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Strategi
 delegation e�e
ts on Cournot and Sta
kelberg
ompetitionN.J. Mi
hela
akisUniversity of Piraeus, E
onomi
s Department, 80 Karaoli & Dimitriou Strs., 18534, Gree
eAbstra
tThis paper 
ompares the out
omes of two three-stage games of two �rms
ompeting for quantity with managerial delegation. In fa
t, we prove thatsimultaneous 
hoi
e of managers by the proprietors of the �rms followed bySta
kelberg-type 
ompetition is equivalent to sequential 
hoi
e of managers fol-lowed by Cournot-type 
ompetition. We prove equivalen
e in a general setting,namely, when the duopolisti
 model is 
hara
terised by a non-linear inversedemand fun
tion of the form pi = a� (qi)n � 
(qj)n, i; j = 1; 2 and n � 1.Keywords: Strategi
 delegation; Cournot 
ompetition; Sta
kelberg 
ompetitionJEL Classi�
ation: D43, L13, L211 Introdu
tionIn modern day 
orporation pra
ti
es the adoption of a managing s
hemewhere ownersdelegate de
ision powers to managers is widely adopted and 
onsidered as standard.Traditionally, the owner of a �rm strives to stimulate the aggressiveness of his managerby 
ommitting to an in
entive 
ontra
t rewarding the manager's performan
e basedon a 
ombination of fa
tors su
h as market share, output and/or pro�ts.The role of strategi
 delegation in oligopoly was �rst investigated by the worksof Fershtman and Judd (1985), Vi
kers (1985) and Sklivas (1987). They based theirinvestigation on the study of two-stage 
omplete information games. In the �rst stage,the owners of ea
h �rm publi
ly announ
e the rewarding s
hemes put forward to theirmanagers, while in the se
ond stage, �rms' managers 
ompete for quantities or pri
es,a

ording to delegated obje
tive fun
tions.e-mail address: njm�unipi.gr (tel.: +30210 4142289)1



The e�e
ts of strategi
 delegation on the standard 
ompetition models of indus-trial e
onomi
s su
h as the Cournot and Sta
kelberg models is a topi
 of in
reasedinterest to both s
holars and pra
titioners and the results have the potential to guideregulation.In their 2008 paper Kopel and L�o�er (2008) 
onsider a duopoly game where thetwo �rms are in a Sta
kelberg-leader-follower-type situation. Amongst other things,they examine whether the market leader sustains her advantage if at a stage priorto quantity de
isions the owners of the �rms are given the ability to 
hoose theirdelegation s
hemes.The 
urrent paper elaborates further on the ideas �rst developed in the abovepaper and Stamatopoulos's (2013) pre-print that was privately 
ommuni
ated to us.We examine and 
ompare the out
omes of two three-stage 
omplete information gamesthat both involve managerial delegation by means of a weighted 
ontra
t rewardingpro�ts and quantity prior to quantity 
ompetition. In the �rst stage of the �rstgame, the G-game, the owners of the �rst �rm 
ommit on the in
entive rate of theirmanagerial 
ontra
t. In the se
ond stage, the owners of the se
ond �rm rea
t makingup their mind with regards to the in
entive rate of their manager. In the third stage ofthe G-game, the managers of the two �rms 
ompete for quantity in a Cournot fashion.In the �rst stage of the H-game the two owners make simultaneous o�ers to theirmanagers. In the se
ond stage, the manager of the �rst �rm a
ts as a leader settinga quantity level and in the third stage of the H-game the manager of the se
ond
ompany rea
ts a

ordingly gauging her output level. We prove that equilibriumpri
es and quantities are the same for the two games. Further, we show that the�rst mover in the sequential delegation game, the G-game, earns the same pro�tas the se
ond mover in the sequential quantity game, the H-game. Similarly, these
ond mover of the delegation game a
hieves the same pro�t as the �rst mover inthe quantity game.We, further, 
ontribute to the literature by 
onsidering a duopoly market of adi�erentiated 
ommodity 
hara
terized by a non-linear inverse demand fun
tion. Toover
ome the potential restri
tiveness of linear s
ale 
urves while, at the same time,exploring the limits of our 
onsiderations we 
onsider an inverse demand fun
tion ofthe form pi = a�(qi)n�
(qj)n where pi is i's market pri
e and qi and qj with i; j = 1; 2are the quantities produ
ed by the two �rms.The rest of the paper is organized as follows: the model and the results are foundin se
tion 2, se
tion 3 sheds light into the heuristi
s of the result, se
tion 4 derivesStamatopoulos' (2013) linear demand 
ase followed by a brief 
on
lusion in se
tion 5.All te
hni
al details are 
olle
ted in the Appendix.2 The modelConsider a duopoly market with di�erentiated 
ommodities. Firm i fa
es the inversedemand fun
tion pi = a � f(qi) � 
f(qj) where pi is i's market pri
e, qi and qj2



are the quantities produ
ed by �rms i and j, with i; j = 1; 2, i 6= j, f : R+ !R+ a homogeneous fun
tion of degree n 2 N and 
 2 (0; 1℄. The 
ost fun
tion isassumed to be linear, the same for both �rms. Let, further, 
 with 
 < a denotethe marginal produ
tion 
ost. Firms follow a 
orporate stru
ture 
hara
terized byownership-management separation. Following Vi
kers (1985), we assume that themanagers are o�ered obje
tive fun
tions that are 
ombinations of pro�t and quantitysold. The manager of �rm i is thus delegated the obje
tive fun
tionvi(q1; q2) = (pi � 
)qi + aiqi; ai � 0; i = 1; 2The total payo� of manager i is given by �ivi + ti. Parameters �i and ti do not a�e
tthe 
hoi
e of quantities and are 
hosen by the �rm's owners to just give the managerhis reservation utility. The in
entive rate ai is 
hosen by the owners of �rm i so thatthey maximize the pro�t fun
tion�i(q1; q2) = (pi � 
)qi; i = 1; 2The G-game is stru
tured as follows: in the �rst stage, the owners of �rm 1de
ide on the in
entive rate of their manager, a1: The owners of �rm 2 observe theo�er of the �rst �rm and in stage two they rea
t by 
hoosing a2: Finally, in stage threethe managers of the two �rms 
ompete sele
ting quantities q1 and q2 in a Cournotfashion.The stru
ture of the H-game is as follows: in the �rst stage the owners of thetwo �rms simultaneously 
hoose a1 and a2 making their 
hoi
es publi
ly known. Inthe se
ond stage, the manager of the �rst �rm sets a level of quantity and in the thirdstage, the manager of the se
ond �rm rea
ts by sele
ting an optimum level of quantityfor her �rm.As usually the two games are solved by ba
kward indu
tion. Let qG1 (a1; a2); qG2 (a1; a2)denote the quantities solving the Cournot sub-game played at stage 3 of the G-game.If we denote by �i(a1; a2) = �i(qG1 (a1; a2); qG2 (a1; a2)), i = 1; 2 the pro�t fun
tions ofthe two owners respe
tively then, in stage two, the owners of the se
ond �rm sele
ta2 by solving maxa2�0 �2(a1; a2). Let a2(a1) denote their 
hoi
e. Then, in the �rst stage,the owners of the �rst �rm solve the problem maxa1�0 �1(a1; a2(a1)). Let, further, aGi andpGi denote the equilibrium in
entive rate and produ
t pri
e of �rm i in the G-game,i = 1; 2. Then, aG1 = n(n + 1)
2
1(n+ 1)
 (a� 
) ;aG2 = n(n+ 1)(n + 1� 
)
2
� n2(n+ 1)
5
1(n+ 1)3(n+ 1� 
2)
 (a� 
) ;pG1 = n(n+ 1)3(n + 1� 
)(n+ 1� 
2)
[(n+ 1)2 � 
2℄(n+ 1)3(n + 1� 
2)
(a� 
)3



+ �n(n+ 1)3(n+ 1 � 
2)2
2
1[(n+ 1)2 � 
2℄(n+ 1)3(n + 1� 
2)
(a� 
)+�n2(n+ 1)(n+ 1 � 
)
3
 + n3(n+ 1)
6
1[(n+ 1)2 � 
2℄(n+ 1)3(n + 1� 
2)
 (a� 
) ;pG2 = n(n + 1)3(n+ 1� 
)(n+ 1 � 
2)
[(n+ 1)2 � 
2℄(n+ 1)3(n+ 1� 
2)
(a� 
)+ �n2(n+ 1)3(n+ 1 � 
2)
3
1[(n+ 1)2 � 
2℄(n+ 1)3(n+ 1� 
2)
(a� 
)+�n(n+ 1)(n+ 1 � 
)(n+ 1 � 
2)
2
 + n2(n+ 1)(n + 1� 
2)
5
1[(n+ 1)2 � 
2℄(n+ 1)3(n+ 1 � 
2)
 (a� 
) ;where 
1 = (n+ 1� 
)[(n+ 1)2 � 
2℄[(n+ 1)2(n+ 1� 
2)� n
3℄ ;and 
 = [(n+ 1)3(n+ 1 � 
2) + n
4℄[(n+ 1)2(n+ 1 � 
2)2 � n2
4℄ :The pre
ise 
al
ulations for the above formulae 
an be found in the Appendix.Similarly, with respe
t to the H-game, at stage three the manager of �rm 2responds to the quantity level q1(a1; a2) set by the manager of �rm 1 at stage two, bysolving the maximization problemmaxq2�0 u2(q1; q2). If we denote by r2(q1) the solution tothis problem, at stage two the manager of �rm 1 solves the problem maxq1 u1(q1; r2(q1))where u1(q1; r2(q1)) = (a� f(q1)� 
f(r2(q1))� 
)q1 + a1q1 :If qH1 (a1; a2) denotes the solution to this problem and qH2 (a1; a2) = r2(qH1 (a1; a2)) then,at stage one the owners of �rms 1 and 2 simultaneously solve the respe
tive problemsmaxa1 �1(qH1 (a1; a2); qH2 (a1; a2)) and maxa2 �2(qH1 (a1; a2); qH2 (a1; a2)). Let aHi and pHi de-note the equilibrium in
entive rate and produ
t pri
e of �rm 2 in H-game. Again,the pre
ise 
al
ulations 
an be found in the Appendix,aH1 = 0 ; aH2 = [(n+ 1)2 � (n+ 1)
 � n
2℄n(n+ 1)
2(n+ 1)[(n+ 1)2 � (2n + 1)
2℄[(n+ 1)2 � n
2℄(a� 
) ;pH1 = (n + 1)[n(n+ 1)2 � n(n+ 1)
(
 + 1) + n
3℄
(n+ 1)3(n+ 1 � 
2)
 (a� 
)+�n2(n+ 1)(n + 1� 
2)
3
1(n+ 1)3(n+ 1 � 
2)
 (a� 
) ;pH2 = n(n+ 1)[(n+ 1)2 � (n+ 1)
 � n
2℄
(n+ 1)2(n+ 1 � 
2)
 (a� 
)+n(n+ 1)[(2n + 1)
2 � (n+ 1)2℄
2
1(n+ 1)2(n+ 1 � 
2)
 (a� 
) :4



Putting everything together, we getTheorem 2.1 For games G and H the following hold true:(i) aG1 = aH2 > aG2 > aH1 = 0.(ii) pG1 = pH2 , pG2 = pH1 and qG1 = qH2 , qG2 = qH1 .(iii) �G1 = �H2 > �G2 = �H1 :Proof. The details of the proof are in
luded in the Appendix.3 The intuition behind the resultIn analyzing the main result, Theorem 2.1, we follow the reasoning presented �rst in[Kopel and L�o�er (2008)℄ and subsequently in [Stamatopoulos (2014)℄.Parts (ii) and (iii) of Theorem 2.1 follow readily from part (i) of the sametheorem. The H-game follows similar lines to those of the 
orresponding game in[Kopel and L�o�er (2008)℄. It is, therefore, not surprising that the leader, the ownerof �rm 1 in this 
ase, has no in
entive to delegate, i.e. aH1 = 0 while the follower,�rm 2, does have an in
entive to delegate de
ision power to a manager. This result isdire
tly derived in the Appendix.The rest of the main theorem follows from the fa
t that aG1 = aH2 ; i.e., thein
entive rate of the �rst mover in the delegation sub-game of G is equal to thein
entive rate of the se
ond mover in the quantity sub-game of H. In 
onsisten
ywith the notation used in se
tion 2, let qG1 (a1) = qG1 (a1; a2(a1)) denote the equilibriumquantity of �rm 1 in theG-game as a fun
tion of a1, i.e. the in
entive rate delegated tothe manager of �rm 1 being the �rst mover in the 
orresponding delegation sub-game.A dire
t appli
ation of the 
hain rule allows for the splitting of the rate of 
hange ofqG1 (a1) into two summands as follows:dqG1da1 = �qG1�a1| {z }dire
t e�e
t+ �qG1�a2 da2(a1)da1| {z }indire
t e�e
t :(3.0.1)In a similar fashion, the rate of 
hange of qH2 (a2) = qH2 (a2; qH1 (a1; a2)) as a fun
tion ofa2 
an be split dqH2da2 = �qH2�a2| {z }dire
t e�e
t+ �qH2�q1 �qH1�a2| {z }indire
t e�e
t(3.0.2)Equations (3.0.1) and (3.0.2) de
ompose the e�e
t of own delegation in
entive on ownperforman
e into the dire
t e�e
t measuring the immediate impa
t of a1 on qG1 anda2 on qH2 respe
tively and the indire
t e�e
t measuring the 
orresponding impa
t via5



the opponent's response. Given our framework, it turns out that both dire
t as wellas indire
t e�e
ts are mutually equal. Further, if we let qG2 (a1) = qG2 (a1; a2(a1)) andqH1 (a2) = qH1 (a1; a2) dqG2 (a1; a2(a1))da1 = dqH1 (a1; a2)da2(3.0.3)is also true.4 A \linear" exampleConsider the 
ase where the inverse demand fun
tion is given bypi(q1; q2) = a� qi � 
qjwith i 6= j; i; j 2 f1; 2g and marginal 
ost 
 < a.We, �rst, look at the G-game. The quantities 
hosen in the Cournot stage areqG1 (a1; a2) = (2� 
)(a� 
) + 2a1 � 
a24� 
2 ; qG2 (a1; a2) = (2� 
)(a� 
) + 2a2 � 
a14� 
2 :At stage 2, the rea
tion fun
tion of the follower, i.e. the owner of �rm 2, isa2(a1) = 
2(2� 
)(a� 
)� 
3a14(2� 
2) :In equilibrium,aG1 = 
2
1
 (a� 
); aG2 = (2 � 
)
2
 � 
5
14(2 � 
2)
 (a� 
); aG1 > aG2where 
1 = (2� 
)(4� 
2)[4(2� 
2)� 
3℄ and 
 = [8(2� 
2) + 
4℄[4(2� 
2)2 � 
4℄.Equilibrium pri
es and quantities in terms of 
 and 
1 for �rm 1 are given bypG1 = "2(2 � 
)[4(2� 
2)� 
3℄
8(2 � 
2)(4� 
2)
 + 2
2[
4 � 4(2 � 
2)2℄
18(2 � 
2)(4� 
2)
 # (a� 
)qG1 = "(2 � 
)[4(2� 
2)� 
3℄
4(2 � 
2)(4� 
2)
 + 
2[8(2� 
2) + 
4℄
14(2 � 
2)(4� 
2)
 # (a� 
) ;while for �rm 2 are given bypG2 = "2(2 � 
)(2� 
2)(4� 
2)
8(2 � 
2)(4 � 
2)
 + 2(2 � 
2)
3(
2 � 4)
18(2 � 
2)(4 � 
2)
 # (a� 
)qG2 = " 2(2 � 
)(4� 
2)
4(2 � 
2)(4� 
2)
 + 2
3(
2 � 4)
14(2 � 
2)(4� 
2)
# (a� 
) :6



We, then, 
onsider the H-game. Quantities in the last two stages are given byqH1 (a1; a2) = (2 � 
)(a� 
)� 
a2 + 2a12(2 � 
2)andqH2 (a1; a2) = a� 
+ a2 � 
qH1 (a1; a2)2 = (4� 2
 � 
2)(a� 
)� 2
a1 + (4 � 
2)a24(2� 
2) :In the delegation stage we haveaH1 = 0 ; aH2 = 
2
1
 (a� 
) = aG1In addition, it is straightforward to show that pH2 = pG1 and pH1 = pG2 showing further,that �H2 = �G1 and �H1 = �G2 :5 Con
lusionThis paper fo
uses on a 
omparative study of the 
lassi
al 
ompetition models ofCournot and Sta
kelberg when poli
y de
isions are taken by managers. We haveproved that sequential delegation under Cournot quantity 
ompetition and simulta-neous delegation under Sta
kelberg quantity 
ompetition produ
e the same marketout
omes. In this given framework, pri
es and quantities are found to be identi
alfor these two modes of 
ompetition. Further, being the �rst mover in the delegationgame under the �rst framework is equivalent -in terms of pro�ts- to being the se
ondmover in the quantity game under the se
ond. A similar equality holds between thepro�ts of the se
ond mover in the delegation game and the pro�ts of the �rst moverin the quantity game. The result 
ould be proved in an even more general settingthat of an inverse demand fun
tion of the form pi = a � (qi)n � 
(qj)m where pi isi's market pri
e and qi and qj with i; j = 1; 2 are the quantities produ
ed by the two�rms.Whether a similar result 
an be derived for the 
ase of more than two �rms is aquestion for future resear
h.6 AppendixWe �rst prove a lemmaLemma 6.1 Let f(q) be a non-negative real, di�erentiable fun
tion, f : R+ ! R+.The fun
tion f is homogeneous if and only if qf 0(q) = nf(q), for some n 2 N.7



Proof. It is a known exer
ise to show that if f is homogeneous f(q) = Cqn for someC > 0 and n 2 N. A straightforward 
he
k proves qf 0(q) = nf(q).To prove the 
onverse,qf 0(q) = nf(q) ) f 0(q)f(q) = nq ) Z f 0(q)f(q) dq = Z nq dq ) f(q) = Cqnand f is homogeneous.Proof of Theorem 2.1: We fo
us �rst at the G-game. At the third stage of thegame the managers of the two �rms 
ompete for quantities �a la Cournot. The solutionof the system #u1#q1 = 0 ; #u2#q2 = 0gives f(q1) = a� 
+ a1 � 
f(q2)n+ 1 ; f(q2) = a� 
+ a2 � 
f(q1)n+ 1whi
h implies that the quantities 
hosen at stage 3 as fun
tions of the in
entive 
oef-�
ients a1; a2 are given byqG1 (a1; a2) = f�1  (n+ 1 � 
)(a� 
) + (n+ 1)a1 � 
a2(n+ 1)2 � 
2 !(6.1.1)and qG2 (a1; a2) = f�1  (n+ 1 � 
)(a� 
) + (n+ 1)a2 � 
a1(n+ 1)2 � 
2 ! :(6.1.2)At stage 2, the owners of �rm 2 
hoose a2 so that to maximise their pro�t�2(a1; a2) = (a� 
f(qG1 (a1; a2))� f(qG2 (a1; a2))� 
)qG2 (a1; a2) :We know by Lemma 6.1 that for i; j = 1; 2#qi#aj = qinf(qi) ##aj f(qi) = qinf(qi) n+ 1(n+ 1)2 � 
2 :(6.1.3)In solving #�2#a2 = 0 we take into a

ount (6.1.3) for i = j = 2 to get( 
2(n+ 1)2 � 
2 � n+ 1(n+ 1)2 � 
2 )f(q2) + (a� 
f(q1)� f(q2)� 
) 1n n+ 1(n+ 1)2 � 
2 = 0whi
h yields a2 as a fun
tion of a1a2(a1) = n(n+ 1 � 
)
2(a� 
)� n
3a1(n+ 1)2(n + 1� 
2) :(6.1.4)At stage 1, the owners of �rm 1 maximise their pro�t�1(a1) = (a� f(qG1 (a1))� 
f(qG2 (a1))qG1 (a1) :8



where qG1 (a1) = qG1 (a1; a2(a1)) and qG2 (a1) = qG2 (a1; a2(a1)). Plugging the value of a2of equation (6.1.4) into equations (6.1.1) and (6.1.2) respe
tively we getf(qG1 (a1)) = (n + 1� 
)[(n+ 1)2(n+ 1� 
2)� n
3℄(a� 
)[(n+ 1)2 � 
2℄(n+ 1)2(n + 1� 
2)+ [(n+ 1)3(n+ 1 � 
2) + n
4℄a1[(n+ 1)2 � 
2℄(n+ 1)2(n+ 1� 
2)and f(qG2 (a1)) = (n+ 1)(n + 1� 
)[(n+ 1)(n+ 1 � 
2) + n
2℄(a� 
)[(n+ 1)2 � 
2℄(n+ 1)2(n + 1� 
2)+�(n+ 1)[(n+ 1)(n+ 1 � 
2)
 + n
3℄a1[(n+ 1)2 � 
2℄(n+ 1)2(n+ 1� 
2) :Solving d�1(a1)da1 = 0 gives aG1 = n(n+ 1)
2
1(n+ 1)
 (a� 
) ;(6.1.5) aG2 = n(n+ 1)(n+ 1 � 
)
2
 � n2(n+ 1)
5
1(n+ 1)3(n + 1� 
2)
 (a� 
) ;(6.1.6)with 
1 = (n+ 1� 
)[(n+ 1)2 � 
2℄[(n+ 1)2(n+ 1� 
2)� n
3℄ ;and 
 = [(n+ 1)3(n+ 1 � 
2) + n
4℄[(n+ 1)2(n+ 1 � 
2)2 � n2
4℄ :We, now, 
ome to the H-game. At stage 3, the manager of �rm 2 solves theproblem maxq2�0 u2(q1:q2) = maxq2�0 [(a� 
f(q1)� f(q2)� 
)q2 + a2q2℄to �nd the response fun
tionf(q2(q1)) = a� 
+ a2 � 
f(q1)n+ 1(6.1.7)or equivalently, sin
e by Lemma 6.1 f is 1{1,q2(q1) = f�1  a� 
+ a2 � 
f(q1)n+ 1 ! :Then, at stage 2 the manager of �rm 1, having taken into a

ount the response of themanager of �rm 2 at stage 3, would seek to maximize his obje
tive fun
tionu1(q1) = (a� f(q1)� 
f(q2(q1))� 
)q1 + a1q1 :9



A straightforward 
al
ulation givesqH1 (a1; a2) = f�1  (n+ 1 � 
)(a� 
)� 
a2 + (n + 1)a1(n+ 1)(n + 1� 
2) !and 
onsequentlyqH2 (a1; a2) = f�1  [(n+ 1)2 � (n + 1)
 � n
2℄(a� 
)� (n+ 1)
a1(n+ 1)2(n+ 1 � 
2)+ [(n+ 1)2 � n
2℄a2(n+ 1)2(n+ 1 � 
2)! :At stage 3 the owners of the two �rms simultaneously solve their respe
tive maxi-mization problems maxa1�0 �1(a1; a2) ; maxa2�0 �2(a1; a2)where �1(a1; a2) = (a� f(q1(a1; a2))� 
f(q2(a1; a2))� 
)q1(a1; a2)= (a� f(q1(a1; a2))� 
r2(f(q1(a1; a2)))� 
)q1(a1; a2)with r2(t) = a� 
+ a2 � 
tn+ 1from equation (6.1.7) and�2(a1; a2) = (a� f(q2(a1; a2))� 
f(q1(a1; a2))� 
)q2(a1; a2) :Be
ause of (6.1.3) applied for i = j = 1#�1#a1 = (�#f(q1(a1; a2))#a1 � 
 dr2df(q1) #f(q1(a1; a2))#a1 )q1(a1; a2)+(a� f(q1(a1; a2))� 
r2(f(q1(a1; a2)))� 
)#q1(a1; a2)#a1=  �df(q1)dq1 � 
 dr2df(q1) df(q1)dq1 ! #q1(a1; a2)#a1 q1(a1; a2)+(a� f(q1(a1; a2))� 
r2(f(q1(a1; a2)))� 
)#q1(a1; a2)#a1=   �df(q1)dq1 � 
 df(q2(q1))dq1 ! q1 + (a� f(q1)� 
f(q2(q1))� 
)! #q1(a1; a2)#a1= d�1(q1)dq1 #q1(a1; a2)#a1 = �a1#q1(a1; a2)#a1 < 010



therefore, �1(a1; a2) is a de
reasing fun
tion of a1 taking its maximumvalue at aH1 = 0.Taking this into a

ount �2(a1; a2) be
omes�2(a2) =  (n+ 1)2(n+ 1 � 
2)(a� 
)(n+ 1)2(n+ 1� 
2)+ �
(n+ 1)(n + 1� 
)(a� 
) + 
2(n+ 1)a2(n+ 1)2(n+ 1 � 
2)+ �[(n+ 1)2 � (n+ 1)
 � n
2℄(a� 
)� [(n+ 1)2 � n
2℄a2(n+ 1)2(n+ 1 � 
2) ! q2(0; a2) :The �rst order 
ondition following a lengthy, albeit straightforward, 
al
ulation givesaH2 = [(n+ 1)2 � (n+ 1)
 � n
2℄n(n+ 1)
2(n+ 1)[(n + 1)2 � (2n+ 1)
2℄[(n+ 1)2 � n
2℄ (a� 
) :(6.1.8)One veri�es dire
tly that aG1 = aH2 > aG2 > aH1 = 0proving the �rst part of the Theorem 2.1. For the se
ond part we 
al
ulate pGi (aG1 ; aG2 )and pHi (aH1 ; aH2 ) for i = 1; 2.pG1 (aG1 ; aG2 ) = a� f(q1(aG1 ; aG2 ))� 
f(q2(aG1 ; aG2 ))� 
= [(n+ 1)2 � 
2℄(a� 
)� (n+ 1 � 
)(a� 
)� (n+ 1)aG1 + 
aG2(n+ 1)2 � 
2�
 (n+ 1� 
)(a� 
) + (n + 1)aG2 � 
aG1(n+ 1)2 � 
2= n(n+ 1 � 
)(a� 
) + (
2 � n � 1)aG1 � n
aG2(n+ 1)2 � 
2 ;pG2 (aG1 ; aG2 ) = a� 
f(q1(aG1 ; aG2 ))� f(q2(aG1 ; aG2 ))� 
= [(n+ 1)2 � 
2℄(a� 
)� 
(n+ 1 � 
)(a� 
)� 
(n+ 1)aG1 + 
2aG2(n+ 1)2 � 
2�(n+ 1� 
)(a� 
) + (n+ 1)aG2 � 
aG1(n+ 1)2 � 
2= n(n+ 1 � 
)(a� 
)� 
naG1 + (
2 � n� 1)aG2(n+ 1)2 � 
2 :Also,pH1 (aH1 ; aH2 ) = a� f(q1(aH1 ; aH2 ))� 
f(q2(aH1 ; aH2 ))� 
= (n+ 1)2(n+ 1 � 
2)(a� 
)(n+ 1)2(n+ 1� 
2)�(n+ 1)(n+ 1 � 
)(a� 
)� (n+ 1)
aH2 + (n+ 1)2aH1(n+ 1)2(n+ 1 � 
2)11



�
[(n+ 1)2 � (n+ 1)
 � n
2℄(a� 
)� (n + 1)
2aH1 + 
[(n+ 1)2 � n
2℄aH2(n+ 1)2(n + 1� 
2)= [n(n+ 1)2 � n(n+ 1)
(
 + 1) + n
3℄(a� 
)(n+ 1)2(n+ 1 � 
2)+(n+ 1)(
2 � n� 1)aH1(n+ 1)2(n+ 1 � 
2) + n
(
2 � n� 1)aH2(n+ 1)2(n+ 1� 
2) ;andpH2 (aH1 ; aH2 ) = a� 
f(q1(aH1 ; aH2 ))� f(q2(aH1 ; aH2 ))� 
= (n+ 1)2(n+ 1 � 
2)(a� 
)(n+ 1)2(n+ 1� 
2)�
(n+ 1)(n+ 1 � 
)(a� 
)� 
2(n+ 1)aH2 + 
(n + 1)2aH1(n+ 1)2(n+ 1� 
2)� [(n+ 1)2 � (n+ 1)
 � n
2℄(a� 
)� (n + 1)
aH1 + [(n+ 1)2 � n
2℄aH2(n + 1)2(n+ 1� 
2)= n[(n+ 1)2 � (n+ 1)
 � n
2℄(a� 
)(n+ 1)2(n+ 1 � 
2)� n(n + 1)
aH1(n+ 1)2(n+ 1� 
2) + [(2n+ 1)
2 � (n+ 1)2℄aH2(n + 1)2(n+ 1� 
2) :The �rst part of Theorem 2.1, i.e.aH1 = 0 ; ; aH2 = aG1 = n(n+ 1)
2
1(a� 
)(n+ 1)
 ;implies thatpG1 = n(n+ 1)3(n + 1� 
2)(n+ 1� 
)
[(n+ 1)2 � 
2℄(n+ 1)3(n + 1� 
2)
(a� 
)+ �n(n+ 1)3(n+ 1 � 
2)2
2
1[(n+ 1)2 � 
2℄(n+ 1)3(n + 1� 
2)
(a� 
)+�n2(n+ 1)(n+ 1 � 
)
3
 + n3(n+ 1)
6
1[(n+ 1)2 � 
2℄(n+ 1)3(n + 1� 
2)
 (a� 
) ;pG2 = n(n+ 1)3(n+ 1 � 
)(n + 1� 
2)
[(n+ 1)2 � 
2℄(n+ 1)3(n+ 1 � 
2)
(a� 
)+ �n2(n + 1)3(n+ 1� 
2)
3
1[(n+ 1)2 � 
2℄(n+ 1)3(n+ 1 � 
2)
(a� 
)+�n(n+ 1)(n+ 1 � 
)(n+ 1� 
2)
2
 + n2(n+ 1)(n+ 1 � 
2)
5
1[(n+ 1)2 � 
2℄(n+ 1)3(n+ 1 � 
2)
 (a� 
)12



and pH1 = (n + 1)[n(n+ 1)2 � n(n+ 1)
(
 + 1) + n
3℄
(n+ 1)3(n+ 1 � 
2)
 (a� 
)+�n2(n+ 1)(n + 1� 
2)
3
1(n+ 1)3(n+ 1 � 
2)
 (a� 
) ;pH2 = n(n+ 1)[(n+ 1)2 � (n+ 1)
 � n
2℄
(n+ 1)2(n+ 1� 
2) (a� 
)+n(n+ 1)[(2n + 1)
2 � (n+ 1)2℄
2
1(n + 1)2(n+ 1� 
2) (a� 
) :By 
omparing the 
oeÆ
ients of 
 and 
1 one dire
tly establishespG1 = pH2 and pG2 = pH1proving half of Theorem 2.1(ii).To the end of proving the remaining half of Theorem 2.1(ii), we observe thatf(qG1 ) = (n+ 1)2(n+ 1 � 
)(n+ 1� 
2)
 + n(n+ 1)3(n + 1� 
2)
2
1[(n+ 1)2 � 
2℄(n+ 1 � 
2)(n + 1)2
 (a� 
)�
 n(n+ 1 � 
)
2
 � n2
5
1[(n+ 1)2 � 
2℄(n+ 1� 
2)(n+ 1)2
(a� 
) ;f(qG2 ) = (n + 1)2(n+ 1� 
)(n+ 1 � 
2)
[(n+ 1)2 � 
2℄(n+ 1 � 
2)(n+ 1)2
(a� 
)+n(n+ 1)(n + 1� 
)
2
� n2(n+ 1)
5
1[(n+ 1)2 � 
2℄(n+ 1 � 
2)(n+ 1)2
 (a� 
)�
 n(n+ 1)2(n + 1� 
2)
2
1[(n+ 1)2 � 
2℄(n+ 1� 
2)(n+ 1)2
(a� 
) :For qHi ; 1 = 1; 2, we getf(qH1 ) = " (n+ 1)(n+ 1 � 
)
(n+ 1)2(n+ 1 � 
2)
 � 
 n(n+ 1)
2
1(n + 1)2(n+ 1� 
2)
# (a� 
) ;f(qH2 ) = (n+ 1)[(n+ 1)(n+ 1 � 
2)� 
(n+ 1 � 
)℄
(n+ 1)3(n+ 1 � 
2)
 (a� 
)+n(n+ 1)[(n+ 1)(n+ 1� 
2) + 
2℄
2
1(n+ 1)3(n+ 1� 
2)
 (a� 
) :By 
omparing, on
e more, the 
oeÆ
ients of 
 and 
1 in the above formulae andbe
ause f is 1{1 one dire
tly establishesqG1 = qH2 and qG2 = qH1whi
h 
ompletes the proof of Theorem 2.1(ii).The proof of Theorem 2.1(iii) follows, now, immediately.13
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