y)dy.

The second part of (22) where we make use of y = %, to get

N‘»-m:

v? o
0 exp {—2} 95t —/ y% exp(—y)dy ifhy >0
/ b L 20, 0

K T V2T V2T ? -
71 (—1)’“/ y 2 exp(—y)dy otherwise
0
k—1
277 _k+1 . Kl k+1 h3
= r hy)(—1)Fm<oy(E12 21
\/ﬂ ( )Slgn( 1)( ) ! 7( 9 2)
where by = — U“*: and
T1
/ya*lexp(—y)dy
0
PY(aax)* F(a)
Therefore,
I 27 T(— ) {1 — sign(hy)(—1)*m<oy(Z T2 2L
= =TT {1 sign(u) e (2



It can be shown, using the same procedure that,

1 k+1
I — 2" r(;

Ver

1 1
Using (21), (??) and the fact that || = [Qf] = (027 — 037°0%2,)2 (073)2, we get

Tzl T1

) {(l)k + (71)(k+1)1h2<07(ﬂ h%)} '

2 72

H@ = x () - Bl 5 (k) (7220, )

j=0\J

It follows that the four moments are given by,

E(x) =p=p;+ (022 07, (O IT + 7 15) + 07, 207, (07, 17 + i I5")

var(@) = B (o= p)) = el — 1) (I + 1) + 2 (0 — ) (03,200, (03, 13 + 15 05) + 0,207, (00,11 + 3 15))

7'2 TI2

(077207, (052 I3 + 20507 I 4 12 05) + (07, %07,,) (070 13" + 20500, 1T + 12 157)

TI2

_|_(0_*2_0_* 2 *2 )IO ( *2 O'* 2 *2 )Ig*]

Xy T1 Titl T2 7'212

3 * 3 * ok * 2 *— * *— * * *k * Tk

E ((.’L‘ - /J) ) = C[(p,w - M) (IO + IO ) +3 (/’Lz - /’(‘) ((071 207m1 (071[1 + /’[’TIO) +o QO-ng (0'7_2]1 + MTIO ))
+3 (1 — ) (07,2072, (05215 + 2p5 07, If + 1572 15) + (07, %070, )2 l0ra I3 + 2p507 I
BT (03— o3 0 ) + (032 — 020 )} (03 0, Pl 3T

’T(EQ T:El

130207 I} + WP I + (03,20%,,)° (033L" 4 Buto 3" + 3o, I + ui L)

*—2 _* *2 *—2 _*2 * * * *— 2 * *2 *—2 %2 * )k k TRk
+3U'rl UTI1 (Jxl - 071 J‘rml) (J‘rl'[l +IU‘TIO) + 30 ‘er (ng - J‘rg UTzQ) (O-TQII + Hrlp )]
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B@=m') = elus—mw" 05+ 1) + 405 = 0 (07,207, (00 1§ + i I5) + 03,2070, (00, 17 + 1 5"))

* 2 *k — * * * * * * * * *— * * * 3k * * * 3k * * 3k
+6 (:ua: - M) {(0 20 )2(07312 + 2/’[’TUT1[1 + IU’TQIO) + (UTQ 20_79:2)2(0-73]2 + 2:“7'0-72]1 + H"erO )

+ (032

*2

T1 TI1

or o s + (00 — 0P )T A s — ) (07207, ) (05 1 + 3o

13u207 I} + P I) + (03,%0%,,) (033137 + 3uto 33" + 32200, I + i I3

*—2 %
+307, 7074,

T1

T2 TI2

(032~ 077%072,) (03,17 + 1205) + 307,207, (032 — 07,2072, (07,11 + 1 d”))

(037200, ) (00 T + 4o I 4+ 202 I + 40 I + it Iy) + (0% 20, ) (01

T1 T2 TI2

AR I 4 60T+ Ao I L) + 6(0% 20, ) (03 — 03 %02 (0720

TI1 xrq T1 TI1

Foptot I+ pRL) + 6(03 %0, ) (02 — 0i %0, (01213 + 2uko, I + w2 I)
+3(037 = 07078, g +3(07] — 072 0T0) ]
where,
1 1 h2
15 = 3 {1 sin(m)n (. 50 |
1 I i
1 = = {1 = sign(h) (=13 5 |
1 3 h?
15 = g {1 sigm(m)n 3.0 |
2 31 i
Ir=—-{1- hy)(—1)3m<ony(2, 2L
= = {1 stgnt) (-1 2,50}
.3 5 h2
Iy = ) {1 - SZgn(hl)'V(Qa 21)}
w1 1 h3
Iy™ = By {1 +7(§>7)
[ = L -1+ (_1)1h2<07(1 é)
! Var 2
1 3 h3
= 2-11 2 2
=3{1+1G. 5
JX* — i 14+ (_1)3lhz<0,y(2 é)
s V27 T2
3 5 h2
I** — _ 1 — &
End of the proofll

33



Appendix 4

The moment generating function of (5) is given by

M) = [ exp(t2)f(2

/L791792,)dZ7

(Z —w) Q' (Z - u)}
drdz

+oo +oo eXp {_ 2
= c/ / exp(0'Z)

o | |2
(ZMWEWZM}
drdzx,

+oo  px exp { 9
+ c/ / exp(0'2)

27 Qa2
= c(11(0) + 12(0)),
where A
- exp{(Zu) 921 (Zu)}
L(o)= [T / exp(0'Z) : drda
T 2w ‘Qﬂf
J— / —1 —
exp{(Z 1) 922 (Z u)}
L(0) = [T [7_exp(0'Z) . drdzx
2m |QQ|§
and 0 = (6,,6,)".
Now let
1 0
T = .
Z=7Y.
then,
1 0
Y = Z,
-1 1
. 1 0
w= (4 .0)
-1 1

Moy + 9:00-;%1 + 97'0-79:1

My — g + ex (UTII - 0-3;1) + 97’ (072—1 - O-Tzl)
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2
021 Orzl — Oz

2 2 2
Orpl —O0gq1 021+ 03 — 2041

(YY =) Q7L (XY — ) = (XY — o — 010)" Q7 (XY — pp— 946)
—20'—0'010 +20'TY
= (Y =) Q7 (Y — ) - 20’

— 0’0 +20'TY

(Y1 — 15)° | Yog1 — b + @)
*2 + *2 *—2 %2 29//”‘

fopst o

z1 — 971 Ora1
— 0’010 +20'TY,
and
Z—p)' N Z -
. o {2 1)
1,(0) :/ / exp(0'7) - drdzx
—oo Jz 2|2
TY —p) Q7 (YY —
o XD {Q,TY _ p) 2 ( 1)
2
= / / T AYr 1Yzt
—oo JO 2T |Ql‘2
S o M T )
/ +oo ptoo eXpy — 2 *2 o 2 *2 _ _x—2 %2
’ 0 910 01 (Uml 0r1 0-7'?1:1)
=exp (0 B T dy‘r-l-ldyw-i-l
2 —oo JO 2w |Q1|2
0’0 x
= exp (9/u+ 1> ) < /i: ) .
2 071
where @ = —0% 7205, Yri1, E = pp =y 0z (0ra, — 02 )+0- (0%, — 07y ) and 0% = /02 + 02 — 20,4,
The last equality follows from the fact that |Q;]| = |Q27| and from the properties of the normal distribution

and where @ (.) is the cumulative of the standard normal distribution.

Similarly, it can be shown that

/Q *
L(0) = exp (9’u+ o 229) ) (— Fr ) :

*
O',,_2
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x _ /3 )
where 0%, = \/02, + 02, — 20,4,.

Therefore, the moment generating function is given by

/ * / *
M) =c {exp <6’/u + 9919) ® (MT) + exp <9',u + W) ® (MT) } ,
2 o) 2 ar,

By the properties of the moment generating function we have

M@ =0)=c(l1{(6 =0)+ 10 =0)) =1,

where
L(0=0)=d(-Ay),
and
(0 =0)=2(As)
Thus
1
c= .
(0] (—A1) + P (A2)
End of the proofll
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