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Strategi delegation e�ets on Cournot and StakelbergompetitionN.J. MihelaakisUniversity of Piraeus, Eonomis Department, 80 Karaoli & Dimitriou Strs., 18534, GreeeAbstratThis paper ompares the outomes of two three-stage games of two �rmsompeting for quantity with managerial delegation. In fat, we prove thatsimultaneous hoie of managers by the proprietors of the �rms followed byStakelberg-type ompetition is equivalent to sequential hoie of managers fol-lowed by Cournot-type ompetition. We prove equivalene in a general setting,namely, when the duopolisti model is haraterised by a non-linear inversedemand funtion of the form pi = a� (qi)n � (qj)n, i; j = 1; 2 and n � 1.Keywords: Strategi delegation; Cournot ompetition; Stakelberg ompetitionJEL Classi�ation: D43, L13, L211 IntrodutionIn modern day orporation praties the adoption of a managing shemewhere ownersdelegate deision powers to managers is widely adopted and onsidered as standard.Traditionally, the owner of a �rm strives to stimulate the aggressiveness of his managerby ommitting to an inentive ontrat rewarding the manager's performane basedon a ombination of fators suh as market share, output and/or pro�ts.The role of strategi delegation in oligopoly was �rst investigated by the worksof Fershtman and Judd (1985), Vikers (1985) and Sklivas (1987). They based theirinvestigation on the study of two-stage omplete information games. In the �rst stage,the owners of eah �rm publily announe the rewarding shemes put forward to theirmanagers, while in the seond stage, �rms' managers ompete for quantities or pries,aording to delegated objetive funtions.e-mail address: njm�unipi.gr (tel.: +30210 4142289)1



The e�ets of strategi delegation on the standard ompetition models of indus-trial eonomis suh as the Cournot and Stakelberg models is a topi of inreasedinterest to both sholars and pratitioners and the results have the potential to guideregulation.In their 2008 paper Kopel and L�o�er (2008) onsider a duopoly game where thetwo �rms are in a Stakelberg-leader-follower-type situation. Amongst other things,they examine whether the market leader sustains her advantage if at a stage priorto quantity deisions the owners of the �rms are given the ability to hoose theirdelegation shemes.The urrent paper elaborates further on the ideas �rst developed in the abovepaper and Stamatopoulos's (2013) pre-print that was privately ommuniated to us.We examine and ompare the outomes of two three-stage omplete information gamesthat both involve managerial delegation by means of a weighted ontrat rewardingpro�ts and quantity prior to quantity ompetition. In the �rst stage of the �rstgame, the G-game, the owners of the �rst �rm ommit on the inentive rate of theirmanagerial ontrat. In the seond stage, the owners of the seond �rm reat makingup their mind with regards to the inentive rate of their manager. In the third stage ofthe G-game, the managers of the two �rms ompete for quantity in a Cournot fashion.In the �rst stage of the H-game the two owners make simultaneous o�ers to theirmanagers. In the seond stage, the manager of the �rst �rm ats as a leader settinga quantity level and in the third stage of the H-game the manager of the seondompany reats aordingly gauging her output level. We prove that equilibriumpries and quantities are the same for the two games. Further, we show that the�rst mover in the sequential delegation game, the G-game, earns the same pro�tas the seond mover in the sequential quantity game, the H-game. Similarly, theseond mover of the delegation game ahieves the same pro�t as the �rst mover inthe quantity game.We, further, ontribute to the literature by onsidering a duopoly market of adi�erentiated ommodity haraterized by a non-linear inverse demand funtion. Tooverome the potential restritiveness of linear sale urves while, at the same time,exploring the limits of our onsiderations we onsider an inverse demand funtion ofthe form pi = a�(qi)n�(qj)n where pi is i's market prie and qi and qj with i; j = 1; 2are the quantities produed by the two �rms.The rest of the paper is organized as follows: the model and the results are foundin setion 2, setion 3 sheds light into the heuristis of the result, setion 4 derivesStamatopoulos' (2013) linear demand ase followed by a brief onlusion in setion 5.All tehnial details are olleted in the Appendix.2 The modelConsider a duopoly market with di�erentiated ommodities. Firm i faes the inversedemand funtion pi = a � f(qi) � f(qj) where pi is i's market prie, qi and qj2



are the quantities produed by �rms i and j, with i; j = 1; 2, i 6= j, f : R+ !R+ a homogeneous funtion of degree n 2 N and  2 (0; 1℄. The ost funtion isassumed to be linear, the same for both �rms. Let, further,  with  < a denotethe marginal prodution ost. Firms follow a orporate struture haraterized byownership-management separation. Following Vikers (1985), we assume that themanagers are o�ered objetive funtions that are ombinations of pro�t and quantitysold. The manager of �rm i is thus delegated the objetive funtionvi(q1; q2) = (pi � )qi + aiqi; ai � 0; i = 1; 2The total payo� of manager i is given by �ivi + ti. Parameters �i and ti do not a�etthe hoie of quantities and are hosen by the �rm's owners to just give the managerhis reservation utility. The inentive rate ai is hosen by the owners of �rm i so thatthey maximize the pro�t funtion�i(q1; q2) = (pi � )qi; i = 1; 2The G-game is strutured as follows: in the �rst stage, the owners of �rm 1deide on the inentive rate of their manager, a1: The owners of �rm 2 observe theo�er of the �rst �rm and in stage two they reat by hoosing a2: Finally, in stage threethe managers of the two �rms ompete seleting quantities q1 and q2 in a Cournotfashion.The struture of the H-game is as follows: in the �rst stage the owners of thetwo �rms simultaneously hoose a1 and a2 making their hoies publily known. Inthe seond stage, the manager of the �rst �rm sets a level of quantity and in the thirdstage, the manager of the seond �rm reats by seleting an optimum level of quantityfor her �rm.As usually the two games are solved by bakward indution. Let qG1 (a1; a2); qG2 (a1; a2)denote the quantities solving the Cournot sub-game played at stage 3 of the G-game.If we denote by �i(a1; a2) = �i(qG1 (a1; a2); qG2 (a1; a2)), i = 1; 2 the pro�t funtions ofthe two owners respetively then, in stage two, the owners of the seond �rm seleta2 by solving maxa2�0 �2(a1; a2). Let a2(a1) denote their hoie. Then, in the �rst stage,the owners of the �rst �rm solve the problem maxa1�0 �1(a1; a2(a1)). Let, further, aGi andpGi denote the equilibrium inentive rate and produt prie of �rm i in the G-game,i = 1; 2. Then, aG1 = n(n + 1)2
1(n+ 1)
 (a� ) ;aG2 = n(n+ 1)(n + 1� )2
� n2(n+ 1)5
1(n+ 1)3(n+ 1� 2)
 (a� ) ;pG1 = n(n+ 1)3(n + 1� )(n+ 1� 2)
[(n+ 1)2 � 2℄(n+ 1)3(n + 1� 2)
(a� )3
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 + n2(n+ 1)(n + 1� 2)5
1[(n+ 1)2 � 2℄(n+ 1)3(n+ 1 � 2)
 (a� ) ;where 
1 = (n+ 1� )[(n+ 1)2 � 2℄[(n+ 1)2(n+ 1� 2)� n3℄ ;and 
 = [(n+ 1)3(n+ 1 � 2) + n4℄[(n+ 1)2(n+ 1 � 2)2 � n24℄ :The preise alulations for the above formulae an be found in the Appendix.Similarly, with respet to the H-game, at stage three the manager of �rm 2responds to the quantity level q1(a1; a2) set by the manager of �rm 1 at stage two, bysolving the maximization problemmaxq2�0 u2(q1; q2). If we denote by r2(q1) the solution tothis problem, at stage two the manager of �rm 1 solves the problem maxq1 u1(q1; r2(q1))where u1(q1; r2(q1)) = (a� f(q1)� f(r2(q1))� )q1 + a1q1 :If qH1 (a1; a2) denotes the solution to this problem and qH2 (a1; a2) = r2(qH1 (a1; a2)) then,at stage one the owners of �rms 1 and 2 simultaneously solve the respetive problemsmaxa1 �1(qH1 (a1; a2); qH2 (a1; a2)) and maxa2 �2(qH1 (a1; a2); qH2 (a1; a2)). Let aHi and pHi de-note the equilibrium inentive rate and produt prie of �rm 2 in H-game. Again,the preise alulations an be found in the Appendix,aH1 = 0 ; aH2 = [(n+ 1)2 � (n+ 1) � n2℄n(n+ 1)2(n+ 1)[(n+ 1)2 � (2n + 1)2℄[(n+ 1)2 � n2℄(a� ) ;pH1 = (n + 1)[n(n+ 1)2 � n(n+ 1)( + 1) + n3℄
(n+ 1)3(n+ 1 � 2)
 (a� )+�n2(n+ 1)(n + 1� 2)3
1(n+ 1)3(n+ 1 � 2)
 (a� ) ;pH2 = n(n+ 1)[(n+ 1)2 � (n+ 1) � n2℄
(n+ 1)2(n+ 1 � 2)
 (a� )+n(n+ 1)[(2n + 1)2 � (n+ 1)2℄2
1(n+ 1)2(n+ 1 � 2)
 (a� ) :4



Putting everything together, we getTheorem 2.1 For games G and H the following hold true:(i) aG1 = aH2 > aG2 > aH1 = 0.(ii) pG1 = pH2 , pG2 = pH1 and qG1 = qH2 , qG2 = qH1 .(iii) �G1 = �H2 > �G2 = �H1 :Proof. The details of the proof are inluded in the Appendix.3 The intuition behind the resultIn analyzing the main result, Theorem 2.1, we follow the reasoning presented �rst in[Kopel and L�o�er (2008)℄ and subsequently in [Stamatopoulos (2014)℄.Parts (ii) and (iii) of Theorem 2.1 follow readily from part (i) of the sametheorem. The H-game follows similar lines to those of the orresponding game in[Kopel and L�o�er (2008)℄. It is, therefore, not surprising that the leader, the ownerof �rm 1 in this ase, has no inentive to delegate, i.e. aH1 = 0 while the follower,�rm 2, does have an inentive to delegate deision power to a manager. This result isdiretly derived in the Appendix.The rest of the main theorem follows from the fat that aG1 = aH2 ; i.e., theinentive rate of the �rst mover in the delegation sub-game of G is equal to theinentive rate of the seond mover in the quantity sub-game of H. In onsistenywith the notation used in setion 2, let qG1 (a1) = qG1 (a1; a2(a1)) denote the equilibriumquantity of �rm 1 in theG-game as a funtion of a1, i.e. the inentive rate delegated tothe manager of �rm 1 being the �rst mover in the orresponding delegation sub-game.A diret appliation of the hain rule allows for the splitting of the rate of hange ofqG1 (a1) into two summands as follows:dqG1da1 = �qG1�a1| {z }diret e�et+ �qG1�a2 da2(a1)da1| {z }indiret e�et :(3.0.1)In a similar fashion, the rate of hange of qH2 (a2) = qH2 (a2; qH1 (a1; a2)) as a funtion ofa2 an be split dqH2da2 = �qH2�a2| {z }diret e�et+ �qH2�q1 �qH1�a2| {z }indiret e�et(3.0.2)Equations (3.0.1) and (3.0.2) deompose the e�et of own delegation inentive on ownperformane into the diret e�et measuring the immediate impat of a1 on qG1 anda2 on qH2 respetively and the indiret e�et measuring the orresponding impat via5



the opponent's response. Given our framework, it turns out that both diret as wellas indiret e�ets are mutually equal. Further, if we let qG2 (a1) = qG2 (a1; a2(a1)) andqH1 (a2) = qH1 (a1; a2) dqG2 (a1; a2(a1))da1 = dqH1 (a1; a2)da2(3.0.3)is also true.4 A \linear" exampleConsider the ase where the inverse demand funtion is given bypi(q1; q2) = a� qi � qjwith i 6= j; i; j 2 f1; 2g and marginal ost  < a.We, �rst, look at the G-game. The quantities hosen in the Cournot stage areqG1 (a1; a2) = (2� )(a� ) + 2a1 � a24� 2 ; qG2 (a1; a2) = (2� )(a� ) + 2a2 � a14� 2 :At stage 2, the reation funtion of the follower, i.e. the owner of �rm 2, isa2(a1) = 2(2� )(a� )� 3a14(2� 2) :In equilibrium,aG1 = 2
1
 (a� ); aG2 = (2 � )2
 � 5
14(2 � 2)
 (a� ); aG1 > aG2where 
1 = (2� )(4� 2)[4(2� 2)� 3℄ and 
 = [8(2� 2) + 4℄[4(2� 2)2 � 4℄.Equilibrium pries and quantities in terms of 
 and 
1 for �rm 1 are given bypG1 = "2(2 � )[4(2� 2)� 3℄
8(2 � 2)(4� 2)
 + 22[4 � 4(2 � 2)2℄
18(2 � 2)(4� 2)
 # (a� )qG1 = "(2 � )[4(2� 2)� 3℄
4(2 � 2)(4� 2)
 + 2[8(2� 2) + 4℄
14(2 � 2)(4� 2)
 # (a� ) ;while for �rm 2 are given bypG2 = "2(2 � )(2� 2)(4� 2)
8(2 � 2)(4 � 2)
 + 2(2 � 2)3(2 � 4)
18(2 � 2)(4 � 2)
 # (a� )qG2 = " 2(2 � )(4� 2)
4(2 � 2)(4� 2)
 + 23(2 � 4)
14(2 � 2)(4� 2)
# (a� ) :6



We, then, onsider the H-game. Quantities in the last two stages are given byqH1 (a1; a2) = (2 � )(a� )� a2 + 2a12(2 � 2)andqH2 (a1; a2) = a� + a2 � qH1 (a1; a2)2 = (4� 2 � 2)(a� )� 2a1 + (4 � 2)a24(2� 2) :In the delegation stage we haveaH1 = 0 ; aH2 = 2
1
 (a� ) = aG1In addition, it is straightforward to show that pH2 = pG1 and pH1 = pG2 showing further,that �H2 = �G1 and �H1 = �G2 :5 ConlusionThis paper fouses on a omparative study of the lassial ompetition models ofCournot and Stakelberg when poliy deisions are taken by managers. We haveproved that sequential delegation under Cournot quantity ompetition and simulta-neous delegation under Stakelberg quantity ompetition produe the same marketoutomes. In this given framework, pries and quantities are found to be identialfor these two modes of ompetition. Further, being the �rst mover in the delegationgame under the �rst framework is equivalent -in terms of pro�ts- to being the seondmover in the quantity game under the seond. A similar equality holds between thepro�ts of the seond mover in the delegation game and the pro�ts of the �rst moverin the quantity game. The result ould be proved in an even more general settingthat of an inverse demand funtion of the form pi = a � (qi)n � (qj)m where pi isi's market prie and qi and qj with i; j = 1; 2 are the quantities produed by the two�rms.Whether a similar result an be derived for the ase of more than two �rms is aquestion for future researh.6 AppendixWe �rst prove a lemmaLemma 6.1 Let f(q) be a non-negative real, di�erentiable funtion, f : R+ ! R+.The funtion f is homogeneous if and only if qf 0(q) = nf(q), for some n 2 N.7



Proof. It is a known exerise to show that if f is homogeneous f(q) = Cqn for someC > 0 and n 2 N. A straightforward hek proves qf 0(q) = nf(q).To prove the onverse,qf 0(q) = nf(q) ) f 0(q)f(q) = nq ) Z f 0(q)f(q) dq = Z nq dq ) f(q) = Cqnand f is homogeneous.Proof of Theorem 2.1: We fous �rst at the G-game. At the third stage of thegame the managers of the two �rms ompete for quantities �a la Cournot. The solutionof the system #u1#q1 = 0 ; #u2#q2 = 0gives f(q1) = a� + a1 � f(q2)n+ 1 ; f(q2) = a� + a2 � f(q1)n+ 1whih implies that the quantities hosen at stage 3 as funtions of the inentive oef-�ients a1; a2 are given byqG1 (a1; a2) = f�1  (n+ 1 � )(a� ) + (n+ 1)a1 � a2(n+ 1)2 � 2 !(6.1.1)and qG2 (a1; a2) = f�1  (n+ 1 � )(a� ) + (n+ 1)a2 � a1(n+ 1)2 � 2 ! :(6.1.2)At stage 2, the owners of �rm 2 hoose a2 so that to maximise their pro�t�2(a1; a2) = (a� f(qG1 (a1; a2))� f(qG2 (a1; a2))� )qG2 (a1; a2) :We know by Lemma 6.1 that for i; j = 1; 2#qi#aj = qinf(qi) ##aj f(qi) = qinf(qi) n+ 1(n+ 1)2 � 2 :(6.1.3)In solving #�2#a2 = 0 we take into aount (6.1.3) for i = j = 2 to get( 2(n+ 1)2 � 2 � n+ 1(n+ 1)2 � 2 )f(q2) + (a� f(q1)� f(q2)� ) 1n n+ 1(n+ 1)2 � 2 = 0whih yields a2 as a funtion of a1a2(a1) = n(n+ 1 � )2(a� )� n3a1(n+ 1)2(n + 1� 2) :(6.1.4)At stage 1, the owners of �rm 1 maximise their pro�t�1(a1) = (a� f(qG1 (a1))� f(qG2 (a1))qG1 (a1) :8



where qG1 (a1) = qG1 (a1; a2(a1)) and qG2 (a1) = qG2 (a1; a2(a1)). Plugging the value of a2of equation (6.1.4) into equations (6.1.1) and (6.1.2) respetively we getf(qG1 (a1)) = (n + 1� )[(n+ 1)2(n+ 1� 2)� n3℄(a� )[(n+ 1)2 � 2℄(n+ 1)2(n + 1� 2)+ [(n+ 1)3(n+ 1 � 2) + n4℄a1[(n+ 1)2 � 2℄(n+ 1)2(n+ 1� 2)and f(qG2 (a1)) = (n+ 1)(n + 1� )[(n+ 1)(n+ 1 � 2) + n2℄(a� )[(n+ 1)2 � 2℄(n+ 1)2(n + 1� 2)+�(n+ 1)[(n+ 1)(n+ 1 � 2) + n3℄a1[(n+ 1)2 � 2℄(n+ 1)2(n+ 1� 2) :Solving d�1(a1)da1 = 0 gives aG1 = n(n+ 1)2
1(n+ 1)
 (a� ) ;(6.1.5) aG2 = n(n+ 1)(n+ 1 � )2
 � n2(n+ 1)5
1(n+ 1)3(n + 1� 2)
 (a� ) ;(6.1.6)with 
1 = (n+ 1� )[(n+ 1)2 � 2℄[(n+ 1)2(n+ 1� 2)� n3℄ ;and 
 = [(n+ 1)3(n+ 1 � 2) + n4℄[(n+ 1)2(n+ 1 � 2)2 � n24℄ :We, now, ome to the H-game. At stage 3, the manager of �rm 2 solves theproblem maxq2�0 u2(q1:q2) = maxq2�0 [(a� f(q1)� f(q2)� )q2 + a2q2℄to �nd the response funtionf(q2(q1)) = a� + a2 � f(q1)n+ 1(6.1.7)or equivalently, sine by Lemma 6.1 f is 1{1,q2(q1) = f�1  a� + a2 � f(q1)n+ 1 ! :Then, at stage 2 the manager of �rm 1, having taken into aount the response of themanager of �rm 2 at stage 3, would seek to maximize his objetive funtionu1(q1) = (a� f(q1)� f(q2(q1))� )q1 + a1q1 :9



A straightforward alulation givesqH1 (a1; a2) = f�1  (n+ 1 � )(a� )� a2 + (n + 1)a1(n+ 1)(n + 1� 2) !and onsequentlyqH2 (a1; a2) = f�1  [(n+ 1)2 � (n + 1) � n2℄(a� )� (n+ 1)a1(n+ 1)2(n+ 1 � 2)+ [(n+ 1)2 � n2℄a2(n+ 1)2(n+ 1 � 2)! :At stage 3 the owners of the two �rms simultaneously solve their respetive maxi-mization problems maxa1�0 �1(a1; a2) ; maxa2�0 �2(a1; a2)where �1(a1; a2) = (a� f(q1(a1; a2))� f(q2(a1; a2))� )q1(a1; a2)= (a� f(q1(a1; a2))� r2(f(q1(a1; a2)))� )q1(a1; a2)with r2(t) = a� + a2 � tn+ 1from equation (6.1.7) and�2(a1; a2) = (a� f(q2(a1; a2))� f(q1(a1; a2))� )q2(a1; a2) :Beause of (6.1.3) applied for i = j = 1#�1#a1 = (�#f(q1(a1; a2))#a1 �  dr2df(q1) #f(q1(a1; a2))#a1 )q1(a1; a2)+(a� f(q1(a1; a2))� r2(f(q1(a1; a2)))� )#q1(a1; a2)#a1=  �df(q1)dq1 �  dr2df(q1) df(q1)dq1 ! #q1(a1; a2)#a1 q1(a1; a2)+(a� f(q1(a1; a2))� r2(f(q1(a1; a2)))� )#q1(a1; a2)#a1=   �df(q1)dq1 �  df(q2(q1))dq1 ! q1 + (a� f(q1)� f(q2(q1))� )! #q1(a1; a2)#a1= d�1(q1)dq1 #q1(a1; a2)#a1 = �a1#q1(a1; a2)#a1 < 010



therefore, �1(a1; a2) is a dereasing funtion of a1 taking its maximumvalue at aH1 = 0.Taking this into aount �2(a1; a2) beomes�2(a2) =  (n+ 1)2(n+ 1 � 2)(a� )(n+ 1)2(n+ 1� 2)+ �(n+ 1)(n + 1� )(a� ) + 2(n+ 1)a2(n+ 1)2(n+ 1 � 2)+ �[(n+ 1)2 � (n+ 1) � n2℄(a� )� [(n+ 1)2 � n2℄a2(n+ 1)2(n+ 1 � 2) ! q2(0; a2) :The �rst order ondition following a lengthy, albeit straightforward, alulation givesaH2 = [(n+ 1)2 � (n+ 1) � n2℄n(n+ 1)2(n+ 1)[(n + 1)2 � (2n+ 1)2℄[(n+ 1)2 � n2℄ (a� ) :(6.1.8)One veri�es diretly that aG1 = aH2 > aG2 > aH1 = 0proving the �rst part of the Theorem 2.1. For the seond part we alulate pGi (aG1 ; aG2 )and pHi (aH1 ; aH2 ) for i = 1; 2.pG1 (aG1 ; aG2 ) = a� f(q1(aG1 ; aG2 ))� f(q2(aG1 ; aG2 ))� = [(n+ 1)2 � 2℄(a� )� (n+ 1 � )(a� )� (n+ 1)aG1 + aG2(n+ 1)2 � 2� (n+ 1� )(a� ) + (n + 1)aG2 � aG1(n+ 1)2 � 2= n(n+ 1 � )(a� ) + (2 � n � 1)aG1 � naG2(n+ 1)2 � 2 ;pG2 (aG1 ; aG2 ) = a� f(q1(aG1 ; aG2 ))� f(q2(aG1 ; aG2 ))� = [(n+ 1)2 � 2℄(a� )� (n+ 1 � )(a� )� (n+ 1)aG1 + 2aG2(n+ 1)2 � 2�(n+ 1� )(a� ) + (n+ 1)aG2 � aG1(n+ 1)2 � 2= n(n+ 1 � )(a� )� naG1 + (2 � n� 1)aG2(n+ 1)2 � 2 :Also,pH1 (aH1 ; aH2 ) = a� f(q1(aH1 ; aH2 ))� f(q2(aH1 ; aH2 ))� = (n+ 1)2(n+ 1 � 2)(a� )(n+ 1)2(n+ 1� 2)�(n+ 1)(n+ 1 � )(a� )� (n+ 1)aH2 + (n+ 1)2aH1(n+ 1)2(n+ 1 � 2)11



�[(n+ 1)2 � (n+ 1) � n2℄(a� )� (n + 1)2aH1 + [(n+ 1)2 � n2℄aH2(n+ 1)2(n + 1� 2)= [n(n+ 1)2 � n(n+ 1)( + 1) + n3℄(a� )(n+ 1)2(n+ 1 � 2)+(n+ 1)(2 � n� 1)aH1(n+ 1)2(n+ 1 � 2) + n(2 � n� 1)aH2(n+ 1)2(n+ 1� 2) ;andpH2 (aH1 ; aH2 ) = a� f(q1(aH1 ; aH2 ))� f(q2(aH1 ; aH2 ))� = (n+ 1)2(n+ 1 � 2)(a� )(n+ 1)2(n+ 1� 2)�(n+ 1)(n+ 1 � )(a� )� 2(n+ 1)aH2 + (n + 1)2aH1(n+ 1)2(n+ 1� 2)� [(n+ 1)2 � (n+ 1) � n2℄(a� )� (n + 1)aH1 + [(n+ 1)2 � n2℄aH2(n + 1)2(n+ 1� 2)= n[(n+ 1)2 � (n+ 1) � n2℄(a� )(n+ 1)2(n+ 1 � 2)� n(n + 1)aH1(n+ 1)2(n+ 1� 2) + [(2n+ 1)2 � (n+ 1)2℄aH2(n + 1)2(n+ 1� 2) :The �rst part of Theorem 2.1, i.e.aH1 = 0 ; ; aH2 = aG1 = n(n+ 1)2
1(a� )(n+ 1)
 ;implies thatpG1 = n(n+ 1)3(n + 1� 2)(n+ 1� )
[(n+ 1)2 � 2℄(n+ 1)3(n + 1� 2)
(a� )+ �n(n+ 1)3(n+ 1 � 2)22
1[(n+ 1)2 � 2℄(n+ 1)3(n + 1� 2)
(a� )+�n2(n+ 1)(n+ 1 � )3
 + n3(n+ 1)6
1[(n+ 1)2 � 2℄(n+ 1)3(n + 1� 2)
 (a� ) ;pG2 = n(n+ 1)3(n+ 1 � )(n + 1� 2)
[(n+ 1)2 � 2℄(n+ 1)3(n+ 1 � 2)
(a� )+ �n2(n + 1)3(n+ 1� 2)3
1[(n+ 1)2 � 2℄(n+ 1)3(n+ 1 � 2)
(a� )+�n(n+ 1)(n+ 1 � )(n+ 1� 2)2
 + n2(n+ 1)(n+ 1 � 2)5
1[(n+ 1)2 � 2℄(n+ 1)3(n+ 1 � 2)
 (a� )12



and pH1 = (n + 1)[n(n+ 1)2 � n(n+ 1)( + 1) + n3℄
(n+ 1)3(n+ 1 � 2)
 (a� )+�n2(n+ 1)(n + 1� 2)3
1(n+ 1)3(n+ 1 � 2)
 (a� ) ;pH2 = n(n+ 1)[(n+ 1)2 � (n+ 1) � n2℄
(n+ 1)2(n+ 1� 2) (a� )+n(n+ 1)[(2n + 1)2 � (n+ 1)2℄2
1(n + 1)2(n+ 1� 2) (a� ) :By omparing the oeÆients of 
 and 
1 one diretly establishespG1 = pH2 and pG2 = pH1proving half of Theorem 2.1(ii).To the end of proving the remaining half of Theorem 2.1(ii), we observe thatf(qG1 ) = (n+ 1)2(n+ 1 � )(n+ 1� 2)
 + n(n+ 1)3(n + 1� 2)2
1[(n+ 1)2 � 2℄(n+ 1 � 2)(n + 1)2
 (a� )� n(n+ 1 � )2
 � n25
1[(n+ 1)2 � 2℄(n+ 1� 2)(n+ 1)2
(a� ) ;f(qG2 ) = (n + 1)2(n+ 1� )(n+ 1 � 2)
[(n+ 1)2 � 2℄(n+ 1 � 2)(n+ 1)2
(a� )+n(n+ 1)(n + 1� )2
� n2(n+ 1)5
1[(n+ 1)2 � 2℄(n+ 1 � 2)(n+ 1)2
 (a� )� n(n+ 1)2(n + 1� 2)2
1[(n+ 1)2 � 2℄(n+ 1� 2)(n+ 1)2
(a� ) :For qHi ; 1 = 1; 2, we getf(qH1 ) = " (n+ 1)(n+ 1 � )
(n+ 1)2(n+ 1 � 2)
 �  n(n+ 1)2
1(n + 1)2(n+ 1� 2)
# (a� ) ;f(qH2 ) = (n+ 1)[(n+ 1)(n+ 1 � 2)� (n+ 1 � )℄
(n+ 1)3(n+ 1 � 2)
 (a� )+n(n+ 1)[(n+ 1)(n+ 1� 2) + 2℄2
1(n+ 1)3(n+ 1� 2)
 (a� ) :By omparing, one more, the oeÆients of 
 and 
1 in the above formulae andbeause f is 1{1 one diretly establishesqG1 = qH2 and qG2 = qH1whih ompletes the proof of Theorem 2.1(ii).The proof of Theorem 2.1(iii) follows, now, immediately.13
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