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Abstract

This paper compares the outcomes of two three-stage games of two firms
competing for quantity with managerial delegation. In fact, we prove that
simultaneous choice of managers by the proprietors of the firms followed by
Stackelberg-type competition is equivalent to sequential choice of managers fol-
lowed by Cournot-type competition. We prove equivalence in a general setting,
namely, when the duopolistic model is characterised by a non-linear inverse
demand function of the form p; = a — (¢;)" —v(¢;)", ¢,j = 1,2 and n > 1.
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1 Introduction

In modern day corporation practices the adoption of a managing scheme where owners
delegate decision powers to managers is widely adopted and considered as standard.
Traditionally, the owner of a firm strives to stimulate the aggressiveness of his manager
by committing to an incentive contract rewarding the manager’s performance based
on a combination of factors such as market share, output and/or profits.

The role of strategic delegation in oligopoly was first investigated by the works
of Fershtman and Judd (1985), Vickers (1985) and Sklivas (1987). They based their
investigation on the study of two-stage complete information games. In the first stage,
the owners of each firm publicly announce the rewarding schemes put forward to their
managers, while in the second stage, firms’ managers compete for quantities or prices,
according to delegated objective functions.
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The effects of strategic delegation on the standard competition models of indus-
trial economics such as the Cournot and Stackelberg models is a topic of increased
interest to both scholars and practitioners and the results have the potential to guide
regulation.

In their 2008 paper Kopel and Loffler (2008) consider a duopoly game where the
two firms are in a Stackelberg-leader-follower-type situation. Amongst other things,
they examine whether the market leader sustains her advantage if at a stage prior
to quantity decisions the owners of the firms are given the ability to choose their
delegation schemes.

The current paper elaborates further on the ideas first developed in the above
paper and Stamatopoulos’s (2013) pre-print that was privately communicated to us.
We examine and compare the outcomes of two three-stage complete information games
that both involve managerial delegation by means of a weighted contract rewarding
profits and quantity prior to quantity competition. In the first stage of the first
game, the G-game, the owners of the first firm commit on the incentive rate of their
managerial contract. In the second stage, the owners of the second firm react making
up their mind with regards to the incentive rate of their manager. In the third stage of
the GG-game, the managers of the two firms compete for quantity in a Cournot fashion.
In the first stage of the H-game the two owners make simultaneous offers to their
managers. In the second stage, the manager of the first firm acts as a leader setting
a quantity level and in the third stage of the H-game the manager of the second
company reacts accordingly gauging her output level. We prove that equilibrium
prices and quantities are the same for the two games. Further, we show that the
first mover in the sequential delegation game, the (GG-game, earns the same profit
as the second mover in the sequential quantity game, the H-game. Similarly, the
second mover of the delegation game achieves the same profit as the first mover in
the quantity game.

We, further, contribute to the literature by considering a duopoly market of a
differentiated commodity characterized by a non-linear inverse demand function. To
overcome the potential restrictiveness of linear scale curves while, at the same time,
exploring the limits of our considerations we consider an inverse demand function of
the form p; = a—(¢;)" —~(¢;)" where p; is ¢’s market price and ¢; and ¢; with¢,5 = 1,2
are the quantities produced by the two firms.

The rest of the paper is organized as follows: the model and the results are found
in section 2, section 3 sheds light into the heuristics of the result, section 4 derives
Stamatopoulos’ (2013) linear demand case followed by a brief conclusion in section 5.
All technical details are collected in the Appendix.

2 The model

Consider a duopoly market with differentiated commodities. Firm 2 faces the inverse
demand function p; = a — f(¢;) — vf(g;) where p; is i’s market price, ¢; and ¢;
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are the quantities produced by firms ¢ and j, with ¢,7 = 1,2, ¢ # 5, f : Ry —
R, a homogeneous function of degree n € AN and v € (0,1]. The cost function is
assumed to be linear, the same for both firms. Let, further, ¢ with ¢ < a denote
the marginal production cost. Firms follow a corporate structure characterized by
ownership-management separation. Following Vickers (1985), we assume that the
managers are offered objective functions that are combinations of profit and quantity
sold. The manager of firm ¢ is thus delegated the objective function

vilqr, q2) = (pi — )¢ + aiqi, a; >0, i =1,2

The total payoff of manager ¢ is given by A\;v; +¢;. Parameters A; and ¢; do not affect
the choice of quantities and are chosen by the firm’s owners to just give the manager
his reservation utility. The incentive rate a; is chosen by the owners of firm ¢ so that
they maximize the profit function

Ti(q1,92) = (pi — ¢)gi, 1 =1,2

The G-game is structured as follows: in the first stage, the owners of firm 1
decide on the incentive rate of their manager, a;. The owners of firm 2 observe the
offer of the first firm and in stage two they react by choosing as. Finally, in stage three
the managers of the two firms compete selecting quantities ¢; and ¢ in a Cournot
fashion.

The structure of the H-game is as follows: in the first stage the owners of the
two firms simultaneously choose a; and a; making their choices publicly known. In
the second stage, the manager of the first firm sets a level of quantity and in the third
stage, the manager of the second firm reacts by selecting an optimum level of quantity
for her firm.

As usually the two games are solved by backward induction. Let ¢%(ay, as), ¢5 (a1, az)
denote the quantities solving the Cournot sub-game played at stage 3 of the G-game.
If we denote by m;(ay,as) = mi(q% (a1, az),¢5 (a1, a2)), © = 1,2 the profit functions of
the two owners respectively then, in stage two, the owners of the second firm select
ay by solving max ma(a, az). Let az(ay) denote their choice. Then, in the first stage,

the owners of the first firm solve the problem max m1(a1, asz(ay)). Let, further, a¥ and
a1_

p$ denote the equilibrium incentive rate and product price of firm 7 in the G-game,

1 =1,2. Then,
o _ n(n+1)7"Y _
a4y = (n + 1)Q (Cl C),

¢ _ nntD(n+1—9)7°Q—ni(n+1)y°Q
N (n+1)2n+1-+2)Q

(a—c),

o nln 1P 1) 4 140
[0+ 12 =220+ P01 —72)02

(a—c)
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(a—c),

o = APt l—g)n+1-9%)0
’ [(n+ 1) = 42)(n + 1)3(n + 1 = 42)Q
—n’(n+1)%(n + 1 —5%)7°Y (a— o)
[(n+1)? =92](n + 1)*(n + 1 — 4*)Q2
ot e+l =)+ 1=y 4 nfnt Din 41— 9)y°
[(n+1)? =92 (n + 1)*(n + 1 — 42)Q2

(a—=¢)

_|_

(a—c),

where
M=n+1=yln+1)?=+n+1)*n+1-7%) —ny7],
and
Q=[(n+ 17+ 1 =)+ 0" [(n+1)*(n +1 -~ = n’y"].
The precise calculations for the above formulae can be found in the Appendix.

Similarly, with respect to the H-game, at stage three the manager of firm 2
responds to the quantity level ¢1(a1,az) set by the manager of firm 1 at stage two, by
solving the maximization problem max us(q1, q2). If we denote by r2(¢q) the solution to

92>

this problem, at stage two the manager of firm 1 solves the problem max uy(q1,72(¢1))
0
where
ui(gr.r2(q1)) = (a = flq) = 7f(r2(@)) — ¢)u + arqn.-

If ¢/ (ay, ay) denotes the solution to this problem and ¢4/ (ay, az) = ra(q(ay, as)) then,
at stage one the owners of firms 1 and 2 simultaneously solve the respective problems
Hé?xwl(qfl(al,ag),qQH(al,az)) and I%?XTFQ(Q{{(CH,CLQ),q%{(Cll,GQ)). Let afl and pf de-
note the equilibrium incentive rate and product price of firm 2 in H-game. Again,
the precise calculations can be found in the Appendix,

JH o0 oF = [(n+1)? = (n 4+ 1)y = ny*n(n + 1)7*
P (e DI+ D2 = 20+ D)y?l(n + 1)2 = 0y

(a—c),

g (A Dhn+1)? —n(n 4 y(y +1) +ny°]Q
v = (n+1P(n+1-72)0
_nQ(n + 1)(” + L — 72)73(21 (Cl . C)
(n+1)3(n+1—-72)Q ’

(a—=¢)

. nm+1mn+02—m+1h—nfmw_w)
2 (n+1)2(n+1—-+1)Q
a(n + DI+ 172 — (04 17220,

(n+1)2(n+1-+2)0
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Putting everything together, we get

Theorem 2.1 For games G and H the following hold true:
(i) af = all > af > all =0.

(it) pf = p¥, p§ =pf and ¢f = ¢f!, ¢ = ¢f.

(i) 7 =7l > 7§ = 7l

Proof. The details of the proof are included in the Appendix.

3 The intuition behind the result

In analyzing the main result, Theorem 2.1, we follow the reasoning presented first in
[Kopel and Loffler (2008)] and subsequently in [Stamatopoulos (2014)].

Parts (ii) and (iii) of Theorem 2.1 follow readily from part (i) of the same
theorem. The H-game follows similar lines to those of the corresponding game in
[Kopel and Loffler (2008)]. It is, therefore, not surprising that the leader, the owner
of firm 1 in this case, has no incentive to delegate, i.e. afl = 0 while the follower,
firm 2, does have an incentive to delegate decision power to a manager. This result is
directly derived in the Appendix.

The rest of the main theorem follows from the fact that af = all; i.e., the
incentive rate of the first mover in the delegation sub-game of G is equal to the
incentive rate of the second mover in the quantity sub-game of H. In consistency
with the notation used in section 2, let ¢%(a;) = ¢%(a1, az(a1)) denote the equilibrium
quantity of firm 1 in the G-game as a function of aq, i.e. the incentive rate delegated to
the manager of firm 1 being the first mover in the corresponding delegation sub-game.
A direct application of the chain rule allows for the splitting of the rate of change of
¢ (ay) into two summands as follows:

(3.0.1) dgt _ Oqr | Oqi das(ar)
dal aal aaz da1
S~ ——

direct effect  indirect effect

In a similar fashion, the rate of change of ¢l’(as) = ¢4 (a2, ¢/ (a1, a3)) as a function of
ap can be split

H H H H
(3'0'2) d% _ a% a% a%
das day Oq1 Oay

direct effect  indirect effect
Equations (3.0.1) and (3.0.2) decompose the effect of own delegation incentive on own

performance into the direct effect measuring the immediate impact of a; on ¢ and
ay on gl respectively and the indirect effect measuring the corresponding impact via



the opponent’s response. Given our framework, it turns out that both direct as well
as indirect effects are mutually equal. Further, if we let ¢5'(a1) = ¢5' (a1, az(a;)) and

q{I(QQ) = q{l(alv a2)

(3.0.3) dg5'(ar, az(a)) _ dqf’ (ay, az)

da1 N da2

is also true.

4 A “linear” example

Consider the case where the inverse demand function is given by

pi(qr,q2) = a—q; —vq;

with ¢ # j 7,7 € {1,2} and marginal cost ¢ < a.
We, first, look at the GG-game. The quantities chosen in the Cournot stage are

(2 = y)(a = ¢) + 21 — a,

2= 7)(a =)+ 2 — 1
4 —~2 '

4 —~2

qg(alvcm) = ) qg;(alvcm) =

At stage 2, the reaction function of the follower, i.e. the owner of firm 2, is

2= —¢)—7a

walon) = 42 — 7%

In equilibrium,

2 2 5
RY 2 —70Q
Cl?: Ql(a_c)7 Clg;:( 4(2)_,72)(2 l(a_c)7 a?>a§

where Q) = (2 —9)(4 = 7*)[4(2 = %) —7*] and Q = [8(2 — %) + 7142 — 7*)* = 7"].

Equilibrium prices and quantities in terms of € and €y for firm 1 are given by

o _ l2(2 — N2 -7 =712 | 297y - 42 - 72)2]91] (a— o)
' 8(2 —12)(4 - 7?)Q 8(2 —12)(4 - 7?)Q

/5 = l(Q —DEE =) =12 B2 =97 9N
' 42 =72 (4 =)0 42 =724 =)0

while for firm 2 are given by

o _ l2(2 N2 =) 22— )00 - D)
i 8(2 = 7%)(4 —7?)Q2 8(2 —77)(4 —7?)Q

[0

p Jta-a
_ 2@ =740 29°(y* — )

= i+ i ) )




We, then, consider the H-game. Quantities in the last two stages are given by

(2—9)(a—c)—ya2+ 20y
2(2 =97

q{q(alv a2) =

and

o a—cH+ay—yqf(a1,05) (4 =2y —7%)(a —¢) = 2ya1 + (4 —7*)ay
qy (a1, az) = = )

2 12—

In the delegation stage we have

H ’7291

all =0, ol = 0 (a —c)=af

In addition, it is straightforward to show that pif = p& and pl! = p§ showing further,

H_ G H_ G
that 7' = #{" and 7y = 75

5 Conclusion

This paper focuses on a comparative study of the classical competition models of
Cournot and Stackelberg when policy decisions are taken by managers. We have
proved that sequential delegation under Cournot quantity competition and simulta-
neous delegation under Stackelberg quantity competition produce the same market
outcomes. In this given framework, prices and quantities are found to be identical
for these two modes of competition. Further, being the first mover in the delegation
game under the first framework is equivalent -in terms of profits- to being the second
mover in the quantity game under the second. A similar equality holds between the
profits of the second mover in the delegation game and the profits of the first mover
in the quantity game. The result could be proved in an even more general setting

" where p; is

that of an inverse demand function of the form p; = a — (¢:;)" — v(¢;)
’s market price and ¢; and ¢; with 2,7 = 1,2 are the quantities produced by the two
firms.

Whether a similar result can be derived for the case of more than two firms is a
question for future research.

6 Appendix
We first prove a lemma

Lemma 6.1 Let f(q) be a non-negative real, differentiable function, f : Ry — Ry.
The function f is homogeneous if and only if ¢f'(q) = nf(q), for some n € N.



Proof. It is a known exercise to show that if f is homogeneous f(q) = C¢" for some
C >0 and n € N. A straightforward check proves ¢f'(¢) = nf(q).

To prove the converse,

i) =nfta) = SO o [EBa = [Lag = g =c

and f is homogeneous.

Proof of Theorem 2.1: We focus first at the G-game. At the third stage of the
game the managers of the two firms compete for quantities a la Cournot. The solution
of the system

v v

vt _ 0, viz _

g Ugs
gives

_a—c+a—7f(q) _a—ctay—vf(q)
) = n+ 1 . fle) = n+1

which implies that the quantities chosen at stage 3 as functions of the incentive coef-
ficients aq, ay are given by

(6.1.1) Clar,az) = f ((n +1—9)(a—c)+ (n+a — 7%)

(n + 1)2 —~2
and 1 1
(6.1.2) 05 az) = 7! ((n - 7)((2161))?_(:? e Wl) .

At stage 2, the owners of firm 2 choose a3 so that to maximise their profit

ma(ar, as) = (a — (g7 (a1, a2)) = f(q5 (a1, a2)) — ¢)g5 (a1, a2) .

We know by Lemma 6.1 that for 7,5 = 1,2

Vqi gV g n+1
6.1.3 — Y Fg) = ,
(013) Jaj  nf(gi)Va; ) nf(gi) (n+1)* =~
In solving z% = 0 we take into account (6.1.3) for i = j = 2 to get
2
vy n+1 l n-+1 B
((n—|—1)2—72 (n_|_1)2_72)f(92)‘|‘(a /(1) — f(g2) c)n(n—l—l)z—’VQ =0

which yields ay as a function of a;

n(n+1—9)7*(a—c)—ny’a

(6.1.4) Gz(al) = (n + 1)2(n +1— 72)

At stage 1, the owners of firm 1 maximise their profit

mi(ar) = (a — f(gi'(a1)) = vf (5 (a1))g5 (ar) .
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where ¢¥(a;) “(ay,az(ar)) and ¢5(ar) = ¢S (a1, az(ar)). Plugging the value of a,

of equation (6.1.4) into equations (6.1.1) and (6.1.2) respectively we get

(n+1=Pln+1D*n+1-19%) =ny’J(a—c)

f(% (al)) [(n + 1)2 _ 72](71 + 1)2(n 41— 72)
[(n+1)*(n +1—-9%) +ny'a
[(n+1)2 =7%(n+1)2(n+1—-77)
and
G _ (D4 1=9)n+1)(n+1—-9")+nyJ(a—c)
flgg (ar)) = [(n+1)2—42(n+1)2(n+ 1 —4?)
L= D Dt 1= 52y 4
[(n+1)? =+ 1 n+1-9%)
Solving di}T(;“) = 0 gives
o _ n(n+1)7" a@—c
(6.1.5) R FRRATS (a—c),
o_nnt+ln+1-9)y*Q—n’(n+1)5°0
(6.1.6) ay; = E 1P+ 1= 490 (a —c),
with
Q= (n+1=9)[n+1)?=+(n+1)n+1-7%)—ny],
and

Q=[n+1Pn+1-9*)+ny[(n+1)*(n+ 1 —7%)* —n*y"].

We, now, come to the H-game. At stage 3, the manager of firm 2 solves the
problem

max us(q1.q2) = gggg[(a —vf(q) — flg2) — €)q2 + azqs]

to find the response function

a—c+ay—7f(q1)
n4+1

(6-1-7) f(%(fh)) =

or equivalently, since by Lemma 6.1 f is 1-1,

e fa—ctaz—vf(q)
%(%)—f ( nt 1 )

Then, at stage 2 the manager of firm 1, having taken into account the response of the
manager of firm 2 at stage 3, would seek to maximize his objective function

ur(q) = (a — f(q1) = vf(g2(q1)) — e)qn + arqa .



A straightforward calculation gives

n—l—l—’y)(a—c)—’yag—l—(n—l—l)al)

H e
alaaz) =/ ( (D +1-77)

and consequently
Heg g — = (Unt D)=+ )y—ny’Jla—c)—(nt1)yam
a3 ( 15 2) / ( (n—l- 1)2(n—|— 1 _72)

[(n +1)? — ny?]a, )
CERECES D

At stage 3 the owners of the two firms simultaneously solve their respective maxi-
mization problems
max (a1, as), mgg{ﬂ'z(al,ag)
a2_

where .
mi(ar,az) = (a— flgi(ar,a2)) — vf(q(ar, a2)) — c)qi(ar, az)
= (a— flqi(a1,az)) = yr2(f(qi(ar, a2))) — ¢)qu(ar, az)
with G ot as— it
Tz(t) - n + i :

from equation (6.1.7) and

ma(a1, a2) = (a — f(q2(a1, a2)) — 7 f(q1(a1, a2)) — ¢)ga(ar, az2) .
Because of (6.1.3) applied for i =j =1

Iy _ ﬁf(Q1(G17G2)) dry ﬁf(QI(alacL?))
b = T ba ) da 0l

‘|‘(Cl — f((h(ah az)) — 7r2(f(91(a1, Gz))) _ c)%allva?)

_ (_df(fh) . drs df(fh)) Vg (ay, as)
dq, df (1) dqy Jay

+a — flqilar, a2)) = yr2(fqa(ar, a2))) =€) Jay

= ((_ d]}qq:) B Vdf(f;q(lﬁ))) g1+ (a — f(q1) —vf(q2(q1)) — c)) %;;a?)

91(6117 Gz)

_ dﬁ(Ql) 1991(6117@2) _ _alﬁ%(ahaz) <0
dql 19@1 19@1
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therefore, 71 (a1, az) is a decreasing function of a4 taking its maximum value at a{l = 0.
Taking this into account m3(aq, ag) becomes

e — (<n+1>2<n+1—¢><a—c>
e (e D20+ 1= 7)
, S D+ 1= 9)fa = ¢) + 930+ Day
e+ D2+ 1= 77)
L L0+ 12— (0 1y = nyPlfa = ¢) [0 + 1) = 09l
CESIETES =t

)i

The first order condition following a lengthy, albeit straightforward, calculation gives

[(n+1)* = (n+ 1)y = ny’In(n + 1)7°
(n+ D(n +1)2 = (2n + 1)y*][(n + 1)? — ny?]

One verifies directly that

(6.1.8) all = (a —c).

af =afl > af >al =0
proving the first part of the Theorem 2.1. For the second part we calculate pf(a%, a5)
and pf(all all) for 1 = 1,2.

prlatay) = a— fla(ay,ay)) — 7 f(galaf,a5)) —c
_ M+ 1) —9la—c) = (n+1—9)(a—c)— (n+ 1af +yay
N (n+1)2 =42
4 1—9)(a—c)+(n+1)ay —vaf
(n+1)2 =72
_ nnt1l—9)(a—c)+(y*—n—1af —nyaf
N (n+1)* =7 ’
p?(a?v a?) = a— ’Vf(ql(ag;v a?)) - f(q2(a?7 a?)) — ¢
_ M+ 1) —a—c) —y(n+1—79)(a—c) —y(n+ 1)af +%af
N (n+1)* =
_(n+1—9)(a—c)+(n+1)af —yaf
(n+1)2 =72
_ nnt1—9)(a—c) —naf + (4 —n —1)af
N (n+1)2 =42 '
Also,
n'laay) = a—flala ay)) = vf(alay’,ay)) = c

(n+1)%n+1-+*(a—c)
(n+1)2(n+1—19?)
(n+1)(n+1—7)(a—c)—(n+1)yaf +(n+1)%af
(n+1)2(n+1—19?)
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W +1)? = (n+ 1)y —ny?J(a — ) — (n + y*ai’ +5[(n + 1)* — ny’Jay’

(n+1)2(n+1-192)
[n(n + 1? = n(n + Dy(y + 1)+ n7°)(a — )
(n+1)%(n+1-12)
(n+1)(* —n—1ai’  ny(y* —n—1ay
(n+12n+1-92)  (n+12(n+1-192)

and

pg(a{[, agl) = a— ’Vf(ql(aflv agl)) - f(qQ(aflv agl)) — ¢

(n+1)2(n+1—=9*)(a—c)
(n+1)2(n+1-12)
A+ D +1 —9)(a—c) =y (n+ Dag' +7(n +1)%af
(n+1)2(n+1-12)
[(n+1)* = (n 4+ 1)y = n7?](a = ¢) = (n + D)yai +[(n +1)* = ny’laf]
(n+1)%(n+1-79?)
nl(n+ 1) = (n+ 1)y = ny’J(a —¢)
(n+1)2(n+1-12)
n(n + 1)yaf! [(2n +1)7* = (n + 1)*]ad
(n+1)2(n+1-12) (n+1)2(n+1-79?)

The first part of Theorem 2.1, i.e.

n(n 4+ 1)y*Q(a — ¢)

implies that

G P10
' [(n+1)2 = 42)(n + 1)3(n + 1 —42)Q

U Tk R
[(ESIEeE Sy —e

—n?i(n+1)(n+1—9)7Q +n*(n+ 1)1

[(n+1)? =2(n+1)°(n +1-72)Q

(a—c),

G = nn+1)°n+1-=7)(n+1-+)0 (a— o)
’ [(n+1)2 =2 (n + 1)3(n + 1 —42)Q
N —n’(n+ 1P+ 177N (a— o)
[(n+1)2 = y%(n +1)*(n + 1 —%)Q
+—n(n F D)4+ 1=7)n+1 =)0+ n*(n+ H(n+1—-7°)7"Y

[(n+1)? =2(n+1)*(n +1-7%)0

(a—c)
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and

g A+ D4+ —nn+ 1y +1)+ nﬂﬂ(a g
o= (n+1)3(n+1—~2)0
_nQ(n + 1)(” + L — 72)73(21 (Cl . C)

(n+1)2n+1-+91)0

po_ ol ) =k Dy e
(0 01— 72)

o D0+ 10— 4 DB
(n+ P+ 17 |

By comparing the coefficients of ) and €); one directly establishes

G H G H
P1 =P and Py =

proving half of Theorem 2.1(ii).
To the end of proving the remaining half of Theorem 2.1(ii), we observe that

) = L) 1=l + P 1=
1 [(n+1)? = 4](n+ 1 = 4*)(n + 1)°Q
n(n 41 —7)y*Q — n*y%Qy

B R T R T 1)29(“ —<)

o DMt 1920
M) = e — st —m+ a9
nn+1)(n+1—7)72Q —n?*(n+ 1)7°Y (a—c)
[t 1F—n + 1 =)0 4 120
aln + 1200+ 1= 12120,

Mt 12—+l -2+ 1)29(61 —c).

For ¢f1,1 = 1,2, we get
mo_ [+ Dm+1=9) a4 1)’ _
fa') = (n+1)2(n+1—+2)Q 7(n+1)2(n+1—72)ﬁ (a=0),

n+D[n+Dn+1—~%)—~(n+1—0
gty = D D0 1= s e
(it DT 1—72)0
n(n+1)[(n+1)(n+1—9%) + 77 (a— o)
i+ DR 1= 720 '
By comparing, once more, the coefficients of ) and €y in the above formulae and
because f is 1-1 one directly establishes

G H G H
G — 4, and 99 — ¢

which completes the proof of Theorem 2.1(ii).
The proof of Theorem 2.1(iii) follows, now, immediately.
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